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XVIII.—On the Functions which are represented by the Expansions
of the Interpolation-Theory. By E. T. Whittaker.

(MS. received May 14, 1915. Read June 7, 1915.)

§ 1. Introduction.

Let f(x) be a given function of a variable x. We shall suppose that
f(x) is a one-valued analytic function, so that its Taylor's expansion in any
part of the plane of the complex variable x can be derived from its Taylor's
expansion in any other part of the plane by the process of analytic
continuation.

Let the values of f(x) which correspond to a set of equidistant values of
the argument, say a, a + w, a — w, a + 2w, a — 2w, a + Sw, . . . . be denoted
by /o> fv f-v fv /-2> fs> e^c- We shall suppose that these are all finite, even
at infinity. Then denoting (f.-f,) by Sf,, ( / 0 - A ) by Sf.h (Sf.-Sf^) by
<52/0 etc., we can write out a "table of differences" for the function; the
notation which will be used will be evident from the following scheme :—

Argument. Entry.
a-2w f_2

S/-4

a-w /-i &f-i

a /o «% 8% • •
8/* SV*

a + w f, &%

3/1
f2

Now it is obvious that f(x) is not the only analytic function which can
give rise to the difference-table (1): for we can form a new function by
adding tof(x) any analytic function which vanishes for the values a, a + w,
a — w, a+2w, . . . . of the argument, and this new function will have
precisely the same difference-table as f(x). All the analytic functions
which give rise in this way to the same difference-table will be said to be
cotabular. Any two cotabular functions are equal to each other when the
argument has any one of the values a, a + w, a — w, a + 2w, . . . ., but they
are not equal to each other in general when the argument has a value not
included in this set.
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In the theory of interpolation certain expansions are introduced in
order to represent the function f(x), for general values of x, in terms of
the quantities occurring in the above difference-table. We shall consider
in particular the expansion

y % <" + W" *)(» 2) . . . (2)

which is supposed (when it converges) to represent f(a+nw), where n can
have any value. It is obvious, however, that there is no reason a priori
why this expansion should represent fix) in preference to any other
function of the set cotabular with f(x): and thus two questions arise,
namely:—

(1) Which one of the functions of the cotabular set is represented by
the expansion (2) ?

(2) Given any one function f(x) belonging to the cotabular set, is it
possible to construct from f(x), by analytical processes, that function of
the cotabular set which is represented by the expansion (2) ?

These questions are answered in the present paper. It is, in fact, shown
that there is a certain function belonging to the cotabular set which is
represented by the expansion (2). This function is named the cardinal
function of the set, and its properties are investigated. A formula is
given by which the cardinal function may be constructed when any one
function of the cotabular set is known.

§ 2. Removal of singularities from a function, by substituting a
cotabular function for it.

We shall first show that if f(x) has a singularity at a point c, we can
find a function cotabular with f(x) which has no singularity at c.

For suppose first that the singularity is a simple pole, so that f(x)
becomes infinite in the same way as

r
x-c

near the point c. Then the function

. ir(x - a)
r sin -J '-

(x - c) sin — '
w

is cotabular with f(x), since the factor sin — ' vanishes at all the
w
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places a, a + w, a — w, etc.: and this function has no singularity at c, since
the infinite part of the term

. TT(X - a)
r sin —- -

w
i \ . ir(c — a)
(x - c) sin —i '-

w
exactly neutralises the infinite part of fix). Moreover, this term does not
introduce any fresh singularity in the finite part of the *-plane, and does
not cause the new function to become infinite even at x = oo so long as x
is real.

This establishes the result for the case when the singularity is a simple
pole. When it is a pole of higher order, or an essential singularity, we
can make use of the known result that the part of the expansion of f(x)
which becomes infinite near this singularity may be expressed in the form

1 Cf(z).Iz
i-rvi I z — x

Jy

where y denotes a small circle enclosing the singularity c. Now this can
be neutralised by a term

i . ,(*_«) r m ;
s m -^ L . . 7r(z - a ) '

2in to I (z — x) s in — '
W

and as this term contains sin — as a factor, it vanishes when the
w

a rgumen t has a n y of the values a, a + w, a — w, a + 2w, . . . . Hence in th i s

case also we can wr i te down a function, namely,

,, N 1 ir(x - a) TLLJ1

Ax) + s—• s i n — / \ • Tr(z-a)
2iri w (z - x) sm -5 '

Jy w

which is cotabular with f(x) but has no singularity at the point x — c.
By repeated application of this process we can remove all the singu-

larities of f(x) in the finite part of the plane, and obtain a function
which is cotabular with f(x), and which does not become infinite except
for values of x whose imaginary part is infinite.

§ 3. Removal of rapid oscillations from a function, by substituting
a cotabular function for it.

Having replaced the original function fix) by a cotabular function of
the kind just described, we shall now suppose the latter function to be
analysed into periodic constituents by Fourier's integral-theorem (or, in
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a particular case, Fourier's series) just as radiation is analysed by the
spectroscope.

Consider first a single one of these periodic constituents, say

A sin Xx,

where A and X are constants. We can without loss of generality suppose
X to be positive. The period of this term is 2TT/\. We shall now show
that if this period is less than 2w, then an expression can be found which
is cotabular with the given term and which has a period greater than 2w.

For, e.g., if the period lies between 2w and 2w/3, so that X lies between
TT/W and 3-!rjw, the function

. . [ A 2TT\ 2-rra \
A sin < ( A. )x+ — }

i \ w) w )
has the same values as A sin Xx when x = a, a + w, a — w, a + 2w, etc.: and
since X lies between TT/W and Sir/w, we see that (X — 2TT/W) lies between
— TT/W and irjw, SO the period of this new term is greater than 2w.
Similarly if the period of the given term lies between 2w/3 and 2w'5, so
that X lies between Str/w and hirlw, then the function

Asm A - — )x +

is cotabular with A sin Xx and has a period greater than 2w. Other
possibilities can be treated in the same way, and the theorem stated is thus
established.

We are thus led to the idea that if a function is given which can be
analysed by Fourier's integral-theorem (or Fourier's series) into periodic
constituents, then we can find another function which is cotabular with it
and which has no constituents of period less than 2w. That is to say, we
can replace the given function by a cotabular function in such a way as
to remove all the rapid oscillations from it.

§ 4. Introduction of the cardinal function.

We shall now carry out what has been indicated in the preceding
article, namely, to analyse a given function into a number (generally an
infinite number) of periodic constituents, then to replace the short-period
components by long-period components which are cotabular with them,
and finally to synthetise all the components into a new function. It will
be shown later that this new function, which will be called the cardinal
function, has certain remarkable properties.

Let/(x) be the given1 function, from which all infinities except for
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imaginary infinite values of the argument are supposed to have been
removed already by the method of § 2. Let g(x, k) denote the function

/

Here k denotes a positive constant, introduced for the purpose of securing
convergence in the following developments.

Break up the range of integration in g(x, k), thus—

-\k cos \(x —

The first partial integral consists of terms whose period in x is greater
than 2w, the second partial integral consists of terms whose periods are
between 2w and \w, and so on. Replace every periodic term whose period
is less than 2w by the corresponding cotabular term whose period is greater
than 2w, as explained in the preceding article. We thus obtain an
expression which we shall denote by G(x, k), where

7

fw
Jo

B{X(X-

Summing the series of exponentials and cosines, we have

l
sinh cos < X(x - u) } - sin < Ala; — u.) > sin < — (a — t

~2i,
-dX.

cosh cos — (a - u.)
w w 10

Performing the integration with respect to X, this gives

duM
sin - (x — /A - ik) cos - ( a — fx. — ik) sin — (x — /J. + ik) cos — (a — /A + ik)

w w w w

(x — fi — ik) sin - (a — /«. - ik) (x - fi + ik) sin — (a - n + ik)
W

Now if we evaluate the integral

cos — ( a — u. — 'i
w

sin —(a - /J. - ik)
w
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where k is positive, by Cauchy's Theorem of Residues, taking as contour
the real axis of /j. together with an infinite semicircle below the real axis,
we obtain for it the value

r=-» 2L(x - a - rw)
w

Similarly if we evaluate the integral

J-f cos — (a-u-ik)
w

j

sin —(o — /A - ik)
w

taking as contour the real axis of /j. together with an infinite semicircle
above the real axis, we obtain for it the value zero, since the integrand has
no poles inside this contour.

Subtracting the latter result from the former, we have

sin—(x-ix-ik) cos — (a - /x - ik)
w

sin—(a-u-ik) r— "> —(x-a-rw)
w 10

Similarly we have

sin—(x — fn + ik) cos—(a —

sin —(a - i

and thus we obtain

, f(a + TO - ik). ew —f(a + rw + ik). <G(x, k)= ^
r=-» 2i—(a; — a - rw)

w
so that

» f(a + rw) sin — (x -a-rw)
|iim j ^ o «(*> ») = 2-i '

r=-» ^ / ^ _ a _ n y \

Now G(x, k) is the function which was formed from g(x, k) by replacing
all the short-period terms by the corresponding cotabular long-period
terms: and (as in Poisson's discussion of Fourier's integral) we have

Hence we infer that the expression

- „ f(a + rw) sin —(x - a — rw)

2 — • • • • (3)r=-" —(x -a- rw)
w
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or

— sin —(x - a) y i '-±±— L . . . . (4)
w „•??„ x-a-rw

represents a function which is cotabular with the given function f(x), but
which has no periodic constituents of period less than 2w.

Now, in order to construct the expression (3) or (4), we do not need to
know anything about /(a?) except its values/(a), f(a+w),f(a — w), etc., at
the tabulated values of the argument. These values, however, are not
peculiar to f(x), but are common to the whole set of cotabular functions.
It follows that we arrive at the same expression (3) whatever function
f(x) of the cotabular set we start from. The expression (3) is therefore an
invariantive function of the cotabular set: and it may be regarded as the
simplest function belonging to the set. We shall call it the CARDINAL

FUNCTION of the set.

§ 5. Examples of the determination of a cardinal function.

We shall now work out two examples in order to show how in any
given case the cardinal function may be obtained from the formula (4).

Example 1.—Suppose that the given tabular values of the function
f(x) are as follows :—-

= 0, /(1)= - 1 , /(2) = J, /(3)= - i /(») = <zi)L,
71

= i

The corresponding cardinal function is, by formula (4),

1 1 1 1
1 x - 1 2(x - 2) 3(x - 3) 4(z - 4 )

J____L 1 1 _- sin TTX
IT

or, summing the series,

sin 7rxfT'(l-x)_ T'(x + 1 )1
~~^x~i f(r-x) r(*+l)J

or
Sin 7TX d

wa; cite
o r

sin ira; f? , sin Ttx
TTX dx "" irx

or
cos TX sin 7rx
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This is the required cardinal function. It is the only analytic function
having the above tabular values which has no singularities in the finite
part of the #-plane and no oscillations of period less than 2.

Exam/pie 2.—-Suppose that the given tabular values of the function
f(x) are as follows :—•

/(o) = 0,

so that by (4) the cardinal function is in this case

- ami - (x-a) }\
7T ( w v ') \_x-a-ia+ to x — a + w x-a — 2io x - a + 2w x — a-ito

+ 1 1 "I
x-a + iw x-a-5w 'J

Now remembering that

77 (x - a - w) 3w j 1)
3w 7r I x~a- w x-

_i_

x-a - tw
and

, ir(x-a + w) 3w f 1 1 1 1
cot —> '- = — < 1 H 1

oto ir (x — a + w x — a + iw x — a - 2w x — a + lw

x - a - 5w

we see that this cardinal function is *
1 • f""/ ,1 f , tr(x-a + w) , Tr(x-a-w)~]
- sm < —(x - a) } \ cot v - cot v —'
3 ( to ) L ow 3w J

or
1 . 7r(a; — a) . 2TT

— 7i sm sin -5-
3 w 3

7r(a; — a + w) . 7r(x — a-w) '
sm 5 sin -„-—

Zw Sw
so, making use of the identity

sin 3X = - 4 sin x sin
we obtain the cardinal function corresponding to the above tabular values
in the simple form

2 . TT(X - a)

J3 3w
It will be noticed that in Example 1 the tabular values of the function

tend to the limit zero for infinite values of the argument, whereas in
Example 2 they do not tend to the limit zero.

* It is not in general permissible to alter the order of the terms in a conditionally
convergent series: but it may readily be proved that in the present case the value of the
sum is not altered by the particular rearrangement which is made.
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§ 6. Direct proof of the properties of the cardinal function.

Let C(x) denote the cardinal function associated with a given function
f(x), so that

f 7T I
„ f(a + no) sin < - (x - a - rw) >

(i( \ _ ^ ' w '

r—™ _ (x — a — rw)

w
Then we can prove the characteristic properties of this function directly.

1°. C(x) is cotabular with f(x).
( IT , )

b i l l "\ —\tls — Us — f Wj r

For the expression — has the value unity when
"^-{x — a — rw)
wy

x->(a-\-rw), and has the value zero when x has any other one of the
values a, a-\-w, a — w, a + 2w, . . . From this it follows at once that

(r = 0, ±1, ±2, ±3, . . . .),

which establishes the property of cotabularity.
2°. C(x) has no singularities in the finite part of the x-plane.
For a singularity at any point would give rise to a failure of con-

vergence of the series (3) at that point: but its convergence, for the class
of functions f(x) considered, can readily be deduced from its mode of origin
as a sum of residues.

3°. When C(x) is analysed into periodic constituents by Fourier's
integral-theorem, all constituents of period less than 2w are absent.

For if we resolve the function

sin \ —(x - c) }
_J_̂  L (5)

(where c denotes any constant) into periodic constituents by Fourier's
integral-theorem, we have

in j^e-c) I p /•- sin | (̂/x - e) [ cos j \{x - p) J.
dX d_ — dX

X -0
w

wri t ing y for —— -)

w j I sin y cos [Xx — Xc- —y
= ~ l dX dy

y
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Now it is well known that

f * sin y cos ky

y
is zero when k>l: and

f° sin y sin ky

,

dy

is always zero. Hence in the above repeated integral the first integration
gives a zero result so long as \w > TT ; that is to say, there are in the
expression (5) no constituents of the type cos {\{x — /j.)} for which \W>TT,

and for which therefore the period is less than 1w.

The theorem being thus seen to be true for every single terra
of the series (3), is consequently true for the cardinal function as
a whole.

We may remark in passing that it is possible to construct an infinite
number of functions cotabular with f(x) by means of series more or less
resembling the series (3): for instance, the function

I sin—(a; - a — rw) J

—(x -a- rw)
ww

where c denotes any real positive constant, and m and n denote any
positive integers, is a function cotabular with f(x). But this function
does not possess the property characteristic of the cardinal function,
namely, that periodic constituents of period less than 2w are absent.
Such functions are, however, all of thein solutions of the problem
" To find an analytical expression for a function when we know the
values which it has for the values a, a + w, a —w, a + 2w . . . of its
argument": which is essentially the fundamental problem of the theory
of interpolation.

§ 7. Solution of the questions proposed in § 1.

We are now in a position to answer the first of the questions proposed
in § 1, as to which of the functions of the cotabular set is represented by the
expansion

The answer is that this expansion represents the cardinal function. This
we shall now prove.
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Consider the algebraical identity
1 1 nio n(n — l)w>2

z-a-nw z — a (z — a)(z — a — w) (z — a + w)(z — a)(z — a - w)
(n+l)n(n-l)w3

n(rfi - I 2 ) ( r a 2 - 2 2 ) . . . . {n? - (r -
( g - a ) { ( z - a ) 2 - w 2 } { ( z - af - 2 V 2 } . . . . { ( 2 - a ) 2 - r V 2 }

«(w2 - I 2)(w2 - 22) • . . . (w2 - r 2 )w 2 r -n
j w ) ( ^

Let /(x) be the given function, and let G(x) be the corresponding cardinal

function. Multiply the identity (6) throughout by -—.C (z), and integrate

with respect to z round any simple contour y which encloses all the points
a, a + w, a — w, a + 2w, . . . ., a + rw, a — rw, a + nw.

Now we have
1 /" C(z)dz

, z - a — nw
rC(z)dz_

C(z)dz = _ _ =

- a ) ( z - a - w) 0>

Thus the equation (6) becomes

w(w2-l2)(w2-22) . . . . (»2

- a ) { ( z - a ) 2 - ? » 2 } . . . . {{z-af-riwi}(z-a-mv) >

We have now to investigate the value of the last term in the right-hand
side as r increases indefinitely. Since C(z) has no singularity in the
finite part of the plane, we are free to extend the contour as much as we
like. We can suppose it to be a circle of very large radius, whose centre
is at a + nw.

Now the integrand, apart from the factor U — ; may be written
z—a—nw

w ) \ l I V ) I 1 22w2' ^ * ' " • ^ l
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and when r increases indefinitely this tends to the value
sin im

n 7r(z-a)'

w

so that the integral to be studied is essentially

G(z)dz
s i m m . TTU - a) • . • . (8)

I (z - a - nw) sin - i -

The question as to whether this integral tends to zero or not depends
fundamentally on whether G(z) becomes infinite to a lower or higher order

than sin ^i '-, when the imaginary part of z tends to infinity. Now a

simple periodic function like sin Xz becomes infinite to the same order as
eXv, where y denotes the modulus of the imaginary part of z: and we have
seen that the distinguishing property of the cardinal function C(z) is that
the periodic constituents into which it can be analysed all have periods
greater than 2w: so, combining these statements, we see that C(z) becomes

infinite to an order less than ew , whereas sin —: - becomes infinite to
w

Zy.

the order ew Thus the factor

. it(z - a)
sin —

w
of the integrand tends to zero when the imaginary part of z tends to
either positive or negative infinity: and as the other factor may

r ° J z—a—nw J

be written idS, where 6 denotes the vectional angle of the point z measured
from the origin a + nw, we see by a proof of the kind usual in analysis that
the integral (8) vanishes* The equation (7) now becomes

G(a + nw) = / 0 -i- ivyj j -r 2\ "yo"1— 31

(«+ \)n(n- '

which shows that the function represented by the expansion is the cardinal
function of the cotabular set ivhich is associated with the given
function f(x).f

* The manner in which the characteristic properties of the cardinal-function are
required in order to ensure the vanishing of this remainder-term is very remarkable.

t It should be noted that the interpolation-expansion considered is a "central-
difference " formula, i.e. it makes use of all the tabulated values of f(x) both above and
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The first question proposed in § 1 is thus answered; and the answer
to the second question follows from it, since we have seen in §§ 4-5 how
the cardinal function may be constructed analytically.

§ 8. Conclusion.

The cardinal function may be regarded from many different points of
view. We defined it originally as that (unique) function of the cotabular
set which has no singularities in the finite part of the plane and no
constituents whose period is less than twice the tabular interval w. But
the result of § 7 shows that it might be defined as the sum of the central-
difference expansion formed with the given set of tabular values: or
(what amounts ultimately to the same thing) it might be defined as the
limit, when r->oo, of that polynomial in x of degree 2r which has the

values f0, fv f_v /2, /_2 , /„ f_r when the argument has the values
a, a + w, a — w, . . . . , a + rw, a — rw respectively. When we regard it
from this latter point of view, we see the underlying reason for the
absence of singularities in the finite part of the plane and of short-period
oscillations.

The introduction of the cardinal function seems to necessitate some
reconstruction of ideas in the general theory of the representation of an
arbitrary function by a series of given polynomials, say

f(x) = %Po(x) + aiP\(x) + a<tPi{^ + aBPs<yx)+ • • • • ad inf.

Our ideas on the subject of these expansions have hitherto been based
chiefly on the study of the two best-known cases, namely, Taylor's
expansion

f(x) = ao + a1(x-a) + a2(x-a)'2 + aB(x-a)s + . . . . ,

and the expansion in terms of Legendre functions

f ( x ) = a 0 P 0 ( x ) + a 1 P 1 ( x ) + a 2 V 2 ( x ) + . . . .

Now it so happens that in both these special cases the roots of the given
polynomials are either all concentrated in a single point (as in Taylor's
expansion) or else everywhere-dense on a finite segment of the real axis
(as in the Legendre case, the roots of Fn(x) when n->oo being everywhere-

below a. In the case of an interpolation-formula such as Newton's, namely,

^S% + % j +

use is made only of the tabulated values of f(x) for the values a, a + w, a + 2w,.... of the
argument, and no use is made of the tabulated values of /(*) for the values a - w, a- 2w,
a — 3w, . . . . of the argument ; in such cases a wholly different theorem holds, which I
hope to give in a later paper.

VOL. XXXV. 1 3
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dense on the segment of the real axis between — 1 and +1). In such cases
the coefficients a0, av a2, . . . .of the expansion can be determined in terms
of f(x), and there is no doubt as to what function is represented by the
expansion so long as it converges—there is nothing analogous to the
property of cotabularity. When, however, the roots of the polynomials,
instead of being everywhere-dense on a segment, are distributed discretely
over the whole infinite length of the real axis of x (as is the case in
the expansion

n(n-\) (n+l)n(n-1).,

where the polynomials are 1, n, n(n—l), (n + l)n(n— 1), etc.), it seems
probable that a property analogous to cotabularity will come into evidence,
and the theory of the expansion will depend essentially on a " cardinal
function " analogous to that introduced above.

The results of the present paper suggest another development. For
long past the applied mathematicians have complained that Pure
Mathematics is daily becoming more complicated and harder to understand.
This complaint refers chiefly to the increased rigour with which the
theories of Analysis are now expounded, and which is closely connected
with the extension of knowledge regarding discontinuities, singularities,
and other phenomena of which the older mathematics took no account.
Indeed, the modern Theory of Functions of a Real Variable is concerned
largely with cases in which the distribution of fluctuations and singularities
transcends all intuitive or geometrical representation. It seems possible
that some of the difficulties of such cases might be avoided by the
introduction of a function analogous to the " cardinal function" of the
present paper, which would be simpler than the function under discussion,
but would be equal to it for an infinite number of values of the variable,
and could be substituted for it in all practical and some theoretical
investigations.

(Issued separately July 13, 1915.)




