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XXIX.—Semi-regular Networks of the Plane in Absolute Geometry. By Duncan
M. Y. Sommerville, M.A., B.Sc, University of St Andrews. Communicated by
Professor P. R. SCOTT LANC. (With Twelve Plates.)

(The cost of the Illustrations of this Paper was defrayed by the CAUNEOTE TRUST.)

(Read December 10, 1904. Issued separately August «0, 1&05.)

§ 1. The networks considered in the following paper are those networks of the plane
whose meshes are regular polygons with the same length of side.

When the polygons are all of the same kind the network is called regular, other-
wise it is semi-regular.

The regular networks have been investigated for the three geometries from various
standpoints, the chief of which may be noted.

1. The three geometries can be treated separately. For Euclidean geometry we
have then to find what regular polygons will exactly fill up the space round a point.
For elliptic geometry we have to find the regular divisions of the sphere, or, what is the
same thing, the regular polyhedra in ordinary space. The regular networks which do
not belong to either of these classes are then those of the hyperbolic plane.

2. The problem is identical with that of finding the partitions of a polygon into poly-
gons of the same kind, with the same number of polygons at each point.# The boundary
polygon is one of the meshes of the network. For elliptic networks the boundary is
finite, for Euclidean networks it is wholly at infinity, and for hyperbolic networks it is
wholly ideal.

This method gives a convenient mode of representing the networks, viz., by their
stereographic projections upon the Euclidean plane. This representation will be em-
ployed throughout.

3. The problem corresponds to a particular case of the problem of determining all
discontinuous groups of motions in the plane, t

It will be convenient here to collect the results. If n is the number of sides of each
polygon, p the number of lines or polygons meeting at each point, N2, N\ , No the
number of meshes, lines, and nodes respectively, the results may be summarised as
follows :—

1. On the Elliptic plane there are five regular networks, corresponding to the five

* See V. SCHLEGEL, " Theorie der homogenen zusainmengesetzteii Raumgebilde," Nova Acta, Bd. xliv., Nr. 4,
1883.

t W. DYCK, " Gruppentheoretische Studien," Math. Annalen, xx. 1-44 (1882), and W. BURNSIDE, u Theory of
Groups," ch. xii., xiii. Also KLEIN and FRICKE, " Theorie der elliptischen Mudulfunctionen." (For these references
I am indebted to the referee.)
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regular polyhedra. They are arranged in conjugate pairs, the number of meshes in
one being equal to the number of nodes in the conjugate network. One is self-
conjugate.

Tetrahedral,
Hexahedral,
Octahedral,

J Dodecahedral, .
I Icosahedral,

P
3
3
4
3

6
8

12
20

6
12
12
30
30

4
8
6

20
12

2. On the Euclidean plane there are three regular networks, all infinite.

n \ • N" • N

Square,
Triangular,
Hexagonal,

n
4
3
6

4
(3
3

2 1
3 1
3 2

3. On the Hyperbolic plane there are an infinite number, all infinite.

p= 3, 4, 5, 6, >6
n> 6 , 4 , 3 , 3 , any value

§ 2. We proceed to investigate the semi-regular networks, and we shall take the
three geometries separately.

I. THE EUCLIDEAN PLANE.

We shall consider, first, how the space about a point can be exactly filled with
regular polygons. Each combination of polygons satisfying this condition determines a
species of node, and all the semi-regular networks must be built up out of the various
possible species of nodes. Two networks will be considered to be of the same type when
they contain only nodes of the same species. It is obvious that there may be varieties of
the same type. The types will be divided into Groups according to the kinds of polygons
involved, and the groups into Classes according to the number of kinds of polygons.
Class A. consists of the regular networks, and contains three groups with one unvaried
type in each. The simplest type in any group is that which contains only one species
of node. I call this the simple type ; other types I call composite. A group does not
necessarily contain the simple type.

The Species of Nodes.

I 3. The angle of a regular n-gon is given by the formula

The following table of values of an will be immediately useful :
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n

atl

3

(10

4

90

5

108

6

120

7

12N:J

8

l.'iH

12

150

Taking the four simplest polygons, we find that the sum of the angles is 378°, i.e. >360°.
Hence there cannot be more than, three dijfereut kinds of po\'i/r/ons at a point. The
species of nodes therefore fall under three classes.

CLASS A. contains the homogeneous nodes. Denoting the regular polygons by their
initial letters, the nodes of Class A. can be denoted by

1. T6. 2. S4. 3. H8.

sj 4. CLASS B. Let there be at a point pY ^^-gons and^ 2 ^rg( ) U S Then we have

hence from (1)

Integralising, we obtain on the left the function

where p = pl + />2. We shall denote this by A. It is easily seen that the sign of A
characterises the network as elliptic, hyperbolic, or Euclidean. For Euclidean networks
A is always zero ; for elliptic and hyperbolic networks A ^ 0 respectively.

For the regular networks there is a corresponding function n(2 — p) + 2p, and for
three kinds of polygons we shall find a similar function. Where there is no risk of
confusion we shall call each of these A. The values of A for the regular networks are as
follows : Tetrahedral 3, Hexahedral and Octahedral 2, Dodecahedral and Icosahedral 1.

Solving now for n2, we have

, 1 111

We have to find the integral solutions of this equation under the following conditions :
"•i =*= ̂ 2 > 3 , p1, p2 > 0 , p <t 3 and p > 5 , therefore p1, p.: > 4 .

The only possible sets of values of pY, p» are then

V, = 1, 1, 1,2, •->.

p2 = 2, 3, 4, 2, 3 .

We shall take these cases in succession.

p2 = 2i 2 ~ 7 i 1 - 2 = 4 + 7 ^ 2 '
whence n^ = 3, 4, 10 ,

« , = 12, 8, r,.

P2 = 3 j 2 71 x - 1 ~~ TZ-j — 1 *
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There are no unequal values of nY and n2 satisfying this equation.

8n, 16

whence n1 = 6

2 = 2 1
whence n^ = 3

2 = 3} '3^-4
whence nl = 4

There are thus six species of nodes in this class. They may be denoted by TD2,

S O 2 , D e c P 2 5 T 4 H , T 2 H 2 5 T A .

S 5. CLASS C. Here we have

nj 1 \ n

or A = «,»,«,(2-?,) + 2(

Solving for n3 , ?z3 =

7ZQ

w2(jP - 2 . w2 - 2 ^ ) - 2^2^! '

We have to solve this equation in integers under the following conditions : nx=i=n2=»= n , ;>3 ,

.Pi* ^ J i>3 > 0 , p <t 3 , also >̂ > 4 (for 3a3-h«4 + «5 > 360°), therefore px, p2, /;3 > 2 .

Further, if px = 2 , v/j must be either 3 or 4 , for 2a6 + u3 + a4 > 360°. Again, we cannot

have n1 = 5 , u2 = 6 , n3 = 7 together, for a5 + a6 + a7 > 360°.

The following are therefore the only possible sets of values of px, JJ2 , p3, /^ :

2-?! = 1 , or 2 ; _p2 = j 9 3 = 1 ; Wj = 3 , or 4 .

We shall take these cases in succession.

6no 36
= 3 j 3 n2 •

whence

= 1 )
= 4 j nz~~

whence

= 1 J

= 3 j n*~

whence

= 1 )
= 4 J ^3 ~

whence

n2--

h
~n2-

no--
n3--

2>n
-n2-

n2 =
ns =

In
n2T
n2 =

71., =

- 6

= 7,
= 42,

'•9

- 4
= 5 ,
= 20,

- 3 ~ ^
= 4,
= 12.
,o
-"2 = 2

= 3 ,
6.

8,
24,

12.

> + 7Z

! + ?z

* 2 -6
9,10,

18, 15.
16

*2-4

9
~-~3

4
9— 2

There are thus eight species of nodes in this class.
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§ 6. Collecting all the species
scheme :

Class
Class
Class

A.
B.
C.

1.

4.
10.

T6.
TaS2

TSJ

2.
5.

[. 11.

[13-17

Tol l , , .

T o S D .

n 9

3.

, 12.

4 ,
5 ,

H3.
T ,H.
SHD.

3,
10,

7.

3 ,
9 ,

TD2.

3 ,
8,

3 ,
7,

jf nodes, we can arrange them in the following

8. SO2. [9.] P2Dec.

n3 20 , 15, 18, 24, 42.

In future we shall refer to these nodes by their numbers in this scheme.
Of the seventeen species of nodes, only eleven are capable of development to form

networks.
In No. 9 the pentagon must be surrounded alternately with pentagons and decagons,

which is impossible since 5 is odd.

In the same way, when -p\ =pi = 'lh= 1 > n\ > ILz and us must all be even, for the
?/rgon must be surrounded alternately with n2-gons and y^-gons. Hence 13-17 cannot
be developed by themselves ; nor can they be developed in combination, for each
contains a polygon which is not contained in any other node. Similarly, 9 cannot
be developed in combination, hence these six species are excluded from all the
networks.

Again, T2SD cannot be developed by itself, for, taking the square (fig. 1, Plate IV.),
we must have a dodecagon on one side and on the adjacent sides double triangles. At
the free corners of the square we must now have dodecagons, but this brings two
dodecagons at a point and introduces 7 ; excluding this, we must introduce 4.

§ 7. We can now divide the types of networks into groups and classes. Five kinds
of polygons are at our disposal, but octagons only occur in the combination SO2, hence
there are only four classes.

Glass A. Regular networks.
Group I. Triangles (l).

,, II. Squares (2).
,, III. Hexagons (3).

Class B. Two kinds of polygons.
Group I. Triangles and Squares ( l , 2, 4).

,, II. Triangles and Hexagons (1, 3, 5, 6).
,, III. Triangles and Dodecagons (1, 7).
,, IV. Squares and Octagons (2, 8).

Class C. Three kinds of polygons.
Group I. Triangles, Squares, and Hexagons (1, kJ, 3, 4, 5, 6, 10).

,, II. Triangles, Squares, and Dodecagons ( l , 2, 4, 7, 11).
,, III. Squares, Hexagons, and Dodecagons (2, 3, 12).

II'



730 ME DUNCAN M. Y. SOMMERVILLE ON

Class D. Four kinds of polygons.
Group. I. Triangles, Squares, Hexagons, and Dodecagons (1, 2, 3, 4, 5, 6, 7,

10, 11, 12).

The numbers within the brackets denote the species of nodes which the group admits.

The Simple Types.

§ 8. Now let us consider the simple types. I observe, in the first place, that when
the species of node admits of no variation, the simple type is in r/eneral unvaried.

The unique nodes are the following :

1°. Class A ,

2". Those in which p = 3 ,

3". ^ = 1 , y>., = 4,

while the following; are varied :

1". Pl =p., = 2. Two forms, M2N2 and (MN)2.
2°. Pl =p, = 1 , p. = 2 . Two forms, LMN, and LNMN .

We have then the unique simple types.

Class A. T6, S4, H».
„ B. T4H, TD2, SO, (figs. 4, 2, 3) .
„ C. SHD (fig. ft).

The type T4H is one exception to the rule stated above, for it does admit of a variation.
The network is asymmetrical, its mirror image being different from itself. It exists,
therefore, in two enantiomorphic forms. The one can be obtained from the other by
turning the plane over.

Of the other groups, i.\ II. and D. I. do not possess simple types, and there remain
the three simple types T;,S2, T2H2, and TS2H , each of which is capable of infinite
variation.

T2H2 has a variety in which there are no two triangles and no two hexagons
together. We shall calU this the fundamental variety. The opposite sides of any
hexagon, when produced, define a strip which is capable of displacement without
affecting the rest of the network. All the varieties can then be obtained by displacing
any number of such parallel strips through a distance equal to the length of the side
(fig. 6).

TS2H has the fundamental variety in which there are no two squares together. Each
hexagon is surrounded by squares and triangles, forming a group whose boundary is a
regular dodecagon. All the varieties can then be obtained by turning any number of

such groups through ~. This operation, performed upon a single group, brings two

squares together ; performed upon two adjacent but not overlapping groups, it brings
three squares together (fig. 7).



SEMI-REGULAR NETWORKS OF THE PLANE IN ABSOLUTE GEOMETRY. 731

§ 9. The unique types and the fundamental varieties of T2H2 and TS2H can be
obtained from the regular networks by fairly obvious dissections. Thus, SHD (fio\ 5)
is obtained from either the triangular or the hexagonal network; for the squares,
hexagons, and dodeci^ons have (l , l) correspondence with the lines, meshes, and nodes
respectively of the triangular network. In a similar way T4H (fi^. 4) is obtained from
the same network ; to each mesh there corresponds a triangle, to each node a hexagon,
and to each line two triangles. And so for the others : it is only necessary to compare
the figures, given below (§ 11), which represent the relative numbers of the various
polygons, with the numbers of nodes, lines, and meshes in the regular networks. In
the diagrams given for the unique types the regular network is indicated by shading.

T4H and all the varieties of T2H2 can also be obtained from the regular triangular
network by replacing all the groups of six covertical triangles by hexagons ; and TS2H
can be obtained from SHD by bordering every dodecagon internally with squares and
triangles.

^ 10. The type T..8, forms an exception to what has been said regarding the way in
which the network may be obtained. One of its varieties, that in which no two squares
are together, can be obtained in a simple way from the regular square network; to each
mesh corresponds a square, to each node a square, and to each line two triangles. But
the other varieties cannot be obtained from this, nor, in general, in any simple way from
the square network. The following forms may be enumerated, though the list is not
exhaustive :—

(l) 1, 2, 3, . . . . squares always together. Each of these is unique, and the series
forms a general type of variety, admitting of an infinite number of mix-
tures (fig. 8).

(_J) 2, 3, . . . . squares or fewer together. Here we can distinguish
(i.) Two similar types, in which there occurs once only (a) a single triangle

surrounded by three squares, (b) a triangular group of four triangles
surrounded by three double squares. The network radiates from this
figure as centre (fig. 10).

(ii.) A general type, obtainable by a dissection of the square network, in which
(a) and (b) are excluded (fig. 9).

(iii.) Further, if an unlimited number of squares may be together, the groups (a)
and (b) may occur more than once, or together.

§11. From what has been said it is evident that for any of the simple types, with
the possible exception of T;iS,,, the relative number of the several kinds of polygons is
definite, and the same for all the varieties. These numbers can be found by inspection
and a knowledge of the number of meshes, lines, and nobles in the regular networks.
General expressions for the ratios may be found as follows. The results show that \
is not an exception in this respect.

: IP -3
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Let p\ p", p'" be the number of nr-, n"~, ??'"-gons meeting at each point; No

the number of nodes, N2', N2", N / " the number of n'-, n"-, n'"-gons in the whole
network.

Then each n'-gon has n' angles ; but if we count up the whole number of angles con-
tributed by all the w'-gons, each is counted / / times.

Hence
Similarly

ri N2' = p No.
n"^2" = p" No ,
7l'"N2'" = / " N o .

Therefore N2' : N2" : N2'" = ^ : £ - , ILL.
n n n

So that the relative number of polygons is the same for all varieties of the same type.

For T3S,, T : S=2 : 1
T 2 H j , T : H = 2 : 1
T 4 H , T : H = 8 : I
T D O , T : D = 2 : 1

For SO.,, S : O = 1 : 1
TS2H , T : S : H = 2 : 3 : 1
SHD, S : H • D = 3 : 2 : 1

§ 12. Let us investigate the analogous formute for composite types. Let xN0 be the
number of nodes at which there are p{ rZ-gons,^/7 n^-gons, p^' 7^-gons, and piv 7ilv-gons,
where one at least of the quantities pY is zero, and let

Then

Therefore

:,
/.2]S

T
0+ . . . . +pr' rN0

Let N2, Nx, No have their usual meanings, then

iif v;:i i
Also, by the analogue of EULER'S polyhedral formula,

Ni can also be expressed in terms of XNQ , , rN0 thus : at each of the jN0 points there are
pl lines, and each line joins two points, hence

whence we get

Now, since the number of species of nodes in the whole network is finite, one at least of
the quantities x N 0 , . . . . , rN0 must be infinite. Hence we may put JNQ = c» . The equa-
tion then becomes

But this is an identity on account of the fundamental relation A = 0 . Without further
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conditions, then, we cannot find any relation between the &'s, which are therefore inde-
terminate. This shows that in general a composite type admits of infinite variation, the
ratios of the number of polygons being indefinite.

Cotivposite Types.

§13. We have defined two networks to be of the same type when they involve
only nodes of the same species, whatever may be their form and structure. The
determination of the composite types in any group thus reduces to finding all the
possible combinations of nodes admitted by the group. In order to eliminate the
impossible combinations, we can find what combinations must occur. We shall take
each group in turn.

Class B. I. Triangles and Squares (l, 2, 4).
(a) 2 must be accompanied by 4 (fig. 11).

Hence the only combinations are 1,4; 2, 4 ; 1,2, 4, each of which gives
a composite type. Examples of each are given by joining together infinite
parallel strips of the triangular and square networks.

II. Triangles and Hexagons (1, 3, 5, 6).
(b) 3 must be accompanied by 5 (fig. 12).

Hence the only combinations are 1 ,5; 1,6; 3, 5 ; 5,6; 1,3, 5 ; 1, 5, 6 ;
3, 5, 6; 1,3, 5, 6. There are thus eight composite types. Every variety of
them can be obtained from the triangular network by replacing groups of six
triangles by hexagons.

III. Triangles and Dodecagons (1, 7).

IV. Squares and Octagons (2, 8).
Each of these is unique and admits of no composite types.

§ 14. Class C. I. Triangles, Squares, and Hexagons (1, 2, 3, 4, 5, 6, 10).
The number of combinations of these numbers, two or more together, so

as to include the three polygons, is 105. We proceed to establish rules for the
rejection of impossible combinations.

(a) 2 must be accompanied by 4 or 10 (fig. 11).
(b) 3 „ „ „ 5 ; and either 6, or 10 and 4 (fig. 12).

Exclude 6 ; then we must have 10, since squares and hexagons come
together; and since there are always two triangles together, we must also
have 4.

Exclude 10; then squares cannot be introduced till the hexagons have
been surrounded by triangles, and we have 6.

(c) 5 must be accompanied by either 10, or 4 and 6 (fig. 12).
Exclude 10; before squares can be added we get 6, and the further

addition of squares gives 4.
TRANS. ROY. SOC. EDIN., VOL. XLI. PART. III. (NO. 29). 109
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Hence if 10 is excluded, we must have 4 and 6.
For 4 is necessary in order to give squares, and if we exclude 6 we also

exclude 5, and therefore 3. We are then left with only 1, 2, 4, which do
not involve hexagons.

(d) 6 must be accompanied by 4 or 5.
Excluding 4 and 5, the hexagon must be surrounded by triangles, and

squares can never be introduced without producing 4.
(c) 1 must be accompanied by either 4, or 5 and 6.

Exclude 5 and 6 ; then T6 must be surrounded by either triangles, or tri-
angles and squares. Since hexagons are excluded at this stage, either of
these introduces 4.

Exclude 4 and 6 ; then T6 must be surrounded by hexagons. Now squares
can only be introduced after the concavities have been filled up. If we fill
them with hexagons fresh gaps are produced, and if we fill them with tri-
angles there are always two triangles together, and the addition of squares is
impossible without giving 4. Hence we cannot exclude both 4 and 6.

Exclude 4 and 5 ; then 6 is also excluded by (d), and T6 can only be
surrounded by triangles.

Also 1 can only be continued by 4, 5, or 6 ; hence if we exclude 4, we
must have both 5 and 6.

Rejecting according to these rules, we are left with forty-seven combinations, each of
which gives a composite type. The combinations may be represented by the following
notation. Let Cr(ax , . . . . , an) stand for any one combination of r or more of the as,
then the forty-seven combinations are

5 + C2(4, 6, 10) + C0(l, 2, 3)
4 + ^ ( 6 , 10) + C0(l, 2)

10 + 0,(2 ,5) .

§ 15. Class C. II. Triangles, Squares, and Dodecagons (1, 2, 4, 7, 11).
(a) 2 must be accompanied by 4 (fig. 11).
( / )7 ,, „ „ 11 (% 1).

After rejection there are left eleven combinations, all of which give com-
posite types except I, 7, 11. There are therefore the following ten composite
types in this group :

4, 1 1 + C O ( 1 , 2, 7 ) ; 1, 1 1 ; 7, 1 1 .

III. Squares, Hexagons, and Dodecagons (2, 3, 12).
Excluding triangles, 12 can only be continued in one way, hence there are

no composite types in this group.

§ 16. Class D. Triangles, Squares, Hexagons, and Dodecagons (1, 2, 3, 4, 5, 6, 7,
10, 11, 12).
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The number of combinations of two or more together of these numbers which
involve all four polygons is 856, but we have the following rules for the rejection of
impossible combinations :

((/) 2 must be accompanied by 4 or 10.
(b) 3 ,, „ ,, 5 ; and cither 6, or 10 and 4.
(c) 5 ,, ,, ,, cither 10, or 4 and (].
(d) 6 „ „ „ 4 or 5.
{/) 7 „ „ „ 11.

The previous proofs of these still hold.
(e) 1 must be accompanied by either 4, 5 and 6, or 11.

If we exclude 11, triangles or hexagons must be in combination with
squares, and we have seen that squares can never be introduced if we exclude
4 and either 5 or 6. But 1 may be continued by 11 (fig. 16).

(g) We must have either 11, or 10 and 12.
For, excluding 11, we must have 12 at least, for dodecagons are only given

by 7, 11, and 12, and 7 is excluded by ( / ) .
Starting therefore with 12, we must have fig. 13. The concavities can now

be filled either with dodecagons, or with squares and triangles. The latter
gives 10, the former never introduces triangles.

(h) If 4 and 12 be excluded, the only combination is 7, 10, 11.
Excluding 4 and 12, we must have 11. Let us start therefore with fig. 14

(the heavy lines), a cannot be a square, for that gives a hexagon at b ; nor
a hexagon; nor a dodecagon, since 12 is excluded. Hence a must be a
triangle, and we get the figure with dotted lines.

Again, if we start with fig. 15 (the heavy lines), it must be continued as in
the dotted lines.

Lastly, let us start with fig. 16. A dodecagon at a gives us a variation of
fig. 14 with the hexagon turned through 60°, a square gives fig. 15, and a
triangle fig. 16 with the dotted lines.

The continuation of any of these figures (under the given conditions) will
introduce no angles other than I, 7, 10, 11 ; and fig. 16 must be excluded,
since it does not contain hexagons. Hence the only possible combination is
7, 10, 11.

(i) If 4 and 10 be excluded, the only combination is 1, 11, 12.
We must have 12, by (h); and 11, by (g).
Starting with 12 we get fig. 17. At a we must put either a hexagon or

six triangles, hence the figure can only be continued as in the dotted lines,
where some of the hexagons, but not all, must be filled up with triangles.
This is the combination 1, 11, 12.

Rejecting according to these rules, there are left 222 combinations. I have tested
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these and found composite types corresponding to 176 of them. Of the remainder it is
probable that a considerable proportion do not give types. Thus it seems probable that
the only types which involve 11 without 4 are 1, 10, 11, 12 ; 1, 11, 12 ; 7, 10, 11 ; and
7, 10, 11, 12.

The combinations are all included in the following lists. A. contains the 222 left
after rejection, B. those which I have not verified.

A. 4, 5, 11 + CO(1, 2, 3, 7, 12) -J-0^6, 10).
4, 5, 10, 12 + C0(l, 2, 3, 6).
4, l l + C 0 ( l , 2 , 7) + C1(6, 10, 12).
4, 10, 12 + CO(1, 2, 6).

5,6, 10, 11, 12 + C0(l, 2 ,3 , 7).
10, 11, 12 + C0(l, 2, 5, 7).
5,6, 10, 12 + C0(l, 2, 3).
10, 12 + C0(2, 5); 1, 11, 12; 7,10, 11.

B. 3 , 4 , 5 , 6 , 7 , 11, 12 + C0(l, 2).
2 ,4 ,6 , 1 1 + ^ ( 7 , 12) + C0(5).
2, 4, 5, 10, 11, 12 + C0(7). 4, 11, 12.
3,4, 5,6, 11, 12. 4 ,5 , 6, 11.

5, 6, 10, 11, 12 + C0(l, 2, 3, 7).
10, 11, 12 + C0(l, 2, 5, 7) [except 1, 10, 11, 12 and 7, 10, 11, 12.]
5, 6, 10, 12.

§ 17. Many of these composite types can be obtained from the simple types by
filling up the hexagons and dodecagons. Thus, as we have seen, the type 1, 11, 12 can
be obtained from the simple type 12 by filling up some of the hexagons with triangles.
From the same simple type can be obtained nine other composite types involving the
nodes 1, 4, 10, 11, 12. In the same way, having obtained one example of one type, it
is generally possible to obtain a number of other types from it by some simple substitu-
tions or displacements. A classification of the composite types might thus be attempted,
based upon their structure. In this way types which are widely separated in the present
classification would be brought together, and vice versa. It is to be noted, however,
that the general variety of a type may fall on the lines of no simple network, so that
a classification such as that suggested would be difficult to apply in the general case.

II. THE ELLIPTIC PLANE.

§ 18. We proceed to investigate the semi-regular networks upon the elliptic plane,
or, what is the same thing, upon the sphere, or in general upon a closed surface of con-
stant positive curvature.

We shall first find what species of nodes are possible. Since the angle of a regular
polygon here depends upon the area of the figure, it is obvious that the number of
species of nodes is infinite. Whatever holds on the Euclidean plane regarding the
number of polygons which can meet at a point will hold a fortiori for the sphere.
Hence we have only two cases to consider : viz., at a point there may be 1° two, 2° three
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different kinds of polygons, but not more. The species of nodes thus fall under three
classes, Class A. consisting of the homogeneous nodes. We shall take the other two
classes separately, and find those nodes which give simple types.

§ 19. Class B. Let there be p{ y/j-gons and p., 7 ,̂-gons at a point; then, if ax, a2 are
the angles of the nY- and no-gou,

w ^ > {nY - 'J )TT .

Also _plt t l + yyx, = 2TT.

Therefore

or, ^1^2(2 - p) + ii(/v?2 +iVi) = A > ° •

Giving A positive integral values we get a series of equations to solve under the
following conditions : nx 4= n2 > 3 , 3 :)>£> >̂ 5 , therefore px, p2 j> 4. Also, if px = 2 , p2 = 3 ,
the smallest values of nx and n2 which are possible are nx = 4 , n2 = 3 , but these make
A = 0 , hence the only possible sets of values of px and jh a r^

Pi = 1 , 1 , 1 , - J ,
^ 2 = 2 , 3 , 4 , 12.

Further, if px = 1 , p2 = 2 , in order that the node may give a simple type, n2 must
be even, for the n2-gon must be surrounded alternately with nrgons and n2-gons.

We have then

We shall take each set of values of px, p., in turn.

= 1
= 2

= 1
= 3 .

}
Since n

A.

}
A must

A =

2 is

= 2

= 4

be

even,

' 7
• n2

even.

• «j

A must

= 6, 10
= 5, 3

= 6, 8

= 4, 3

: 3
4

27l2 •

" l ~ 7l2~

be even.

- A
- 4 " "

— A

-6 ~ ]

+

A

A

+ 3

A

- A

- 4 *

= 6.

= 8.

- 1 A

• o - 3

= 6.

rc1 = 3

^ 2 = 4
nY = any

?z2=3
w ^ a n y

integer.

integer.
impossible

Po = 4 .

or 3//J = 2

3?*o - 8

16-3A

n, = 3

7i2 = 3

z 2 - 8 '
[A = 3 . n2 = 3 = »!, excluded.]

A > 3 .
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p2 =1}
A = 2 . n2 = 3

n[ = 5
A = 4 . no=3

, - A 4 - i A

2 2

[A = 6. TZ2 = 3 = Wj, excluded."

A > 6 .

I'ifll .: i

§ 20. Class C. We have here the equation

or

We have to solve this equation under the following conditions : nx #= n2 4= n3 > 3 ,
3 > p > 4 , therefore pl9 p2, _p3 >̂ 2 , and we cannot have % = 5 , n2 = 6 , n3 = 7
together.

Further, if px = JJ2 = p 8 = l , « i , n 2 , and n3 must all be even, for the n rgon must be
surrounded alternately with w2-gons and n3-gons. Again, if p = 4 , n8 = 3 , pz = 2 , then
starting with an n rgon we must have on successive sides an n2-gon, a double triangle, a
double triangle, an w2-gon, and so on (fig. 18). Hence nx, and similarly n2, must be a
multiple of 3.

The only possible sets of values of px, p2, pd, nz are therefore

We have then
4.

= 4 }
16 -

Since ^2 and /^ are both even, A must be a multiple of 8.

A = 8 . w2= 6 [A = 2 4 . w2 = 6 = 7215 excluded.]

ri2= 6

« , - 8
[A = 32. w 2 =4, excluded.]

nQ = 3 I

- A

Since w2 and nx are both multiples of 3 , A must be a multiple of 18, but A = 18 gives
n2 = 3 and any higher multiple is excluded, hence there are no developable nodes of this type.

., - 8

A = 4 . [A = 8 . ?*o = 3
- > excluded. 1

nx = 4 j J

[A = 12 . ?/. = 3 = 7ix, excluded.]
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§21. We have found, then, the following developable species of nodes :

( - l a s s r » . 2 h = l I n \ = 3 , f i , 3 , 4 , 3 ; 3 , 5 , ( > , . . . .
^ = 2 I " , = 1 0 , G , 8 , 6 , 6 ; 4 , 4 , '1 ,

,,, = 1 ) Wl = 3 ; 4 , 5 , 6 , . . . .
p., - 3 / Mo = 4 ; 3 , 3 , 3 , . . . .

Pl = \ ) '^ = 5 , 4 .
2 , 2 = 4 J ^2 = 3 , 3 .

P l = !i I 7^ = 3 , 3 .
jr?2 = 2 i rc2 = 5 , 4 .

Class C. p l = 1 j w2 = 4 , 4 .
^ 2 = 1 . n,= 6 , 6 .
^ 3 = 1 I w 3 = 1 0 , 8 .

Each of these gives a simple type of network.

§ 22. We shall find the number of polygons, lines, and points in the complete
network.

Let N./, N2", N / " be the number of nf-, n"-, and n';/-gons, N, , N2, No the number
of polygons, lines, and points respectively.

Then (K 11, 12)
V ^ ' 7 X = i\Y + N " + N2 '" (1)

where p =_pr ̂ - ^ + p w .
Finally, EULER'S polyhedral formula is

N,-N

From (2) and (1) we get

and from (3)

Substituting in (4),

whence

N 1 = | N 0 .

in n"n"

(3)

(4)

Hence

4^VjT , 4y" n" n n \p'" ri n"

Ill
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For Class B. the corresponding formulae are

in n" 2ri ri' p

429V'
1>2 - A , iN2

where A = nV(2 - p) + 2 (pV

Simple Types.

§ 23. We proceed now to classify the simple types and investigate their varieties.
The division into classes according to the number of kinds of polygons can still be
made, but the subdivision into groups according to the kinds of polygons involved is
useless, as there are an infinite number of kinds of polygons. We shall therefore, for
the present, classify them according to the types of nodes. I consider two nodes to be
of the same type when the values of pY, p2 > Ps a r e ^he s a m e f°r both. A network
will not in general admit of variation unless its node does so. But this rule is not
always true; e.g. the type of angle PQ3 is unvaried, but, as we shall see, one of the
networks corresponding to this type admits of two distinct varieties. We shall give
for each network the values of No , Nx, N2 , etc. Unless otherwise specified, the net-
work is unique.

Cla s s B . I . p'= l,p" = 2.

(1) A = 2 . (a) ri = 3 , N2' =20

X0 = 60, N1 = 90, N2 = ;

ri = 5 , N ' =12

(fig. 19).

(2) A = 4. (a) ri = ;

2 = 32 (fig. 21).

. 20).

ri = 4 , N2' = 6

N0 = 24, N1 = 36, N 2 =14 (fig. 22).

(3) A = 6 . ri = 3 , N2' = 4

N o = 1 2 , ^ = 1 8 , N2 = 8 (fig. 23).

(4) A = 8. rc" = 4, N2" = n.
ri =n, NJ = 2 .

No = In, N, - 3», N , = « + 2 (fig. 24).

II. V'=\,p" = Z.
(1) A = 2. ri = 3 , N2' = 8 .

This type has two varieties. It contains a group formed by a quadrilateral surrounded
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alternately with quadrilaterals and triangles. The boundary of this group is a regular octagon,

and by turning it round through ^ we get the other variety (figs. 26, 27).

(2) A = 6.

I I I . p ' = 2,j>" = 2

(1) A = 2.

ri = ii, N2' = 2
N(1 = In , Nj = 4«, Nj, = 2(n + 1) (fig. 25).

ri = 3 , N.,' = 20

N0 = 30, N1 = 60, N 2 = 3 2 .

A certain great circle divides this network into two equal groups. By turning one of these

through ^ a second variety is obtained (figs. 28, 29).

(2) A = 4 . ri = 3 , N2' = 8
w" = 4, No" = 6

N 0 = 1 2 , N1 = 24, N 2 = 1 4 .

Like the preceding, this network has two varieties which may be obtained in a similar way,

viz., by turning one of the groups through ~ (figs. 30, 31).
o

IV. y =
(1) A - l .

(2) A = 2.

n ' = 5 , N2' =12
w" = 3 , No" = 80

N0 = 60, N1 = 150, No = 92 (fig. 32).

ri = 4 , N ' = 6
n" = 3, No" = 32

N0 = 24, 1^ = 60, N 2 =3 8 (fig. 33).

These two networks are asymmetrical. Each exists in two forms which are enantiomorph.
The one could be obtained from the other by turning the sphere inside out, supposing this to be
possible, as it would be in space of four dimensions.

24. Class C. I. pf = 1 , p " = 1 , p"' = 1.

(1) A = 8. ri = 4 , N2' =30

(2) A = l

ri' = 6
?r = i'

6. ri = 4
?z" = 6

ri" = 8

0, N

No =
, N2'
, N2'
, N2'

2" =20
2'"= 12
120, N
= 12

7 = 8
" = 6
48 , N,

3 = 180, I

. = 72, N,

^ = 62 (fig. 34).

= 26 (fig. 35).

II. p / =
A = 4 . n ' = 3 , N2' =20

n" = 5 , No" = 12

g

N0 = 60, ^ = 1 2 0 , N 2 = 6 2 .

Of this type there are five varieties, which may be obtained as follows:—In one of the
varieties (fig. 36) there are no two quadrilaterals adjacent. Each pentagon has a quadrilateral on
each of its sides and forms the centre of a group with a regular decagon as boundary. Let us call

TBANS. ROY. SOC. EDIN., VOL. XLI. PART III. (NO. 29). HO

•<;i s
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this the fundamental variety. Then all the other varieties can be obtained from it by turning

some of the groups through - . Let us denote this operation by K. In the fundamental variety
o

the twelve pentagons occupy relatively the same positions as the meshes of the dodecahedral
network, so that with respect to one of the groups the others can be divided into three sets:
5 adjacent, 5 circumjacent, and 1 opposite. Now suppose the operation R to be performed upon
one of the groups. This gives a variety /31 (fig. 37). Next suppose a second group to be operated
upon. The adjacent ones cannot be moved, for the first operation has destroyed their symmetry.
Operating upon the opposite one we get a variety /?2 (fig. 38), while operating upon one of the
circumjacent groups we get a fourth variety yx (fig. 39). From /32 we cannot obtain any further
variety, for each of the remaining groups is adjacent to one of those already operated on. From yx

we can obtain a fifth variety, y2 (fig. 40), by turning either of the two groups which are circum-
jacent to both. In /31 and fS2 pairs of quadrilaterals occur, 5 in the former, 10 in the latter. In
y1 and yo there occur respectively 1 and 3 groups of three quadrilaterals.

§25. To every spherical network there corresponds a convex polyhedron whose
vertices are the nodes of the network. The polyhedra which correspond to the semi-
regular networks have for their faces regular plane polygons. These form only a class
of convex polyhedra in general, but they are the only ones whose faces may be regular
polygons, and which, at the same time, may be inscribed in a sphere.

If we examine the numbers of the several polygons in the various networks above
we find that, with the exception of the two infinite series, they can all be connected
with the regular networks. The series with two quadrilaterals and an n-gon at each
point corresponds to a series of right prisms on a regular polygonal base, the altitude
diminishing indefinitely as n increases.

The polyhedra corresponding to the other types can be obtained from the regular
polyhedra by cutting off the corners in particular ways. Thus the octahedron (fig. 23)
bounded by triangles and hexagons can be obtained from the regular tetrahedron by
cutting off the corners, either triangles or hexagons corresponding to vertices, according
to the depth of the section. When the numbers of the polygons are the numbers of
faces, lines or vertices of a regular polyhedron, it is evident.in what way they corre-
spond. In some, however, the same kind of polygon may correspond to both edges
and vertices, then its number has to be divided into two parts, each a multiple of the
number of edges or vertices of the regular polyhedron.

This holds only for the unique types and the fundamental varieties of the other
types, i.e. those in which no two polygons of the same kind are adjacent. The other
varieties may or may not be obtainable from the corresponding regular polyhedron.
Those of Class B. are not, while the four derived varieties of Class C. II. may still be
obtained from the regular dodecahedron, since the positions of the pentagons are
unchanged.

§ 2(\. We may there tore group the simple types in three divisions according to
their morphology.# We shall use the notation 3iI62

l to denote a simple type consisting

* A correspondence between the regular pnlyhedra and certain general classes of polyhedra was considered by
C. Jordan, " IV-oherches sur l.js polypi res," <!unbi>k.i Rrnrfus, lx. 400-103, lxi. 20.V208, lxii. 1339-1341, 1865-66.
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of triangles and hexagons, where the subscript refers to the number of polygons at a
point, and the index to the number of polygons in the whole network.

I. Tetrahedral.
II. Hexahedral. 318

3?8

4634
2(12)

III. Dodecahedral. 5 1
1 2 3 4

a j + 2 ( 3 f I .
3 , 2 0 5 2

1 2 .
4 1

3 0 6 1
2 0 1 0 1

1 2 ,

With two exceptions, to each hexahedral network there corresponds a dodecahedral
one, each pair being obtained in a similar way from the regular network. Thus
3is82

6 and 3i20102
12 are obtained by shallow sections from the cube and the dodecahedron

respectively ; 32
842

6 and 32
2052

12 by sections through the middle points of the sides, and
so on. There is no dodecahedral network corresponding to 3i843

ls, nor is there a hexa-
hedral network corresponding to 3i205i1242

30. It may be noticed that the values of A
for corresponding networks bear the same ratio as the values of A for the regular
networks, viz., 1 : 2.

In representing the networks upon the Euclidean plane the method of stereographic
projection has been employed, though in some cases, in order to avoid undue crowding
towards the centre of the figure, strict stereographic projection has been departed from.
For simplicity the nodes are joined by straight lines instead of arcs of circles, so that
the figures really represent the conical projections of the semi-regular polyhedra.

Composite Types.

§ 27. At first sight it might appear that a very large number of composite types
could exist, for there are an infinite number of species of nodes, while on the Euclidean
plane where there are a considerable number of composite types there are only a very
few species of nodes. A little consideration will show, however, that it is probable
that the number of composite types is extremely limited.

Let us take any species of node, pY, p2 1 , y / 2 , ?*,
3,

and let a] , «o, a3 be the
angles of the different polygons,

1 Then
the length of side, k the radius of the sphere.

cosa n,
cos ^r = 1

IT

cos —
7T

COS —

a
sin —

and

If!

These four equations determine ax, a2, a3 and a.
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Now if an vi1-gon occurs in the same network in a different combination p / > P2 > lJi >
r^ , n2 , n4 , then a4, the angle of the n4-gon, must satisfy the two equations

COS —

If we substitute in the first equation a value of a4 corresponding to a possible set of
values of p{, p2

f, p4 obtained from the second, we must get an integral value for ??4.
This will not in general happen.

The following negative results may also be obtained at once :
1. No composite types exist with only one kind of polygon, for the angles are all

equal, and there must therefore be the same number of polygons at each point.
2. No composite types exist with p = 3 at each point, for the angle and the side

determine n.

§28. A certain number of composite types may be obtained by the following

THEOREM.— Whenever a simple type contains a group of polygons bounded by a
regular polygon, the replacement of that group by a single polygon ivill in general give
a composite type.

When such a group occurs it may be replaced by a single polygon, for in the
corresponding polyhedron the boundary of the group lies in one plane. Further, the
replacement of the group removes at least one line from the nodes at the boundary, and
the resulting network contains some nodes with p lines and some with at most p — 1,
i.e. it contains at least two different species of nodes, and is therefore composite.

It follows that, in order that the simple type may give a composite type in this
way, p must be > 3 . It may happen that the angle of the boundary polygon is >180°.
If we exclude this case we get the following composite types:

1. From 35
2 0 by replacing five covertical triangles by a pentagon.

This may be done in three ways, replacing 1, 2 or 3 sets by pentagons.#

The three networks are of different types. They may be denoted as follows, the
symbol within brackets denoting the species of node and the coefficient the number of
times it occurs in the network.

(a)
(&)
(c)

6(35)
2(35)

+
+

5(3.
6(3£

3(3;35,

)
)
)

+
+

2(3,5.,
6(3,5.>

)
)

(fig-
(fig.
(fig-

41)
42)
43)

2. From 31
843

18 by replacing one of the octagonal groups (fig. 27 deleting the part
within the heavy lines), t

12(3,43) + 8(428T)

3. From 3^5™^° (fig. 36) by replacing the decagonal group.

* If two opposite groups of five triangles are replaced by pentagons we get the simple type Bz
10b^ (like fig. 25).

t If both groups are replaced we get the simple type ^S-^ (like fig. 24).
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There are eight possible varieties, Let X denote the original group, R a group

turned through - O the decagon replacing a group, then, if XY denotes two

opposite groups, yy three groups mutually circumjaceiU, the varieties can be ex-

pressed as follows :

(a) 45

30

15

(315142) + 1 0

(a) 0
0

*(y) Rx
(3^42)+ 20

(a) 00

(3A4O) + 30

"o°o

(4,£

08)

(3)

(4x5

(4i5

iilOx)
OR

0
RR

()
(y) OR

§ 29. Further, if we allow angles >180° we get the following :

1. From 3 / , replacing four covertical triangles by a quadrilateral (fig. 45).

(34) + 4 (324,). Angle of quadrilateral 180°.

2. From 35
20 (fig. 44).

(35) + 5 (325X). Angle of pentagon 216°.

3. From 31
843

18 (fig. 27 bounded by the heavy lines).

4 (3^3) + 8 (3A8J). Angle of octagon 196° 50'.

4. From 32
842

6, replacing the hexagonal group (fig. 31 bounded by the heavy lines).

3 (3242) + 6 (314161). Angle of hexagon 180°.

5. From 32
2052

12, replacing the decagonal group (fig. 29 bounded by the heavy lines).

10 (3252)+ 10 (S^ lOi) . Angle of decagon 180°.

6. From 31
2U51

1242
30 (fig. 37 deleting the part within the heavy lines).

5 (Z^fa) + 1 0 (SAlOi)- Angle of decagon 204° 6'.

These are all the composite types obtainable from the simple types. It seems
probable that there are no others.

III. THE HYPERBOLIC PLANE.

§ 30. This case does not admit of exhaustive treatment. The number of types of
networks is evidently infinite, for there is no limit to the number of lines at a point.

As a rule, the hyperbolic plane contains the types which cannot exist on the
Euclidean or the elliptic plane. For example : one 7 -̂gon and two 2m-gons at a point

* Asymmetrical. Two enantiomorphic forms, SL and
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in i,

determine a simple hyperbolic network for all values of n and m for which the network
is neither Euclidean nor elliptic. The networks are all infinite.

As regards composite types, we can apply the same remarks as were made in con-
nection with the elliptic networks. The angle of a polygon is determined by the
particular combination in which it occurs, and the multiplicity of composite types is
thus limited. But, at the same time, it is infinite. For, consider the regular network
3P (p>6) (fig. 46). Any group of p covertical triangles can be replaced by a p-gon, so
that from this network alone we obtain an infinite number of composite types.

Note added on July 29, 1905.—Since writing the above, I have come across some
of the previous work on the subject. The semi-regular polyhedra have long been
known. It appears, from the works of PAPPUS of Alexandria and KEPPLER, that they
were described in a lost work of ARCHIMEDES.# PAPPUS t enumerates the series of
thirteen (i.e. excluding the two infinite groups, figs. 24 and 25), with the numbers
of their faces, edges, and vertices, for which he gives the general formulae of § 22.
KEPPLER | establishes them by taking the different possible combinations, first binary
and then ternary, containing triangles, squares, and pentagons successively. More
recently, accounts of them have been given by MEIER HIRSCH§ and E. BALTZER.|| An
elaborate article, containing numerous calculations relating to the radius of the cir-
cumscribed sphere, inclinations of the faces, etc., was presented by M. VALAT to. the
French Institute in 1854.IT He refers to other writings, in particular to one by
LIDONNE (1808), but gives no details of them. He shows also how the semi-regular
polyhedra are obtained by truncating the Platonic solids. The connection between
these polyhedra was also expressed by KEPPLER in an ingenious nomenclature which
he employed to describe them. The following list of names corresponds to the table
on p. 743 ; the numbers refer to the diagrams :—

I. Tetrahedron truncum (23).
II. Cubus trancus (20).

Octahedron truncum (22).
Cuboctahedron truncum (35).

III. Dodecahedron truncum (19).
Icosihedron truncum (21).
Icosidodecahedron truncum (34).

Rhombicuboctahedron (26). Cubus simus (33).
Cuboctahedron (30).

Icosidodecahedron (28).
Rhombicosidodecahedron (36).

Dodecahedron simum (32).

In none of these writings is any notice taken of possible varieties, the reason
being probably that these varieties do not exhibit the same symmetry as the funda-
mental varieties. KEPPLER gives this as the reason for excluding the two infinite
series.

* See also T. L. HEATH, The Works of Archimedes (Camb. 1897), p. xxxvi.
t Gollectio, lib. v. pars 2.
+ Harmonices Mundi (1619), lib. ii. pp. 61-65.
§ Sammlung geometrischer Aufgaben (Berlin, 1805-7), vol. ii. pp. 139-185.
|| Elemente der Mathematilc (1862), Bd. ii., Buch v. § 7.

If Published 1867, under the title " Des Polyedres semi-reguliers, dits solides d'Archimede," Mem. de la Soc. des
Sciences phys. et not. de Bordeaux, v. 319-369.
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KEPPLER, has also gone into some detail regarding the Euclidean networks. He
gives # all the developable species of nodes and some of the others, with examples of
networks formed with them, and other patterns, containing star-polygons, which may
be derived from them.

It remains to notice a class of polyhedra connected with the semi-regular
polyhedra.t They are obtained by drawing tangent planes to the circum-sphere at
the vertices. To a regular n-gon there corresponds then a regular n-hedral angle.
A regular polyhedron treated in this way gives the conjugate regular polyhedron,
but in a semi-regular polyhedron none of the polyhedral angles are regular, and so
none of the faces of the ''conjugate" polyhedron will be regular polygons. The
regular polyhedra have both a circum- and an in-scribed sphere; the semi-regular
polyhedra have only a circumscribed sphere, while the conjugate ones have only an
inscribed sphere. The corresponding networks are constructed simply by taking as
new nodes the centres of the old meshes. The polyhedra conjugate to the fundamental
varieties have their faces all congruent. This does not hold for the other varieties
(with the exception of that corresponding to Si^ 1 8 , fig. 27). Two of this class are
interesting as being the only ones which have all their edges equal, viz., the rhombo-
hedra formed from the fundamental varieties of 32

842
6 and 32

z052
12 (figs. 30 and 28).

There is an analogous Euclidean network conjugate to T2H2, i.e. 3262.

On p. 743 there occurs a misstatement. The hexahedral network 3I
843

6+12

(Rhombicuboctahedron), though it contains only two kinds of polygons, really corre-
sponds to the dodecahedral network 31

2051
1242

30 (Rhombicosidodecahedron), being
obtained in a similar way from the corresponding regular network. Thus the corre-
spondence between the hexahedral and the dodecahedral networks is complete.

* Loc. til., pp. 51-55.
t KEPPLER and BALTZER, loc. cit. ; MEIER HIRSCH, loc. cit., pp. 186-19!! ; J. H. L. MULLER, Trigonometric (185^),

p. 345.
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Fig. 1.
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Fig. 11.
Fig. 12.

Fig. IS. Fig. 14.

Fig 15. Fig. 16.

Fig. 18.

Fig. 17.
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Fig. 19.
Fig. 21.

Fig. 20.
Fitf. 22.
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Fig. 23. Fig. 24.

A"

Fig. 25.

Fig. 26. Pig. 27.

I ; i

I!
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