


Parsl: parallel programming in Python

Apps define opportunities for parallelism

pip install parsl

* Python apps call Python functions
* Bash apps call external applications

Apps return “futures”: a proxy for a result that
might not yet be available

Apps run concurrently respecting dataflow
dependencies. Natural parallel programming!

Parsl scripts are independent of where they
run. Write once run anywhere!

Try Parsl: https://parsl-project.org/binder



https://parsl-project.org/binder

Parsl usage

e Parsl used by individual researchers, large research consortia, and in
industry, spanning domains such as astrophysics, biology, materials science,
and many others

* Impact examples: Parsl used to:

— Produce the most interconnected simulated sky survey in preparation for analysis of
the Vera C. Rubin Observatory Legacy Survey of Space and Time (LSST)

— Conduct one of the largest single batch imputations ever performed on 474k
subjects in the Million Veterans Program

— Search for potential COVID-19 therapeutics in a search space of 4 billion candidate
molecules



Parsl’s external stakeholders

* Direct users: use Parsl for science/etc.
— E.g., LSST DESC

* Platforms: platform developers use Parsl as a component of a
platform/application used by end users
— E.g., QC Archive, Globus Compute (was funcX)

* Cyberinfrastructure providers: support Parsl on their HPC/etc. system
— E.g., Argonne, NERSC

* Linked contributors: link naturally complementary components with Parsl

— E.g., Parsl provides interesting ways to describe related tasks, and Work Queue provides
interesting ways to schedule those tasks: WorkQueue -> Parsl WorkQueue executor

 Funders
— E.g., NSF, CZI, DOE, collaborating projects



Parsl history

* [nitially supported by an NSF SI2 award
from 2016-2022 (5 years + 1-year NCE)

* Released version 1.0 in 2020, now releasing
weekly

— Focus since v1.0 mostly maintenance rather
than adding new features

* Initial funded development team
— 2-4 people/FTEs per year
e Current funding (new NSF award, CZI

award, contributions from projects that
require Parsl) supports

— ~1 FTE/year maintenance and development
— ~0.5 FTE/year community management

* Through ~1 Aug 2024



Sustainability: Balancing resources & work

* Parsl resources * Funded Parsl team does the core
— External funding from projects that — Managing the community
depend on Pars| — Reviewing code contributions
— Fixing bugs

— Volunteer (in-kind) effort from groups

that develop tools that use Parsl — Supporting users
— Developing new features

— Releasing new versions of the software

— Companies that use Parsl in their
services

* Provided/volunteers resources can add features to Parsl and support some
limited number of use cases

— But aren’t currently sufficiently coordinated or aligned to fully support Parsl's core needs
over multiple years



Past, current, and sustainable resources

Current NSF & CZ|
awards aim at
making Parsl
sustainable:

Resources (from
various sources)
will be able to
perform all project
activities well into
the future



Path to sustainability

e At a high level, we want to follow the successful sustainability model of
AstroPy, yt, etc.

 Work on community, governance, funding streams, innovation, training,
outreach/engagement

* Work with other related community (software sustainability, workflows)
e Capture, document, and share sustainability lessons

 Also reduce technical debt

— The easier itis to do things, the less resources are needed to do them



Project stages

4. Community
usage,
sustained
maintenance &
support

2. Testing with 3. Expanded
1. Concept testing & initial users & usage, support

initial development continued & some
development development




Parsl coding

* Parsl started as an idea in 2016, based on previous project Swift (http://swift-
lang.org)

— Basically asked if we wanted to do the same thing — a simple tool (language/runtime) for
fast, easy scripting on big machines — today, what would we do

— One person did some exploration/proof-of-concept — it worked
* w/ 4 people managing and “helping”
— Build the initial usable system, was the main developer, did things the way they wanted

— Once a second developer became active, needed to agree on and define/document
processes

— As we moved to a more open community project (2-4 FTEs/year of developers funded, and
73 contributors), these processes became more important


http://swift-lang.org/main/
http://swift-lang.org/main/

Parsl processes

 How to make design/architecture decisions? How do contributions and changes get

* What code style to use? accepted?
 What testing is sufficient? * How to encourage/develop contributors?

e What documentation is sufficient? * How to mix CS research and software product
development?

* Who writes papers and who is listed as co-
authors?

e How to engage with and support users?

 What properties do contributions and
changes need to have?

e All of the answers have changed over the life of the project



Changing developer work

* Current needs (e.g., maintenance, outreach, and support) differ from
earlier in the project, leading to a need for new types of contributions

* Development activities include

— Maintain the Parsl codebase
* Including adding additional tests to improve code quality
— Respond to issues, including supporting deployment on different computing
resources
* As community grows and diversifies, range of use cases and range of challenges also grow
— Review contributed code

* Leads us to develop minimal requirements on contributed code, starting with a pre-coding
discussion and including plans for future maintenance and support of contributed code



Internal Parsl developer roles

1. Research programmer
— Main job: prototype ideas very quickly
— Focus on what the software can do, more than how users will use it

— Essential to bootstrap new research software project, develop & test initial ideas; might take
shortcuts that harm project’s later sustainability (adding technical debt)

— Stage: Initial development & new features in later stages

2. Software developer
— Main job: development professional-class research software
— Focus on software itself & its users

— Dedicated to making the software as useful as possible; making it clean & beautiful;
increasing simplicity, compatibility, future maintainability; reducing technical debt

— Stage: Important to have involved in all but the initial stage of the project (where process
may impede fast innovation)



Internal/external Parsl developer roles

3. User/developer

Main job: a scientist or disciplinary researcher who also adds features relevant to their work

Focus on their own usage of the software

Typically write code elsewhere for their real job (research); not dedicated to Parsl development, but a
power user of Parsl who can understand bugs and fix them

May take shortcuts that harm project’s future sustainability
Stage: all but initial stage

4. Collaborating developer

Main job: responsible for a collaborative project
Focus on their software working with or being “part of” Parsl|

In their own project, can may be any other developer type; may follow different coding/software
engineering style, potentially leading to integration and culture challenges

Defining the interface to these developers is a key challenge for sustainability, as ideally, they will become
committed to Parsl’s success as important to their own project’s

Stage: most helpful after the project has become initially proven and has demonstrated some success
(stages 3 & 4)



Changing community work

* |n addition to developers, members of the community sometimes do (kind of in
order of where community contributions actually happen)
— Answer user questions
— Share experiences (configs) for specific computing platforms
— Share expertise in applying Parsl to different scholarly disciplines

— Support outreach activities (e.g., presenting tutorials, hosting summer students, developing
training materials for various domains)

— Coordinate the yearly user meeting
— Apply for funding

— Advertise success stories in blogs

— Manage social media

* Parsl community manager does/coordinates this



Community

Abigail Cabunoc Mayes. Work open, lead open, 2020. Chan-Zuckerberg Initiative (CZI) Essential
Open Source Software (EOSS) Kickoff Meeting, Berkeley, California, USA.



NumFOCUS

* Parsl joined NumFOCUS in Nov 2024

* Process involved applying, being accepted, then signing a financial
sponsorship agreement

* U lllinois agreed to transfer ownership of its IP to its employees to transfer
it to NumFOCUS after a short period; U Chicago took about 9 months to
discuss and agree

* We see this as part of our sustainability plan

— Ownership of the project in a neutral place to encourage others to take on
leadership and governance of the project

— A mechanism to hire staff outside the US when needed, and to contract for specific
work items to the best available person, regardless of their affiliation



Where we are now

e Good news

— Community growth — at least in part due to community manager
* Lots of contributors
* Lots of users

— Parsl code has gotten better — at least in part due to core maintainer
* Moving to more plug ins to reduce what the core code has to do

* Removing old code that isn’t used, doesn’t work, etc.
* More and better tests

* Less good news

— Unclear how to sustain community manager and core developer

* This core community and maintenance work is hard/impossible to rely on volunteers to do, at
least for a project of Parsl’s size



Lessons

 Sometimes choices are just choices, made for the sake of having made a choice —
once made, these can be hard to change, but changes should be considered
regularly

* Going from one to two developers is a big step, and an opportunity to consider
changes

e Research software sustainability is a hard problem with no simple answers

* The existence of different types of developers (RSEs) and their utility during
different phases of Parsl, particularly when moving from a project funded by a
grant to one supported by a mix of sources, emerged during the project

* This seems to match other projects’ experiences, but isn’t really tested yet

* Boundaries between types of people and roles (developer, RSE, community
member, user) are fuzzy



Acknowledgements

e Parsl has been supported by NSF (1550588, 2209919, 2209920) and the
Chan Zuckerberg Initiative, and DOE, collaborating projects, and a
community of developers, maintainers, and users



	Slide 1: Parsl: an example of trying to sustain research software
	Slide 2: Parsl: parallel programming in Python
	Slide 3: Parsl usage
	Slide 4: Parsl’s external stakeholders
	Slide 5: Parsl history
	Slide 6: Sustainability: Balancing resources & work
	Slide 7: Past, current, and sustainable resources
	Slide 8: Path to sustainability
	Slide 9: Project stages
	Slide 10: Parsl coding
	Slide 11: Parsl processes
	Slide 12: Changing developer work
	Slide 13: Internal Parsl developer roles
	Slide 14: Internal/external Parsl developer roles
	Slide 15: Changing community work
	Slide 16: Community
	Slide 17: NumFOCUS
	Slide 18: Where we are now
	Slide 19: Lessons
	Slide 20: Acknowledgements

