
https://doi.org/10.5281/zenodo.14285239

Parsl: an example of trying to 
sustain research software

Daniel S. Katz (d.katz@ieee.org, @danielskatz@fosstodon.org)

Chief Scientist, NCSA

Associate Research Professor, School of Computing & Data Science, School of Information Sciences

University of Illinois at Urbana Champaign

With contributions from Parsl team & community, including

Ben Clifford, CQX Limited

Yadu Babuji, Kevin Hunter Kesling, Anna Woodard, and Kyle Chard, University of Chicago

6 December 2024
NCI Informatics Technology for Cancer Research (ITCR)



2https://doi.org/10.5281/zenodo.14285239

Parsl: parallel programming in Python

Apps define opportunities for parallelism
• Python apps call Python functions
• Bash apps call external applications

Apps return “futures”: a proxy for a result that 
might not yet be available

Apps run concurrently respecting dataflow 
dependencies. Natural parallel programming!

Parsl scripts are independent of where they 
run. Write once run anywhere!

pip install parsl

Try Parsl: https://parsl-project.org/binder

https://parsl-project.org/binder


3https://doi.org/10.5281/zenodo.14285239

Parsl usage

• Parsl used by individual researchers, large research consortia, and in 
industry, spanning domains such as astrophysics, biology, materials science, 
and many others

• Impact examples: Parsl used to:

– Produce the most interconnected simulated sky survey in preparation for analysis of 
the Vera C. Rubin Observatory Legacy Survey of Space and Time (LSST) 

– Conduct one of the largest single batch imputations ever performed on 474k 
subjects in the Million Veterans Program

– Search for potential COVID-19 therapeutics in a search space of 4 billion candidate 
molecules



4https://doi.org/10.5281/zenodo.14285239

Parsl’s external stakeholders

• Direct users: use Parsl for science/etc.
– E.g., LSST DESC

• Platforms: platform developers use Parsl as a component of a 
platform/application used by end users
– E.g., QC Archive, Globus Compute (was funcX)

• Cyberinfrastructure providers: support Parsl on their HPC/etc. system
– E.g., Argonne, NERSC

• Linked contributors: link naturally complementary components with Parsl
– E.g., Parsl provides interesting ways to describe related tasks, and Work Queue provides 

interesting ways to schedule those tasks: WorkQueue -> Parsl WorkQueue executor

• Funders
– E.g., NSF, CZI, DOE, collaborating projects



5https://doi.org/10.5281/zenodo.14285239

Parsl history

• Initially supported by an NSF SI2 award 
from 2016-2022 (5 years + 1-year NCE)

• Released version 1.0 in 2020, now releasing 
weekly
– Focus since v1.0 mostly maintenance rather 

than adding new features

• Initial funded development team
– 2-4 people/FTEs per year

• Current funding (new NSF award, CZI 
award, contributions from projects that 
require Parsl) supports 
– ~1 FTE/year maintenance and development 
– ~0.5 FTE/year community management

* Through ~1 Aug 2024



6https://doi.org/10.5281/zenodo.14285239

Sustainability: Balancing resources & work

• Parsl resources

– Grants

– External funding from projects that 
depend on Parsl

– Volunteer (in-kind) effort from groups 
that develop tools that use Parsl

– Companies that use Parsl in their 
services

• Funded Parsl team does the core 
work, such as
– Managing the community

– Reviewing code contributions

– Fixing bugs

– Supporting users

– Developing new features

– Releasing new versions of the software

• Provided/volunteers resources can add features to Parsl and support some 
limited number of use cases
– But aren’t currently sufficiently coordinated or aligned to fully support Parsl's core needs 

over multiple years



7https://doi.org/10.5281/zenodo.14285239

Past, current, and sustainable resources

Current NSF & CZI 
awards aim at 
making Parsl 
sustainable:

Resources (from 
various sources) 
will be able to 
perform all project 
activities well into 
the future



8https://doi.org/10.5281/zenodo.14285239

Path to sustainability

• At a high level, we want to follow the successful sustainability model of 
AstroPy, yt, etc.

• Work on community, governance, funding streams, innovation, training, 
outreach/engagement

• Work with other related community (software sustainability, workflows)

• Capture, document, and share sustainability lessons

• Also reduce technical debt

– The easier it is to do things, the less resources are needed to do them



9https://doi.org/10.5281/zenodo.14285239

Project stages

1. Concept testing & 
initial development

2. Testing with 
initial users & 
continued 
development

3. Expanded 
usage, support 
& some 
development

4. Community 
usage, 
sustained 
maintenance & 
support



10https://doi.org/10.5281/zenodo.14285239

Parsl coding

• Parsl started as an idea in 2016, based on previous project Swift (http://swift-
lang.org)

– Basically asked if we wanted to do the same thing – a simple tool (language/runtime) for 
fast, easy scripting on big machines – today, what would we do

– One person did some exploration/proof-of-concept – it worked

• w/ 4 people managing and “helping”

– Build the initial usable system, was the main developer, did things the way they wanted

– Once a second developer became active, needed to agree on and define/document 
processes

– As we moved to a more open community project (2-4 FTEs/year of developers funded, and 
73 contributors), these processes became more important

http://swift-lang.org/main/
http://swift-lang.org/main/


11https://doi.org/10.5281/zenodo.14285239

Parsl processes
• How to make design/architecture decisions?
• What code style to use?
• What testing is sufficient?
• What documentation is sufficient?
• How to engage with and support users?
• What properties do contributions and 

changes need to have?

• How do contributions and changes get 
accepted?

• How to encourage/develop contributors?
• How to mix CS research and software product 

development?
• Who writes papers and who is listed as co-

authors?

• All of the answers have changed over the life of the project



12https://doi.org/10.5281/zenodo.14285239

Changing developer work

• Current needs (e.g., maintenance, outreach, and support) differ from 
earlier in the project, leading to a need for new types of contributions

• Development activities include

– Maintain the Parsl codebase

• Including adding additional tests to improve code quality

– Respond to issues, including supporting deployment on different computing 
resources

• As community grows and diversifies, range of use cases and range of challenges also grow

– Review contributed code
• Leads us to develop minimal requirements on contributed code, starting with a pre-coding 

discussion and including plans for future maintenance and support of contributed code



13https://doi.org/10.5281/zenodo.14285239

Internal Parsl developer roles

1. Research programmer
– Main job: prototype ideas very quickly
– Focus on what the software can do, more than how users will use it
– Essential to bootstrap new research software project, develop & test initial ideas; might take 

shortcuts that harm project’s later sustainability (adding technical debt)
– Stage: Initial development & new features in later stages

2. Software developer
– Main job: development professional-class research software
– Focus on software itself & its users
– Dedicated to making the software as useful as possible; making it clean & beautiful; 

increasing simplicity, compatibility, future maintainability; reducing technical debt
– Stage: Important to have involved in all but the initial stage of the project (where process 

may impede fast innovation)



14https://doi.org/10.5281/zenodo.14285239

Internal/external Parsl developer roles

3. User/developer
– Main job: a scientist or disciplinary researcher who also adds features relevant to their work
– Focus on their own usage of the software
– Typically write code elsewhere for their real job (research); not dedicated to Parsl development, but a 

power user of Parsl who can understand bugs and fix them
– May take shortcuts that harm project’s future sustainability
– Stage: all but initial stage

4. Collaborating developer
– Main job: responsible for a collaborative project
– Focus on their software working with or being “part of” Parsl
– In their own project, can may be any other developer type; may follow different coding/software 

engineering style, potentially leading to integration and culture challenges
– Defining the interface to these developers is a key challenge for sustainability, as ideally, they will become 

committed to Parsl’s success as important to their own project’s
– Stage: most helpful after the project has become initially proven and has demonstrated some success 

(stages 3 & 4)



15https://doi.org/10.5281/zenodo.14285239

Changing community work

• In addition to developers, members of the community sometimes do (kind of in 
order of where community contributions actually happen)
– Answer user questions

– Share experiences (configs) for specific computing platforms

– Share expertise in applying Parsl to different scholarly disciplines

– Support outreach activities (e.g., presenting tutorials, hosting summer students, developing 
training materials for various domains)

– Coordinate the yearly user meeting

– Apply for funding

– Advertise success stories in blogs

– Manage social media

• Parsl community manager does/coordinates this



16https://doi.org/10.5281/zenodo.14285239

Community

Abigail Cabunoc Mayes. Work open, lead open, 2020. Chan-Zuckerberg Initiative (CZI) Essential
Open Source Software (EOSS) Kickoff Meeting, Berkeley, California, USA.



17https://doi.org/10.5281/zenodo.14285239

NumFOCUS

• Parsl joined NumFOCUS in Nov 2024

• Process involved applying, being accepted, then signing a financial 
sponsorship agreement

• U Illinois agreed to transfer ownership of its IP to its employees to transfer 
it to NumFOCUS after a short period; U Chicago took about 9 months to 
discuss and agree

• We see this as part of our sustainability plan
– Ownership of the project in a neutral place to encourage others to take on 

leadership and governance of the project

– A mechanism to hire staff outside the US when needed, and to contract for specific 
work items to the best available person, regardless of their affiliation



18https://doi.org/10.5281/zenodo.14285239

Where we are now

• Good news
– Community growth – at least in part due to community manager

• Lots of contributors

• Lots of users

– Parsl code has gotten better – at least in part due to core maintainer
• Moving to more plug ins to reduce what the core code has to do

• Removing old code that isn’t used, doesn’t work, etc.

• More and better tests

• Less good news
– Unclear how to sustain community manager and core developer

• This core community and maintenance work is hard/impossible to rely on volunteers to do, at 
least for a project of Parsl’s size



19https://doi.org/10.5281/zenodo.14285239

Lessons

• Sometimes choices are just choices, made for the sake of having made a choice – 
once made, these can be hard to change, but changes should be considered 
regularly

• Going from one to two developers is a big step, and an opportunity to consider 
changes

• Research software sustainability is a hard problem with no simple answers
• The existence of different types of developers (RSEs) and their utility during 

different phases of Parsl, particularly when moving from a project funded by a 
grant to one supported by a mix of sources, emerged during the project

• This seems to match other projects’ experiences, but isn’t really tested yet
• Boundaries between types of people and roles (developer, RSE, community 

member, user) are fuzzy



20https://doi.org/10.5281/zenodo.14285239

Acknowledgements

• Parsl has been supported by NSF (1550588, 2209919, 2209920) and the 
Chan Zuckerberg Initiative, and DOE, collaborating projects, and a 
community of developers, maintainers, and users


	Slide 1: Parsl: an example of trying to sustain research software
	Slide 2: Parsl: parallel programming in Python
	Slide 3: Parsl usage
	Slide 4: Parsl’s external stakeholders
	Slide 5: Parsl history
	Slide 6: Sustainability: Balancing resources & work
	Slide 7: Past, current, and sustainable resources
	Slide 8: Path to sustainability
	Slide 9: Project stages
	Slide 10: Parsl coding
	Slide 11: Parsl processes
	Slide 12: Changing developer work
	Slide 13: Internal Parsl developer roles
	Slide 14: Internal/external Parsl developer roles
	Slide 15: Changing community work
	Slide 16: Community
	Slide 17: NumFOCUS
	Slide 18: Where we are now
	Slide 19: Lessons
	Slide 20: Acknowledgements

