Parsl: an example of trying to sustain research software

Daniel S. Katz (d.katz@ieee.org, @danielskatz@fosstodon.org) Chief Scientist, NCSA Associate Research Professor, School of Computing & Data Science, School of Information Sciences University of Illinois at Urbana Champaign

With contributions from Parsl team & community, including Ben Clifford, CQX Limited Yadu Babuji, Kevin Hunter Kesling, Anna Woodard, and Kyle Chard, University of Chicago

ILLINOIS NCSA | National Center for Supercomputing Applications

6 December 2024 NCI Informatics Technology for Cancer Research (ITCR)

Parsl: parallel programming in Python

Apps define opportunities for parallelism

- Python apps call Python functions
- Bash apps call external applications

Apps return "futures": a proxy for a result that might not yet be available

Apps run concurrently respecting dataflow dependencies. Natural parallel programming!

Parsl scripts are independent of where they run. Write once run anywhere!

ILLINOIS NCSA

pip install parsl

Try ParsI: <u>https://parsl-project.org/binder</u>

Parsl usage

- Parsl used by individual researchers, large research consortia, and in industry, spanning domains such as astrophysics, biology, materials science, and many others
- Impact examples: Parsl used to:
 - Produce the most interconnected simulated sky survey in preparation for analysis of the Vera C. Rubin Observatory Legacy Survey of Space and Time (LSST)
 - Conduct one of the largest single batch imputations ever performed on 474k subjects in the Million Veterans Program
 - Search for potential COVID-19 therapeutics in a search space of 4 billion candidate molecules

Parsl's external stakeholders

- Direct users: use Parsl for science/etc.
 - E.g., LSST DESC
- Platforms: platform developers use Parsl as a component of a platform/application used by end users
 - E.g., QC Archive, Globus Compute (was funcX)
- Cyberinfrastructure providers: support Parsl on their HPC/etc. system
 - E.g., Argonne, NERSC
- Linked contributors: link naturally complementary components with Parsl
 - E.g., Parsl provides interesting ways to describe related tasks, and Work Queue provides interesting ways to schedule those tasks: WorkQueue -> Parsl WorkQueue executor
- Funders
 - E.g., NSF, CZI, DOE, collaborating projects

Parsl history

- Initially supported by an NSF SI2 award from 2016-2022 (5 years + 1-year NCE)
- Released version 1.0 in 2020, now releasing weekly
 - Focus since v1.0 mostly maintenance rather than adding new features
- Initial funded development team
 - 2-4 people/FTEs per year

LINOIS NCSA

- Current funding (new NSF award, CZI award, contributions from projects that require Parsl) supports
 - ~1 FTE/year maintenance and development
 - ~0.5 FTE/year community management

Sustainability: Balancing resources & work

- Parsl resources
 - Grants
 - External funding from projects that depend on Parsl
 - Volunteer (in-kind) effort from groups that develop tools that use Parsl
 - Companies that use Parsl in their services

- Funded Parsl team does the core work, such as
 - Managing the community
 - Reviewing code contributions
 - Fixing bugs
 - Supporting users
 - Developing new features
 - Releasing new versions of the software
- Provided/volunteers resources can add features to Parsl and support some limited number of use cases
 - But aren't currently sufficiently coordinated or aligned to fully support Parsl's core needs over multiple years

Past, current, and sustainable resources

Current NSF & CZI awards aim at making Parsl sustainable:

Resources (from various sources) will be able to perform all project activities well into the future

ILLINOIS NCSA

Path to sustainability

- At a high level, we want to follow the successful sustainability model of AstroPy, yt, etc.
- Work on community, governance, funding streams, innovation, training, outreach/engagement
- Work with other related community (software sustainability, workflows)
- Capture, document, and share sustainability lessons
- Also reduce technical debt
 - The easier it is to do things, the less resources are needed to do them

Project stages

Parsl coding

- Parsl started as an idea in 2016, based on previous project Swift (<u>http://swift-lang.org</u>)
 - Basically asked if we wanted to do the same thing a simple tool (language/runtime) for fast, easy scripting on big machines – today, what would we do
 - One person did some exploration/proof-of-concept it worked
 - w/ 4 people managing and "helping"
 - Build the initial usable system, was the main developer, did things the way they wanted
 - Once a second developer became active, needed to agree on and define/document processes
 - As we moved to a more open community project (2-4 FTEs/year of developers funded, and 73 contributors), these processes became more important

Parsl processes

- How to make design/architecture decisions?
- What code style to use?
- What testing is sufficient?
- What documentation is sufficient?
- How to engage with and support users?
- What properties do contributions and changes need to have?

- How do contributions and changes get accepted?
- How to encourage/develop contributors?
- How to mix CS research and software product development?
- Who writes papers and who is listed as coauthors?
- All of the answers have changed over the life of the project

ILLINOIS NCSA

Changing developer work

- Current needs (e.g., maintenance, outreach, and support) differ from earlier in the project, leading to a need for new types of contributions
- Development activities include
 - Maintain the Parsl codebase
 - Including adding additional tests to improve code quality
 - Respond to issues, including supporting deployment on different computing resources
 - As community grows and diversifies, range of use cases and range of challenges also grow
 - Review contributed code
 - Leads us to develop minimal requirements on contributed code, starting with a pre-coding discussion and including plans for future maintenance and support of contributed code

Internal Parsl developer roles

1. Research programmer

- Main job: prototype ideas very quickly
- Focus on what the software can do, more than how users will use it
- Essential to bootstrap new research software project, develop & test initial ideas; might take shortcuts that harm project's later sustainability (adding technical debt)
- Stage: Initial development & new features in later stages
- 2. Software developer
 - Main job: development professional-class research software
 - Focus on software itself & its users
 - Dedicated to making the software as useful as possible; making it clean & beautiful; increasing simplicity, compatibility, future maintainability; reducing technical debt
 - Stage: Important to have involved in all but the initial stage of the project (where process may impede fast innovation)

Internal/external Parsl developer roles

3. User/developer

- Main job: a scientist or disciplinary researcher who also adds features relevant to their work
- Focus on their own usage of the software
- Typically write code elsewhere for their real job (research); not dedicated to Parsl development, but a
 power user of Parsl who can understand bugs and fix them
- May take shortcuts that harm project's future sustainability
- Stage: all but initial stage

4. Collaborating developer

- Main job: responsible for a collaborative project
- Focus on their software working with or being "part of" Parsl
- In their own project, can may be any other developer type; may follow different coding/software engineering style, potentially leading to integration and culture challenges
- Defining the interface to these developers is a key challenge for sustainability, as ideally, they will become
 committed to Parsl's success as important to their own project's
- Stage: most helpful after the project has become initially proven and has demonstrated some success (stages 3 & 4)

Changing community work

- In addition to developers, members of the community sometimes do (kind of in order of where community contributions actually happen)
 - Answer user questions
 - Share experiences (configs) for specific computing platforms
 - Share expertise in applying Parsl to different scholarly disciplines
 - Support outreach activities (e.g., presenting tutorials, hosting summer students, developing training materials for various domains)
 - Coordinate the yearly user meeting
 - Apply for funding
 - Advertise success stories in blogs
 - Manage social media
- Parsl community manager does/coordinates this

Community

ILLINOIS NCSA

NumFOCUS

- Parsl joined NumFOCUS in Nov 2024
- Process involved applying, being accepted, then signing a financial sponsorship agreement
- U Illinois agreed to transfer ownership of its IP to its employees to transfer it to NumFOCUS after a short period; U Chicago took about 9 months to discuss and agree
- We see this as part of our sustainability plan
 - Ownership of the project in a neutral place to encourage others to take on leadership and governance of the project
 - A mechanism to hire staff outside the US when needed, and to contract for specific work items to the best available person, regardless of their affiliation

Where we are now

- Good news
 - Community growth at least in part due to community manager
 - Lots of contributors
 - Lots of users
 - Parsl code has gotten better at least in part due to core maintainer
 - Moving to more plug ins to reduce what the core code has to do
 - Removing old code that isn't used, doesn't work, etc.
 - More and better tests
- Less good news
 - Unclear how to sustain community manager and core developer
 - This core community and maintenance work is hard/impossible to rely on volunteers to do, at least for a project of Parsl's size

Lessons

- Sometimes choices are just choices, made for the sake of having made a choice once made, these can be hard to change, but changes should be considered regularly
- Going from one to two developers is a big step, and an opportunity to consider changes
- Research software sustainability is a hard problem with no simple answers
- The existence of different types of developers (RSEs) and their utility during different phases of Parsl, particularly when moving from a project funded by a grant to one supported by a mix of sources, emerged during the project
- This seems to match other projects' experiences, but isn't really tested yet
- Boundaries between types of people and roles (developer, RSE, community member, user) are fuzzy

Acknowledgements

 Parsl has been supported by NSF (1550588, 2209919, 2209920) and the Chan Zuckerberg Initiative, and DOE, collaborating projects, and a community of developers, maintainers, and users

