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Profatory Note. 

(This prefatory note is intended merely to point out those features 
of the article which are likely to he of most interest to the reader who 
is pressed for time, and who is already familiar with the literature of the 
st~bjeet. The article proper begins with the Introduction.) 

The subject-matter of the present article is s new set of postulates 
for ordinary ~ idean  three-dimensional g ~ .  The method employed 
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can be readily extended to Euclidean geometry of more than three 
dimensions~ but  is not so readily~ adapted to the study of projective 
geome~y. 

The chief points of difference between the present set of postulates 
and the well known se~s*) given by Pasch, Yeronese, Peano~ Pieri, Hilbert, 
Veblen~ Sehweitzer~ and others~ are: 1) the use of the solid body instead 
of the point as an undefined concept; ~) the extreme simplicity of the 
undefined relation of inclusion; 3) the systematic definitions of the straight 
line, the plane, and the 3-space, which can be readily extended, if desired~ 
to space of n dimensions; and (4) the attempt to separate the ~existence 
postulates' from the postulates expressing 'general laws'. 

In regard to this last point~ a word of explanation may be desirable. 
By an Cexistence postulate' we mean a postulate that demands the existence 
of some element satisfying certain conditions; as, for exampIe, the pro- 
position that  a line passing through a vertex of a triangle and any 
interior point must intersect ~he opposite side; or the proposition that 
through any point outside a given line it is always possible to draw at 
least one parallel. By a 'general law' we mean a proposition of the form: 
~ifsuch and such points, lines, etc. exist, then such and such relations 
will hold between them'; for example, the proposition that if  B is between 
~[ and C, and X between X and B ,  then X is between A and C; or 

*) M. Pasch, Verlesungen fiber neuere Geometrie, Leipzig 1882. 
G. Yeronese, Fondamenti eli Geometrla a pi5 dimensioni~ 1891, translaf~d into 

German by A. Sehepp, Grnndz~ge der Geometrle, 189~. 
G. Peano, I Principii di Geometrla~ Turin 1889; also Sui fondamenti della 

geometria, in Rivista di Ma~ematica 4, p. 51--90, 1894. 
M. Pieri, Della geometria elementare come sistema ipote~ico deduttivo; mono- 

graphia del punto e del mote, Memorie della Reale Accademia della Scienze di Torino, 
(2) 49, p. 173--222, 1899; also Sur la g6omg~rie envlsagge comme un syst~me 
purement logique, Bibliot~que du Congr~s international de Philosophie, Paris 1900 
3, p. 367--404. 

D. Hilbert, Grundlagen tier Geome~rie, Gaul]-Weber Festsehrift, 1899; translated 
into English by E. J. Townsend, The Foundations of Geometry, 1902; third German 
edition, as eel. 7 of the series called Wissenschaft und Hypothese, (Leipzig 1909). 
In this third edition, the numbering of the a~ioms is slightly altered, in view of an 
article by E. H. ~oore, 1902; Axiom II 4 of~he original list is now omitted, and what 
was originally Axiom II 5 is now numbered II 4. 

O. Veblen, A system of Axioms for Geomet~y~ Trans. Am. Math. See. 5 ~1904), 
p. 843--~84. Also, The Foundations of Geometry, in a volume called Monographs 
on Topics of Modern ]~[a~hematics relevant ~o the Elementary Field, edited by 
J. W. A. Young, p. 1~51, 1911. 

Another set of postulates, based on concepts not so closely connected with the 
presen~ work, has been recently given by A. R. Sehweitzer, A ~heory of geometrical 
relations, Am. ft. of ~a~h.~ 31 (1909), p. 365--410. 

34* 
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the proposition that if two distinct lines are parallel to a third line they 
are parallel to each other. Now in the usual development of the subject, 
the demonstration of many of the general laws is made to depend upon 
the use of existence postulates; for example, in proving the simplest laws 
of order for points on a line, Hilbert and Veblen use a 'triangle transverse' 
postulate, concerning the points of intersection of the sides of a triangle 
with a line in the plane. In the present treatment, on the contrary, the  
attempt has been made to separate the general laws from the existence 
postulates, and to prove all general laws, as far as possible, without the 
aid of auxiliarly 'construction lines'. This restriction adds considerably to 
the difficulty of many of the proofs, but the attempt, though not completely 
s~uccessful, has a certain logical interest; and the lost simplicity of proof 
can be at once regained, if desired, by transposing the existence postulates 
~0 an earlier place in the list. 

Among the definitions, the most important is the new definitio~ of 
~inear segment (Def. 5), for on this definition, and the analogous definitions 
of triangle and tetrahedron, the whole theory is based. Attention may 
also be called to the definition of the mid-point of a segment (Def. 17), 
the definition of congruence (Def. 21), and to the fact that all metric 
~operties are obtained directly in terms of the fundamental concepts, 
without the intervention of Cayley's 'absolute'. Also, the word 'sphere' 
may be replaced by 'any convex solid', except in the parts of the paper 
that deal with cpngruence. 

On the consistency of the postulates, see the end of Chapter II~ where 
an interesting geometry of points of finite size is exhibited. 

In regard to the ind~endence of the ~ostulates, the 'general laws' are 
showh to be independent of each other, and the existence postulates are 
shown to be independent of each other and of the general laws. By  
slight changes in wording, it would be easy to secure 'absolute' indepen- 
dence for the combined list of general laws and existence postulates; bu~ 
such changes would tend to introduce needless artificialities, from which 
the postulates as they now stand are entirely free. 

More important than the question of independence is the proof of 
the suffcie~xy of the postulates to determine a unique type of system; or, ~o 
use a phrase of Veblen's, the proof that the postulates form a categorical 
set. Little attention seems to have been paid to this question except by 
the present writer in connection with the foundations of algebra*)~ and 

*) E. V. Huntington, A complete set of postulates for the theory of absolute 
continuous magnitude, Trans. Am. ~fath. See., 8 (1902), p. 264--279, and later papers. 
Compare also the forthcoming Lehrbueh der A]gebra by A. Loewy. 
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by Veblen in connection with the foundations of geometry; and yet there 
appears to be no other way of proving that all the propositions of a 
science are deducible from a given set of postulates, than by showing 
that the postulates form a 'sufficient' or 'categorical' set. In the present 
article, the deductions from the postulates are carried just far enough to 
establish this 'theorem of sufficiency', which forms, in fact, a natural 
stopping place in any study of 'foundations'. 

The previous authors to which the writer is chiefly indebted are 
Peano, Russell*), Hilbert, Veblen, and Schur**). 

The logical symbolism of Peano, although not employed in the paper 
as prepared for the press, has been of almost indispensable value in working 
out the details of the demonstrations. Without some such symbolism, it 
is almost impossible, in work of ghis sort, to avoid errors. 

The term 'propositional function', and the emphasis on the notion 
of the 'variable' (in the Introduction) are due chiefly to Russell. The 
convenient notation for the prolongations of a segment, the extensions 
of a ~riangle, etc., is taken from Peano. The 'four-poing postulate' 
(Postulate 11) is the first half of a proposition suggested by Schur. The 
very simple proof of the commutative law of multiplication~ by means 
of the proposition about the three altitudes of a triangle, is also due to 
Schur. Postulate 14, the last of the postulates on eongruence,.was sug- 
gested by one of the assumptions in Yeblen's later list. The construction 
for drawing a line perpendicular to a given line is due to Hilbert. 

On account of the use of the solid body instead of the point as the 
fundameniml variable, mos~ of the pseudo-geometries given in the proofs 
of independence had to be new constructions. Example E 5, however, is 
taken from Hilbert. 

The writer is also indebted to Mr. P. E. B. Jourdain, who has verified 
many of the demonstrations. 

I n t r o d u c t i o n .  P l a n  o f  t h e  ar t i c le .  

This introduction is intended to explain the point of view adopted in 
the present article, and the nature of the principal results obtained. 

Fuedamental coneelots. We agree ~o consider a certain set of pos~ates 
(namely, the postulates stated in Chapter lI), involving, besides the sym- 

*) B. Russell, Principles of Mathematlcs, 1903; A. N. Whitehead and B. Russell, 
Principia Mathematica, 1, 1911. See ~.lso Whitehead's excellent popular Introduction 
to Mathematics, ('Home University Library', Londen 1911). 

**) F. Schur, Zu~ Proportionslehre, Math. Ann. 57 (190~), p. 205M208. 
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bols which are necessary for all logical reasoning, only the following 
two variables: 

1) the symbol K, which may mean any class of dements A, B, C,...; and 
2) the symbol R, which may mean any relation A R B, between ~wo 

elements. 
These postulates are not definite propositions - -  that is, they are no~ 

in themselves either true or false. Their truth or falsity is a function 
of the logical interpretation given to the variables K and R, just as the 
truth or falsity of a conditional equation in algebra is a function of the 
numerical values given to the variables iu such an equation. They may 
therefore be called '2ropositional functions' (to use a term of Russell's), 
since they become definite propositions (true or false) only when definite 
'values' are 'given to the variables K and R. 

For example, if we give K and R the following values: 
1) K == the class of ordinary spheres (including the null spheres); 
2) R-~ the relation of inclusion (so that 'A R B'  means 'A inside 

of B'); 
then all the postulates will be found to be true; but if K and R have 
the values assigned to them in any one of the examples given in Chapter IV, 
as for instance: 

1) K = a class comprising nine ordinary numbers, namely: 2, 3, 5, 7, 
10, 14, 15, 21, 210; 

2) R = the relation 'factor of';  
then a~ least one of the postulates (here Postulate 4) will be found to 
be false. 

Having this set of postulates before us, we agree to consider their 
~ogicat consequences, that is, the theorems which can be deduced from 
them by the processes of formal logic without reference to any ~articu~ar 
deterrainat~ion of' the variables K and R. 

These derived theorems, like the original postulates, will be pro- 
positional functions~ whose truth or falsity depends on the values given 
to the variables K and R. All that ~he process of logical deduction tells 
us~ is that if  the original postulates are true for cel~.ain values of the 
variables, ghen all the derived theorems will be true for the same values: 
In other words, if  any given system (K, R) has all the properties stated 
in the postulates, then i~ will also have all the properties stated in the 
theorems. 

Definition of abstract geometry.*) The body of theorems thus deduced 

*) We confine ourselves here to ordinary Euclidean three-dimensional geometry; 
segs of pos~ulages for other varieties of geomet~ may be obtalned by suilable modi- 
fics~ion~ cf the set here given. 
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from the given set of postulates constitutes an abstract deductive theory, 
which, in view of the familiar example already mentioned, may properly 
be called abstra~ geometry; and any given system (K~ R) - -  for example, 
the system: K == the class of spheres, R----- the relation of inclusion m 
which satisfies all the postulates may then be called a concrete geor~t~ieal 
system, or simply~ a concrete geometry. 

AFt~ied geometry. Abstract geometry, as thus defined~ is a purely 
mathematical theory, which will apply equally well to all 'geometrical 
systems'~ wherever such systems may be discovered. 

For example, it is conceivable that in the field of Economics, or of 
Botany~ a class K and a relation R might be discovered~ which would 
satisfy all the postulates of Chapter II, and which would therefore form 
a geometrical system. 

It  is important to notie% however~ that the question whether any 
given system (K, R) does actually possess the properties enumerated in 
the postulates~ is not (except in the arithmetical case mentioned below) 
a question of pure mathematics, but rather a matter for observation and 
experiment. Thus, the abstract theory of geometry as such gives us no 
information whatever about the nature of perceptual space~ any more 
than it does about the facts of Economics or Botany: all that it tells 
us is that if  any system (K, R), wherever it may be found, is rightly 
judged to possess the properties mentioned in the postulates, then it will 
necessarily possess also the properties mentioned in the theorems. 

Furthermore~ the only systems (K~ R) about which such a judgment 
can be made with assured accuracy are the systems whose elements a r e  

purely numerical, that is to say, purely logical; in all other cases~ our 
observations are only approximate, and in all such cases the conclusions 
reached by the application of geometric theory - -  even though the process 
of inference is perfectly r i g o r o u s -  are of course no more accurate than 
the premisses on which-they are based. 

Cons~stcnoy of the 1oos~ates. The first question to be asked con- 
cerning any set of postulates such as that which we are here considering, 
is this: Does any system exist which satisfies all the postulates? If the 
existence of any such system can be established, then the postulates are 
said to be consis~t~ and no theorems deduced from them can ever lead 
to contradiction. 

In the present case~ we have already mentioned one system (K~ R) 
as satisfying all our postulates, namely~ the system: K ~ the class of 
spheres, and R ~ the relation of inclusion; but if we mean by 'sphere' 
and 'inclusion ~ the common notions given by observation of perceptual 
space~ then our judgmen~ that this system satisfies all the postulates can 
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be only approximate, and the system does not provide a satisfactory proof 
of the consistency of the postulates. If, however, we use ~sphere' and 
'inclusion' in the sense in which ~hese terms are used in analytical geo- 
metry  (see the end of Chapter II), then we have a strictly numerical 
system, which certainly exists, and which can be shown to satisfy all 
the postulates with absolute accuracy. The consistency of the postulates 
is thus completely estabhshed. 

Separation of general and existence postulates. The list of postulates 
given in Chapter II  will be found to be divided into two groups, the 
first containing the 'general laws' (Postulates 1--18), and the second 
containing the 'existence postulates' (Postulates E 1--E 7). 

These two groups of postulates play quite distinct r61es in the 
development of the subject, and the attempt to keep them separate from 
the start is not without logical interest. (Compare, however, the remarks 
under  Theorem 15.) 

Independence of the postula2ea. & second question to be asked is: Are 
the  postulates independent? that is, are we sure that no one of them is 
merely a consequence of the rest? 

To answer this question, we exhibit, in Chapter IV, a list of 'pseudo- 
geometries', by which it is shown that the 'general laws' are independent 
of each other, and also that the ~existence postulates' are independent of 
each other and of the general laws. 

Sufficiency of the postulates to determine a unique type uf  system. A 
th i rd  and most important part of our work is to show that any two systems 
(K, R) which satisfy all the postulates are formally equivalent, or isomorphiv, 
wi th  respect to the variables K and R. This means that  if (K', It') and 
(K", R") are any two 'geometrical systems' - -  that is, any ~-wo systems 
tha t  satisfy all the postulates --  then it is possible to set up a one-to, 

e t . . one correspondence between the elements A', B ,  C,  �9 of K' and the 
elements A", B", C", . . .  of K" in such a way that whenever .A' and /~. 
in one system satisfy the relation A" R' ~' ,  then the corresponding elements 
A" and B" in the other system will satisfy the relation A" R" B". By 
the establishment of this isomorphism, we show that any theorem i~vob~ 
only the two variables K and R, which is true in one of the systems will: b~ 
b'ue in the other also; hence a/l the systems (K, R) which satixfy=t]~ 
~stulates may be said to belong to a s i ~ e  type. 

With the proof of this theorem, the series of deductions which we 
draw from the posgulates is brought to a naharal conclusion; and in vir 
of this theorem, we may then define abstract geomebry as the study of.the 
l~operties of a particular type of system (K, R), name/y, that type which.~s 
co~/laletely dCz~rm~ed by the Postulates 1--18 and E 1--E 7. 
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Chapter  I. 

D e f i n i t i o n s .  

As explained in the introduction, the only variables that are involved 
in our set of postulates are the class K and the relation R, and it is 
theoretically possible to express every theorem of geometry explicitly in 
terms of these variables. 

In order, however, to avoid tedious repetitions of certain combinations 
of these symbols, it is necessary to replace these combinations by single 
terms, which are introduced by definition, for the sole purpose of ab- 
breviation. 

For convenience of reference, all the definitions that we shall require 
are collected together in the present chapter. In framing these definitions 
we have freely used the terminology suggested by the particular inter- 
pretation of the variables K and R with which we are most familiar~ namely~ 
K ~ the class of spheres, and R ~ the relation of inclusion; but it must 
be constantly borne in mind that the meaning of all words (such as 
'point', 'segment', 'line', etc.) which are here defined in terms of K and 
R, will vary with varying interpretations of K and R, and that as far as 
the definitions are concerned, K and R may s~.nd for any class and any 
relation that we please. 

(In this connection the list of 'pseudo-geometries' in Chapter IV will 
be  found instructive.) 

Spheres ,  and the  r e l a t i on  of inc lus ion.  

D e f i n i t i o n  1. If 21 is an element of the class K, then A shall be 
called an abstract sphere, or simply a sphere. 

De f in i t i on  2. If 21 R B, we shall say that the sphere A is withir~ 
the sphere St, or that B contains _4. 

D e f i n i t i o n  3. Suppose A R ~ and ~ R A are both false; two cases 
can then occur. 1) If there is no sphere X such that X R A and X 1~ B, 
then A and B are called mutually exclusive, or each outside the other; 
white 2) if there is some such sphere X, then A and B are said to 

Points .  

De f in i t i on  4. If A is a sphere~ and if there is no other sphere X 
such that X R A, then A is called an abstract point~ or simply a point. 
That is, a point is any sphere which contains no other sphere withi~ it. 

It may be noticed that there is nothing in this definition~ or in any 
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of our ~ork, which requires our 'points' to be small; for example, a per- 
fectly good geometry is presented by the class of all ordinary spheres 
whose diameters are not less ~ a n  one inch; the ~points' of this system 
are simply the inch-spheres. (Compare the example given at ~he end "of 
Chapter l l . )  

S e g m e n t s ,  and the s t r a i g h t  line. 

The following definition is of central importance in the entire theory. 
D e f i n i t i o n  5. Let A and B be any given points. If X is a point  

such that every sphere which contains A and B also contains X~ then X 
is said to belong to the segment [AB] or [BA]. 

The segment [AB] is flf~s a class of po in t ,  
uniquely determined by A and B. The points .A 
and B belong to the segment, and are called i~s 

r~. 1. end-points. If we exclude the end-points, the class 
that remains is called ~he interior of the segment [AB], and may be 
denoted by (AB). If (AB) is the null class, the segment [AB] may be 
said to be hd/ow. 

D e f i n i t i o n  6. Besides the class [AB], two other classes, called the 
~rolongatio~s of [AB], are determined by the points A and B~ according 
tO the following scheme. 

If X is a point belongs to the then X is said 
to belong to a 

such that segment class denoted by 

B [.~ x]  [:~ i] 

and called the I~s bozen~ry 
prolongation of l consist~ of ~he 
lAB] beyond point 

.... A A 
B B 

(This notation, which is due in its essential elements to Peano, is 
easily remembered if we observe that [AB'],  contains A, and [BA~ con- 

tains B; that is, in each case the letter which is 
~4B]_[A~or[B_~ ~ not modified by an accent represents a point which 

A B ~ .  3. belongs to the class in question.) 
If  we exclude from [AB' l and [BA'] the  

boundary points A and B, the classes that remain may be called ~he 
~teriors of the prolongations, and may be denoted by (AB') and (/~A'), 
respectively; and if either of these interiors is the null class, the corre- 
sponding prolongation may be said ~o be hogow. 

The following special terminology will also be found to be convenient~ 
D e f i n i t i o n  7. In a set of two or more classes like [ A ~  [AB'] ,  

etc,  if no ~wo of ~he classes have any point in common (unless it be 



Postulates for abstract Geometa-y. 531 

common boundary point, represented by an unaccented letter that appears 
explicitly in both symbols), then the classes may be said to form a si/m~le 
set of non-overlapl~ing regions, and the logical sum of such a set may be 
cared a simple s.um. 

We can now define the line A B  as a class of points uniquely deter- 
mined by A and B, as follows. 

D e f i n i t i o n  8. If A and 13 are two distinct points, the line A B  is 
the class of all points which belong to the segment [AB] or ~o either 
of its two prolongations. Three points are said to be collinear, if any one 
of them belongs to the line determined by the other two. 

r-~.B'] E~.B] o~ [.B.A] [.B.A'] 

D e f i n i t i o n  9. The line A B  is said to be divided by the point A 
into ~wo half-lines, or raids , one containing the regions [A.B] and [BA'] 
in which B occurs without accent, and the other containing khe region 
l A B  ~j in which B '  occurs with the accent. Two points of the Iine are 
said t~ be on the same side of A or on opposite sides of A according as 
they belong to the same half-line or to different half-lines. In a similar 
way, the line is said to be divided by the point B. 

T r i ang le s ,  and the  plane.  

The following definitions, 10--14, for the plane are precisely ana- 
logous to the definitions 5 w 9  for the straight line. 

D e f i n i t i o n  10. If X is a point such that every sphere which con- 
rains A, B~ and U, also contains X, then X is said to belong to the trianyle 
[ABC]. 

The triangle includes the points A, B, U which are called its vert/ces t 
and the segments [AB], [A C], and [BC], which are called its s/des. The 
interior of the ~riangle, excluding the points of the side% is denoted by 
(ABC). If the class (ABC) is a null class, the triangle is said to be 
hollow. 

We next define certain 'extensions' of the triangle, which are to be 
analogous to the 'prolongations' of a segment. In order to exhibit ~ i s  
analogy in its clearest form, we first observe that the deiinition of a 
prolongation of a segment may be worded as follows: cs X is a point 
such that one element of the boundary is incident with the figure formed 
by joining X with the opposite element of the boundary, then X is said 
to belong to a class denoted by' etc. Now in the case of a triangle, the 
elements of the boundary are of two kinds, the three vertice% A, B, C, 
and the three sides, [AJ3], [AU], [BG]; hence the desired definitions will 
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be obtained by associating each vertex with the opposite side, and each 
side with the opposite vertex, as in the following scheme. 

De f in i t i on  11. 

If X is is inci- thenXis said to 
a poin~ belong to a class 

such that dent with denoted by 

a [~ cx]  [A ~'o'] 
~r EA c x] [~ A'o'] 
o [A~x] ECa'~'] 

This class is called 
the extension of 

[A.B C] beyond the 

vs~ex A 

Its boundary consists 
of the points of 

[AB'], [AC'] 
[~a'], [BC'] 
[OX'], [C~'] 

[~A~] [o.x'3 1 [A~ o'] 
[xcl [~x] [ [Ao2r3 
[B el [A X] [m OA'] 

,, [AC~ 
,, [~CS 

[A~], [a t ' l ,  [~c'] 
[A el, [A ~'], [C~'] 
[Be], [~a'], [C~'] 

The first three of these classes, [AB'C~],..., are called the vertival 
extensions of the triangle, and the last three, [ABC~, �9 the lateral ex- 
tensions. The points named as the 'boundary' of each class will them- 

selves belong to that class in any system in which 
_ ~ A ] ~  Postulates 1--2 are valid. The interiors of the 

several regions, excluding.the points of the boundary, 
are denoted by (AB'C'), . . . ,  (A•C'),  . . . ,  re 
speetively. 

~ / J / - ~ ]  ~ ]  By an immediate extension of the terminology 
~iB. s. adopted in Definition 7,we have: 

D e f i n i t i o n  12. In a set of two or more classes 
like [ABC], [ABC'], etc., if no two of the classes have any point in 
common (unless it be a point of a common boundary, represented by 
letters that appear explicitly in both symbols), then the set of classes 
may be called a simple set and their logical sum a simple sum. 

For example~ [BA'C'] and [BCA'] have the common boundary [BA']~ 
if they have no other point in common, they form a simple set. 

We now define the plane A ~ C  as a class of points uniquely deter- 
mined by A, B, and C, as follows. 

D e f i n i t i o n  13. If A, B, and C are three points not in the same 
line, the ~lane ABC is the class of all points that belong to the triangte 
[ABC] or to any one of its six extensions. Four points are said to b8 
~la~ar, if any one of them belongs to the plane determined by the 
o~er  three. 

De f in i t i on  14. The plans ABC is said to be divided by the line 
A.B into two half-planes, one containing the four regions in which G 
occurs without accent, the other containing the three regions in whicl~ C: 
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occurs with the accent. Similarly, the plane is divided by the line A U and 
by the line BC. 

Before passing to the analogous definitions of a space ABU1), it 
will be convenient to introduce at this point definitions concerning parallel 
lines and the congruence of segments. On this arrangement, all the deft- 
rations required for the special case of geometry of two dimensions will be 
found in consecutive order. 

P a r a l l e l  lines. 

D e f i n i t i o n  15. Suppose we are dealing with a system (K, R) in 
which the 'planes' have all the properties demanded by Postulates 6--8. 
Then if two lines AB and GD lie in the same plane, and have no point 
in common, they are said to be parallel, and we write: AB ][ CD. 

To indicate that two lines AB and GD are either parallel or coin- 
cident, we shall use the no~ation AB ~ CD. 

Def in i t i on  16. If AB[I UD and BC II DA, then the four points 
A, B, C, D are said to form a paralldogram, of which IX 0] and [BDJ 
are the diagonals. 

By the aid of parallel lines, we now define the mid-point of a segment, 
as follows. 

De f in i t i on  17. Let [AB] be any given segment. 
parallelogram A X B Y  of which [A.B] is one diagonal~ 
and if the ottmr diagonal intersects [AB] in M, then M 
is called a middle point of ?.he segment [AB]. If there 
is only one such point M (as will always be the case in 
every system in which Postulates 1--11 are valid), then 
M is called the mid-point of [AB], and we write: 
M ~- mid A B. 

If there is a 

:Fig. 4. 

In this case the segment lAB] is said to be bisected at;M. 

The cen te r  of a sphere .  

In order to define the 'center' of an (abstract) sphere, we first define 
the points Con the surface' of a sphere, as a subclass among the points 
that are within the sphere. 

D e f i n i t i o n  18. If A and B are within a sphere S, and if all points 
of the prolongations (AB') and (BA') are outside of S, then the segment 
[AB] is called a ctwrd of the sphere $, 

D e f i n i t i o n  19. If A is an end-poh~t of any 
chord of a sphere S, then A is said to lie on the 
surface of the sphere. 

D e f i n i t i o n  20. If  0 is a point within a sphere 
~q, and if every pair of chords which intersect a~ 0 

~ig. 5. 
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are the diagonals of a parallelogram, then 0 is called the center of the 
sphere. 

Any chord through the cen~er is culled a dia~neter t and is bisected 
at ~he center. Either half of a diameter is called a radius. 

C o n g r u e n c e  of s egmen t s .  

By the aid of the two notions of the mid-point of a segment and 
the center of a sphere, we can now define the relation of congruence 
between two segments~ as follows. 

D e f i n i t i o n  21. Two segments [ABJ and [0I)] are called congruent 
in symbols, A/~ ~ GD - -  when and only when one of the following 

conditions is satisfied: 
1) If the two segments [AB] and [CD] are on the same line, then we 

mus~ have either [A~] ~ [CD], or mid AG = mid BD, or mid AD = mid ~G;  
and ff they lie on parallel lines, then they must be opposite sides of a 
parallelogram. 

2) If  they have a common end point (or a common mid-point), bu~ 
do not lie on the same line, then they must be radii (or diameters) of  
the same sphere. 

3) If they do not lie on the same line or on parallel lines, and do 
not have a common end-point or a common mid-point, then there must  
be two segments [OX] and [0Y]  which are congruent to ~he given 

segments according to 1), and congruen~ to each other 

.I, according to 2)~ 
According to this definition, all the radii of a given 

sphere are obviously congruent; hence, all the points on the 
surface of a sphere may be said to be equidistant from the 

l~ig. 6. 
center. 

It  will be noticed that congruence according to 1) is connected 
with the idea of trar~slation, and that according to 2) with the idea of 
ro~a~ion ~ these two ideas being necessarily involved in any adequate 
definition of congruence. 

P e r p e n d i c u l a r  lines. 

D e f i n i t i o n  22. If  the diagonals of a parallelogram are congruent, 
fine parallelogram is called a ~ectangle~ and a ~riangle which forms half 
of  a rectangle is called a right triangle. 

D e f i n i t i o n  23. Two lines ~hat intersect at a point 0 are called 
t~T~divuZar, if every segment which joins a point of one line with a 
point of the other is the diagonal of a rectangle with one vertex at O. 
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The n u m b e r  line. 

The following definitions will be useful when we come to introduce 
coordinates into our system. 

We select any fixed line 0 U as a special line to which reference 
will be made in future operations, and we call this line the number line, 
the point 0 the zero point, and the point /7 the unit point. 

It is to be understood that any line will answer the purpose of the 
number line; but when once chosen it must remain fixed during the course 
of any particular investigation. 

De f in i t i on  24. If A and B are any two points 
on the number line OU, and if X is another point on 
that line such that mid 0 X  ~ mid AB~ then X is called 
the sum of A and B, and we write X ~ A + B. lvig. 7. 

D e f i n i t i o n  25. Let A and B be any two points on 
the number line0 U, and let ~ be any convenient point not on that line. 
If  a line throughB parallel to U P  meets 0 P  in Q, and if a line through 
Q parallel to PA meets OU in ~ and if this point 
Y is independent of the particular choice of the o ~  
auxiliary point P, then Y is called the product of . . 
A and B; and we write Y - -  A >< B. In particular, w 
we write A x A ---- A ~. ~ ' ~  

Def in i t i on  26. If A and B are any two V - ~ - ~  
points on the number line 0 U, and if (according 
to a readily understood moaning) the  direction 1~ 
from A to B is the same as the direction from 
0 to U, then we say that A precedes .B, and ris. s. 
write: A < B. 

A point X on the number line is called negative or positive according 
as it precedes or follows the zero point. 

Te t r ahed ra ,  and the space. 

We now return to the Definitions 5 - -9  for the s~raight line, and 
Definitions 10--14 for the plane, and proceed to carry the analogy of 
these definitions one step fur~her~ into three dimensions. The following 
definitions 27--31 do not involve in any way the notions introduced in 
definitions 15--26. 

D e f i n i t i o n  27. If X is a point such that every sphere which con- 
rains A, B, C, and D, also contains X, then X is said to belong to the 
te;krahedron [A B C1)]. 

The tetrahedron includes the verbices A, Jg, C, .D, the edges [AJB], [AG], 
[AD], [BC], [BD],  [CD], and the faces [ABC], [ABD], [ACD], and 
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[BGD], which form its boundary. The notation (ABCD) is used as be- 
fore tm denote the interior of the class [ABGD], exclusive of the points 
on the faces. 

In order to follow the analogy explained in connection with Deft- 
nition 11, we notice that the boundary of a tetrahedron consists of 14 ele- 
ments~ namely: four ver~ices~ six edges~ and four fades. By associating 
each of these elements with its 'opposite' element~ we obtain the 14 'ex- 
tensions' of a tetrahedron, as follows. 

D e f i n i t i o n  28. 

[then X is 
If .~ is I I said ~o be- ] This class 
a uoint[ is inei- I . . [ . . . .  Its botendary consists 

- . I I lOng ~o a Ixs ca~eaone 
such [ dent with I class deno- I . .. of the points of 

~ O I  I } n e  

ted by 

. . . . . . . . .  i i ~ ! :. [. [tensionsofthe 
1 ~etrahedron 

[,4 B] 
�9 . . 

[ABe] 

[r [ i  2~ c'zr] 
I �9 

6 e•ewise ![A0 D'], [B0"D'], [ABO'], [A/~D'] 
extensions i 

of the tetra- I 
hedron 

[ rx ]  
�9 , . 

[~m oral 4 facial ex- 
[tensions of the 

totrahedron 

[AB2~'], [.aOD'], [~0D'] 

The points named as the 'boundary' of each class will themselves 
belong to that class in any system in which Pos~lalates 1- -2  are valid. 

The notations (AB'C'D'),..., (ABC'D') ,  ..., (ABCD'),  ... 
are used as before to denote the interiors of the several 
regions. 

D e f i n i t i o n  29. A sim~le set of non-overlapping regions 
is a set having properties analogous to those given in De- 
finition 12. 

D e f i n i t i o n  30. If A~ B~ C, l )  are four points not in 
Fig. ~. ~ae same plane, the s~ace ABGD is the class of all points 

which belong to the tetrahedron [ABCD] or to any of its fourteen extensions. 
Def in i t i on  31. A space ABCD is said to be divided into two 

halfslgaces by each of the planes A.BC, ABD, ACD, and BCD. (Com- 
pare Definition 14.) 
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P a r a l l e l  p l anes  and l ines .  

D e f i n i t i o n  32. A line and a plane, or two planes, are said to be 
p w r ~  if they belong to the same space and have no point in common. 

All these definitions 1--32 are expressible directly in terms of the 
fundamental variables K and R. 

Chapter II. 

The Postulates.  

In this chapter we enumerate the postulates which form the subject 
of discussion in the present article. Postulates l m 1 8  are 'general laws'; 
Postulates E l - - E 7  are 'existence postulates ~. 

All the postulates are expressible in terms of the two fundament~I 
variables K and ~ ,  by Definitions 1--32. 

Gene ra l  l aws  for s p h e r e s  and p o i n t s  (see Defs. 1--4). 

P o s t u l a t e  1. Let `4, B, C be any (abstract) spheres. If  .4 is within 
B and ~ within C~ then `4 is within C. 

P o s t u l a t e  2. If ~f is within ~, then `4 and B are distinct. 
P o s t u l a t e  3. a) If the class of spheres which contain the point `4 

is the same as the class of spheres which contain the point B, then .4 ~-B. 
b) I f  the class of points within a sphere S is the same as the class of 
points within a sphere T, then S - - T .  

Genera l  laws for  the  s t r a i g h t  l ine  (see Defs. 5--9). 

P o s t u l a t e  4. If X is a point of the segment [`4B], then [`4~] is 
the 'simple sum' of the two segments [`4X] and [~X-J. 

P o s t u l a t e  5. If  two lines have two distinct points in common, they 
coincide. 

Gene ra l  laws for  the  p lane  (see Defs. 10--14). 

P o s t u l a t e  6. If X is a point of the triangle [`4B0], then [`4~C~ 
is the 'simple sum' of the three triangles [`4BX], [`4GX], and [BCX]. 

P o s t u l a t e  7. If the segment [ X I ~  intersects the segment [AJ~, 
then the triangles [`4BX] and [`4BY] have no point in common except 
the points of [`4B]. 

P o s t u l a t e  8. If  two planes have three non-collinear points in common, 
they coincide. 

Mathematiache A~nalen. LXXIIL ,~5 
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Genera l  laws for  pa ra l l e l  l ines  (see Defs. 15--17). 

P o s t u l a t e  9. If two lines are parallel to a third line, they are 
either parallel or coincident. 

P o s t u l a t e  10. If A B  and CD are parallel lines, then no one of  
the four points A, B, C, D lies within the triangle formed by the other 
three. 

P o s t u l a t e  11. ('Four-point postulate.') Let A, B, C, D be any set 
of four points, no three of which are collinear, and A'~ :B', C', D' any 
other set of four points, no three of which are collinear; and consider 
the two sets of six lines, 

AB~ AG, AD, .BC, BD, CD aud A'B', A'C', A'D', B'C', _B'D', G'D', 
which these points determine. If the first five lines of one set, taken in 
order, are parallel to (or coincident with) the first five lines of the other 
se~, taken in the same order, then the remaining sixth line of the first 
set will be parallel to (or coincident with) the remaining sixth line of 
the other set. That is, if AB~A' .B ' ,  AC~A'C ' ,  A D ~ A ' D ' ,  BC,~B'D" 
and /~D ,~ B'D', then also CD ~ C'D'. 

This postulate was suggested by a remark of Schur's (loc. cir.) and 
takes the place of the special form of Desargues' Theorem used by ttilbert. 

General  laws for  c o n g r u e n c e  (see Defs. 18--21). 

P o s t u l a t e  12. If A.B ~ CD and C/) ---- E F ,  then A.B ~ EE .  
P o s t u l a t e  13. If the surfaces of two concentric spheres are 

by one radius in A and X, and by another radius in B and :IT, 
[ ,~Z] --  [B 17]. 

In other words, the portions of 
surfaces of two concentric spheres are 

P o s t u l a t e  14. Let A, B, C, X 
t r three are coUinear, and let .,4", B,  C, 

of which the first three are coUinear; 
segments de~ermined by these points. 

cub 
then 

two radii intercepted between the 
congruent. 
be four points of which the firs~ 
X' be another set of four points 
and consider the two sets of si.~ 
Then if 

A B  ~ A'B', AC ~ A'C', BC ~ .B'C'~ A X  -~ A'X',  and B X  ---- B 'X ' ,  
We shall always have also CX ~ C'X'. 

This postulate was suggested by Assumption 11 in Veblen's lates~ 
list (1911); loc. cir. 

Genera l  laws fo r  space (see Defs. 27--32). 

P o s t u l a t e  15. If X is a point of the tetrahedron [ABGD], then 
[ABCD] is the 'simple sum' of the four tetrahedra [ABCX], [ABDX]~ 
[AC,DX], and [BC X]. 
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P o s t u l a t e  16. If the segment [XY] intersects the ~riangle [AJBC], 
then the tetrahedra [A2~CX] and [A)3CY] have no point in common 
except the points of [ABC]. 

These postulates 15 and 16 are precisely analogous to Postulates 6 
and 7 for the plane. Instead of the exact analogue of Postulate 8, however, 
we choose the following stronger postulate, which limits the system to 
three dimensions. 

P o s t u l a t e  17. If ABCD is a space, then every point belongs to 
this space. 

The following postulate is analogous to Postulate 10. 

P o s t u l a t e  18. If a line X Y  is parallel to a plane _4BC, then no 
one of the five points A, B, C, X, Y belongs to the tetrahedron formed 
by the other four. 

E x i s t e n c e  p o s t u l a t e s  (see Defs. 1--32). 

Having thus completed the list of 'general laws', we now give the 
'existence postulates ~. 

P o s t u l a t e  E l .  There are, in the class K, at least two distinct points. 
Postulate  E2. If AB is a line, there is a point X not on that line. 
P o s t u l a t e  EB. If AB is a line, and C a point not on that line, 

then there is a point X such that CX is parallel to _4B. 

A system in which this Postulate E3 is satisfied may be called a 
system in which parallel lines may be freely drawn. In general, it is only 
in such systems that the definitions rel~Lting to congruence (Defs. 18--23) 
have any meaning. 

P o s t u l a t e  E4. If lAB] is any segment in a system in which 
parallels can be freely drawn, then on any half line 0 P there is a point 
X such that the segment [OX] =--[AB]. 

That is, any given segment can he 'laid off' on any given half-line. 
P o s t u l a t e  E5. If $1~ Ss, Ss,. . .  is an infinite sequence of spheres, 

each of which lies within the preceding one, then there 
is a point X which lies within them all. 

This is a simple modification of Dedekind's postulate 
concerning classes of points on a line. 

The following postulate is made necessary by the fact 
that we have taken the solid sphere instead of the point ~s. lo. 
as our fundamental variable. 

P o s t u l a t e  E6. If any sphere has a center, then every sphere has 
a center (see Defs. 18--20), provided, of cours% that it is no~ itself 
a point. 

85* 



Finally, to give the system three dimensions we must have: 
P os tu l a t e  ET. If A B U  is a plane, there is a~ least one point not 

in that plane. 
As we shall show in Chapter III, these Postulates I ~ 1 8  and E l s E 7 ,  

are sufficient to d e ~ m ~  comtgetely the abstract theory/of ordinary Euclidean 
thre~-dimensionaI geometry. 

To obtain a corresponding set of postulates for two dimensions, we 
have simply to onzit Postulates 15--18, and replace Postulate E7 by its 
r~egative; in this case the most natural interpretation of 'abstract sphere'. 
would be 'circlg instead of 'sphere'. 

Cons i s t ency  of the  p o s t u l a t e s .  

In order to give a rigorous proof of the consistency of these postu- 
lates, we must construct, out of pure~ numerical materials, a system (K, R) 
which will s~tisfy them all. 

To do this, let S(a, b, c, r) denote the class of all triads of real 
numbers x, y, z, which satisfy the equation 

( x - a ) ' +  + r 2, 

where a, b, c, r are real numbers, and r is not less than a certain fi,v, ed 
number g (positive or zero). 

We take as our class K the totality of all such S's, and we define, 
the relation R between any two of these S's by agreeing that 

S(a', b', c', r') R g(a", b", c', r") 

when and only when r ' ~  r" and every triad x, y, z which satisfies the 
relation 

( x -  + (y - b')' + - c')' =< r "  

satisfies also the relation 

(x--  a")2 % (y-- b")' + ( z - -c" )*~  r ''~. 

In this system (K, R), the 'points' are the elements of the form 
S(a, b, c, g); and it is not hard to show that all the postulates are satisfied 

In the language of analytic geometry, this system is simply ~he 
system of ~hores whose radii are not less than g, where, in the most familar 
case, g -  0. It is interesting to observe, however, that arty other val~: 
of g is equally legitimate, so that we may speak of a ~erfectZy rigorous. 
geom2try in whie.h the 'pointd, like the school-master's chalk-mozks on t]w 
b.lackboard, are of definite, finite size, and the 'Hne] and 'pZanes' of &fi~i~ 
finite thick/hess. 
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Chapter HI. 

Theorems. 

In this chapter we give such theorems as are necessary for the proof 
of the sufficiency of the postulates to determine a unique type of system. 
To avoid interruption in reading, the proofs of the theorems (when any 
proofs are needed) are given separately in the Appendix. ARer each 
theorem, the postulates on which the proof depends are stated in paren- 
theses. 

S p h e r e s  and poin ts .  

T h e o r e m  1. (By 1, 2.) If  a sphere A is within a sphere B, then 
B is not within A. 

T h e o r e m  2. (By 1~ 2.) If A and B are any two distinct spheres~ 
then one and only one of the following three relations will hold: 1) one 
of the spheres is within the other; or 2) they are mutually exclusive; 
or 3) they overlap. 

T h e o r e m  3. (By 1, 2.) If A is a point, and S is any sphere which 
.is not a point, then A is either within S or outside of ~q; that i% the 
case of ~overlapping ~ cannot occur. Further, if .4 and B are two distinct 
points~ they are mutually exclusive. 

The  s t r a i g h t  l ine.  

T h e o r e m  4. (By 1--3.) If the endpoints of a segment coincide, 
the segment contains no other points; that is~ [AA]  ~= A.  

T h e o r e m  5. (By 1--4.) The segment [ A ~  and its two prolon- 
gations [AB']  and [BAli form a 'simple set of non-overlapping regions ~. 
so that~the line A B  is the 'simple sum ~ of these three regions. 

T h e o r e m  6. (By 1--5.) If  X and I r are two distinct points of a 
line AB~ then the line X I7 will contain A and B, and hence bd iden- 
tical' with the line AB. 

T h e o r e m  7. (By 1--5.) If three points are on a line AB,  then 
one of them is on the segment formed by the other two. 

This theorem expresses the necessary and sufficient condition that 
three points shall be collinear. 

"From these postulates and theorems, all the 'general laws' of order 
for points on a straight line can be deduced; that is~ in so far as points 
exis~ at all on a given line, they will have the proper relations of order. 
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The plane. 

Theorem 8. (By 1--3.) If the vertices of a triangle coincide, the 
triangle contains no other points; that is [AAA] = A. 

[Theorem 9a. (By 1--6.) The triangle [ABC] and its three vertical 
extensions form a simple set of non-overlapping regions.] 

Theorem 9. (By 1--7.) The triangle [ABC] and all its six ex- 
tensions, [AB'C'], . . . ,  [ABC~, .. . ,  form a simple set of non-overlapping 
regions, so that the plane ABC is the simple sum of these seven regions. 
(Proof by considering six possible cases.) 

Theorem 10. (By 1--8.) If X, :Y, and Z are three non-collinear 
points of a plane A BU, then the plane X YZ will contain A, B, and C, 
and hence be identical with the plane ABC. 

Theorem 11. (By 1--8.) If four points are in a plane ABC, then 
either: 1) one of them belongs to the triangle formed by the other three; 

or 2) the segment joining two of them intersects the 
~ ~Af /~c  segment formed bY the remaining two. 

This theorem expresses the necessary and suf- 
~ .  1~ ficient condition that four points shall be coplanar. 

(Peano, loc. cir.) 
Theorem 12. (By 1--8.) If X and Y are two distinct points in 

a plane ABC, then every point of the.line X Y  will belong to the plane 
ABG. 

From these postulates 1--8 the following further theorems can be 
deduced, without the aid of any of the existence postulates. 

Theorem 18. (By 1--8.) In the triangle [ABC], if X is on the 
side opposite A, and Y on the side opposite B, then the 

c 
A v / ~  ~ ~  segments [AX~ and [BY] will have a common point. 

To establish this theorem 13, we consider the point X 
in relation to the triangie lAB Y], and show, by a process of 
exclusion~ that X must lie in the lateral extension ~CB YA']; 

hence, by Definition 11, the segments [AX] and [BY] must intersect. 
Theorem 14. (By 1--8.) If X and Y are .points in the interior of 

any one of the seven compartments of a~ plane ABC, then every point 
of the segment [X Y] is in the interior of the same compartment. 

Para l l e l  lines. 
Theorem 15. (By 1--9.) Through a given point, there is not more 

than one line parallel to a given line. 
This theorem shows that Postulate 9, although stated in the form 

of a ~general law', nevertheless enables us to infer the 'existence' of points 
of intersection of many lines. It might perhaps be called an existence 
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postulate in disguise. The same remark applies to several other postu- 
lates, as, for example, to Postulate I0, which gives us the following 
theorem. 

Theorem 16. 
A, B are any two 
then either [AX] 
common point. 

The following 

T h e o r e m  17. 

(By 1~1.0.) If two parallel lines are given, and if 
points of one, and X, :Y any two points of the other, 
and [BY], or else lAY] and [BX], will have a 

theorems depend upon the ~our-point postulate'. 

(By 1--11.) A segment cannot have more than one 
middle point. Hence, the diagonals of every parallelogram bisect each other. 

Theo re m 18. (By 1--11.) If midAX=midAY,  then X---- Y. 

That is, if one end of a segment is changed while the other end is 
held fast,-then the middle point will he changed. 

The proof of this theorem 18 may be made to depend on the following 
lemma. 

Lamina for Theorem 18. (By 1--11.) If a given plane contains at 
least one parallelogram A.BCD, with its middle point ~f, and at least 
one o~her point E distinct from A, B, C, 1), and M, then every segment 
in the pMne will be the diagonal of a parallelogram in the plane, and 
.hence will have a middle point; and further, throughout the plane, a 
parallel can always be drawn to any given line through any given point 
not on that line. 

All the preceding theorems have been obtained from Postulates 1--11, 
without the use of any of the existence postulates. If now we add Postu- 
lates E l - - E 3 ,  we have the following theorems concerning 
existences. 

Theorem 19. (By l m l l ,  E l - -E3 . )  If a point P is in 
the interior of a triangle [ABC], then the line A P  intersects ~g. 18. 
the opposite side (.BC). 

This Theorem 197 together with Theorem 13, were used as postulates 
by Peano. 

Theorem 20. (By 1--11, E l - -E3 . )  If [ABC] is a triangle, and 
li: is on (BC), and D on the prolongation (BA'), then the 
line D ~  will meet the side (A C) in a point F. . A  c 

This is the Ctriangle transverse axiom' in the form 
used by Veblen. 

Theorem 21. (By 1--11, E l - - E 3 . )  If [AB] is a 
segment, there are points on the prolongations (,4 B') and (BA'). ~.  1~. 

Theorem 22. (By 1--11, E l - -E3 . )  The following construebions are 
always possible: 
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1) to draw a line parallel to a given line through any point not on 
that line; 

2) to bisect a given segment; 
3) to extend a given segment to double it~ len~h. 

C o n g r u e n c e ,  and  p e r p e n d i c u l a r i t y .  

T h e o r e m  23. (By 1--12.) The relation of congruence is reflexive, 
symmetrical, and transitive. 

T h e o r e m  24. (By 1--12.) i f  Z is on [OA], and [0X]  ~ [OA], 
then X ~= A. 

That is, on a given half-line OA~ not more than one segment [OX] 
can be laid off congruent to a given segment. 

T h e o r e m  25. (By 1--13.) I f  A, B~ C are coil;near, and if A', 13", 0" 
are co]linear and in the same order as A, B, C~ then whenever AB-~A'-B' 
and AC~A'C'~ we shall always have BC-~B'C'. 

Briefly stated, this theorem tells us that the sums of congruent 
segments are congruent. 

T h e o r e m  26. (By lm14.)  Let two given lines meet in O. If any 
segment [XY] ,  joining a point of one of the lines with a point of the 
other, is the diagonal of a rectangle having one vertex at 0, then every 
such segment will have the same proper~y, and the lines will be per- 
pendicular. 

T h e o r e m  27. (By 1--14.) If two lines in the same plane are per- 
pendicular to the same line, then they are either parallel or coincident. 
Also, if, in any plane~ a line is perpendicular to one of two parallel lines, 
it will be perpendicular m the other also. 

T h e o r e m  28. (By 1--14.) If X is in a line perpendicular to [AB] 
at its middle point M, then X is equidistant from A and -B. 

T h e o r e m  29. (By 1--14.) If X is equidistant from A and -B, and 
M ~ mid A.B, then XM is perpendicular to AB. 

These two theorems give us the important properties of the isosceles 
triangle. 

T h e o r e m  30. (By ~1--14.) If  through the vertices of a ~ria~gle 
lines are drawn perpendicular to the opposite sides~ these throe lines will 
have a common point. (Or~hocen~r.) 

T h e o r e m  3i. (By 1--14.) If  the surfaces of two 
concentric spheres are cut by one radius in A and X, 
and by another radius in -B and Y, then the cross seg- 
ments, IX 1~ and [-BX], will be congruent~ and the chords 

~ig. I~. [A~]  and [XY] will be parallel 
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By the aid of the first four existence postulates~ we have also the 
following theorem. 

T h e o r e m  32. (By 1--14, E l - - E 4 . )  The following constructions 
are always possible: 

1) to draw a sphere with any given point 0 as center, and any given 
segment [021] as radius; 

~) to find the point of intersection of the surface of a sphere with 
any line through its center; 

3) to qay off' ;on any given half-line a segment congruent to any 
given segment; 

4) to draw a perpendicular to any given line through any given point. 

The n u m b e r  line. 

T h e o r e m  33. (By 1--5.) Let, A, B, C be any points on the number 
line (see Def. 26). Then we have: 

I) If A and B are distinct, then either A < ~ or B < A. 
2) If • < B, then 21 and B are distinct. 
~3) If~i< ~ and B < C, then X < 0. 

The poimim on the number line therefore form a series*), or ordered class, 
with re~pect to the relation < .  

Theo rem 34. (By 1--11.) Let A, .B~ C be any points on the number 
line. Then, in so far as the sums in question exist (see Def. 24), we 
shall have the following laws of addition**): 

1) (.4 + B) + 0 = A + (B + C). (Associative law.) 
2) A + B == B + A. (Commutative law.) 
3) if 21+ X== A + Y, then X=~ Y. 
4) If  X is not  zero, the .  i t  + 21 + . .  �9 + a is not  zero. 

We shall also have the following law connecting + and < :  
5) If X <  I7~ then 2 1 + X < 2 1 +  1 r. 
Theo rem 35. (By 1--11.) The product of two points on the number' 

line is independent of the position of the auxiliary point used in the 
construction (see Def. 25). 

Theorem 36. (By I--ii.) Let A, B, 0 be any points on the number 

*) G. Yailati, Sui prlneipt fondamentall della Geometria della tetra, Rivista di 
Matematica, 2 (1892), p.'71--75; E. V. Huntington, The Continuum as a Type of Order, 
reprinted from the Annals of Mathematics, 1905 (Publication Office of Harvard 
Univarsity). 

**) E. Y. Huntington, The Fundamental Laws of Addition and Multiplication in 
Elementary Algebra, reprinted from the Annals of Ma~emstics, 1906 (Publication 
Offiee of Harvard University). Also, The Fundamental Propositions of Algebra, in the 
volume of Mathematical Monographs edited by J. W. A. Young, p. 150--207, 1911. 
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line, and let it be possible to draw parallel lines at pleasure (so that 
products of such points can always be obtained). Then we have the following 
laws of multiplication*): 

1) ( A •  • C---- A • ( B •  0). (Associative law.) 
2) A •  A x C ,  and 
3) ( B +  C) x A ----- B x  A + C x  A. (Distributive laws.) 
4) If A x X ~ A •  or X• Y x A ,  and A not zero, then 

X = Y .  

Also we have the following law connecting • and < :  

5) If X < 1 r and A positive, then A x X < A • Y and X x A < 17• A. 

T h e o r e m  37. (By 1 - -14 . ) . I f  A and B are points on the number 
line, as in Theorem 36, we have the commutative law for multiplication: 

A • 2 1 5  

Of these theorems, 33--37, the first four are obtained by the aid 
of Postulates 1--11; for the last, however, we assume also the postulates 
of congruence. 

By availing ourselves of the first three existence postulates, which 
give us the existence of a plane in which parallel lines can be drawn at 
pleasure, we obtain also the following theorems. 

T h e o r e m  38. (By 1--11, E1--E3.)  If A and ~B are any two points 
of  the number line, then 

1) their sum A + B~ and 
2) their product A x B~ will exist, and be uniquely determined by 

_4 and B. Further, there exists 
3) the zero point 0 for which 0 + 0 =,. 0, and 
4) the u~it point U for which U • U ~ / 7 .  Also, 
5) for every point A, there is an opposite point X, such that 

_ 4 + X ~ 0 ,  and 
6) for every point A which is different from zero, there is a re~- 

proca/ point ~ such that A x Y ~  U. 
If, finally, we add the postulate of continuity, we have: 

T h e o r e m  39. (By 1--14, E l s E 5 . )  The points on the number line 
form a 'system of real numbers', with respect to the opera~ions + and x ,  
and the relation <.**) 

*) See preceding foognote. 
**) For a set of independent posh~la~es for real numbers, see E. V. Hunting~on, 

A Set of Postulates for ordinary Complex Algebra, Trans. Am. Math. Soc. 6 (1905), 
p. 209--229, especially p. 219--~20. 
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Coordinates in the plane. 

In view of the foregoing theorems, it is easy to see how we may 
introduce coordinates in the plane. 

Take two intersecting lines as axes, with origin at O, and on each 
of these axes reproduce the 'number line' by laying off segments according 
to Theorem 32, 3. Then by drawing parallels to the axes, we see that to 
every point in the plane, there correspond two points~ one on each axis; 
and to every pair of pofnts on the axes, there corresponds one point in 
the plane. 

As far as plane geometry is concerned, therefore, it remains only to 
prove that the equation of a circle (that is, the class of points which are 
common to the surface of a sphere and a plane) has the usual form, 
when the axes are rectangular. This is at once evident from the following 
form of the Pythagorean Theorem: 

T h e o r e m  40. (By 1--14,  E l - - E 4 . )  I f  the sides and hypotenuse 
of a right trim~gle are ~laid off' along the positive half of the 'number 
line', the sum of the squares of the points representing the two sides 
will be eqv~l, to the square of the point representing the hypotenuse. 

For the ease of plane geometry, in which all the points in the system 
are confined to a single plane, the theorem of isomorphism mentioned in 
the Introduction is then readily estsblished. 

The  Space.  
The following theorems for space are analogous to Theorems 8--12 

for the plane. 
T h e o r e m  41. (By 1--3.) If the vertices of a tetrahedron coincide, 

the tetrahedron contains no other points; that is, [~AAA]----A. 
[ T h e o r e m  42a. (By 1--8, 15.) The tetrahedron [ABCD] and its 

four verticaZ extensions form a 'simple set'.] 
T h e o r e m  42. (By 1--8 ,  15--16.) The tetrahedron [ABCD] and 

all its fourteen extensions form a simple set of non-overlapping regions, 
so that the space ABCD is the simple sum of these fifteen regions. 

(Proof by considering thirteen possible cases.) 
T h e o r e m  43. (By l w 8 ,  15--17.) If X, Y, Z, W are four non- 

ooplanar points of a space ABCD, then the space XYZW" will be iden- 
tical with the space .4BCD. 

T h e o r e m  44. (By 1--8,  15--17). If five points 
are in a space ABCZ), either: 1) one of them belongs 
to the tetrahedron formed by the other four; or 2) the 
segment joining two of them intersects the triangle 
formed by the remaining three. Fig. 16. 
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This theorem expresses the necessary and sufficient condition that 
five points shall be cospacial. 

Theorem 45. (By 1--8, 15--17.) If X and Y are two distinc~ 
points in a space ABCD, then every point of the line X I r belongs to 
that space; and if X, :~, Z are three noa-collinear points in a space ABCD, 
then every point in ~he plane X Y-Z will belong to that space. 

These theorems have been stated at length, because they still remain 
valid if we replace Postulate 17 by the weaker pbstulate exactly analogous 
to Postulate 8, as we should do if we wished to extend the theory to 
the geomehT of more than three dimensions. 

By the aid of Postulate 18 we obtain the following theorem: 

The o r e m 46. (By 1--11, 15---18, E l w E 3 . )  If two planes have a 
point in common, then they have another point, and hence a line, in 
common. 

From this point on~ the usual theorems concerning lines and planes 
in space can be obtained by the usual methods of proof, and the intro- 
duction of coordinates in space presents no further difficulty. Further, 
if the coordinate axes are rectangular, the equation of a spherical surface 
is obtained in the usual way (by the aid of Theorem 40)~ and finally~ by 
Postulate E6, we can assign a definite spherical surface to every sphere, 
and a definite sphere to every spherical surface. Hence: 

Theorem 47. (By 1--18, E l - - E 7 . )  If two systems (K, R) satisfy 
all the postulates of Chapter II, they will be isomorphic with respect ~o 
the variables K and R~ in the sense explained in the introduction. 

The proof consists simply in showing that every system (K, R) which 
satisfies all the postulates is isomorphic with the special numerical system 
exhibited at the end of Chapter II. 

With the proof of this theorem, the main part of our work is com- 
pleted. It remains to consider the independence of the postulates, as is 
done in the following chapter. 

Chapter  IV. 

I n d e p e n d e n c e  o f  t h e  p o s t u l a t e s .  

In this chapter we exhibit a list of 'pseudo-geometries' which establish 
the independence of the postulates of Chapter II to the following extent: 
1) the 'general laws ~, Postulates 1.--18, are independent of each other, as 
shown by examples 1--18; and 2) the 'existence postulates', Postulates E1--ET~ 
are independent of each other and of the general laws~ as shown, by 
examples E 1--E 7. 
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Each of these pseudo-geometries is a system (K, R) in which the 
variables K and R have such values that all but one of the postulates in 
question are satisfied, while the remaining one is not satisfied. 

E x a m p l e  1. Leg K be a class consisting of three persons, a man 
A, his father B, and his grandfather G; and let R be the relation 'son 
of'. Then A R B  and B R C  are true, while A R C  is false, so that 
Postulate 1 is not satisiled. In this system, since there is only one 'point ~ 
(see Def. 4)~ namely A~ all the other general laws, 2--18,  are satisfied 
'vacuouslyJ; that is, the conditions under which these postulates become 
effective do not occur. 

E x a m p l e  2. Let K be a class of any number of ordinary spheres, 
and let ~A R B' mean: 'A within or equal to B'.  Here Postulate 2 fails, 
while Postulate 1 holds. Postulates 3--18 are satisfied vacuously, since 
there are no Cpoints' in the system. 

E x a m p l e  3a. Let K be a class of three ordinary spheres, A, B, 
and S, of which A and B are separate~ but both included within S; and 
let R be the ordinary relation of inclusion. Here all the general laws 
1--18~ are ss~t~sfied~ except Poshllate 3a. 

E x a m p l e  3b. Let K be a class including all ordinary spheres, which 
we shall mark red, together with a duplicate set of spheres, in the same 
space, which we shall mark blue. Let R be the usual relation of inclusion, 
except in the case of two spheres which occupy the same position; in 
this case, we agree that the red sphere shall always be ~within' the blue. 

This system satisfies all the general laws 1--18 except 3b. Inciden- 
tally, it also satisfies all the existence postulates E l s E 7 .  

E x a m p l e  4. Let K be a class consisting of nine numbers: A,B,X, Y; 
.AX, A Y, BX, .BY; A B X  Y; where A, B, X, Y are any (distinct) primes, 
A X ~  the product of A and X, AY----- the product of A and Y, etc.; 
let R be the relation 'factor of'. For example: A R A X; A X  R A.BX Y; etc. 

In this system there are four 'points', namely, the prime numbers 
A, .B, X, Y. The 'segments' [AB], [AXJ, etc. are 'classes of points' defined 
according to Definition 5; ~hus, [AB] ~ A, B, X~ .Y; [AX] ~. A.~ X; etc. 
Postulate 4 fails, since the segment [A.B] contains X and Y, while the 
segment [XY] contains A and /3. A_II the other general laws are satis- 
fied (most of them vacuously). 

E x a m p l e  5. Let K be a class of eleven numbers: A~ B, X, Y; AB, 
.,'IX, .BY, X:Y; A.BX, ABY; A B X  Y; where A, B, X, Y are primes 
A.B~ Ax .B,  etc., as in Example 4; and let R be the relation 'factor 
of', as before. 

Here [AY] includes B, and [BX] includes A, while all the other 
segments are 0aollow'. Postulate 5 fails, since the 'line AB' (Def. 8) in- 
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dudes the points A, B, X, and Y, while the 'line X Y' includes only X 
and 17. 

Example  6. Let K be a class of 18 numbers: A, B, C, X~ Y; A Y, 
BY, CY, A8, AC, BC; ABX, ACX, BCX; ABXY, ACXY, BCXY; 
ABCXY; and let R = 'factor of'. (Same notation as in Example 4.) 

Here every segment is 'hollow', so that no three points are collinear. 
The triangle [ABC] (Def. 10) contains X and Y, and each of the triangles 
[ABY], lACY], and [ 8 C I  r] contains X. All the other triangles contain 
no points other than their vertices. Postulate 6 fails, since X and Y be- 
long to [ABC], but 1 r does not belong to any of the triangles [ABX], 
[ACX], [BC~X]. Since there is no plane which has all the properties 6, 
7, 8, the definition of parallel lines is without meaning in this system, 
and the postulates concerning parallel lines are inoperative. 

Example  7. Let K be a class of 19 numbers: A, 8, C,P, Q, X; 
A.BP, A CQ, APX, A Q X, 8 CP, 8CQ, B Q X, C I:'X; ABCP Q, ABP Q X, 
AGPQX~ BC_PQX; ABC.PQX; and let R = 'factor of'. (Same notation 
as in Example 4.) 

Here [AB] and [CX] contain P,  and [AC] and [BX] contain Q. 
All other segments are hollow. Postulate 7 fails, since [AB] and [CX] 
intersect in P, while [ABC] and [ABX] contain the common point Q 
which does not belong to their common boundary [.~8]. 

Example  8. Let K be a class comprising the following numbers: 
1) six primes: A, 8, C, X, Y, Z; 
2) every number which is the product of two of these primes, as 

AB, AC, etc.; 
3) every number which is the product of three of these primes, ex- 

cept ABZ, ACY, and 8CX; 
4) the following products of four primes: ABCX, A.BCY, ABGZ, 

ABXY, ACXZ, AXYZ, BCYZ, BXYZ, CXYZ; 
5) the following products of five primes: ABCXY, ABCXZ, 

ABGYZ; and 
6) the number ABCXYZ; 

and let ~ be the relation 'factor of', as in Example 4. 
In this system every segment is hollow. The triangle [SCX] con- 

.~ns A; lACY] contains B; [ABZ] contains C; all the other triangles 
contain no points except their vertices. Postulate 8 fails, since the 'plane 
.4PC' comains all the points +4, 8, C, X, :Y, Z, while the 'plane XYZ'  
contains only X, Y, and Z. 

Example  9. Let K be the class of all ordinary circles (including 
the null circles) whose centers lie within a given convex closed curve in 
an ordinary plane; and let R be the ordinary relation of inclusion. 
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In this system the 'abstract points' are the ordinary points of the 
plane and Postulates 1--8 are clearly satisfied. Postulate 9 fails. 

Example  10. Let K be a class of eleven numbers: .,4., B, C, D; 
BC, B.D, CD; ABC, A.B.D, ACD; A.BCD; where the notation has the 
same meaning as in Example 4; and let R be the relation 'factor of'. 

Here all the segments are hollow, and all the triangles are hollow 
except [BC.D], which contains A. According to the definition of parallel 
lines, we have AB II CD and BC II AD; but Postulate 10 fails, since A 
belongs to the triangle [BCD]. All the other general laws are satisfied. 

E x a m p l e  11. To construct the example for Postulate 11, consider 
first an ordinary plane, with all its circles, points, and lines, and suppose 
the interior of a par~ of this plane - -  say a square 
A . B C D -  is stretched or deformed in such a 
way that all the points within the square are 
crowded towards one corner O, without altering 
their relations of order, or causing any break in 
continuity. In this deformed plane, by a circle 
or line we mean, of course, a figure which was 
a true circle or line before the deformation. 

~"Ig. 17. 

Secondly, consider another plane, containing a square APOQ without 
any deformation, and place the two planes so that they intersect along 
the line A C. 

Then as our class K we take all the circles that lie in these two 
planes, and as our relation R, the ordinary relation of inclusion. 

In this system, Postulates 1--10 are clearly satisfied, but not Postu- 
late 11. To see that Postulate 11 is not true, let P Q  meet AC in M, 
while the deformed line .BD meets A C in a different point ~ ;  then B, 
/~, D, Q cannot be coplanar; but if Postulate 11 were true, we should 
have a right to infer, from a consideration of the 'four-points' A~B.I > 
and CADQ, that B.P II DQ. All the other general laws, 12--18,  are 
satisfied (many of them vacuously). 

Example  12. Let K be the class of all ellipses (including the null 
ellipses) whose centers lie in a plane; and let R be the usual relation of  
inclusion. 

To see that Postulate 12 fails in this system, consider two concentric 
ellipses that intersect at four real points, and let a line through the 
center 0 cut one of the ellipses in A and the other in B. Then [OA] 
and [OB] are both congruent to the common radii of the ellipses, but 
are not congruent to each other. 

E z a m p l e  13. Consider a system of concentric ellipses, no two of  
which intersect, such that through every point of the plane one ellipse 
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will pass; and suppose that the ellipses are not all similar. Let K be the 
class of all ellipses (including the null ellipses) whose centers lie in a 
given plane, provided each of the ellipses can be obtained from one of 
the ellipses of ~he system just considered by a motion of translation. 
Let R be the usual relation of inclusiom 

Here Postulate 13 is no~ satisfied. All the other general laws a r e  

satisfied. 

Example  14. Let K be the class of all ellipses (including the null 
ellipses) whose centers lie in a plane, and which are obtainable by a 
motion of tTranslation from a given system of concentric, sim~Tar and 
similarly placed ellipses. 

Here Postulate 13 is satisfied, but not Postulate 14. 

Example  15. Let K he a class comprising the following numbers 
(where the single letters denote primes, as in Example 4): 

1) six primes: .4, 13, C, D, X, Y; 
2) every produc~ of two of these primes, as AB~ AC, etc.; 
3) every product of three of these primes, as ABC, ABD, etc.; 
4) every product of four of these primes, except ABCD, ABC~ 

ABD~ ACDY and BODY; 
5) the following products of five primes: A_BCXY, ABDX~ ACDXY, 

BCDXY; 
6) the number ABGDXY; 

and let R be the relation 'factor off. 
Here no segmen~ contains more than i~s end-points, and no triangle 

contains more than its vertices. The tetrahedron [ABCD] co~atains .X 
and Y; and each of the ~etrahedra [ABCY], [ABDY], [AGDY]~ and 
[BCDY] contains X. Postulates.4~14 are satisfied vacuously; Postra- 
late 15 fails. 

Example  16. Le~ K be a class comprising the following numbers 
(for the notation, compare Example 4): 

1) seven prijnes: A, B, Q I), X, L Z; 
2) every product of two of these primes, except X Y; 
3) every product of three of ~hese primes~ excelot ABQ AX Y, BX 

CX Y and X lzZ; 
4) every product of four of these primes, e~c~t the following: ABGXs 

ABCY, ABGZ, ABDX, ABXY,  ACDY, ACXY, AXYZ, 
BCX~  BXYZ, and CXYZ; 

5) the following products of five primes: ABCDZ, ABDXZp A.BDYZ, 
ACDXZ, AGDYZ, ADXYZ,  BCDXY~ ~GDXZ~ BC.DYZ~ 
BD X YZ, CD X YZ; 
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6) the following products of six primes: ABCDXZ, ABCDYZ, 
ABDXYZ, AGDXYZ, BGDXYZ; 

7) the number]~ABCJD X YZ; 
and let R be the relation 'factor of'. 

Here all segments are hollow except [X Y], which contains D, and 
all triangles are hollow, except [ABC], which contains D. All the ~eta~- 
hedra are hollow, except [ABDX], [ABCX], [ABXlr], [ACDY], 
[ABCI z] and [ACXY], each of which contains Z. Postulate 16 fails, 
since Z lies on both sides of the plane ABC. 

E x a m p l e  17. Let. K be a class containing the five prime numbers 
A, /~, G, D, E, and every number which is the product of two, three, four, 
or five of these primes; and let 1~ be the relation 'factor of'. 

Here no segment contains more than its end-point~, and no ~riaagls 
or tetrahedron contains more than its vertices. Postulate 17 fails, since 
the point /~ does not belong to the 'space ABOD'. 

E x a m p l e  18. Let K be the same class as in Example 17, omitting 
the number ABCD; and let R be the relation 'factor of'. 

Here ~he q_ine AJE' is 'parallel' to the 'plane BCD'; but E is within 
the btrahedron [A.BCD], so that Postulate 18 clearly fails. 

By tJaese examples 1--18 we have thus proved the independence of 
all t~he 'general laws'. We now give a similar set of examples for the 
'existence poshllates'. 

E x a m p l e  E l .  Let K be a class consisting of a single sphere. 
E x a m p l e  E2. Let K be the class of all spheres (including null 

spheres) whose centers lie along a given straight line; and let R =~ in- 
clusion. 

E x a m p l e  E3. Let K be a class including the following numbers 
(compare, for notation, example 4): 

A; B; C; D; AB, etc.; ABC, etc., including all the combinations of 
the letters; and let R-~ 'factor of'. 

This system contains only four points, which are situated at the ver- 
tices of a tetrahedron. 

E x a m p l e  E4. Let K be the class of all egg-shaped convex solids 
(including the null solids, or points); and let R be khe usual relation of 
inclusion. 

In this system no 'sphere' has a center in the sense of the defmitionj 
so that the idea of congruence between segments that have a common 
end point has no meaning, and the general laws concerning congruence 
are inoperative. 

E x a m p l e  E5. Let K be the class of all spheres (including null 
spheres) such that their radii and the coordinates of their centers can be 

Ma~hemat~ehe AJ~naIen. L:r..XI]:I, 36  
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expressed in t~rms of 1 by a finite number of applications of the four 
algebraic operations of addition, subh'action, multiplication, division, and 

Eae fii~h operation ]/1 ~-x ~, where x is any number already obtained by 
means of these five operations. (Hilbert.) 

Example  E6. Let K be the class of all spheres in space (including 
null spheres), together with a number of detached spheres to which the 
relation R (inclusion) does not apply. 

These detached spheres will then have no centers, so that Pos~late E 6 
is not satisfied. 

Example  E7. Let K be 
spheres) whose centers lie in a 
lation of inclusion. 

Here Postulates 1~18 are 
E l s E 6 ;  but E7 is not. 

The proofs of independence 

the class of all spheres (including null 
given plane; and let R be the usual re- 

all satisfied (15--18 vacuously), and also 

are thus compleX. 

2 k p p e n d i x .  

In this appendix we give the demonstrations of such of the theorems 
in Chapter III as are likely to present any difficulty to fine reader. 

P r o o f  of  Theo rem  17. (/k segment cannot have more than one 
mid-point.) 

Let A X B Y  and A.PBQ, be two parallelograms on the same diagonal 
[AB], and let [AB] be met by IX Y] in 21~ and by [PQ] in N. 

l~lg, 18. 

l~g, 19. 

By considering the 'four-points' A B P X  and ~ A Q  Y 
(unless X is on the line A_P), we tind / ~ X ~  Q I  r, by 
Postulate 11. Then by considering A Q N I  r and B P N X  
(unless Y is on the line Q2f), we find N I r ~  ~ X .  Hence 
N is on the line X :F, and hence ~r ~ M. 

In the special case when X is on the line A,P, consider 
~P_ArX and A Q N Y .  In the other special case, when Y 
on the line Q~r, consider A B P X  and BAQ,:Y. 

P r o o f  of L e m m a  for  Theorem 18. We divide 
the proof of this lemma into two steps. 

1) Through any point P in the plane, not coincident 
with B or D, and not on the diagonal A C, a line can be 
drawn parallel to AC. (Steiner.) 

Proof.  Let P A  meet BC in Q, let MQ meet ~PC 
in B and AD in S, and le~ CQ meet A/~ in X. Then, by 
Postulat~ 11, from M B A  Q ~ .MD C S, we find A Q~ ,-~ C S~ 
and hence from t=IQ_PX ~ R S C A  we have P X  II .AC. 
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But ff MQ I! .PC, the proof requires modi~eation, thus: Let AD 
meet ~oU in T and MQ in U, and let TMmeet  OQin 1 r. Then from 
MDTU,.., MB:YA we find T U ~  :YA, and from MTUC,'.. M Y Q A  we 
fred UC,'.~ QA; hence, from T U C M  ''~ TAP:Y, we have ~YII  UM, thut 
is, .PY{{ CA. 

If -PA does not meet/~U, then -PC will meet BA, and we have 
merely to interchange U and A in We proof. 

2) To any given line in the plane of the parallelogram, a parallel 
can be drawn through any given point -P not on that hue. 

Proof. Let the given line meet the diagonals AC and BD in E 
and .F, respectively. Through l~ and/~, by 1), draw parallels to B / )  and 
A C, meeting in G. Then M_EG.F will be a parallelogram with the given 
line EiF as one of its diagonals. Then through P draw a line parallel 
to ~ iv  hy 1). 

The demonstration of this lamina would of course he much simpler 
if we chose to avail ourselves of the exis~nce postulates E l - - E 3 .  

Proof  of Theorem 26. Let OAP.B be a rectangle, X any point 
o n  OA, and 17 any point on OB. The conditions of Lamina 18 are clearly 
satisfied. First, let Y ~ / ~ .  Through X draw a parallel to 
OB~ meeting B ~  in Q. Then O X Q B  is a parallelogram. By 
applying Postulate 14 to 0, A, X, B and B, P, Q, 0, we s 
X B ~  QO. Therefore OXQ.B is a rectangle. Secondly, if Y 
is any point on line OB, treat Y in relation to OBQX just 

Fig. $0. 
as X was treated in relation to OAPB. 

Proof  of Theorem 30. Through the vertices of ~ e  given triangle, 
draw lines parallel to the opposite sides, which is clearly possible by the 
Lemma to Thee.rein 18. The altitudes of the given triangle are then the 
perpendicular bisectors of the sides of the new triangle, and therefore 
meet in a point, by Theorems 28 and 29. 

Proof  of Theorem 32. Par~ 3) is simply Postulate E4, and parts 1) 
and 2) are immediate implications therefrom. For part 
4), we may use the following construction, given by 1~ 
Hilbert (lee. cir.). Le~ A, B, C be points on the given 
line, such that A.B ----- AC, and let P be the given point, 
outside that line. On any lines through A in the plane 
ABP,  lay off AD and A.E, congruent to A.B. Then 

Fig. ~1. 
BDC and BEG will be right triangles. Let BD meet 
U ~  in /~, and let B E  meet CD in H. Then F H  will be perpendicular 
to AB,  by Theorem 30 (on the intersection of the three altitudes of a 
triangle). Then through -P draw a line parallel to F H ,  which will be 
the required perpendicular. 

36* 
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P r o o f  of  Theorem 34,1. (Associative law of addition.) Let A + B ~  X, 
B + U- -  Y. By definition, there are two points, P and _~ such that 

Fig. 22. 

POBX and PARB are parallelograms; also 
P and S such that POSY and PBSC a~re 
parallelograms. Take T so that P A T Y  is a 
parallelogram. We are to prove that P X T C  
is a parallelogram. Now we can show that 
xRS and /~T are both li to the given line, so 
that ~ ,  S, T are eollinear. Then from 

R X B S ~  YSTX, 
we find BSIITX , and from ASCT,.~SAI~O we find CTll BO. Hence, 
r x  II c P  ~ d  ~ r  I[ P x .  

Proo f  of Theorem 35. (The product of two points is independent 
of the auxiliary point P.) We have A and B on the 
number line OU, and two points P and P', not on 
that line. By Def. 25, take Q on 0 P a n d  Y o n  0D r 
so that BQ[] U P  and QYI[ PA. Also take Q' on 
OP', so that BQ' !t UP'; then, to prove Q'Ytt P'A, 
apply the four-point postulate to O U P P '  0 QQ, 

Fig. as. and to BQQ'Y~  UPP'A. 
P r o o f  of  Theorem 36, 1. (Associative law of multiplication.) By 

Def. 25, we have A, B, G, X, Y, Z on the number line 0U,  where 

~w 
Fig. 2~ 

X , ~ A x B ,  Y = B x C  and Z ~ X x C ;  
and i~ Q, ~, S on another line through 0. 
We are to prove Z = A x I7. That is, we have 

u r  II BQ Ii c ~  tt r s ,  ~ A  II QX, 
P ~  l! ~ ,  P x  l[ x z ;  

and we are to prove PAII SZ. This follows 
by Postulate 11 from 

BPQX ~ YBSZ. 
P r o o f  of  Theorem 36, 2. (First distributive law for mul~iplieation: 

A x (B+ C) ~ A x B + A x C.) We readily establish first the following 

I~ig- $5. 

laminas: (1) If M ~ mid OA and 
N ~ m i d  OB~ then .~_~rll AB;  and 
(~) If ABI]XY and M--- midAX 
end 3?'== mid ~ then 

~ l v  IJ a B  II x r .  
In the figure for the theorem, on 
the line O U we have A, B, C, X, Y, 
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21, Z, .D, .E, where X ~ A ><.B, :Y~- A x C, ~q~, B + C,, Z - .  X + ~ .  
D = mid BC = mid OS, .E = mid X Y  = mid OZ; and on the line O P  
we have Q, R ~ and H where U P  II BQ f[ CR, P A  II q x  II l~ r,  Fffi mid Ql~, 
and / / i s  such that F ~ mid 0 / / .  Then by lemma 2, D F  It BQ It UP, 
and F E  [[ QX H 2~ and hence, by lemma 1, S/ /II /)~ '11 /TP, and 
H Z  [i E E  1[ P A .  Therefore 2 ~ A x Lq. 

P r o o f  of T h e o r e m  36~ 3. (Second distributive law for multipli- 
cation: ( B § 2 1 5 2 1 5  C •  We have on the line 0/7, the 
points 4, .B, C, X, :Y, S, Z, where 
X = B •  Y f f i C •  ,_q.=B+C, 
Z ~ X +  I r, and on another line 
through O, the points P and Q, so 
that  UPIIAQ, P.Bi[ Q X , / ' e l l  OIr. 
We are to prove PS II OZ. Since 
S ~ ~ + C, there is an ~ such that  
i~ C2~, PC[] J~/~, O P  [} ~ 8 ;  and 
since Z - - X  + :Y, there is a T such 

Fig. H. 

that  QXt] Y T  , Q YII XT ,  OQI ! TZ .  Then from BCP.R,..~ XYQT,  we have 
.P.R [] QT; from C T O R  ,'., :YQOT we have OR l[ OT; and from 

O ~ _ P S ~  OTQZ 
we h a v e P S t [ Q Z .  That is, Z ~ - S x A .  

P r o o f  of  T h e o r e m  37. (Commutative law of multiplication.) By 
Th. 35, we may take the auxiliary point 19 so that 0PA_ OU. (It is 
not necessary that 0 P  ~ OU.) We have on the 
line OU the points .4, I1, and X ~ A x 13; and 
on the line O P  we have Q and ~ such that 
v P  II ~ Q  II A n  and P ~  it QX. We are to prove 
that  X ----- .B x .A, that is, that P/~ [[/~X. Fol- 
lowing the method of Sehur Ooc. cir.), draw 
through A a line perpendicular to P/~, meeting 
the line OP in S. Then in the  triangle .PAS, 
.P.BA_ S A ,  and A B . L  P S ;  hence, by Th. 30, 
SB_I_ PA. But P A  [[ QX. Therefore SB.2. QX. 
In triangle S X Q ,  we have S.B.L QX and 
X.B_LQS'~ hence QB_I_SX. But  QBll~iOlli~a. 
Therefore/~A _1. SX.  In triangle R X S ,  we have 
R A _ L S X a n d  XA_I_RS; hence SA. .L.RX.  But BA is also _L to P B .  
Therefore /~X and P B  must be parallel, by Th. 27. 

P r o o f  of  T h e o r e m  40. (Pythagorean Theorem.) Let OAP.B be a 
rectaixgle, with mid-point at C. On the line OA take [ O X ] -  lOP]  and 
on the line 0/~ take [ 0 Y ] ~ - ~ [ 0 P ] .  On 0 P  take [O.E]-----[OA] and 

Q 
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[0~"] ~ [OBJ. Through A draw a parallel to XE, meeting 0 P  in S; 
and through B draw a parallel to YF meeting 0 P  in T. By Th. 31, 
.EAIIPX and F B I I P Y  , so that if 0 P  is the number line, 0S  is the 

square of 0 E  and OT is the square of O/~, 
while the square of OP is 0P .  We wish to 
prove that 0 P  is the sum of OS and OT, 
that is, that C, which is the mid-point of 0 P, 
is also the mid-point of TS. 

By Th. 31, XE-~AP~ so that the triangles 
OAP and OEX are congruent (in the sense 
that the three sides of one are congruent 
respectively to the three sides of the other). 
B u t P A  II OA; therefore XEA_ OF~. Similarly, 
YF-----BP, so that the triangles OBP and 

OFY are congruent; therefore YF_J_. OF. Then by Th. 27, XE  II YF; 
that is, BT[I AS.  Therefore, since C =  mid A.B, ASBT is a parallelogram, 
and C ~ mid TS. 

The extension to the case of any unit other than 0 P  is effecbed 
immediately by simple algebra. 

P r o o f  of  T h e o r e m  46. (If two planes have a point in common, 
then they have a line in common.) Let the two planes be ABC and 
C.DX, and consider the point X, which must lie in one of the fifteen 
regions of the space ABGD. 

I f  X is in [A.BCD], then DX meets ABC, by Postulate 18. 

I f  X is in [AB'C'D'], A is in [BCDX], and BA meets CDX. 
If X is in [BA'C'D']~ .B is in [ACDX], and AB meets CDX. 
If X is in [DA'B'C,'], D is in [ABCX], and DX meets ABC. 
If  X is in [A.BC'D'], then A.B meets CDX, by Def. 28. 

I f  X is in [ABCD'], then DX meets ABC, by Def. 28. 

If  X 

X f X  

I f X  

I f X  

is in [A CP'D'], A C meets B D  X in E, and /~E meets D X (Th. 13). 

is in [BCA'D'], BC meets ADX in F, and A F  meets DX. 
is in [GDA'B~, CD meets A B X  in G, and XG meets AB. 
is in [ABDC'], CX meets ABD in H~ and DHmee t s  AB. 

If X is in [CA'B'D'], then C is in [ABDX], CX meets ABD in J;, 

by Post. 18, and DJ meets AB by Th. 13. 

There remain four cases to consider. 
I f  X is in [ADB'G'], AD mee~ BCX in K, and X K  meets BG in L. 
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Then DX and A L  are coplanar~ and will meet unless parallel. 
If  X is in [BDA'O~ I~D meets ACX in M t and X M  meets AG in N. 
Theu D X and B N  are coplanar, and will meet unless parallel. 
I f  X is in [ACDB']~ ACD mee~s B X  in P ,  and D P  mee~s A• in Q. 
Then D X  and B Q  are coplanar, and will meet unless parallel. 
I f  X is in [BCDA'], BGD meets A X  in R~ and 1)R meets B C  in S. 
Then D X  and A 8  are coplanar, and will meet unless parallel 

Hence we see that the only cases in which ~he existence of a second 
point of in~rsection is not immediately established are the cases in which 
D X  is parallel ~o a line through A or B in the plane ABC. In these 
caaes, draw through C a line parallel to the line in question in the 
plane ABC;  the line so drawn will be parallel to  DX also, and hence 
will lie in the plane CDX. 


