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(This prefatory note is intended merely to point out those features
of the article which are likely to be of most interest to the reader who
is pressed for time, and who is already familiar with the literature of the
subject. The article proper begins with the Introduction.)

The subject-matter of the present article is a new set of postulates:
for ordinary Euclidean three-dimensional geometry. The method employed
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can be readily extended to Euclidean geometry of more than three
dimensions, but is not so readily, adapted to the study of projective

geometry.

The chief points of difference between the present set of postulates
and the well known sets*) given by Pasch, Veronese, Peano, Pieri, Hilbert,
Veblen, Schweitzer, and others, are: 1) the use of the solid body instead
of the point as an undefined concept; 2) the extreme simplicity of the
undefined relation of inclusion; 3) the systematic definitions of the straight
line, the plane, and the 8-space, which can be readily extended, if desired,
to space of n dimensions; and (4) the attempt to separate the ‘existence
postulates’ from the postulates expressing ‘general laws’.

In regard to this last point, a word of explanation may be desirable.
By an ‘existence postulate’ we mean a postulate that demands the existence
of some element satisfying certain conditions; as, for example, the pro-
position that a line passing through a vertex of a friangle and any
interior point must intersect the opposite side; or the proposition that
through any point outside a given line it is always possible to draw at
least one parallel. By a ‘general law’ we mean a proposition of the form:
“f such and such points, lines, etc. exist, then such and such relations
will hold between them’; for example, the proposition that if B is between
A and C, and X between 4 and B, then X is between 4 and C; or

*) M. Pasch, Vorlesnngen iber neuere Geometrie, Leipzig 1882,

G. Veronese, Fondamenti di Geometria a pit dimensioni, 1891, translated into
German by A. Bchepp, Grundziige der Geometrie, 1894,

G. Peano, I Principii di Geometria, Turin 1889; also Sui fondamenti della
geometria, in Rivista di Matematica 4, p. 51—90, 1894,

M. Pieri, Della geometria elementare come sistema ipotetico deduttivo; mono-
graphia del punto e del moto, Memorie della Reale Accademia delle Scienze di Torino,
(2) 49, p. 173—222, 1899; also Sur la géoméirie envisagde comme un systéme
purement logigue, Bibliothdque du Congrés international de Philosophie, Paris 1900
3, p. 367—404.

D. Hilbert, Grundlagen der Geometrie, GauB-Weber Festschrift, 1899; trahslated
into English by E. J. Townsend, The Foundations of Geometry, 1902; third German
edition, as vol. 7 of the series called Wissenschaft und Hypothese, (Leipzig 1909).
In this third edition, the numbering of the axioms is slightly altered, in view of an
article by E. H. Moore, 1902; Axiom I 4 of the original list is now omitted, and what
was originally Axziom II 5 is now numbered II 4.

O. Veblen, A system of Axioms for Geometry, Trans. Am. Math. Soc. 5 (1904),
p. 343—384. Aleo, The Foundations of Geomeiry, in a volume called Monographs
on Topics of Modern Mathematics relevant to the Elementary Field, edited by
J. W. A. Young, p. 1~—51, 1911.

Another set of postulates, based on concepts not so closely conmectod with the
present work, has been recently given by A. R. Schweitzer, A theory of geometrical
relations, Am. J. of Math., 81 (1909), p. 3656—410.

34%
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the proposition that if two distinet lines are parallel to a third line they
are parallel to each other. Now in the usual development of the subject,
the demonstration of many of the general laws is made to depend upon
the use of existence postulates; for example, in proving the simplest laws
of order for points on a line, Hilbert and Veblen use a ‘“riangle transverse’
postulate, concerning the points of intersection of the sides of a triangle
with a line in the plane. In the present treatment, on the contrary, the
attempt has been made to separate the general laws from the existence
postulates, and to prove all general laws, as far as possible, without the
aid of auxiliarly ‘construction lines’. This restriction adds considerably to
the difficulty of many of the proofs, but the attempt, though not completely
snccessful, has a certain logical interest; and the lost simplicity of proof
can be at once regained, if desired, by transposing the existence postulates
to an earlier place in the list.

Among the definitions, the most important is the new definition of
linear segment (Def. 5), for on this definition, and the analogous definitions
of triangle and tetrahedron, the whole theory is based. Attention may
also be called to the definition of the mid-point of a segment (Def. 17),
the definition of congruence (Def. 21), and to the fact that all metréc
properties are obtained directly in terms of the fundamental concepts,
without the intervention of Cayley’s ‘absolute’. Also, the word ‘sphere’
may be replaced by ‘any convex solid’, except in the parts of the paper
that deal with congruence.

On the consistency of the postulates, see the end of Chapter II, where
an interesting geometry of points of finite size is exhibited.

In regard to the independence of the posgulates, the ‘general laws’ are
showh to be independent of each other, and the existence postulates are
shown to be independent of each other and of the general laws. By
slight changes in wording, it would be easy to secure ‘absolute’ indepen-
dence for the combined list of general laws and existence postulates; but
such changes would tend to introduce needless artificialities, from which
the postulates as they now stand are entirely free.

More important than the question of independence is the proof of
the sufficiency of the postulates to determine a umique type of system; or, to
uge a phrase of Veblen's, the proof that the postulates form a categorical
set. Little attention seems to have been paid to this question except by
the present writer in connection with the foundations of algebra®), and

*) E. V. Huntington, A complete set of postulates for the theory of absolute
continuous magnitude, Trans. Am. Math. Soc., 3 (1902), p. 264—279, and later papers.
Compare also the forthcoming Lehrbuch der Algebra by A. Loewy.
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by Veblen in connection with the foundations of geometry; and yet there
appears to be no other way of proving that all the propositions of a
science are deducible from a given set of postulates, than by showing
that the postulates form a ‘sufficient’ or ‘categorical’ set. In the present
article, the deductions from the postulates are carried just far enough to
establish this ‘theorem of sufficiency’, which forms, in fact, a natural
stopping place in any study of ‘foundations’.

The previous authors to which the writer is chiefly indebted are
Peano, Russell*), Hilbert, Veblen, and Schur#¥),

The logical symbolism of Peano, although not employed in the paper
as prepared for the press, has been of almost indispensable value in working
out the details of the demonstrations. Without some such symbolism, it
is almost impossible, in work of this sort, to avoid errors.

The term ‘propositional function’, and the emphasis on the notion
of the ‘variable’ (in the Introduction) are due chiefly to Russell The
convenient notation for the prolongations of a segment, the extensions
of a triangle, etc., is taken from Peano. The “our-point postulate’
(Postulate 11) is the first half of a proposition suggested by Schur. The
very simple proof of the commutative law of multiplication, by means
of the proposition about the three altitudes of a triangle, iz also due to
Schur. Postulate 14, the last of the postulates on congruence, was sug-
gested by one of the assumptions in Veblen’s later list. The construction
for drawing a line perpendicular to a given line is due to Hilbert.

On account of the use of the solid body instead of the point as the
fundamental variable, most of the pseudo-geometries given in the proofs
of independence had to be new constructions. Example Eb, however, is
taken from Hilbert.

The writer is also indebted to Mr. P. E. B. Jourdain, who has verified
many of the demonstrations.

Introduction. Plan of the article.

This introduction is intended to explain the point of view adopted in
the present article, and the nature of the principal results obtained.

Fundamental concepts. We agree to consider a certain set of postulates
(namely, the postulates stated in Chapter II), involving, besides the sym-

*) B. Russell, Principles of Mathematies, 1908; A. N. Whitehead and B. Russell,
Principia Mathematica, 1, 1911, See also Whitehead's excellent popular Introduction
to Mathematics, (‘Home University Library’, London 1911). '

*% P. Schur, Zur Proportionslehre, Math. Ann. 57 (1903), p. 205—208.
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bols which are necessary for all logical reasoning, only the following
two variables:

1) the symbol K, which may mean any class of elements 4, B, C,- - -; and

2) the symhol R, which may mean any relation 4 R B, between two
elements.

These postulates are not definite propositions — that is, they are not
in themselves either true or false. Their truth or falsity is a function
of the logical interpretation given to the variables K and R, just as the
truth or falsity of a conditional equation in algebra is a function of the
numerical values given to the variables in such an equation. They may
therefore be called ‘propositional fumctions’ (fo use a term of Russell’s),
since they become definite propositions (true or false) only when definite
‘values’ are given to the variables K and R.

For example, if we give X and R the following values:

1) K= the class of ordinary spheres (including the null spheres);

2) R = the relation of inclusion (so that ‘4 R B’ means ‘4 inside
of B’);
then all the postulates will be found to be true; but if K and R have
the values assigned to them in any one of the examples given in Chapter IV,
as for instance:

1) K= a class comprising nine ordinary numbers, namely: 2, 3,5, 7,
10, 14, 15, 21, 210;

2) R = the relation ‘factor of’;
then at least onme of the postulates (here Postulate 4) will be found to
be false.

Having this set of postulates before us, we agree to consider their
logical - consequences, that is, the theorems which can be deduced from
them by the processes of formal logic without reference to any particular
determination of the variables K and R.

These derived theorems, like the original postulates, will be pro-
positional functions, whose truth or falsity depends on the values given
to the variables K and R. All that the process of logical deduction tells
us, is that if the original postulates are true for certain values of the
variables, then all the derived theorems will be true for the same values.
In other words, i any given system (K, R) has all the properties stated
in the postulates, then it will also have all the properties stated in the
theorems.

Definition of abstract geometry.*) The body of theorems thus deduced

™ We confine ourselves here to ordinary Euclidean three-dimensional geometry;
sets of postulates for other variefies of geometry may be obtained by suitable modi-
fications of the set here given.
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from the given set of postulates constitutes an abstract deductive theory,
which, in view of the familiar example already mentioned, may properly
be called abstract geomefry; and any given system (K, R) — for example,
the system: K = the class of spheres, R = the relation of inclusion —
which satisfies all the postulates may then be called a conerete geometrical
system, or simply, a conerete geometry.

Applied geometry. Abstract geometry, as thus defined, is a purely
mathematical theory, which will apply equally well to all ‘geometrical
systems’, wherever such systems may be discovered.

For example, it 18 conceivable that in the field of Economies, or of
Botany, a class K and a relation B might be discovered, which would
satisfy all the postulates of Chapter II, and which would therefore form
a geometrical system.

It is important to notice, however, that the question whether any
given system (K, R) does actually possess the properties enumerated in
the postulates, is not (except in the arithmetical case mentioned below)
a question of pure mathematics, but rather a matter for observation and
experiment. Thus, the abstract theory of geometry as such gives us no
information whatever about the nature of perceptual space, any more
than it does about the facts of Hconomics or Botany: all that it tells
us is that 4 any system (K, R), wherever it may be found, is rightly
judged to possess the properties mentioned in the postulates, then it will
necessarily possess also the properties mentioned in the theorems.

Furthermore, the only systems (X, R) about which such a judgment
can be made with assured accuracy are the systems whose elements are
purely numerical, that is to say, purely logical; in all other cases, our
observations are only approximate, and in all such cases the conclusions
reached by the application of geometric theory — even though the process
of inference is perfectly rigorous — are of course no more accurate than
the premisses on which-they are based.

Consistency of the postulates. The first question to be asked con-
cerning any set of postulates such as that which we are here considering,
is this: Does any system exist which satisfies all the postulates? 1f the
existence of any such system can be established, then the postulates are
said to be comsistent, and no theorems deduced from them can ever lead
to contradiction.

In the present case, we have already mentioned one system (K, R)
as satisfying all our postulates, namely, the system: K = the class of
spheres, and R = the relation of inclusion; but if we mean by ‘sphere’
and ‘inclusion’ the common notions given by observation of perceptual
space, then our judgment that this system satisfies all the postulates can
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be only approximate, and the system does not provide a satisfactory proof
of the consistency of the postulates. If, however, we use ‘sphere’ and
‘inclusion’ in the sense in which these terms are used in analytical geo-
metry (see the end of Chapter II), then we have a strictly numerical
system, which certainly exists, and which can be shown to satisfy all
the postulates with absolute accuracy. The consistency of the postulates
is thus completely established.

Separation of general and existence postulates. The list of postulates
given in Chapter II will be found to be divided into two groups, the
first containing the ‘general laws’ (Postulates 1—18), and the second
containing the ‘existence postulates’ (Postulates E1—ET).

These two groups of postulates play quite distinct roles in the
development of the subject, and the attempt to keep them separate from
the start is not without logical interest. (Compare, however, the remarks
under Theorem 15.)

Independence of the postulates. A second question to be asked is: Are
the postulates independent? that is, are we sure that no one of them is
merely a consequence of the rest?

To answer this question, we exhibit, in Chapter IV, a list of ‘pseudo-
geometries’, by which it is shown that the ‘general laws’ are independent
of each other, and also that the ‘existence postulates’ are independent of
each other and of the general laws.

Sufficiency of the postulates to determine a unique type uf system. A
third and most important part of our work is to show that any two systems
(K, R) which satisfy all the postulates are formally equivalent, or isomorphic,
with respect to the variables K and R. This means that if (K, R") and
(K", R”) are any two ‘geometrical systems’ — that is, any two systems
that satisfy all the postulates — then it is possible to set up a one-to-
one correspondence between the elements 4', B', C',--- of K’ and the
elements 4", B”, C”, ... of K” in such & way that whenever 4’ and B
in one system satisfy the relation 4"R’ B’, then the corresponding elements
A” and B” in the other system will satisfy the relation 4” R” B”. By
the establishment of this isomorphism, we show that any theorem involuing
only the two variables K and R, which is true in ome of the systems will be
true in the other also; hence all the systems (K, R) which satisfy the
postulates may be said fo belong to a single type.

With the proof of this theorem, the series of deductions which we
draw from the postulates is brought to a natural conclusion; and in view
of this theorem, we may then define abstract geomeiry as the study of .the
properties of a particular type of system (K, R), namely, that type which -is
completely determined by the Postulates 1—18 and E1—E 7.
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Chapter I.
Definitions.

As explained in the introduction, the only variables that are involved
in our set of postulates are the class K and the relation R, and it is
theoretically possible to express every theorem of geometry explicitly in
terms of these variables.

In order, however, to avoid tedious repetitions of certain combinations
of these symbols, it is necessary to replace these combinations by single
terms, which are introduced by definition, for the sole purpose of ab-
breviation.

For convenience of reference, all the definitions that we shall require
are collected together in the present chapter. In framing these definitions
we have freely used the terminology suggested by the particular inter-
pretation of the variables K and R with which we are most familiar, namely,
K = the class of spheres, and R == the relation of inclusion; but it must
be constantly borne in mind that the meaning of all words (such as
‘point’, ‘segment’, ‘line’, etc.) which are here defined in terms of K and
R, will vary with varying interpretations of K and R, and that as far as
the definitions are concerned, K and R may stand for any class and any
relation that we please.

(In this connection the list of ‘pseudo-geometries’ in Chapter IV will
be found instructive.)

Spheres, and the relation of inelusion.

Definition 1. If 4 is an element of the class K, then 4 shall be
called an abstract sphere, or simply a sphere.

Definition 2. If AR B, we shall say that the sphere A4 is within
the sphere R, or that B contains A.

Definition 3. Suppose A R B and BR A4 are both false; two cases
can then occur. 1) If there is no sphere X such that X R 4 and X R B,
then 4 and B are called mutually exclusive, or each oufside the other;
while 2) if there is some such sphere X, then 4 and B are said to
overlap.

Points.

Definition 4. If 4 is a sphere, and if there is no other sphere X
such that X R A, then 4 is called an abstract point, or simply a point.
That is, a point is any sphere which contains no other sphere within it.

It may be noticed that theve is nothing in this definition, or in any
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of our work, which requires our ‘points’ to be small; for example, a per-
fectly good geometry is presented by the class of all ordinary spheres
whose diameters are not less than one inch; the ‘points’ of this system
are simply the inch-spheres. (Compare the example given at the end ‘of
Chapter 11.)

Segments, and the straight line.

The following definition is of central importance in the entire theory.

Definition 5. Let 4 and B be any given points. If X is a point
such that every sphere which contains 4 and B also contains X, then X
is said to belong to the segment [AB] or [BA]

The segment {AB] is tims a class of points,
uniguely determined by 4 and B. The points 4
and B belong to the segment, and are called its
end-points. If we exclude the end-points, the class
that remains iy called the inferior of the segment [A4B], and may be
denoted by (4B). If (4B) is the null class, the segment [4B] may be
said to be hollow.

Definition 6. Besides the class [4B], two other classes, called the
prolongations of [AB], are determined by the points 4 and B, according
to the following scheme.

It X is & point| belongs $o the then X is said | and callec‘i the | Its ‘bownda-ry
b th to belong to a | prolongation of | consists of the
such that segment class denoted by | [4 B] beyond point
4 [BX] [4B7 A 4
B [4AX] [(BA7 B B

(This notation, which is due in its essential elements to Peano, is

easily remembered if we observe that [4B"] contains 4, and [BA4'] con-

tains B; that is, in each case the letter which is

I7¥:) {AB] dor{BA  (B4]  not modlﬁed by an accent represents a point which
belongs to the class in question.)

If we eoxclude from [AB’| and [BA4] the
boundary points 4 and B, the classes that remain may be called the
interiors of the prolongations, and may be denoted by (4B") and (B4,
respectively; and if either of these interiors is the null class, the corre-
sponding prolongation may be said to be hollow.

The following special terminology will also be found to be convenient.

Definition 7. In a set of two or more classes like [4B), [4B],
etc., if no two of the classes have any point in common (unless it be a

Pig. 2.
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common boundary point, represented by an unaccented letber that appears
explicitly in both symbols), then the classes may be said to form a simple
set of mon-overlapping regions, and the logical sum of such a set may be
called a simple sum.

We can now define the line AB as a class of points uniquely deter-
mined by A and B, as follows.

Definition 8. If 4 and B are two distinct points, the line AB is
the class of all points which belong to the segment [4B] or to either
of its two prolongations. Three points are said to be collinear, if any one
of them belongs to the line determined by the other two.

[AB'] [4B] or [BA] [BA]
4 B

Definition 9. The line 4B is said to be divided by the point 4
into two half-lUines, or rays, one containing the regions [AB] and [BA']
in which B occurs without accent, and the other containing the region
[AB] in which B’ oceurs with the accent. Two points of the line are
said to be on the same side of 4 or on opposite sides of A4 according as
they belong to the same half-line or to different half-lines. In & similar
way, the line is said to be divided by the point B.

Triangles, and the plane.

The following definitions, 10—14, for the plane are precisely ana-
logous to the definitions 5—9 for the straight line.

Definition 10. If X is a point such that every sphere which con-
tains A, B, and C, also contains X, then X is said to belong to the #riangle
[ABC]

The triangle includes the points 4, B, C which are called its verfices,
and the segments [4.B], [4 (], snd [BC], which are called its sides. The
interior of the triangle, excluding the points of the sides, is demoted by
(4BC). If the class (ABC) is a null class, the triangle is said to be
hollow.

We next define certain ‘extensions’ of the triangle, which are to be
analogous to the ‘prolongations’ of a segment. In order to exhibit this
analogy in its clearest form, we first observe that the definition of a
prolongation of a segment may be worded as follows: If X is a point
such that one element of the boundary is incident with the figure formed
by joining X with the opposite element of the boundary, then X is said
to belong to a class denoted by’ ete. Now in the case of a triangle, the
elements of the boundary are of two kinds, the three vertices, 4, B, C,
and the three sides, [4B], [4C], [BC]; hence the desired definitions will
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be obtained by associating each vertex with the opposite side, and each
gide with the opposite vertex, as in the following scheme.
Definition 11.

It X. is is inci- then X is said to | This class ieﬁ called Ite boundary consists
a point dent with belong to a class | the extension of ’
such that | €4V denoted by |[[A.BC] beyond the of the points of

4 [BCX] [4B'C] vertex A [4B], [ACT]

;3 [A0X]) [B4C) . B [BAT, [BC]

8 [ABX] [c4'B n C fc4, [CcRB)
[AB} [ex3 [(4BC'] side [4 B) [4B],[4C], [BC]
(40 | [BX] [4CB7] » [40] [4C], [A B}, [CB)
[BC] | [4X] | [BO4] . IBC) [BO), [B41], [04]

The first three of these classes, [AB'C], - -, are called the vertical
extensions of the triangle, and the last three, [4 BC'], - - ., the lateral ex-
tensions. The points named as the ‘boundary’ of each class will them-
selves belong to that class in any system in which
Postulates 1—2 are valid. The dnteriors of the
several regions, excluding the points of the boundary,
are denoted by (AB'C’), ..., (4BCY,---, re
spectively.

By an immediate extension of the terminology
adopted in Definition 7,we have:

Definition 12. In a set of two or more classes
like {4ABC], [ABC'], ete., if no two of the classes have any point in
common (unless it be a point of a common boundary, represented by
letters that appear explicitly in both symbols), then the set of classes
may be called a simple set and their logical sum a simple sum.

For example, [BA'C’] and [BCA'] have the common boundary [BA'];
if they have no other point in common, they form a simple set.

We now define the plane 4BC as a class of points uniquely deter-
mined by 4, B, and C, as follows.

Definition 13. If 4, B, and C are three points not in the same
line, the plane A BC is the class of all points that belong to the triangle
[ABC] or to any one of its six extensions. Four points are said to be
coplanar, if any ome of them belongs to the plane determined by the
other three.

Definition 14. The plane 4BC is said to be divided by the line
AB into two half-planes, one containing the four regions in which ¢
occurs without accent, the other containing the three regions in which ¢"

¥Fig. 8,
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oceurs with the accent. Similarly, the plane is divided by the line 4C and
by the line BC.

Before passing to the analogous definitions of a space ABCD, it
will be convenient to introduce at this point definitions concerning parallel
lines and the congruence of segments. On this arrangement, all the defi-
nitions required for the special case of geometry of two dimensions will be
found in consecutive order.

Parallel lines.

Definition 15. Suppose we are dealing with a system (K, R) in
which the ‘planes’ have all the properties demanded by Postulates 6—38.
Then if two lines AB and CD lie in the same plane, and have no point
in common, they are said to be parallel, and we write: AB || CD.

To indicate that two lines 4B and CID are either parallel or coin-
cident, we shall use the notation AB ~ CD.

Definition 16. If AB|| 0D and BC | DA, then the four points
4, B, C, D are said to form a paralldogram, of which [AC] and [BD]
are the diagonals.

By the aid of parallel lines, we now define the mid-point of a segment,
as follows.

Definition 17. Let [4B] be any given segment. If there is a
parallelogram 4 XBY of which [4B] is one disgonal,
and if the other diagonal intersects [4B] in M, then M
is called ¢ middle point of the segment [A4B]. If there
is only one such point M (as will always be the case in
every system in which Postulates 1—11 are valid), then Tig. 4.

M is called the mid-point of [AB], and we write:
M = mid AB. In this case the segment [4 B] is said to be bisected atM.

The center of a sphere.

In order to define the ‘center’ of an (abstract) sphere, we first define
the points ‘on the surface’ of a sphere, as a subclass among the points
that are within the sphere.

Definition 18. If A and B are within a sphere S, and if all points
of the prolongations (4B’) and (BA4") are outside of S, then the segment
[4B] is called a chord of the sphere S. .

Definition 19. If 4 is an end-point of any Y
chord of a gphere S, then 4 is said to lie on the
surface of the sphere.

Definition 20. If O is a point within a sphere
S, and if every pair of chords which intersect at O
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are the diagomals of a parallelogram, then O is called the center of the
sphere.

Any chord through the center is called a diamefer, and is bisected
at the center. Either half of a diameter is called a radius.

Congruence of segments.

By the aid of the two notions of the mid-point of a segment and
the center of a sphere, we can now define the relation of congruence
between two segments, as follows.

Definition 21. Two segments [AB] and [CD] are called congruent
~—— in symbols, AB= CD — when and only when one of the following
conditions is satisfied:

1) If the two segments [ 4 B] and [CD] are on the same line, then we
must have either [ 4AB] = [CD], or mid AC = mid BD, or mid AD = mid BC;
and if they lie on parallel lines, then they must be opposite sides of a
parallelogram.

2) If they have a common end point (or a common mid-point), but
do not lic on the same line, then they must be radii (or diameters) of
the same sphere.

3) If they do not lie on the same line or on parallel lines, and do
not have a common end-point or a common mid-point, then there must
be two segments [OX] and [OY] which are congruent to the given
segments according to 1), and congruent to each other
according to 2).

According to this definition, all the radii of a given
sphere are obviously congruent; hence, all the points on the

mg.lg' surface of a sphere may be said to be equidistant from the
center.

It will be noticed that congruence according to 1) is connected
with the idea of #ransiation, and that according to 2) with the idea of
rotation — these two ideas being necessarily involved in any adequate
definition of congruence.

X

Perpendicular lines.

Definition 22. If the diagonals of a parallelogram are congruent,
the parallelogram is called a gectamgle, and a triangle which forms half
of a rectangle is called a right triangle.

Definition 23. Two lines that intersect at a point O are called
perpendicular, if every segment which joins a point of one line with a
point of the other is the diagonal of a rectangle with one vertex at O.
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The number line.

The following definitions will be useful when we come to introduce
coordinates into our system.

We select any fixed line OU as a special line to which reference
will be made in future operations, and we call this line the number line,
the point O the zero point, and the point U the unit point.

It is to be understood that any line will answer the purpose of the
number line; but when once chosen it must remain fixed during the course
of any particular investigation.

Definition 24. If 4 and B are any two points
on the number line OU, and if X is another point on
that line such that mid OX = mid AB, then X is called
the sum of 4 and B, and we write X = 4 + B.

Definition 25. Let 4 and B be any two points on
the number lineO U, and let P be any convenient point not on that line.
If a line throughB parallel to UP meets OP in @, and if a line through
Q parallel to P4 meets OU in Y, and if this point

Y is independent of the particular choice of the
auxiliary point P, then Y is called the product of
4 and B; and we write ¥ = 4 >< B. In particular,

we Write A >< 4 = A% j
Definition 26. If 4 and B are any two (]
points on the number line 0T, and if (according V B
to a readily understood meaning) the direction
from 4 to B is the same as the direction from
O to U, then we say that A precedes B, and Fig. 5.
write: 4 < B.
A point X on the number line is called negative or positive according
as it precedes or follows the zero point.

Tetrahedra, and the space.

We now return to the Definitions 5—~9 for the straight line, and
Definitions 10—14 for the plane, and proceed to earry the analogy of
these definitions ome step further, into three dimensions. The following
definitions 27—381 do not involve in any way the notions introduced in
definitions 15—26.

Definition 27. If X is a point such that every sphere which con-
tains 4, B, C, and D, also contains X, then X is said to belong to the
tetrahedron [ABCD].

The tetrahedron includes the vertices 4, B, C, D, the edges [AB], [AC],
[4D], [BC), [BD], [CD], and the faces [ABC], [ABD], [ACD], and
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[BCD], which form its boundary. The notation (4BCD) is used as be-
fore to denote the inferior of the class [A BCD], exclusive of the points
on the faces.

In order to follow the analogy explained in connection with Defi-
nition 11, we notice that the boundary of a tetrahedron consists of 14 ele-
ments, namely: four vertices, six edges, and four faces. By associating
each of these elements with its ‘opposite’ element, we obtain the 14 ‘ex-

tensions’ of a tetrahedron, as follows.
Definition 28.

then X is
gaid to be-| This class

long to & |is called one

If Xis
a point is inei-
such |dentwith

Its boundary consists
of the points of

clags deno- of the
that ted by
4 | [BODX]|[ABCDY|somticatex-|  [ABC), [4B'D], [AC'D]
A B ‘" ° °  |tensionsofthe Cot
tetrahedron
[4B) | [CDX] |[ABC'D] 6 edgewise (40D, [BC'D’],. [ABC'], [ABD']
R T extensions ) )
of the tetra-
hedron
[4BC)| [DX] |[4BCD] |4 facial ex- [4BD], [A4CD], [BCD]
A " ' |tensionsofthe o
tetrahedron

The points named as the ‘boundary’ of each class will themselves
belong to that class in any system in which Postulates 1—2 are valid.
The notations (A B°'C'D'), ---, (ABC'D"),---, (ABCD), ---
are used as before to denote the inferiors of the several
regions.

Definition 29. A simple set of non-overlapping regions
is a set having properties analogous to those given in De-
finition 12.

Definition 80. If 4, B, C, D are four points not in
the same plane, the space ABCD is the class of all points
which belong to the tetrahedron [4 BCD]or to any of its fourteen extensions.

Definition 31. A space ABCD is said to be divided into two
halfspaces by each of the planes ABC, ABD, ACD, and BCD. (Com-
pare Definition 14.)

Fig. 9.
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Parallel planes and lines.

Definition 32. A line and a plane, or two planes, are said to be
parallel if they belong to the same space and have no point in common.

All these definitions 1-—382 are expressible directly in terms of the
fundamental variables K and R.

Chapter IL
The Postulates.

In this chapter we enumerate the postulates which form the subject
of discussion in the present article. Postulates 1—18 are ‘general laws’;
Postulates E1—E7 are ‘existence postulates’.

All the postulates are expressible in terms of the two fundamental
variables K and R, by Definitions 1—32.

General laws for spheres and points (see Defs. 1—4).

Postulate 1. Let 4, B, C be any (abstract) spheres. If A is within
B and B within C, then 4 is within C.

Postulate 2, If 4 is within B, then A and B are distinct.

Postulate 3. a) If the class of spheres which contain the point A
is the same as the class of spheres which contain the point B, then 4 = B.
b) If the class of points within a sphere S is the same as the class of
points within a sphere 7, then S = 7.

General laws for the straight line (see Defs. 5—9).

Postulate 4. If X is a point of the segment [4B], then [4B] is
the ‘simple sum’ of the two segments [4X] and [BX].

Postulate 5. If two lines have two distinet points in common, they
coincide.

General laws for the plane (see Defs. 10—14).

Postulate 6. If X is a point of the triangle [4 BO), then [4BC(]
is the ‘simple sum’ of the three triangles [A BX], [ACX], and [BCX].

Postulate 7. If the segment [X Y] intersects the segment [4B],
then the triangles [ABX] and [ABY] have no point in common except
the points of [4B].

Postulate 8, If two planes have three non-collinear points in common,
they coincide.

Mathematische Annalen. LXXIII. 35
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General laws for parallel lines (see Defs. 15—17).

Postulate 9. If two lines are parallel to a third line, they are
either parallel or coincident.

Postulate 10. If AB and CD are parallel lines, then no one of
the four points 4, B, C, D lies within the triangle formed by the other
three.

Postulate 11. (Four-point postulate’) Let 4, B, C, D be any set
of four points, no three of which are collinear, and 4’, B, ', D' any
other set of four points, no three of which are collinear; and consider
the two sets of six lines,

AB, AC, AD, BC, BD, CD and A'B', A'C', A'D, B'C', B'DY, C'D’,
which these points determine. If the first five lines of one set, taken in
order, are parallel to (or coincident with) the first five lines of the other
set, taken in the same order, then the remaining sixth line of the first
set will be parallel to (or coincident with) the remaining sixth line of
the other set. That is, if AB~A'B’, AC~A'C’, AD~A'D', BC~B'D
and BD ~ B'D’, then also CD ~ C'D".

This postulate was suggested by a remark of Schur’s (loc. ¢it.) and
takes the place of the special form of Desargues’ Theorem used by Hilbert.

General laws for congruence (see Defs. 18—21).
Postulate 12. If AB=CD and CD = EF, then AB= EF.
Postulate 13. If the surfaces of two concentric spheres are cub

by one radius in 4 and X, and by another radius in B and Y, then
[4X]=[BY]

In other words, the portions of two radii intercepted between the
surfaces of two concentric spheres are congruent.

Postulate 14. Let 4, B, C, X be four points of which the first
three are collinear, and let 4", B, C', X’ be another set of four points
of which the first three are collinear; and consider the two sets of six
segments determined by these points. Then if ’

AB=A4A'B, AC=4C, BC=B(0, AX=A4X’, and BX = B'X’,
we shall always have also CX = C'X".

This postulate was suggested by Assumption 11 in Veblen's latest

list (1911); loc. cit.

General laws for space (see Defs. 27—32).

Postulate 15. If X is a point of the tetrahedron [ABCD], then
[ABCD] is the ‘simple sum’ of the four tetrahedra [4BCX], [A BDX],
[ACDX], and [BCDX].
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Postulate 16. If the segment [X Y] intersects the triangle [ABC],
then the tetrahedra [ABCX) and [ABCY] have no point in common
except the points of [ABC].

These postulates 15 and 16 are precisely analogous to Postulates 6
and 7 for the plane. Instead of the exact analogue of Postulate 8, however,
we choose the following stronger postulate, which limits the system to
three dimensions.

Postulate 17. If ABCD is a space, then every point belongs to
this space. '

The following postulate is analogous to Postulate 10.

Postulate 18, If a line XY is parallel to a plane ABC, then no
one of the five points 4, B, C, X, Y belongs to the tetrahedron formed
by the other four.

Existence postulates (see Defs. 1-—32).

Having thus completed the list of ‘general laws’, we now give the
‘existence postulates’.

Postulate 1. There are, in the class K, at least two distinet points.

Postulate E2. If AB is a line, there is a point X not on that line.

Postulate E3. If 4B is a line, and C a point not on that line,
then there is a point X such that CX is parallel to 4B.

A gystem in which this Postulate E3 is satisfied may be called a
system in which parallel lines may be freely drawn. In general, it is only
in such systems that the definitions relating to congruence (Defs. 18—23)
have any meaning.

Postulate E4. If [AB] is any segment in a system in which
parallels can be freely drawn, then on any half line OP there is a point
X such that the segment [0 X]}=[A4B]

That is, any given segment can be ‘laid off’ on any given half-line.

Postulate Eb5. If 8;, §;, 8, -+ - is an infinite sequence of spheres,
each of which lies within the preceding one, then there
is a point X which lies within them all.

This is a simple modification of Dedekind’s postulate
concerning classes of points on a line.

The following postulate is made necessary by the fact
that we have taken the solid sphere instead of the point
as our fundamental variable.

Postulate E6. If any sphere has a center, then every sphere has
a center (see Defs. 18—20), provided, of course, that it is not itself

a point,

Pig. 10,

35"
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Finally, to give the system three dimensions we must have:

Postulate B7. If ABC is a plane, there is at least one point not
in that plane.

Ag we shall show in Chapter I, these Postulates 1—18 and E1-—E 7,
are sufficient to determine completely the abstract theory of ordinary Euclidean
three-dimensional geometry.

To obtain a corresponding set of postulates for two dimensions, we
have simply to omit Postulates 15—18, and replace Postulate BT by its
negative; in this case the most natural interpretation of ‘abstract sphere’
would be ‘circle instead of ‘sphere’.

Consistency of the postulates.

In order to give a rigorous proof of the consistency of these postu-
lates, we must construct, out of purely numerical materials, a system (K, R)
which will satisfy them all.

To do this, let S{a, b, ¢, r) denote the class of all triads of real
numbers z, y, £, which satisfy the equation

(@—a)’+ (y—b)'+ (¢ — )< ¥,
where a, b, ¢, r are real numbers, and r is not less than a certain fived
number g (positive or zero).

We take as our class K the totality of all such S’s, and we define:
the relation R between any two of these S's by agreeing that
S(aI’ b’, CI, rr) R S(a”, b”, c”’ r”)
when and only when »'=»” and every triad =, y, # which satisfies the
relation
@—a) + (=0 + (g— ) <2
satisfies also the relation
(E=dP+ =D+ =P <o
In this system (K, R), the ‘points’ are the elements of the form
S(a, b, ¢, g); and it is not hard to show that all the postulates are satisfied
In the language of analytic geometry, this system is simply the
system of 3pheres whose radii are not less than g, where, in the most familar
case, ¢ = 0. It is interesting to observe, however, that any other value
of g is equally legitimate, so that we may speak of & perfectly rigorous
geomelry in which the ‘points’, like the school-master’s chalk-marks on e
blackboord, are of definite, finite size, and the ‘lines’ and ‘planes’ of definite,
finite thickness.
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Chapter III

Theorems.

In this chapter we give such theorems as are necessary for the proof
of the sufficiency of the postulates to determine a unique type of system.
To avoid interruption in reading, the proofs of the theorems (when any
proofs are needed) are given separately in the Appendix. After each
theorem, the postulates on which the proof depends are stated in paren-
theses.

Spheres and points.

Theorem 1. (By 1, 2.) If a sphere 4 is within a sphere B, then
B is not within 4.

Theorem 2, (By 1,2.) If 4 and B are any two distinet spheres,
then one and only one of the following three relations will hold: 1) one
of the spheres is within the other; or 2) they are mutually exclusive;
or 3) they overlap.

Theorem 3. (By 1,2) If 4 is a point, and S is any sphere which
is not a point, then A4 is either within S or outside of S; that is, the
case of ‘overlapping’ cannot occur. Further, if 4 and B are two distinet
points, they are mutually exclusive.

The straight line.

Theorem 4. (By 1—-3.) If the endpoints of a segment coincide,
the segment contains no other points; that is, [4.4] = 4.

Theorem 5. (By 1—4.) The segment [4B] and its two prolon-
gations [4B'] and [BA'] form a ‘simple set of non-overlapping regions’.
so that the line 4B is the ‘simple sum’ of these three regions.

Theorem 6. (By 1—5.) If X and Y are two distinet points of a
line 4B, then the line XY will contain 4 and B, and hence be iden-
tical’ with the line 4B.

Theorem 7. (By 1—5.) If three points are on a line AB, then
one of them is on the segment formed by the other two.

This theorem expresses the necessary and sufficient condition that
three points shall be collinear.

- From these postulates and theorems, all the ‘general laws’ of order
for points on a straight line can be deduced; that is, in so far as points
exist at all on a given line, they will have the proper relations of order.
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The plane.

Theorem 8. (By 1—38.) If the vertices of a triangle coincide, the
triangle contains no other points; that is [4 4 4] = 4.

[Theorem 9a. (By 1—6.) The triangle [4 B(C] and its three vertical
extengions form a simple set of non-overlapping regions.]

Theorem 9. (By 1—7.) The triangle [ABC] and all its six ex-
tensions, [ABC], :-., [ABC’], - - -, form a simple set of non-overlapping
regions, so that the plane ABC is the simple sum of these seven regions.
(Proof by considering six possible cases.)

Theorem 10. (By 1—8.) If X, Y, and Z are three non-collinear
points of a plane A BC, then the plane XYZ will contain 4, B, and C,
and hence be identical with the plane 4 BC.

Theorem 11. (By 1—8.) If four points are in a plane ABC, then
either: 1) one of them belongs to the triangle formed by the other three;

or 2) the segment joining two of them intersects the
i >< segment formed by the remaining two.
4 ¢ This theorem expresses the necessary and suf-
Fig, 11. ficient condition that four points shall be coplanar.
(Peano, loc. cit.)

Theorem 12. (By 1—8.) If X and Y are two distinct points in
a plane 4 BC, then every point of the.line XY will belong to the plane
ABC.

From these postulates 1—8 the following further theorems can be
deduced, without the aid of any of the existence postulates.

Theorem 13. (By 1—8.) In the friangle [ABC], if X is on the

c gide opposite A, and Y on the side opposite B, then the

segments [4X] and [BY] will have a common point.
) &ﬂ To establish this theorem 13, we consider the point X
in relation to the triangle [A BY ], and show, by a process of
exclusion, that X must lie in the lateral extension {BYA'];
hence, by Definition 11, the segments [A X] and [BY] must infersect.

Theorem 14. (By 1—8.) If X and ¥ are -points in the interior of
any one of the seven compartments of a*plane 4BC, then every point
of the segment [X Y] is in the interior of the same compartment.

Fig. 18.

Parallel lines.
Theorem 15. (By 1—9.) Through a given point, there is not more
than one line parallel to a given line.
This theorem shows that Postulate 9, although stated in the form
of a ‘general law’, nevertheless enables us to infer the ‘existence’ of points
of intersection of many lines. It might perhaps be called an existence
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postulate in disguise. The same remark applies to several other postu-
lates, as, for example, to Postulate 10, which gives us the following
theorem.

Theorem 16. (By 1—10.) If two parallel lines are given, and if
4, B are any two points of one, and X, Y any two points of the other,
then either [AX] and [BY], or else {A4Y] and [BX], will have a
common point. ,

The following theorems depend upon the ‘four-point postulate’.

Theorem 17. (By 1—11.) A segment cannot have more than one
middle point. Hence, the diagonals of every parallelogram bisect each other.

Theorem 18. (By 1—11) If mid AX =mid AY, then X = Y.

That is, if one end of a segment is changed while the other end is
held fast; then the middle point will be changed.

The proof of this theorem 18 may be made to depend on the following
lemma.,

Lemma for Theorem 18. (By 1—11.) If a given plane contains at
least one parallelogram 4 BCD, with its middle point M, and at least
one other point E distinct from A4, B, C, D, and M, then every segment
in the plane will be the diagonsl of a parallelogram in the plane, and
hence will have a middle point; and further, throughout the plane, a
parallel can always be drawn to any given line through any given point
not on that line,

All the preceding theorems have been obtained from Postulates 1—11,
without the use of any of the existence postulates. If now we add Postu-
lates E1—E3, we have the following theorems concerning
existences.

Theorem 19. (By 1—11, E1—E3.) If a point P is in
the interior of a triangle [ABC], then the line 4P intersects  mg .
the opposite side (BO),

This Theorem 19, together with Theorem 13, were used as postulates
by Peano.

Theorem 20. (By 1—11, E1—E3.) If [ABC] is a trisngle, and
E is on (BC), and D on the prolongatmn (B4, then the
line DE will moet the side (4C) in a point F.

This is the ‘triangle transverse axiom’ in the form
used by Veblen.

Theorem 21. (By 1—11, E1—E3) If [4B) is a
segment, there are points on the prolongations (4 B") and (B 4').

Theorem 22. (By 1—11, E1—E8.) The following constructions are
always possible:

Fig. 14.
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1) to draw a line parallel to a given line through any point not on
that line;

2) to bisect & given segment;

3) to extend a given segment to double its length.

Congruence, and perpendicularity.

Theorem 23. (By 1—12) The relation of congruence is reflexive,
symmetrical, and transitive.

Theorem 24. (By 1—12)) If X is on [04], and [0X]=[04],
then X = 4.

That is, on s given balfline 04, not more than one segment [0X]
can be laid off congruent to a given segment.

Theorem 25, (By 1—13.) If 4, B, C are collinear, and if 4, B, ¢
are collinear and in the same order as A, B, C, then whenever A B=A'F
and AC = A'C’, we shall always have BC= B'C’.

Briefly stated, this theorem tells us that the sums of congruent
segments are congruent.

Theorem 26. (By 1—14.) Let two given lines meet in O. If any
segment [X Y], joining a point of one of the lines with a point of the
other, is the diagonal of a rectangle having one vertex at O, then every
such segment will have the same property, and the lines will be per-
pendicular.

Theorem 27. (By 1—14.) If two lines in the same plane are per-
pendicular to the same line, then they are either parallel or coincident.
Also, if, in any plane, a line is perpendicular to one of two parallel lines,
it will be perpendicular to the other also.

Theorem 28. (By 1—14.) If X is in a line perpendicular to [4B]
at its middle point M, then X is equidistant from 4 and B.

Theorem 29. (By 1—14.) If X is equidistant from A4 and B, and
M = mid AB, then XM is perpendicular to 4B.

These two theorems give us the important properties of the isosceles
triangle.

Theorem 30. (By 1—14.) If through the vertices of a triangle
lines are drawn perpendicular to the opposite sides, these three lines will
have a common point. (Orthocenter.)

Theorem 31. (By 1—14) If the surfaces of two
concentric spheres are cut by ome radius in 4 and X,
and by another radius in B and Y, then the cross seg-
ments, [4Y] and [BX], will be congruent, and the chords

Fig. 16. [4B] and [XY] will be parallel.
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By the aid of the first four existence postulates, we have also the
following theorem.

Theorem 32. (By 1—14, E1—E4.) The following constructions
are always possible:

1) to draw a sphere with any given point O as center, and any given
segment [OA4] as radius;

2) to find the point of intersection of the surface of a sphere with
any line through its center;

3) to ‘ay off’ on any given half-line a segment congruent to any
given segment;

4) to draw a perpendicular to any given line through any given point.

The number line.

Theorem 33. (By 1—5.) Lets 4, B, C be any points on the number
line (see Def. 26). Then we have:

1) If 4 and B are distinct, then either A < B or B < 4.

2) If A< B, then 4 and B are distinet.

3) . A< B and B<C, then 4 < C.

The points on the number line therefore form a series*), or ordered class,
with respect to the relation <.

Theorem 34. (By 1—11.) Let 4, B, C be any points on the number
line. Then, in so far as the sums in question exist (see Def. 24), we
shall have the following laws of addition™*):

1) (A4 B)+ C=A4+ (B+ C). (Associative law.)

2) A+ B= B+ 4. (Commutative law.)

NIt A+ X=4+7, then X=1Y.

4) If A is not zero, then 4 + A 4 -.- -+ A4 is not zero.

We shall also have the following law connecting + and <C:

5 X< Y, then A+ X <A+ Y.

Theorem 35. (By 1—11.) The product of two points on the number’
line is independent of the position of the auxiliary point used in the
construction (see Def. 25).

Theorem 36. (By 1—11.) Let 4, B, C be any points on the number

*) G. Vailati, Sui priccipi fondamentali della Geometria della retts, Rivista di
Matemstica, 2 (1892), p.71—76; E. V. Huntington, The Continuum as & Type of Order,
reprinted from the Annals of Mathematics, 1905 (Publication Office of Harvard
University).

*) E. V. Huntington, The Fundamental Laws of Addition and Multiplication in
Elementary Algebra, reprinted from the Annals of Mathematics, 1906 (Publication
Office of Harvard University). Also, The Fundamental Propositions of Algebra, in the
volume of Mathematical Monographs edited by J. W, A. Young, p. 160—207, 1911.
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line, and let it be possible to draw parallel lines at pleasure (so that
products of such points can always be obtained). Then we have the following
laws of multiplication¥):

1) (A=<B)><C=4>(B><C). (Associative law.)

2) A< (B+0)=A><B+ A><C(, and

3) (B+0C)><A4A=B> A4+ C>A4. (Distributive laws.)

HIf A><X =AY, or X>< A= Y> 4, and 4 not zero, then

X=1Y.

Also we have the following law connecting >< and <:

5) If X< Y and A positive, then A< X < A> Y and X< A< Y=< 4.

Theorem 37. (By 1—14.) If 4 and B are points on the number
line, as in Theorem 36, we have the commutative law for multiplication:

A><B=DB><4.

Of these theorems, 33—37, the first four are obtained by the aid
of Postulates 1—11; for the last, however, we assume also the postulates
of congruence.

By availing ourselves of the first three existence postulates, which
give us the existence of a plane in which parallel lines can be drawn at
pleasure, we obtain also the following theorems.

Theorem 38. (By 1—11, E1—E3.) If 4 and B are any two points
of the number line, then

1) their sum 4 4 B, and

2) their product 4 >< B, will exist, and be uniquely determined by
4 and B. Further, there exists

3) the zero point O for which 0 + 0 =0, and

4) the unit point U for which U >< U= U. Also,

b) for every point A, there is an opposite point X, such that
4+ X =0, and

6) for every point 4 which is different from zero, there is a reci-
procal point Y, such that 4>< Y = T.

If, finally, we add the postulate of continuity, we have:

Theorem 39. (By 1—14, E1—Eb.) The points on the number line
form a ‘system of real numbers’, with respect to the operations 4 and ><,
and the relation <.**)

*) See preceding footnote.

**) For a set of independent postulates for real numbers, see E. V. Huntington,
A Set of Postulates for erdinary Complex Algebra, Trans. Am. Math. Soc. 6 (1905),
p. 209—229, especially p. 219—220.
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Coordinates in the plane.

In view of the foregoing theorems, it is easy to see how we may
introduce coordinates in the plane.

Take two intersecting lines as axes, with origin at O, and on each
of these axes reproduce the ‘number line’ by laying off segments according
to Theorem 32, 8. Then by drawing parallels to the axes, we see that to
every point in the plane, there correspond two points, one on each axis;
and to every pair of points on the axes, there corresponds ome point in
the plane.

As far as plane geometry is concerned, therefore, it remains only to
prove that the equation of a circle (that is, the class of points which are
common to the surface of a sphere and a plane) has the usual form,
when the axes are rectangular. This is at once evident from the following
form of the Pythagorean Theorem:

Theorem 40. (By 1—14, E1—E4.) If the sides and hypotenuse
of a right triangle are 1aid off’ along the positive half of the ‘number
line’, the sum of the squares of the points representing the two sides
will be equal to the square of the point representing the hypotenuse.

For the case of plane geometry, in which all the points in the system
are confined to a single plane, the theorem of isomorphism mentioned in
the Introduction is then readily established.

The Space.

The following theorems for space are analogous to Theorems 8-—12
for the plane.

Theorem 41. (By 1—3.) If the vertices of a tetrahedron coincide,
the tetrahedron contains no other points; that is, [A4 4 4] = 4.

[Theorem 42a. (By 1—8, 15.) The tetrahedron [AB(CD] and its
four vertical extensions form a ‘simple set’.]

Theorem 42. (By 1—8, 15—16.) The tetrahedron [4BCD] and
all its fourteen extensions form a simple set of non-overlapping regions,
so that the space ABCD is the simple sum of these fifteen regions.

(Proof by considering thirteen possible cases.)

Theorem 43. (By 1—8, 156—17) If X, ¥, Z, W are four non-
coplapar points of a space ABCD, then the space X YZ W will be iden-
tical with the space ABCD.

Theorem 44. (By 1—8, 15—17). If five points
are in a space A BCD, either: 1) one of them belongs
to the tetrahedron formed by the other four; or 2) the
segment joining two of them intersects the triangle
formed by the remaining three.
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This theorem expresses the necessary and sufficient condition that
fivre points shall be cospacial.

Theorem 45. (By 1—8, 15—17) If X and Y are two distinct
points in a space ABCD, then every point of the line X Y belongs to
that space; and if X, Y, Z are three non-collinear points in a space 4 BCD,
then every point in the plane X YZ will helong to that space.

These theorems have been stated at length, because they still remain
valid if we replace Postulate 17 by the weaker postulate exactly analogous
to Postulate 8, as we should do if we wished to extend the theory to
the geometry of more than three dimensions.

By the aid of Postulate 18 we obtain the following theorem:

Theorem 46. (By 1—11, 15—18, E1.—E3.) If two planes have a
point in common, then they have another point, and hence a line, in
common.

From this point on, the usual theorems concerning lines and plames
in space can be obtained by the usual methods of proof, and the intro-
duction of coordinates in space presents no further difficulty. Further,
if the coordinate axes are rectangular, the equation of a spherical surface
is obtained in the usual way (by the aid of Theorem 40), and finally, by
Postulate E6, we can assign a definite spherical surface to every sphere,
and a definite sphere to every spherical surface. Hence:

Theorem 47. (By 1—18, E1—E7.) If two systems (K, R) satisfy
all the postulates of Chapter II, they will be isomorphic with respect to
the variables K and R, in the sense explained in the introduction.

The proof consists simply in showing that every system (K, R) which
satisfies all the postulates is isomorphic with the special numerieal system
exhibited at the end of Chapter IL

With the proof of thig theorem, the main part of our work is com-
pleted. It remains to consider the independence of the postulates, ag is
done in the following chapter.

Chapter IV.
Independence of the postulates.

In this chapter we exhibit a list of ‘pseudo-geometries’ which establish
the independence of the postulates of Chapter II to the following extent:
1) the ‘general laws’, Postulates 1—18, are independent of each other, as
shown by examples 1—18; and 2) the ‘existence postulates’, Postulates E1—ET7,
are independent of each other and of the gemeral laws, as shown by
examples E1—ET7,
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Each of these pseudo-geometries is a system (K, R) in which the
variables K and R have such values that sll but one of the postulates in
question are satisfied, while the remaining one is not satisfied.

Example 1. Let K be a class consisting of three persons, a man
4, his father B, and his grandfather C; and let R be the relation ‘son
of’. Then ARB and BR C are true, while 4 R ¢ is false, so that
Postulate 1 is not satisfied. In this system, since there is only one ‘point’
(see Def. 4), namely A4, all the other general laws, 2—18, are satisfied
‘vacuously’; that is, the conditions under which these postulates become
effective do mnot oceur.

Example 2. Let K be a class of any number of ordinary spheres,
and let ‘4 R B’ mean: ‘4 within or equal to B’. Here Postulate 2 fails,
while Postulate 1 holds. Postulates 3—18 are satisfied vacuously, since
there are no ‘points’ in the system.

Example 3a. Let K be a class of three ordinary spheres, 4, B,
and 8, of which 4 and B are separate, but both included within S; and
let R be the ordinary relation of inclusion. Here all the general laws
1—18, are satisfied, except Postulate 3a,

Example 3b. Let K be a class including all ordinary spheres, which
we shall mark red, together with a duplicate set of spheres, in the same
space, which we shall mark blue. Let R be the usual relation of inclusion,
except in the case of two spheres which oceupy the same position; in
this case, we agree that the red sphere shall always be ‘within’ the blue.

This system satisfies all the general laws 1—18 except 3b. Inciden-
tally, it also satisfies all the existence postulates E1—ET.

Example 4. Let K be a class consisting of nine numbers: 4, B, X, Y;
AX,AY,BX,BY; ABXY; where A, B, X, Y are any (distinct) primes,
AX = the product of 4 and X, AY = the product of 4 and ¥, etc,;
let R be the relation ‘factor of”. For example: AR AX; AXR ABXY; ete.

In this system there are four ‘points’, namely, the prime numbers
A4, B, X, Y. The ‘segments’ (4 B}, [4X], etec. are ‘classes of points’ defined
according to Definition 5; thus, [dB] =4, B, X, ¥; [AX] = 4, X; ete.
Postulate 4 fails, since the segment [AB] contains X and Y, while the
segment [X Y] contains 4 and B. All the other general laws are satis-
fied (most of them vacuously).

Example 5. Let K be a class of eleven numbers: 4, B, X, Y; A B,
AX, BY, XY; ABX, ABY; ABXY; where 4, B, X, Y are primes
AB= A>DB, ete., as in Example 4; and let R be the relation “actor
of’, ag before.

Here [AY] includes B, and [BX] includes .4, while all the other
segments are ‘hollow’. Postulate 5 fails, since the ‘line A B’ (Def. 8) in-
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cludes the points 4, B, X, and Y, while the line XY’ includes only X
and Y.

Example 6. Let K be a class of 18 numbers: 4, B,C, X, ¥; 47,
BY, CY, AB, AC, BC; ABX, ACX, BCX; ABXY, ACXY, BCXY,;
ABCXY; and let B = ‘factor of’. (Same notation as in Example 4.)

Here every segment is ‘hollow’, so that no three points are collinear.
The triangle [A BC] (Def. 10) contains X and Y, and each of the triangles
[ABY], [ACY], and [BOY] contains X. All the other triangles contain
no points other than their vertices. Postulate 6 fails, since X and ¥ be-
long to [ABC], but ¥ does not belong to any of the triangles [4ABX],
[ACX], [BCX]. Since there is no plane which has all the properties 6,
7, 8, the definition of parallel lines iy without meaning in this system,
and the postulates concerning parallel lines are inoperative.

Example 7. Let K be a class of 19 numbers: 4, B, C, P, @, X;
ABP,ACQ,APX, AQX, BCP,BCQ, BQX,CPX; ABCPQ,ABPQX,
ACPQX, BCPQX; ABCP@X; and let R = “factor of’. (Same notation
as in Example 4.)

Here [AB)] and [CX] contain P, and [AC] and [BX] contain .
All other segments are hollow. Postulate 7 fails, since [4B] and [CX]
intersect in P, while (A BC] and [4ABX] contain the common point ¢
which does not belong to their common boundary [4B]. ’

Example 8. Let K be a class comprising the following numbers:

1) six primes: 4, B, C, X, Y, Z;

2) every number which is the product of two of these primes, as

AB, AC, ete;

3) every number which is the product of three of these primes, ez-

cept ABZ, ACY, and BCX;

4) the following products of four primes: ABCX, ABCY, ABCZ,

ABXY, ACXZ AXYZ BCYZ  BXYZ CXYZ;
b) the following products of five primes: ABCXY, ABCXZ,
ABCYZ; and

6) the number ABCXYZ;
and let I be the relation ‘factor of’, as in Example 4.

In this system every segment is hollow. The triangle [BCX] con-
-tains A; [ACY] contains B; [ABZ] contains C; all the other triangles
contain no points except their vertices. Postulate 8 fails, since the ‘plane
ABC’ contains all the points 4, B, C, X, ¥, Z, while the ‘plane X Y2’
contains only X, ¥, and Z.

Example 9. Let K be the class of all ordinary eircles (including
the null circles) whose centers lie within a given convex closed curve in
an ordinary plane; and let R be the ordinary relation of inclusion.
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In this system the ‘abstract points’ are the ordinary points of the
plane and Postulates 1—8 are clearly satisfied. Postulate 9 fails.

Example 10. Let K be a class of eleven numbers: 4, B, C, D;
BC, BD, CD; ABC, ABD, ACD; ABCD; where the notation has the
same meaning as in Example 4; and let R be the relation ‘factor of’.

Here all the segments are hollow, and all the triangles are hollow
except [BCD], which contains 4. According to the definition of parallel
lines, we have AB | CD and BC || AD; but Postulate 10 fails, since 4
belongs to the triangle [BCD]. All the other general laws are satisfied.

Example 11. To construct the example for Postulate 11, consider
first an ordinary plane, with all its circles, points, and lines, and suppose
the interior of a part of this plane — say a square
ABCD — is stretched or deformed in such a
way that all the points within the square are
crowded towards one corner C, without altering
their relations of order, or causing any break in
continuity., In this deformed plane, by a circle
or line we mean, of course, a figure which was
a true ecircle or line before the deformation.
Secondly, consider another plane, containing a square APC¢ without
any deformation, and place the two planes so fhat they intersect along
the line AC.

Then as our class K we take all the circles that lie in these two
planes, and as our relation R, the ordinary relation of inclusion.

In this system, Postulates 1—10 are clearly satisfied, but not Postu-
late 11. To see that Postulate 11 is not true, let P @ meet AC in M,
while the deformed line BD meets AC in a different point N; then B,
P, D, Q cannot be coplanar; but if Postulate 11 were true, we should
bave a right to infer, from a consideration of the ‘four-points’ ACBP
and CADGQ, that BP| DQ. All the other general laws, 12—18, are
satisfied (many of them vacuously).

Example 12. Let K be the class of all ellipses (including the null
ellipses) whose centers lie in a plane; and let R be the usual relation of
inclusion.

To see that Postulate 12 fails in this system, consider two concentric
ellipses that intersect at four real points, and let a line through the
center O cut one of the ellipses in 4 and the other in B. Then [0A4]
and [OB] are both congruent to the common radii of the ellipses, but
are not congruent to each other.

Example 13. Consider a system of concentric ellipses, no two of
which intersect, such that through every point of the plane ome ellipse

X\ .
//////:{/'/;///,’('

Fig. 17,
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will pass; and suppose that the ellipses are not all similar. Let K be the
class of all ellipses (including the null ellipses) whose centers lie in a
given plane, provided each of the ellipses can be obtained from ome of
the ellipses of the system just considered by a motion of translation.
Let R be the usual relation of inclusion.

Here Postulate 13 is not satisfied. All the other general laws are
satisfied.

Example 14. Let K be the class of all ellipses (including the null
ellipses) whose centers lie in a plane, and which are obtainable by a
motion of translation from a given system of concentric, simélar and
similarly placed ellipses.

Here Postulate 13 is satisfied, but not Postulate 14.

Exawmple 15. Let X be a class comprising the following numbers
(where the single letters denote primes, as in Example 4):

1) six primes: 4, B, C, D, X, ¥;

2) every product of two of these primes, as 4B, AC, ete.;

8) every product of three of these primes, as ABC, ABD, ete.;

4) every product of four of these primes, except ABCD, ABCY,
ABDY, ACDY and BCDY;

b) the following products of five primes: ABCXY, ABDXY, ACDXY,
BCDXY;

6) the number 4 BCDXTY;

and let B be the relation ‘factor of’.

Hore no segment contains more than its end-points, and no triangle
contains more than its vertices. The tetrahedron [ABCD] contains X
and Y; and each of the tetrahedra [ABCY], [ABDY], [ACDY], and
[BCDY) contains X. Postulates.4—14 are satisfied vacuously; Postu-
late 15 fails.

Example 16. Let K be a class comprising the following numbers
(for the notation, compare Example 4):

1) seven primes: 4, B, C, D, X, ¥, Z;

2) every product of two of these primes, except XY;

3) every product of three of these primes, excepi ABC, AXY, BXY,
CXY and XYZ;

4) every product of four of these primes, except the following: AB(C X,
ABCY, ABCZ, ABDX, ABXY, ACDY, ACXY, AXYZ,
BCXY, BXYZ, snd CXYZ;

5) the following products of five primes: ABCDZ, ABDXZ, ABDYZ,
ACDXZ, ACDYZ, ADXYZ, BCDXY, BCDXZ, BCDYZ,
BDXYZ, CDXYZ;
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6) the following products of six primes: 4BCDXZ, ABCDYZ,
ABDXYZ, ACDXYZ, BCDXYZ;

7) the numberfQABCD X Y Z;
and let B be the relation ‘factor of’.

Here all segments are hollow except [X Y], which contains D, and
all triangles are hollow, except [A BC], which containg 1. All the tetra-
hedra are hollow, except [ABDX], [ABCX], [ABXY], [ACDY],
{4BCY] and [ACXY], each of which containg Z. Postulate 16 fails,
since Z lies on both sides of the plane ABC.

Example 17. Let K be a class containing the five prime numbers
4, B, C, D, E, and every number which is the product of two, three, four,
or five of these primes; and let R be the relation ‘factor of’.

Here no segment contains more than its end-points, and no triangle
or tetrahedron contains more than its vertices. Postulate 17 fails, since
the point E does not belong to the ‘space ABCD’.

Example 18. Let K be the same class as in Example 17, omitting
the number ABCOD; and let R be the relation ‘factor of’.

Here the ‘line AE’ is ‘parallel’ to the ‘plane BCD’; but F is within
the tetrahedron [4BCD), so that Postulate 18 clearly fails.

By these examples 1—18 we have thus proved the independence of
all the ‘general laws’. We now give a similar set of examples for the
‘existence postulates’.

Example E1. Let K be a class consisting of a single sphere.

Example E2. Let K be the class of all spheres (including null
spheres) whose centers lie along a given straight line; and let R = in-
clusion.

Example E3. Let K be a class including the following numbers
{compare, for notation, example 4):

A; B; C; D; AB, ete.; ABC, efc., including all the combinations of
the letters; and let R = ‘factor of’.

This system contains only four points, which are situated at the ver-
tices of a tetrahedron.

Example E4. Let K be the class of all egg-shaped convex solids
(including the null solids, or points); and let R be the usual relation of
inclusion.

In this system no ‘sphere’ has a center in the sense of the definition,
so that the idea of congruence between segments that have a common
end point has no meaning, and the general laws concerning congruence
are inoperative.

Example ES. Let K be the class of all spheres (including null
spheres) such that their radii and the coordinates of their centers can be
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expressed in terms of 1 by a finite number of applications of the four
algebraic operations of addition, subtraction, multiplication, division, and

the fifth operation 1+ ?, where z is any number already obtained by
means of these five operations. (Hilbert.)

Example E6. Let K be the class of all spheres in space (including
null spheres), together with a number of detached spheres to which the
relation R (inclusion) does not apply.

These detached spheres will then have no centers, so that Postulate E6
is not satisfied.

Example E7. Let K be the class of all spheres (including null
spheres) whose centers lie in a given plane; and let R be the usual re-
Iation of inclusion.

Here Postulates 1—18 are all satisfied (15—18 vacuously), and also
E1—E6; but E7 is not.

The proofs of independence are thus complete.

Appendix,

In this appendix we give the demonstrations of such of the theorems
in Chapter Il as are likely to present any difficulty to the reader.

Proof of Theorem 17. (A segment cannot have more than one
mid-point.)

Let AXBY and 4 PBQ be two parallelograms on the same diagonal
[4B], and let [AB] be met by [XY] in M and by [PQ] in N

By considering the “four-points’ ABPX and BAQY
(unless X is on the line AP), we find PX~ QJY, by
Postulate 11. Then by considering AQNY and BPNX
(unless Y is on the line @N), we find NY ~ NX. Hence
N is on the line X ¥, and hence N = M.

In the special case when X is on the line AP, consider
BPNX and AQNY. In the other special case, when Y
on the line QN, consider ABPX and BAQY.

Proof of Lemma for Theorem 18. We divide
the proof of this lemma into two steps.

1) Through any point P in the plane, not coincident
with B or D, and not on the diagonal 4, a line can be
drawn parallel to 4C. (Steiner.)

Proof. Let PA meet BC in @, let M Q mect PO
in R and AD in 8, and let C'Q meet A R in X. Then, by
Postulate 11, from MB.A @~ M DCS, we find AQ~C8,
and hence from RQPX ~ RSCA we have PX | AC.
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But if MQ| PC, the proof requires modification, thus: Let AD
weet PO in T and MQ in U, and let 7 meet CQ in ¥. Then from
MDTC~ MBYA we find T7C ~ Y4, and from MTUC~ MYQA we
find UC~ Q4; hence, from TUCM ~ TAPY, we have PY || CM, that
is, PY || CA.

If PA does not meet BC, then PC will meet B4, and we have
merely to interchange (' and 4 in the proof.

2) To any given line in the plane of the parallelogram, a parallel
can be drawn through any given point P mot on that line.

Proof Let the given line meet the diagonals AC and BD in E
and F, respectively. Through E and F, by 1), draw parallels to BD and
AC, meeting in G. Then MEGF will be a parallelogram with the given
line EF as one of its diagonals. Then through P draw a line parallel
to EF by 1).

The demonstration of this lemma would of course he much simpler
if we chose to avail ourselves of the existence postulates E1—ES.

Proof of Theorem 26, Let OAPB be a rectangle, X any point
on 04, and Y any point on OB. The conditions of Lemma 18 are clearly
satisfied. First, let ¥'= B Through X draw a parallel to
OB, meeting BP in ¢. Then O X QB is a parallelogram. By eL
applying Postulate 14 to 0, 4, X, B and B, P, @, O, we find
XB = Q0. Therefore 0X QB ig a rectangle. Secondly, if ¥
is any point on line OB, treat ¥ in relation to OBQX just
as X was treated in relation to OAPB.

Proof of Theorem 30. Through the vertices of the given triangle,
draw lines parallel to the opposite sides, which is clearly possible by the
Lemma to Theorem 18. The altitudes of the given triangle are then the
perpendicular bisectors of the sides of the mnew triangle, and therefore
meet in a point, by Theorems 28 and 29.

Proof of Theorem 32. Part 3) is simply Postulate £4, and parts 1)

and 2) are immediate implications therefrom. For part
4), we may use the following construction, given by
Hilbert (loc. cit.). Let 4, B, € be points on the given
line, such that A B= AC, and let P be the given point, E
outside that line. On any lines through 4 in the plane
ABP, lay of AD and AE, congruent to AB. Then 5 4 ' ¢
BDC and BEC will be right triangles. Let BD meet Fig. .
CE in F, and let BE meet CD in H. Then FH will be perpendicular
to AB, by Theorem 30 (on the intersection of the three altitudes of a
triangle). Then through P draw a line parallel to FH, which will be
the required perpendicular.

4 X
Fig. 0.

B
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Proof of Theorem 84,1. (Associative law of addition.) Let 4+ B=X,
B4 C=1Y. By definition, there are two points, P and R, such that
PORX and PARB are parallelograms; also
P and 8 such that POSY and PBSC sare
parallelograms. Take T so that PATY is a
parallelogram. We are to prove that PX7TC
is a parallelogram. Now we can show that
RS and RT are both |j to the given line, so
that R, S, T are collinear. Then from

RXBS~ YSTX,

we find BS||TX, and from ASCT ~ SARO we find CT || EO. Hence,
ITX||CP and CT|| PX,

Proof of Theorem 35. (The product of two points is independent

of the auxiliary point P.) We have 4 and B on the

number line OU, and two points P and P’, not on
that line. By Def. 25, take @ on QP and ¥ on OU
so that BQ | UP and QY || PA. Also take @' on
OP', so that BQ || UP’; then, to prove Q' Y || P’ 4,
" apply the four-point postulate to OUPP’ ~ OBQ ¢,

Pig. 3. and to BQQ' Y~ UPP'A.
Proof of Theorem 36,1. (Associative law of multiplication.) By
Def. 25, we have 4, B, 0, X, Y, Z on the number line OU, where
X=A4><B, Y=Bx=C aud Z =X >=<C;

and P, @, R, S on another line through O.
We are to prove Z= A>< Y. Thatis, we have
1 UP| BQ| CR| YS, PA|QX,
PB|RY, PX| RZ
BC and we are to prove PA|| 8Z. This follows

. 34. by Postulate 11 from
BPQX ~ YRSZ.

Proof of Theorem 36,2. (First distributive law for multiplication:
A>< (B+0)= A=< B+ 4> () We readily establish first the following
lemmas: (1) If M = mid 04 and
N=mnid OB, then MN|| AB; and
@) AB|| XY and M=mid 4 X
and N == mid BY, then

MN| AB||XY.

In the figure for the theorem, on
the line O U we have 4, B, G, X, ¥,

Fig. 28.
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8,Z, D, E, where X=4=B, Y=A4=<C, 8§=B+0C, Z=X+7,.
D =mid BC =mid 08, E—=mid XY = mid 0Z; and on the line OP
we have , R, F and H where UP||BQ||CR, PA|| QX ||RY, F=mid QR,
and H is such that F — mid OH. Then by lemma 2, DF| B@| UP,
and FE| QX || P4; and hence, by lemma 1, SH{ DF||UP, and
HZ| FE| PA. Therefore Z = A >=<S8S.

Proof of Theorem 36, 3. (Second distributive law for mulbipli-
cation: (B+C)>< 4 = B> A4 + C> A4.) We have on the line OU, the
points 4, B, C, X, Y, S, Z, where
X=Bx=<A4, Y=0x<A4, S=B+C,
Z=X+7, and on another line
through O, the points P and @, so
that UP| 49, PB| QX, PC|| QY.
We are to prove PS|| @Z. Since
S = B + C, there is an R such that
PRB|CR, PC) BR, OP| RS; and
since Z=X -+ Y, there is a T such
that QX || ¥T, QY || XT, 0Q| TZ. Then from BCPR~ XY @Q1T, we have
PR || QT; from CPOR~ YQOT we have OR|| OT; and from

ORPS~ 0TQZ
we have PS || QZ. That is, Z = 8 >< 4.

Proof of Theorem 37. (Commutative law of multiplication.) By
Th. 35, we may take the auxiliary point P so that OP L OU. (It is
not necessary that OP = OU.) We have on the
line OU the points 4, B, and X = 4 >=< B; and ¢
on the line OP we have ¢ and R such that
UP||BQ| AR and P4 |Q@X. We are to prove
that X = B>< A4, that is, that PB|| RX. Fol-
lowing the method of Schur (loc. cit.), draw
through A a line perpendicular to PB, meeting P
the line OP in S. Then in the friangle PA4S,
PB.1SA, and AB1 PS; hence, by Th. 30, 9V
SB_1 PA. But PA||@QX. Therefore SB_1 ¢X.
In triangle SX@Q, we have SB._ L QX and
XB.LQS; hence ¢ BLSX. But ¢B||UP|EA.
Therefore R4 1 8X. In triangle RX S, we have
RA 1 SXand X4 L RS; hence S4 L RX. But S4 is also L to PB.
Therefore RX and PB must be parallel, by Th. 27.

Proof of Theorem 40. (Pythagorean Theorem.) Let OAPB be a
rectangle, with mid-point at C. On the line 0A take [0X]=[OP] and
on the line OB take [0Y]=[OP]. On OP take [0E]=[0A] and

Fig. 37
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[OF)=[0B]. Through A4 draw a parallel to XE, meeting OP in S;
snd through B draw a parallel to Y7 meeting OP in 7. By Th.3l,
EA||PX and FB||PY, so that if OP is the number line, OS is the
square of OF and OT is the square of OF,
while the square of OP is OP. We wish to
prove that OP is the sum of OS and OT,
that is, that C, which is the mid-point of O P,
is also the mid-point of T'S.

By Th.31, XE=A P, so that the triangles
OAP and OEX are congruent (in the semse
that the three sides of one are congruent
respectively to the three sides of the other).
* But PA| 04; therefore XE | OF. Similarly,
YF= BP, so that the triangles OBP and
OFY are congruent; therefore YF | OF. Then by Th. 27, XE| Y F;
that is, BT||.48. Therefore, since C=mid 4B, ASBT is a parallelogram,
and C=mid 78.

The extension to the case of any unit other than OP is effected
immediately by simple algebra.

Proof of Theorem 46. (If two planes have a point in common,
then they have a line in common.) Let the two planes be ABC and
ODX, and consider the point X, which must lie in one of the fifteen
regions of the space 4BCD.

If X is in [ABCD], then DX meets 4 BC, by Postulate 18,
If Xisin {[ABC'DY, 4 is in [BCDX], and BA meets CDX.
If Xisin [BA'C'D'], B is in [ACDX], and AB meets CDX.
If Xisin [DA'BC, Dis in [ABCX], and DX meets ABC.
If X is in [ABC'D’), then 4B meets CDX, by Def, 28.

If X is in [ABCD'], then DX meets ABC, by Def. 28.

If X is in [ACB'D’], AC meets BD X in E, and BE meets D X (Th.13).
If X is in [BCA'D'], BCmeets ADX in F, and AF meets DX.

If Xisin [CDA'B], CD meets ABX in G, and XG meets 4 B.

I X is in [ABDC], CX meets 4ABD in H, and D H meets 4 B.

If X is in [CA'B'D), then C is in [ABDX], CX meets ABD in J,
by Post. 18, and D.J meets 4B by Th. 18.

There remain four cases to consider.
I Xis in [ADB'C’], AD meets BCX in K, and XK meets BC in L.
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Then DX and AL are coplanar, and will meet unless parallel.
If X is in [BDA'C], BD meets ACX in M, and XM meets AC in N.
Then DX and BN are coplanar, and will meet unless parallel,
If X is in [ACDB'], ACD meets BX in P, and DP meets 4Cin Q.
Then DX and BQ are coplanar, and will meet unless parallel.
If X is in [BCDA"], BOD wmeets AX in R, and DR meets BC in S.
Then DX and 48 are coplanar, and will meet unless parallel.

Hence we see that the only cases in which the existence of a second
point of intersection is not immediately established are the cases in which
DX is parallel to a line through 4 or B in the plane ABC. In these
cases, draw through C a line parallel to the line in question in the
plane ABC; the line so drawn will be parallel to DX also, and hence
will lie in the plane CDX.




