
Anoma Research Topics | TECHNICAL REPORT

Heterogeneous Paxos 2.0: the Specs
Aleksandr Karbyshev a and Isaac Sheff a

aHeliax AG

* E-Mail: karbyshev@mailbox.org, isaac@heliax.dev

Abstract
We present Heterogeneous Paxos 2.0 (HP2.0), an improved version of Heterogeneous Paxos
consensus algorithm (HP). In a nutshell, HP2.0 simplifies the algorithm logic, reduces
bandwidth usage, and enables a more efficient implementation.
HP2.0 is compatible with the requirements of HP and satisfies the same correctness
properties. A formal specification of HP2.0 in TLA+ is available as a separate software
artefact, with a formal proof of the key safety property of Agreement in TLAPS.
This report provides an accessible account of HP2.0, of the design space in which it exists,
and of the design choices that led us to our current system.

Keywords: Consensus ; Distributed Algorithm ; Heterogeneous Paxos ;

(Received: June 17, 2024; Version: December 4, 2024)

Contents

1 Introduction 2
1.1 Original Heterogeneous Paxos . . . . . . . . . . . . . . . . . 2
1.2 Why Heterogeneous Paxos 2.0? . . . . . . . . . . . . . . . . 2

2 Differences From Original Heterogeneous Paxos 3
2.1 Broadcast Primitive . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 2a Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 One Message In, at Most One Message Out . . . . . . . . . . 3
2.4 Byzantine Behaviour Detection . . . . . . . . . . . . . . . . 4
2.5 Logic changes . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.5.1 Buried . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.5.2 Well-Formed . . . . . . . . . . . . . . . . . . . . . . 4
2.5.3 Acceptor Algorithm . . . . . . . . . . . . . . . . . . 5

3 Specification 5
3.1 Network Model . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 Learner Graph . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.3 Protocol Message Structure . . . . . . . . . . . . . . . . . . . 6

3.3.1 Properties of All Protocol Messages . . . . . . . . . . 6
3.3.2 Properties of Proposer Messages . . . . . . . . . . . 6
3.3.3 Properties of Acceptor Messages . . . . . . . . . . . 7

DOI: 10.5281/zenodo.14276903 Anoma Research Topics | December 4, 2024 | 1–13

https://art.anoma.net
https://orcid.org/0000-0002-7984-4104
https://orcid.org/0000-0002-7822-1503
https://dx.doi.org/10.5281/zenodo.14276903


3.4 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.5 Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.6 Protocol Properties . . . . . . . . . . . . . . . . . . . . . . . 11
3.7 Choice of WellFormed2a Predicate . . . . . . . . . . . . . . . 11
3.8 Mailbox Layer . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Future Work 12

5 Acknowledgements 12

References 13

1. Introduction
We present Heterogeneous Paxos 2.0 (HP2.0): an improved, simpler, and more
efficient version of Heterogeneous Paxos consensus protocol (HP) [SWvRM20].
The assumptions and guarantees of HP2.0 are similar to those of HP, but
we simplify the algorithm logic and reduce communication complexity, thus
improving efficiency.

A formal specification of HP2.0 in TLA+ [Lam02] is available in the Typhon
repository [Ano]. The TLA+ spec has a formally verified proof of Agreement,
a key safety property [Ano]. Here, rather than focusing on proofs, we attempt
to explain the protocol in more reader-friendly terms.

This report is intended as the definitive “source of truth” for the definition
of HP2.0. However, as we continue to integrate and prove more optimizations
and simplifications, HP2.0 remains a work in progress.

1.1. Original Heterogeneous Paxos
This report assumes readers are familiar with the original HP technical re-
port [SWvRM20], and is intended to explain the improvements we have made
for HP2.0.

Original HP generalizes the Paxos consensus protocol [Lam98] for a setting
with arbitrary quorums of acceptors, tolerating mixed crash and byzantine
failures, with each learner tolerating different failure scenarios. The motiva-
tion, roles for participants, and trust model of HP2.0 are identical to those in
HP [SWvRM20, §1–4, 8].

1.2. Why Heterogeneous Paxos 2.0?
HP2.0 improves upon HP by being both simpler and more efficient. The
simplifications not only make the protocol easier to formally specify in TLA+,
but also facilitate proving things about it and streamline its implementation.
The differences between HP and HP2.0 are outlined in Section 2.

DOI: 10.5281/zenodo.14276903 Anoma Research Topics | December 4, 2024 | 2

https://dx.doi.org/10.5281/zenodo.14276903
http://art.anoma.net


HP2.0 admits a substantially more efficient implementation than HP, with
no loss in power. For example, calculating which byzantine acceptors are
caught in a message could naively require exponential time for HP. The
Byzantine behaviour detection modification of HP2.0 (Section 2.4) enables an
implementation that can perform this check in linear time.

2. Differences From Original Heterogeneous Paxos
The HP2.0 consensus algorithm results from five substantial improvements
to HP, which we describe in the remainder of this section.

2.1. Broadcast Primitive
HP2.0 assumes a broadcast primitive, which is responsible for sending mes-
sages to each acceptor and learner. For the liveness property to hold, broadcast
must guarantee that if a message is received by one honest acceptor (i.e., an
acceptor that is both safe and live), then that message is eventually received
by all acceptors. It does not require ordering to be preserved.

HP2.0 assumes a partially synchronous network [DLS88], where after some
unknown global stabilization time (GST), all messages arrive within some
(unknown but fixed) latency bound. After GST, the broadcast guarantee must
deliver messages to all honest recipients within an (unknown) finite bound
dependent on network latency. We do not require any particular message
ordering guarantees.

In the HP algorithm, broadcast was implemented by having each acceptor
echo well-formed messages to all other acceptors. In contrast, HP2.0 leaves
the exact implementation of broadcast flexible, allowing for multiple possible
approaches. One such implementation, as used in HP, involves all acceptors
echoing all received messages to all other acceptors and learners. A more
bandwidth-efficient implementation, however, would require acceptors to
explicitly request any missing messages when a received message references
one they do not recognize.

2.2. 2a Messages
Instead of sending a 2a-message for each learner as in HP [SWvRM20], we
send a single 2a (non-proposal) message associated with a set of learners.
Conceptually, this is similar to sending a set of 2a-messages, but in practice,
it is more efficient, both to send and to track with refs (Section 3.3).

2.3. One Message In, at Most One Message Out
With the broadcast primitive and the 2a-messages, we can substantially sim-
plify our protocol: In fact, we can remove all recursion and broadcast at most
one message for each message received. This entails another minor change:

DOI: 10.5281/zenodo.14276903 Anoma Research Topics | December 4, 2024 | 3

https://dx.doi.org/10.5281/zenodo.14276903
http://art.anoma.net


instead of each actor receiving its own message in the same atomic action
that it sends it (messages are broadcast, so actors receive their own mes-
sages), they receive them in some future action, just like any other message.
This change, in turn, may increase implementation efficiency by breaking up
atomic actions into smaller schedulable pieces.

2.4. Byzantine Behaviour Detection
Each message specifies the previous message from the same sender (Sec-
tion 3.3). This makes it much easier to detect certain kinds of Byzantine
behaviour: two messages referencing the same parent form a proof of mis-
behaviour. In contrast, the original protocol called for comparing transitive
history sets [SWvRM20]. This change makes detecting Byzantine behaviour
much easier to implement without sacrificing any guarantees.

2.5. Logic changes
In some cases, we were able to simplify Heterogeneous Paxos by remov-
ing unnecessary constraints and checks. Our formal proof shows that the
streamlined HP2.0 protocol retains the same safety conditions (Agreement
and Validity) as the original. In each case, simplification can only improve live-
ness: all acceptor actions allowed without the simplification remain allowed
with the simplification. Termination guarantees therefore remain unchanged.

We make three such simplifications: in the definition of Buried, the defini-
tion of Well-Formed, and the acceptor algorithm.

2.5.1. Buried
In HP2.0, to bury a 2a-message 𝑥 , the acceptor must have seen a different
2a-message with a higher ballot and a different value. In contrast, HP required
that a quorum of acceptors observe such a message [SWvRM20, Definition 28].
Upon analysing the formal safety proof for HP, we found that the quorum
was only used to establish the existence of a single higher ballot 2a-message
with a different value. We have formally proven that the quorum condition is
unnecessary for burying an older 2a-message.

By eliminating this unnecessary constraint, HP2.0 consensus algorithm
can achieve faster progress than HP in certain scenarios, as the acceptors no
longer need to wait for redundant 2a-messages to propagate.

2.5.2. Well-Formed
In HP2.0, we introduce a generalized definition of the well-formedness condi-
tion for 2a-messages (see [SWvRM20, Assumption 29] for the original well-
formedness assumption). Specifically, we have abstracted all restrictions into
a single WellFormed2a predicate, with the only remaining concrete constraint
being that the set of references is not empty (Definition 20).

DOI: 10.5281/zenodo.14276903 Anoma Research Topics | December 4, 2024 | 4

https://dx.doi.org/10.5281/zenodo.14276903
http://art.anoma.net


We demonstrate that the algorithm remains safe regardless of the concrete
instantiation of WellFormed2a, even when it is set to a constant True predicate.
However, we advise a more restrictive predicate instantiation (as discussed in
Section 3.7), which rules out certain redundant 2a-messages, including those
which HP would otherwise permit. In particular, when an acceptor sends
two 2a-messages for the same ballot in a row, the later one must feature more
learners than the first. If this condition is not met, the second message does
not enable any new actions. All recipients would have to process the first
message anyway (due to causal order of message receipt), and it enables the
same actions.

2.5.3. Acceptor Algorithm
With our modifications to Well-Formed and streamlined message structure,
the space of allowed messages is actually very narrow: there isn’t much a
byzantine acceptor can do, besides forget history. As a result, our acceptor
algorithm becomes very straightforward: receive messages in causal order,
and at each message receipt, send a well-formed message if possible (mes-
sages must reference the previous message sent, and all messages received
since then). The one exception to this is that 1𝑎-messages for old ballots are
completely ignored: there is no need to process old proposals.

This acceptor algorithm is very generic: it moves almost all of the consensus
protocol logic into the computation of well-formedness. Indeed, almost all
protocols with all-to-all communication could be described this way (although
it wouldn’t necessarily be efficient).

3. Specification
3.1. Network Model
We assume the closed-world distributed system consisting of a fixed finite set
of acceptors A, a fixed finite set of proposers P and a fixed finite set of learners
L. We denote by S ⊆ A a set of safe, non-Byzantine, acceptors that follow
the protocol.

We assume that message broadcast is reliable, i.e., every message sent or
received by a correct (i.e., safe and live) acceptor or proposer is eventually re-
ceived by all live acceptors and learners1. The delivery order of sent messages
does not have to be preserved.

3.2. Learner Graph
We use the notion of learner graph introduced in [SWvRM20]. We recap its
formal definition below.

Let L be a fixed finite set of learners, and A a fixed finite set of acceptors.

1As learners are never required to send messages, all learners are trivially live.

DOI: 10.5281/zenodo.14276903 Anoma Research Topics | December 4, 2024 | 5

https://dx.doi.org/10.5281/zenodo.14276903
http://art.anoma.net


• Nodes of learner graph are elements 𝛼 ∈ L.

• Each learner 𝛼 is labelled with a set 𝑄𝛼 ⊆ 2A. The elements of 𝑄𝛼 are
quorums 𝑞 ⊆ A. We assume that each 𝑄𝛼 is closed upwards, i.e., for
any 𝑞′ ⊇ 𝑞 ∈ 𝑄𝛼 , we have 𝑞′ ∈ 𝑄𝛼 .

• For any pair 𝛼, 𝛽 ∈ L, there is a graph edge labelled with a set of
quorums, 𝛼−𝛽 ⊆ 2A, called a safe set of 𝛼 and 𝛽 . We assume that any
safe set 𝛼−𝛽 is closed upwards, i.e., for any 𝑞′ ⊇ 𝑞 ∈ 𝛼−𝛽 , we have
𝑞′ ∈ 𝛼−𝛽 .

• The graph is undirected, i.e., 𝛼−𝛽 = 𝛽−𝛼 .

Definition 1 (Condensation). We say that the learner graph is condensed if
for all 𝛼, 𝛽,𝛾 ∈ L

𝛼−𝛽 ∩ 𝛽−𝛾 ⊆ 𝛼−𝛾
Definition 2 (Validity). We say that the learner graph is valid if for any
𝑠 ∈ 𝛼−𝛽 , 𝑞 ∈ 𝑄𝛼 , and 𝑟 ∈ 𝑄𝛽 we have 𝑠 ∩ 𝑞 ∩ 𝑟 ≠ ∅.
Definition 3 (Entanglement). We say that learners 𝛼 and 𝛽 are entangled if
the set of safe acceptors S belongs to the learners’ safe set.

Entangled(𝛼, 𝛽) def
= S ∈ 𝛼−𝛽

3.3. Protocol Message Structure
As far as message encoding “on the wire” is concerned, there are two types
of messages: proposer messages, also called 1a-messages, and acceptor
messages. The encoding of these must be distinct, allowing recipients to
identify the type of the received message.

3.3.1. Properties of All Protocol Messages
1. Each protocol message 𝑥 carries a cryptographic signature that uniquely

identifies the message signer, denoted by Sig(𝑥), with Sig(𝑥) ∈ A ∪ P.

2. Each protocol message has a unique hash, which other messages can
use to reference it.

3.3.2. Properties of Proposer Messages
1. For each proposer message 𝑥 , Sig(𝑥) must be a proposer: a participant

authorized to generate new proposals.

2. Each proposer message 𝑥 has a field 𝑥 .val containing a proposed value.

DOI: 10.5281/zenodo.14276903 Anoma Research Topics | December 4, 2024 | 6

https://dx.doi.org/10.5281/zenodo.14276903
http://art.anoma.net


3. Each proposer message 𝑥 has a field 𝑥 .bal: a natural number specific
to this proposal—its ballot number. We assume that ballots are value-
specific: 𝑥 .bal = 𝑦.bal implies 𝑥 .val = 𝑦.val. One way to implement
this is to include the hash of the value in the (least significant bits of
the) ballot.

3.3.3. Properties of Acceptor Messages
1. Each acceptor message 𝑥 carries a finite list of references to some other

messages, 𝑥 .refs. In practice, each reference is represented by a hash
of the referenced message. Acceptors remember previously received
messages (known_messages), allowing them to resolve references.

2. Each acceptor message 𝑥 carries a distinguished reference, 𝑥 .prev, to
a previous message signed by the same signer, identified by Sig(𝑥).
If 𝑥 is the first message sent by the sender, 𝑥 .prev contains a special
non-reference value ⊥.

3.4. Definitions
Definition 4 (1b). Acceptor message 𝑥 is called a 1b-message, denoted as 𝑥 :1b,
if its references contain a proposer message. Formally:

𝑥 :1b
def
= ∃𝑦 ∈ 𝑥 .refs. 𝑦 :1a

Definition 5 (2a). Acceptor message 𝑥 is called a 2a-message, denoted as 𝑥 :2a,
if its references do not contain a proposer message. Formally:

𝑥 :2a
def
= ∀𝑦 ∈ 𝑥 .refs.¬𝑦 :1a

We extend Sig over sets of messages to mean the set of signers of those
messages:
Definition 6 (Message set signers). For any set of messages 𝑀 :

Sig(𝑀) def
= {Sig(𝑚) | 𝑚 ∈ 𝑀}

Definition 7 (Transitive references).

Tran(𝑥) def
= {𝑥} ∪

⋃
𝑚∈𝑥 .refs

Tran(𝑚)

Definition 8 (Message 1a).

Get1a(𝑥) def
= argmax

𝑚:1a ∈Tran(𝑥)
𝑚.bal

DOI: 10.5281/zenodo.14276903 Anoma Research Topics | December 4, 2024 | 7

https://dx.doi.org/10.5281/zenodo.14276903
http://art.anoma.net


Definition 9 (Ballot).
B(𝑥) def

= Get1a(𝑥).bal
Definition 10 (Value).

V (𝑥) def
= Get1a(𝑥).val

Definition 11 (Caught acceptors).

Caught (𝑥) def
= Sig

©«
 𝑚 ∈ Tran(𝑥)

∃𝑚′ ∈ Tran(𝑥).
Sig(𝑚) = Sig(𝑚′)

∧𝑚 ≠𝑚′

∧𝑚.prev =𝑚′.prev


ª®®®¬

Definition 12 (Connected learners). For any learner 𝛼 and message 𝑥 :

Con𝛼 (𝑥)
def
= {𝛽 ∈ L | ∃𝑠 ∈ 𝛼−𝛽. 𝑠 ∩ Caught (𝑥) = ∅}

Definitions 13 to 17 are mutually recursive. They are sound because the
recursive call is done on descendants of argument messages relative to the
message reference relation.
Definition 13 (Buried 2a-messages). For any learner 𝛼 , 2a-message 𝑥 and
message 𝑦:

Buried𝛼 (𝑥,𝑦)
def
=

∃𝑧 ∈ Tran(𝑦). 𝑧 :2a ∧ 𝛼 ∈ lrns(𝑧) ∧ B(𝑧) > B(𝑥) ∧ V (𝑧) ≠ V (𝑥)

Definition 14 (Connected 2a-messages). For any learner 𝛼 and message 𝑥 :

Con2as𝛼 (𝑥)
def
=

 𝑚 ∈ Tran(𝑥)

𝑚 :2a
∧ Sig(𝑚) = Sig(𝑥)
∧ ∃𝛽 ∈ lrns(𝑥).

𝛽 ∈ Con𝛼 (𝑥) ∧ ¬Buried𝛽 (𝑚, 𝑥)


Definition 15 (Freshness). For any learner 𝛼 and 1b-message 𝑥 :

fresh𝛼 (𝑥)
def
= ∀𝑚 ∈ Con2as𝛼 (𝑥). V (𝑚) = V (𝑥)

Definition 16 (Quorum of message). For any learner 𝛼 , 2a-message 𝑥 :

q𝛼 (𝑥)
def
= Sig

({
𝑚 ∈ Tran(𝑥) | 𝑚 :1b ∧ fresh𝛼 (𝑚) ∧ B(𝑚) = B(𝑥)

})
Definition 17 (2a-message learners). For any 2a-message 𝑥 :

lrns(𝑥) def
= {𝛼 ∈ L | q𝛼 (𝑥) ∈ 𝑄𝛼 }

DOI: 10.5281/zenodo.14276903 Anoma Research Topics | December 4, 2024 | 8

https://dx.doi.org/10.5281/zenodo.14276903
http://art.anoma.net


The following chain property does not have a direct analogue in HP. It
requires that the parent of a message be from the same sender, and included
in the messages refs field.
Definition 18 (Chain property). For any message 𝑥 :

ChainRef (𝑥) def
= 𝑥 .prev ≠ ⊥ → 𝑥 .prev ∈ 𝑥 .refs ∧ Sig(𝑥 .𝑝𝑟𝑒𝑣) = Sig(𝑥)

Definition 19 (Decision). For any learner 𝛼 and set of messages 𝑆 :

Decision𝛼 (𝑆)
def
= Sig(𝑆) ∈ 𝑄𝛼 ∧ ∀𝑥,𝑦 ∈ 𝑆. 𝑥 :2a ∧ 𝛼 ∈ lrns(𝑥) ∧ B(𝑥) = B(𝑦)

Any set of messages 𝑆 such that Sig(𝑆) ∈ 𝑄𝛼 is called a message quorum. If
Decision𝛼 (𝑆) holds, we shall write V (𝑆) to denote V (𝑥) for some message 𝑥 ∈ 𝑆 .
Definition 20 (Well-formedness). For any message 𝑥 :

WellFormed1b(𝑥) def
= ∀𝑦 ∈ Tran(𝑥). 𝑥 ≠ 𝑦 ∧ 𝑦 ≠ Get1a(𝑥) → B(𝑦) ≠ B(𝑥)

WellFormed (𝑥) def
=

ChainRef (𝑥)
∧ (𝑥 :1b → WellFormed1b(𝑥))
∧ (𝑥 :2a → 𝑥 .refs ≠ ∅ ∧WellFormed2a(𝑥))

where WellFormed2a is an arbitrary predicate on messages.2

3.5. Protocol
The formal specification of the protocol is formulated in TLA+ [Lam02]

in the Typhon repository [Ano]. The acceptor and learner algorithms are
formulated in PlusCal language [Lam09], which gets translated to TLA+

code.
For better readability, we present the pseudocode of learner and acceptor

algorithms in Figures 1 and 2, respectively. Like TLA+, we specify exactly
which actions are safe for each actor. This does not rule out unnecessary or
repetitive actions. Formally, each action is a predicate over state changes: the
action is only deemed safe if every part of the predicate holds true. Actions
can include other actions.

To ensure liveness, we require weak fairness [Lam02]: in any execution
trace, if an action is safe for an infinite sequence, it eventually occurs.

Next, we describe the semantics of some particular instructions.

2We show in Theorem 22 that the algorithm’s safety does not depend on the choice of WellFormed2a predicate. In particular, it can
be chosen to be the constant True predicate. See Section 3.7 for a discussion on the choice of the predicate.

DOI: 10.5281/zenodo.14276903 Anoma Research Topics | December 4, 2024 | 9

https://dx.doi.org/10.5281/zenodo.14276903
http://art.anoma.net


1 Acceptor::init():

2 known_messages = {}
3 recent_messages = {}
4 prev_message = ⊥
5

6 Acceptor::receive(𝑚):

7 assume 𝑚 ∉ known_messages

8 assume ∀𝑟 ∈𝑚.refs. 𝑟 ∈ known_messages

9 known_messages ∪= {𝑚}
10

11 Acceptor::process(𝑚):

12 assume WellFormed (𝑚)
13 receive(𝑚)

14 with 𝑧 = msg(prev = prev_message, refs = recent_messages∪ {𝑚}):
15 if WellFormed (𝑧):
16 recent_messages = {𝑧}
17 prev_message = 𝑧

18 broadcast(𝑧)

19 else if ¬(𝑚 :1a):
20 recent_messages ∪= {𝑚}

Figure 1. Heterogeneous Paxos 2.0 acceptor specification. For all incoming messages, the
acceptor calls Acceptor :: process message handler. The function msg constructs a new
acceptor message.

1 Learner::init():

2 known_messages = {}
3 decision = ⊥
4

5 Learner::receive(𝑚):

6 assume 𝑚 ∉ known_messages

7 assume ∀𝑟 ∈𝑚.refs. 𝑟 ∈ known_messages

8 known_messages ∪= {𝑚}
9

10 Learner::process(𝑚):

11 assume WellFormed (𝑚)
12 receive(𝑚)

13

14 Learner::decide():

15 with 𝑠 ⊆ known_messages:

16 assume Decisionself (𝑠)
17 decision = V (𝑠)

Figure 2. Heterogeneous Paxos 2.0 learner specification. For all incoming messages, the
learner first calls Learner :: process message handler, and then checks whether a decision
can be formed based on the set of known messages.

DOI: 10.5281/zenodo.14276903 Anoma Research Topics | December 4, 2024 | 10

https://dx.doi.org/10.5281/zenodo.14276903
http://art.anoma.net


Instruction Semantics.

broadcast(𝒛) When called, it sends message 𝑧 to every learner and acceptor,
including the caller. Formally, this would mean that the defined state
change is only allowed if the new state includes 𝑧 in the network.

assume 𝑷 is a synonym of PlusCal’s "when" instruction [Lam24]. The in-
struction, defined for Boolean state predicate 𝑃 , restricts possible ex-
ecutions and should be considered as a guard à la Dijkstra [Dij75]:
execution of the function containing "assume 𝑃" is only possible if the
predicate evaluates to true during such a putative execution.

with 𝒙 = 𝒗: 𝑪 is adopted from the PlusCal counterpart [Lam24]: 𝐶 is exe-
cuted with 𝑥 being locally defined as the result of computation of the
expression 𝑣 .

3.6. Protocol Properties
Theorem 21 (Validity). For any learner 𝛼 , and set of messages 𝑠 :

Decision𝛼 (𝑠) =⇒ ∃𝑥 . 𝑥 :1a ∧ V (𝑠) = V (𝑥)

Proof. Directly follows from the definitions of B, V and Decision. □

We formally prove the following key safety property.
Theorem 22 (Agreement). Let the learner graph of the network be valid and
condensed. Let 𝛼, 𝛽 ∈ L be learners such that Entangled(𝛼, 𝛽). For any protocol
execution and reachable network state, if Decision𝛼 (𝑠𝛼 ) and Decision𝛽 (𝑠𝛽) hold
in that state, for some message quorums 𝑠𝛼 and 𝑠𝛽 , then V (𝑠𝛼 ) = V

(
𝑠𝛽
)
.

Proof. See TLA+ protocol formalization [Ano]. □

3.7. Choice of WellFormed2a Predicate
Although any predicate WellFormed2a does not affect protocol safety (Agree-
ment, see Theorem 22), it can affect liveness. If WellFormed2a is a constant
False predicate, no learner will ever decide. Conversely, if WellFormed2a is
always True, then acceptors will send a 2a-message each time they receive
one (including their own). In this case, the protocol would technically be
live, but acceptors would end up sending an infinite number of unnecessary
2a-messages, even after all learners decide. To avoid these issues while pre-
serving liveness, we propose the following instantiation of the predicate:

Definition 23.

WellFormed2a(𝑥) def
= lrns(𝑥) ≠ ∅ ∧ (𝑥 .𝑝𝑟𝑒𝑣 : 2𝑎 → lrns(𝑥 .𝑝𝑟𝑒𝑣) ≠ lrns(𝑥))

DOI: 10.5281/zenodo.14276903 Anoma Research Topics | December 4, 2024 | 11

https://dx.doi.org/10.5281/zenodo.14276903
http://art.anoma.net


The first conjunct of the definition prevents unnecessary 2a-messages that
carry no learner values, as such messages do not contribute to establishing a
decision (see Definition 19). The soundness of the second conjunct is based
on the following observation: when a correct acceptor sends two 2a-messages
consecutively without sending a 1b-message in between, both 2a-messages
must have the same ballot number. Therefore, if the newer of the two 2a-
messages contains the same set of learner values as the older one, it does not
enable any new actions. Thus, the message is redundant and can be omitted
without breaking liveness.

We argue that the proposed definition of WellFormed2a preserves liveness—
any learner with a safe and live quorum will eventually decide—while ensur-
ing that the number of 2a-messages a correct acceptor sends in any ballot is
bounded by the number of learners.3

3.8. Mailbox Layer
The predicates Acceptor::receive() and Learner::receive() (Figures 1 and 2)
define causal message delivery, i.e., the message can be received only once and
only if all its direct references have already been received. In practice, this
logic can be separated out into a special mailbox component. This component
can be used by both local acceptor and learner, avoiding code duplication and
allowing for more efficient message processing.

A mailbox implementation could be integrated into the broadcast imple-
mentation (Section 2.1): one mailbox might request missing messages from
another when it receives a message 𝑚, but has not yet received 𝑚’s causal
dependencies.

4. Future Work
Due to the recursive structure of protocol messages, a naïve implementation of
the presented algorithm—utilizing caching of learner values for 2a-messages—
would result in message processing complexity that is polynomial in 𝑙 and 𝑛,
where 𝑙 represents the number of learners in the network and 𝑛 is the total
number of messages received so far.

In ongoing work, we are developing an efficient implementation of HP2.0
using additional data structures achieving a linear time complexity of message
processing, 𝒪(𝑙 · 𝑛). We also plan to formally prove that this implementation
correctly realizes the proposed algorithm.

5. Acknowledgements
We would like to thank Murdoch James Gabbay, Christopher Goes, and
Jonathan Prieto-Cubides for reviewing this report and providing helpful

3A Byzantine acceptor could send a larger, but still finite, number of messages in a ballot.

DOI: 10.5281/zenodo.14276903 Anoma Research Topics | December 4, 2024 | 12

https://dx.doi.org/10.5281/zenodo.14276903
http://art.anoma.net


feedback and suggestions for improvement.

References
Ano. Anoma. Typhon project github repository. https://github.com/anoma/typhon/

releases/tag/hpaxos-2.0-art-v4. (cit. on pp. 2, 9, and 11.)
Dij75. Edsger W. Dijkstra. Guarded commands, nondeterminacy and formal derivation

of programs. Commun. ACM, 18(8):453–457, 1975. (cit. on p. 11.)
DLS88. Cynthia Dwork, Nancy A. Lynch, and Larry J. Stockmeyer. Consensus in the

presence of partial synchrony. J. ACM, 35(2):288–323, 1988. (cit. on p. 3.)
Lam98. Leslie Lamport. The part-time parliament. ACM Trans. Comput. Syst., 16(2):133–

169, 1998. (cit. on p. 2.)
Lam02. Leslie Lamport. Specifying Systems, The TLA+ Language and Tools for Hardware

and Software Engineers. Addison-Wesley, 2002. (cit. on pp. 2 and 9.)
Lam09. Leslie Lamport. The pluscal algorithm language. In Martin Leucker and Carroll

Morgan, editors, Theoretical Aspects of Computing - ICTAC 2009, 6th International
Colloquium, Kuala Lumpur, Malaysia, August 16-20, 2009. Proceedings, volume
5684 of Lecture Notes in Computer Science, pages 36–60. Springer, 2009. (cit. on
p. 9.)

Lam24. Leslie Lamport. A PlusCal User’s Manual. C-Syntax Version 1.8, 2024. (cit. on
p. 11.)

SWvRM20. Isaac Sheff, Xinwen Wang, Robbert van Renesse, and Andrew C. Myers. Het-
erogeneous paxos: Technical report, 2020. (cit. on pp. 2, 3, 4, and 5.)

DOI: 10.5281/zenodo.14276903 Anoma Research Topics | December 4, 2024 | 13

https://github.com/anoma/typhon/releases/tag/hpaxos-2.0-art-v4
https://github.com/anoma/typhon/releases/tag/hpaxos-2.0-art-v4
https://dx.doi.org/10.5281/zenodo.14276903
http://art.anoma.net

	Introduction
	Original Heterogeneous Paxos
	Why Heterogeneous Paxos 2.0?

	Differences From Original Heterogeneous Paxos
	Broadcast Primitive
	2a Messages
	One Message In, at Most One Message Out
	Byzantine Behaviour Detection
	Logic changes
	Buried
	Well-Formed
	Acceptor Algorithm


	Specification
	Network Model
	Learner Graph
	Protocol Message Structure
	Properties of All Protocol Messages
	Properties of Proposer Messages
	Properties of Acceptor Messages

	Definitions
	Protocol
	Protocol Properties
	Choice of WellFormed2a Predicate
	Mailbox Layer

	Future Work
	Acknowledgements
	References

