## data read daf <- read.csv('D:/all_variables2.csv') head(daf) dim(daf) #daf <- subset(daf,TC95>0.95) summary(daf) das <- daf[sample(nrow(daf),600),] cor.test(das$FSDI,das$SIF) summary(das) hist(das$FSDI) hist(das$Richness) #das$FSDI <- log(das$FSDI) #fit <- lm(Richness~ RAD+PRE + TMP +POP + FIRE+ DEM+CEC + SOC + SAND , das) #vif(fit) rich <- lm(Richness~ RAD+PRE + TMP +POP + FIRE+ DEM+CEC + SOC + SAND, das ) fsdi <- lm(FSDI ~ RAD+PRE + TMP +POP + FIRE+ DEM+CEC + SOC + SAND,das ) gpp <- lm(SIF~FSDI + Richness +RAD+PRE + TMP +POP + FIRE+ DEM+CEC + SOC + SAND ,das) model <- psem(rich, fsdi, gpp) fisherC(model) summary(model) plot(model) anova(model) write.csv(das, "D:/ALL_stats_TC95_sif600point.csv")