set.seed(12) indata <- createDataPartition( data$FSDI, p =.20, list = FALSE ) training <- data[indata,] testing <- data[-indata,] set.seed(1) brt1 <- gbm.step(data=data, gbm.x =5:13, gbm.y = 3, family = "gaussian", tree.complexity = 5, learning.rate = 0.01, bag.fraction = 0.8) ggInfluence(brt1) ggPD(brt1, rug = T) brt1.prerun<- plot.gbm.4list(brt1) brt1.boot <- gbm.bootstrap.functions(brt1, list.predictors=brt1.prerun, n.reps=5) result <- ggPD_boot(brt1, list.4.preds=brt1.prerun, cex.line =1.2, booted.preds=brt1.boot$function.preds, type.ci = "ribbon", ncol = 3, nrow = 3, rug = T, rug.pos = "b", smooth= F, col.line = "#3282BD", y.label = "SSI") result