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Abstract
Each anoma instancemaintains a statemachine, which ultimately implements the Resource
Machine. This is the state of that state machine. This state limits what can be done in
post-ordering execution.
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1. Introduction
Each Anoma instance maintains a replicated state machine [Sch86], which
updates using serializable transactions [Pap79], as defined in the Anoma
Resource Machine [KG24], acting as a controller [Isa24]. Here we define
the state of this replicated state machine. This state can be read, written,
and updated atomically in post-ordering execution of Transaction Candi-
dates [KG24]. Other state that validators store, but do not necessarily update
in sync, (such as network-level key-value stores) is not considered here.

2. Fitting in the Execution Engine
The Anoma state machine should be able to run in Typhon’s execution engine,
which updates state using serializable transaction candidates, and assumes
state can be expressed as key-value pairs. It tries to run transaction candi-
dates that don’t touch the same keys in parallel, when possible. Transaction
candidates therefore specify in advance sets of keys they may read and write.
We say that a transaction candidate has a lock on keys its label specifies:
it can have a read lock, a write lock, or both. To facilitate these read and
write locks over complex data structures, we allow transaction candidates to
lock ranges. For example, blob storage by logic hash and label prefix, meaning

DOI: 10.5281/zenodo.14265827 Anoma Research Topics | December 4, 2024 | 2

https://dx.doi.org/10.5281/zenodo.14265827
http://art.anoma.net


they can in principle lock infinite keys. There should be fees for read and
write locks, but I don’t know how to set them yet.

Note that it is difficult to store the “same” piece of state under multiple keys:
two transaction that try to access the same state would not appear to conflict
if you only looked at the keys they touch, when they do in fact conflict.
Similarly, it is difficult lookup the “same” pieces of state using ranges in
different dimensions (e.g. “all cars made between 1960 and 1970” and “all cars
made north of Cairo and south of Berlin”). This is because it is difficult to tell
if two transactions could conflict.1 For this reason, we do not allow multiple
keys to look up the same datum, and we specify at most one dimension in
which range queries may be used for each sub-type of key.

Sharding. The execution engine’s assignment of keys to storage shards,
referred to as sharding strategy, should take these ranges into account.
If a transaction might query “all cars made between 1960 and 1970,” then
it’s useful for that data to be on the same shard (or some small number of
shards), rather than spread across all of them (spreading them out means
more messaging to more processes). The easiest way to accomplish this is to
store key-value pairs sequentially (according to whatever ordering is used
for range queries), leaving buffer space on each shard, and then re-shard
(re-distribute which key ranges go on which shard) before any one shard gets
too full.
Although Typhon’s state machine execution engine does not distinguish

between different “types” of lookup keys, we designate sub-types useful for
each part of state. The “lookup key type” for the state machine as a whole is
thus a sum type (a.k.a. a coproduct or tagged union) of all of these.
Hereafter, we specify the types of key, value pairs that make up the state.

Major components include:

1. Key Type: the type of the lookup key in the key, value pair

2. Value Type: the type stored under the lookup key in the key, value
pair

3. Range Queries: how any kind of “range of keys” is specified (there
can only be one dimension)

Other details including useful invariants or examples may be provided.

3. Current Time
We can make “current time” part of the state. This is optional: it is not
necessary for the anoma resource machine.

1It is not impossible to design an execution engine which can handle this [EWS12], but it is much more complicated.
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Key Type. Unit. There is only one key.

Value Type. Timestamp. The “current time” in the state machine.

Range Queries. None.
This would only be updated by specific transactions, for example, once

every consensus. Invariants would include correspondence to the timestamps
used in state root and commitment root storage.

4. State Roots
A state root is a deterministic digest of the entire state of the state machine
(including everything below). Ideally, this would facilitate zk-friendly inclu-
sion proofs for each of the other elements of state (i.e. this commitment is
found under this state root, or this nullifier accumulator is under this state
root, or this blob is under this state root). State roots can be, for example, a
Merkle root. However, we do not specify here exactly which digest to use.
We generally assume that state roots are small, like a hash.

Some transactions may want to query for state roots at various times in
the past, possibly to prove that a specific state root on which they base some
proof is valid.

Key Type. timestamp. We’ll have to choose what kind of timestamp we
used internally, and how, if at all, it’s related to wall-clock time.

Value Type. state root. The exact nature of this depends on what kind of
state commitment structure we’re using.

Range Queries. Time range. specified with start and end time.
These state roots may be part of fancy merkle structures, but queries using

this kind of key should be allowed regardless of the fancy structure.

4.1. Using State Roots Outside of Post-Ordering Execution
Users, solvers, and other controllers may want to retrieve a recent state root
for an Anoma instance. This does not necessarily need to be the current state
root, as instances may update fast. These state roots can be used in proofs
about state at that time (e.g. this blob was indeed stored at that time).

4.2. Using State Roots During Post-Ordering Execution
Any transaction can read recent state roots, and even identify the most recent
state root, during post-ordering execution. This might be used in specific
proofs, perhaps in order to satisfy a resource logic.
Only very specific transaction candidates are allowed to store new state

roots or delete old ones. Specifically, these transaction candidates must
generate the state root correctly. They are not “normal” transaction candates
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submitted by users. They might be scheduled regularly (say, with every
consensus).

Aside. An alternative would be to use the state root itself as a key (and store
only a unit), so the only query would be “was this state root valid at some
time in the past.” This does not allow any interesting kind of range query,
and it’s hard to allow both kinds of queries in a fully-safe way. Unfortunately,
doing both requires storing the “same state root” under 2 keys: both the state
root itself and the timestamp.

5. Commitments
A Commitment is a hash representing a resource that has been created.
Since users may want to be able to prove that a given resource has been
created without specifying which, we will want a cryptographic accumulator
for commitments with zk-friendly inclusion proofs. Possible cryptographic
accumulators include Merkle Mountain Belts, which have some nifty proper-
ties including constant computational complexity to add a new commitment
to the accumulator, and shorter proofs for more recently added commitments.
Since these inclusion proofs relate to larger Merkle structures, we may

want some additional storage for that, or perhaps it will fit into blob storage.
Regardless of specific cryptographic accumulator, we need 2 sub-types of

keys: Commitment Keys, and Commitment Inclusion Root Keys.

5.1. Commitment Keys
Since rapid transactions may want to use resources from recent (even the
previous) transactions, we want to be able to check for / somehow “use”
recent commitments. This would require the ability to create (not necessarily
zero knowledge) proofs for recent commitments in post-ordering execution.
If the proving environment can simply look up recent commitments, this
becomes relatively easy.

Key Type. Commitment, as defined in the resource machine report.

Value Type. For each commitment key, we store either unit (representing
that this commitment was made recently), or an inclusion proof for a recent
inclusion proof root, and the timestamp for that root.

Range Queries. None.

Aside. We could assume that all inclusion proofs are grounded in a state
root, and so looking up a separate inclusion proof structure is unnecessary.
For now, we do not assume this.
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5.1.1. Using Commitment Keys During Post-Ordering Execution
Some notable things a Transaction Candidate can do using these keys:

1. Add a commitment (after verifying all the resource logic proofs for an
ARM Transaction).

2. Prove the existence of a recent commitment (as part of an ARM Logic
Proof)

Transactions that don’t know what commitment they want to look up
in advance cannot get a read lock on a commitment key. These may still
be able to prove the existence of a recent commitment if it’s included in a
blob (Section 7).

5.1.2. Using Commitment Keys Outside of Post-Ordering Execution
Users will want to be able to read an inclusion proof for a recent commit-
ment. They can issue read-only transactions to validators to read this, or that
information can be disseminated by other means.

We generally assume that users and solvers, without communicating with
controllers, can generate a resource and its commitment and appropriate
proofs (ZK or otherwise), given whatever the resource logic requires.

5.2. Commitment Inclusion Root Keys
Key Type. timestamp

Value Type. inclusion proof root. The exact type of this depends on the
cryptographic accumulator used for commitments. These may be part of
some larger Merkle structure, but we still need to be able to look them up
using these keys.

Range Queries. timestamp range

5.2.1. Using Commitment Inclusion Root Keys During Post-Ordering
Execution

The most important use of Commitment Inclusion Root Keys is as part of ver-
ifying resource logic proofs: looking up a commitment inclusion root proves
the commitment inclusion root is valid (for some time in the past). Transac-
tion Candidates Can also look up specifically the most recent commitment
inclusion root (by querying an open time interval), if that is useful.
Only very specific transaction candidates should be able to update com-

mitment inclusion roots, or write commitment inclusion proofs. Periodically
(perhaps every consensus), the anoma state machine should have a transac-
tion candidate that creates a new inclusion root, and updates all commitment
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key-value pairs to use the new inclusion root. This allows users to read recent
inclusion proofs for their commitments at any time.
To save on storage, we may want to delete some of the data necessary to

generate an inclusion proof after a certain period, while retaining the data
required to check such a proof. This also entails that we store whatever is
necessary to check arbitrarily-old inclusion proofs (e.g. oldmerkle roots). This
means that there will be multiple “phases” after generating a commitment:
for a while, some kind of proof is available from the validators, and after
that time has elapsed, it is the responsibility of whomever wants to use this
resource in the future to remember the relevant proof. Some commitment
schemes require the anyone storing generated proofs to occasionally update
their proofs with on-chain information.

5.2.2. Using Commitment Inclusion Roots Outside Post-Ordering Ex-
ecution

Users and solvers may will want to query recent (although not necessarily the
most recent) commitment inclusion roots from controllers. They can do this
with read-only queries. Other mechanisms can disseminate this information
further.

We generally assume users and solvers can verify a commitment inclusion
proof against a commitment Inclusion Root.

6. Unstructured Nullifiers
Each time a resource is consumed, we produce a nullifier. Most of the time, we
assume this nullifier has no structure: queries for two nullifiers only disclose
if the two are exactly equal, and nothing more. A nullifer query needs to
check if a nullifer has been issued or not. There are no range queries. As a
consequence, even a transparent resource specifying an unstructured nullifier
cannot be nullified unless the transaction candidate knows the nullifier it’s
going to use in advance. We discuss structured nullifiers for rapidly-mutating
transparent resources in Section 7.2.5.

Key Type. nullifier, as defined in the resource machine report.

Value Type. storing a unit represents that this nullifier has officially been
produced.

Range Queries. None.

Aside. to avoid storing all nullifiers forever, someday we may do something
more complicated. Since transactions will want to prove that a given resource
has not yet been consumed, we would want a cryptographic accumulator for
nullifiers with non-inclusion proofs. We have a few different ideas on how to
save on storage for these.
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6.1. Using Nullifiers in Post-Ordering Execution
As part of checking an ARM Transaction’s validity, we query for all unstruc-
tured nullifiers emitted, in order to prove they are not yet present. If the
ARM Transaction is valid, we store unit at keys corresponding to all nullifiers
emitted.

6.2. Using Nullifiers Outside of Post-Ordering Execution
Users and Solvers may want to query controllers to see if specific nullifers
have yet been issued. This represents checking if some resource has been
consumed. Note that such queries can leak correlation information. Read-only
transactions work for this purpose, especially if the querier wants maximally
up-to-date information. Note that such a query doesn’t guarantee the nullifier
will still be unissued by the time any particular transaction candidate is
executed.
We generally assume that users and solvers can generate a nullifier and

appropriate proofs (ZK or otherwise) from a resource (given whatever the
resource requires).

7. Blob Storage
Blob storage in the state machine is used for structured queries of data.
Blobs can include, but do not have to include, resources. Queries and in-
state-machine storage are expensive, so data that is fully determined before
post-ordering execution (which would include anything that can be fetched
by hash) is probably better included in the Transaction Candidate itself than
fetched in post-execution runtime.

Key Type. tuple of:

1. Resource logic hash

2. List of sub-labels (hashes)

3. Hash of the blob itself

Range Query. logic hash with label prefix: represents all elements with
labels that have that prefix.

Value Type. Blob (see Section 7.2)

7.1. Blob Labels
Blob keys have a forest structure: the root of each key is a resource logic hash
that governs what blobs may be created in this tree. In order to write a blob,
it must be part of the appdata field of the proof for a resource logic matching
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this hash. This means that the resources used in a transaction govern what
blobs can be written.
The branches of the forest structure are arbitrary lists of hashes, which

can in turn be governed by the blob logic. Each blob features a label: list of
such hashes, or sub-labels. For example, we could envision an application
that stores records about animals, where each blob’s label is a full taxonomic
classification (e.g. “Eukaryota / Animalia / Chordata / Mammalia / Carnifora
/ Feliformia / Felidae / Felinae / Felis / Catus”).

Finally, leaves are hashes of specific blobs, ensuring that blobs are uniquely
identified with their keys.
This allows blobs to represent mutable state, each mutable object is iden-

tified by a label prefix, and each state update appends a timestamp to that
prefix to store the new state. The "current state" of label prefix 𝑃 would be
the blob with the label of the form 𝑃 : 𝑡 with the greatest timestamp 𝑡 .
We do not specify here how the execution engine shards or indexes this

forest. It will need to maintain an index structure, but this is not part of the
anoma state machine itself.

7.2. Blob Structure
Blobs contain several elements, and can be used for several different purposes.

7.2.1. Logic Hash
This resource logic governs what blobs can be written with this hash. Only
transactions involving a resource with this logic can write this blob. In
particular, the blob must be part of the appdata for such a resource’s logic
proof. In this way, resource logics govern blob permissions and structure.
Different resources may have completely different ways of using the sub-
labels structure, allowing for diffrent kinds of queries.

7.2.2. Blob Label
Each blob features a complete label. A blob label is is a list of sub-labels, each
of which is a hash. These are used in organizing blobs into larger (tree) data
structures, from which transaction candidates can query sub-trees.

7.2.3. Deletion Criterion
Each blob features a deletion criterion (which is a predicate). A transaction
candidate must prove this criterion is satisfied in order to delete a blob. For
now, we probably want to restrict the allowed criteria to a few cases, such as:

1. current “block height” is at least X

2. current “time” is at least X

3. a signature for some specific message X verified using public key Y

DOI: 10.5281/zenodo.14265827 Anoma Research Topics | December 4, 2024 | 9

https://dx.doi.org/10.5281/zenodo.14265827
http://art.anoma.net


4. nullifier X has been committed

7.2.4. Commitments
Blobs contain a (possibly empty) set of commitments. Such storage is only
allowed if the commitments are also stored (either in the same or some prior
transaction) in the commitment state. Thus, blob reads can be used as proof
of a commitment in resource logics. This allows post-ordering execution to
construct ARM transactions that rely on prior commits without knowing
exactly which prior commits they need in advance.

7.2.5. Structured Nullifiers
Structured Nullifiers are a new concept, extending the nullifiers as defined in
the Anoma Resource Machine Report [KG24].

Blobs contain a (possibly empty) set of nullifers. Each resource can specify
whether it can be nullified with an unstructured nullifier, as outlined in ??, or
a structured nullifier with a specific blob label prefix. An ARM transaction
nullifying any structured nullifier resource must store a blob (with its own
resource logic, and a label with the specified prefix) with the nullifier in
this field. An ARM transaction requiring a proof that a structured nullifier
resource is not yet nullifed must query all blobs with the specified label prefix
and check.
The reason we might want structured nullifiers is kind of subtle. Trans-

action candidates must list everything they could read in their labels before
post-ordering execution begins. This means that they can’t check if a nullifier
has been committed unless they know what that nullifier is in advance. For
some post-ordering execution applications (using transparent resources), this
may be unnecessarily restrictive. For example, a “king of the hill” application
might have a resource representing current ownership of the “king” title, but
it’s impossible to consume this resource (and therefore impossible to transfer
ownership) unless you know who the king is before post-ordering execution
starts. If this kingship is transferred frequently, this may be a problem.
Structured nullifiers allow transaction candidates to lock a label prefix

known in advance, without knowing the precise nullifier in advance. This
would allow a “king of the hill” label that would force all “king of the hill”
transaction candidates to be executed serially (which is desirable) while
allowing other transaction candidates to execute concurrently. Such nullifier
labels are terrible for unlinkability: they’re really only useful for unshielded
resources.

7.2.6. Data
Blobs contain an arbitrary (possibly empty) bytestring called data. This can
contain, for example, a resource.
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7.3. Using Blobs in Post-Ordering Execution
A transaction candidate should be able to look up a blob (given a Key), or
look up a set of blobs, given a resource logic hash and a blob label prefix.

Given a resource logic hash and a blob label prefix 𝑝 , a transaction candidate
can also query “for which sub-labels 𝑠 are there any blobs with the prefix
𝑝 : 𝑠?” This has requires exactly the same transaction candidate label as a
query for all the blobs with the resource logic hash and blob label prefix, but
might let transaction candidates use trees of data without having to fetch the
whole tree from storage.

Transaction candidates can also delete a blob, given a proof that its deletion
criterion has been met.
When verifying resource logics, a commitment from a blob in state can

be used as proof a commitment was correctly created. Likewise, the non-
existence of a structured nullifer in any blob with a given prefix can be used as
a proof that a structured-nullifier resource with that prefix was not nullified.

An ARM Transaction can store a blob, provided:

1. There is a resource with the logic hash of this blob in the ARM Transaci-
ton, and this blob is in the appdata for that resource logic proof.

2. All commitments in the blob are also stored (or have been previously
stored) in commitment state.

3. All structured nullifiers in the blob correspond to resources nullified in
this ARM transaction, whith this blob’s resource logic and specifying
structured nullifiers with a prefix of this blob’s label.

Additionally, if an ARM Transaction nullifies a resource that uses structured
nullifiers, it must write a blob containing the nullifier for that resource.

7.4. Using Blobs Outside Post-Ordering Execution
Solvers and users may want to query for blobs in storage, which they can do
using read-only transactions.

It should also be possible to prove that a blob was in storage as of a certain
state root in some compact way, such as a Merkle proof.

8. Endorsement Map
For cross-instance communication, Anoma chains can maintain light clients
of other chains [Isa24]. This might, in principle, be encoded as resources in
blobs, but I will talk about it here like it’s a separate thing, in case that doesn’t
work out.

The Endorsement Map is a map from ChainIDs to StateRoots.
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Key Type. ChainID

Value Type. State Root (technically, not every controller has to have the
same type of state root)

Range Queries. None.

8.1. Using the Endorsement Map in Post-Ordering Execution
A specific type of transaction candidate should be able to update the state
root for a chain: this requires a proof that the new StateRoot represents a
state that is the result of a valid sequence of transactions starting with the
state represented by the old StateRoot.

8.2. Using the Endorsement Map Outside Post-Ordering Execution
Given 2 state roots from a correct (not-forked) chain, validators of that chain
should be able to generate a proof that one is the result of a sequence of valid
transactions starting with the other. Other controllers (and users and solvers)
should be able to read and validate this proof.

9. Send and Receive Records
For sending resources between instances, anoma maintains records [Isa24].
These may be representable as resources, but we’ll talk about them here as if
they’re not.

Here we require a collection of mutable send records and receive records,
each with a unique (immutable) ID, assigned at creation.
The exact structure of these has not yet been worked out, and remains

future work.

10. Concluding remarks
We have outlined the key/value structure of the Anoma State Machine’s
state. It is designed to be compliant with the Typhon execution engine’s
requirements, allowing concurrent transaction processing. Of particular note
are our use of Blob storage for structured lookups that can be used in Resource
Logic proofs: storing commitments and structured nullifiers (Section 7.2.5).
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