Observations of Phoebe in August and September 1906.

(Harvard College Observatory Circular No. ing).

Nine additional photographs of Saturn, showing images of Phoebe, have been obtained with the 24 -inch Bruce Telescope at Arequipa. The positions of Phoebe, as determined by these plates, are given in Table I, the form of which is the same as that contained in Circular 118 (A. N. 173.41). The designation of the plate, the date, the Greenwich Mean Time of the middle of the exposure, and the duration of the exposure are given in the first four columns. The difference in right ascension, the difference in declination, the distance, and the position angle are given in the fifth, sixth, seventh,
and eighth columns. Of these, the sixth and seventh are the measured quantities, the fifth and eighth are derived from them by computation. Computed values for the differences in right ascension and declination were taken from the ephemeris given on the leaf following the Contents in the second edition of the American Ephemeris and Nautical Almanac for 1906, and subtracted from the observed values in the fifth and sixth columns. The residuals are given in the ninth and tenth columns. The measures were made by Mr. E.S. Manson, Jr.

Table I. Positions of Phoebe. 1906.

Plate	1906	G. M. T.	Exp.	Difference in R. A.	Difference in Decl.	$\begin{gathered} \text { Di- } \\ \text { stance } \end{gathered}$	P. A.	$\begin{aligned} & \mathrm{O}-\mathrm{C} \\ & \mathrm{R} . \mathrm{A} . \end{aligned}$	$\begin{gathered} \mathrm{O}-\mathrm{C} \\ \text { Decl. } \end{gathered}$
A 7993	Aug. 1 I	I $5{ }^{\text {h }} 58^{\text {m }}$	I $199^{\text {m }}$	$-47^{\text {s }} 3$	-4:0	12.4	$25^{1}{ }^{\circ}$	- $0^{5} .4$	-0:2
A 8000	16	15 27	120	-42.9	-3.3	11.1	253	- I. 2	-0.1
A 8016	19	$15 \quad 3$	105	-38.4	-3.0	10.0	253	--0.8	-0.2
A 8028	21	2054	120	-36.6	-2.6	9.4	254	-0.5	--0.1
A 8037	23	2041	120	-35.0	- 2.1	8.9	256	- 1.2	+0.1
A 8046	25	1746	120	-32.9	-2.1	8.4	256	-1.1	-0.1
A 8090	Sept. 12	1555	120	-13.7	+0.4	3.4	277	-2.3	-0.1
A 8094	I3	1355	120	-11.5	+0.6	2.9	282	- I. 1	0.0
A 8099	17	I 341	120	-7.0	+1.0	2.0	300	- 1.3	-0.2

Harvard College Observatory, Cambridge, Mass., 1906 Nov. $6 . \quad$ Edzuard C. Pickering.

Thirty-one new variable stars.

(Harvard College Observatory Circular No. 120).

The study of the distribution of variable stars by superposing a negative on a positive of a different date, has been continued this fall by Miss Henrietta S. Leavitt, with the following results. Five plates taken with the 24 -inch Bruce Telescope, with centres at about RA. $=3^{\mathrm{h}} 4^{0^{m}}$, Decl. $=+23 \%$, and having exposures of from one to four hours, were examined with the usual care, and only one new variable was discovered. The plates, most of which are of excellent quality, cover a region five degrees square with good definition, and it is estimated that about 150000 stars were examined. The Pleiades are near the centre of the plates. The single variable discovered is in remarkable contrast with the large numbers found in other regions by the same observer, and announced in recent circulars. The only known variable in this region is $032723=90.1901$ Tauri, which is near the edge of the plates. Apparently conditions in the vicinity of the Pleiades favor unusual constancy in light, as no stars were even suspected of variability, though there are many suspected variables in the other regions as yet examined in this way.

A plate with the Nebula of Orion in the centre,

RA. $=5^{\mathrm{h}} 30^{\mathrm{m}}$, Decl. $=-5^{\circ} 5$, exposure 74^{m}, taken last winter, has been compared with an early plate, with the result that two new variables were found, while seventeen known variables were re-discovered. The method used is not adapted to the discovery of variables in regions where nebulosity is strong, unless the variations are large. Star 053004 n in Table I, is in such a region, but it had been previously suspected, and its variation was confirmed by direct comparison of several negatives. The region of the Southern Cross and the Coal-Sack* has been examined on thirteen plates, three of which have centres at about RA. $=12^{\mathrm{h}} 20^{\mathrm{m}}$, Decl. $=-62^{\circ} 5$, and ten have centres at about RA. $=12^{\mathrm{h}} 50^{\mathrm{m}}$, Decl. $=-62^{\circ} .5$. Twenty-eight new variables were discovered, and the known variables, 121861_{n} R Crucis, and $13{ }^{1} 360_{n}$... Centauri*), were also found.

The new variables are given in Table I, in which the successive columns give the designation, the Harvard number, the number of the editor of A. N., the right ascension and declination for 1900 , the brightest magnitude so far observed, and the range. The faintest magnitude so far observed may be found by adding the quantities in the two
*) Der Stern findet sich nicht in den uns zugänglichen Verzeichnissen. Wahrscheinlich ist gemeint Nr. $13156 \mathbf{I n}_{\mathrm{n}}-\mathrm{die}$ Nr. 131360_{n} wiirde der Position für 1875 entsprechen - im Katalog der veränderlichen Sterne Harv. Coll. Annals Bd. 48 p. 1oz. Dieser von Mrs. Fleming 1898 entdeckte Veränderliche (vgl. Nr. 3488 der A. N.) muß sich notwendig auf den hier untersuchten Platten befunden haben. Kr.
last columns. Stars $122964 n, 123263 n, 125964 a_{n}$, and $131864 n$ probably have long periods, while the periods of stars $124863 \mathrm{n}, 125763 \mathrm{n}$, and $125964 \mathrm{~b}_{\mathrm{n}}$ appear to be short.

Table I. New variable stars.

Designation	Harv. No.	Number A. N.	RA. 1900	Decl. 1900	Br .	R.
-34725	1237	123.1906 Tauri	$3^{\mathrm{h}} 47^{\mathrm{m}} \quad 2^{\text {s }}$	$+25^{\circ}$ 1 4.9	12.0	3.0
052603 n	1238	124.1906 Orionis	5264	- 328.0	12.5	0.9
053004 n	1239	125.1906 Orionis	53044	- 449.8	14.0	0.6
115763n	1240	126.1906 Crucis	11 5750	-63 I 0.2	10.8	5.2
$\times 20563 n$	1241	127.1906 Crucis	$\begin{array}{llll}12 & 5 & 57\end{array}$	-6352.7	10.8	2.7
121261n	1242	128.1906 Crucis	$\begin{array}{llll}12 & 12 & 18\end{array}$	-6112.3	13.1	1.1
121860^{n}	1243	129.1906 Crucis	$\begin{array}{llll}12 & 18 & \end{array}$	-60 2.7	12.5	1.5
122060 n	1244	130.1906 Crucis	$\begin{array}{llll}12 & 20 & 24\end{array}$	-60 57.2	${ }^{1} 3.4$	3.0
122964 n	1245	131.1906 Crucis	$\begin{array}{llll}12 & 29 & 8\end{array}$	-64 0.8	r 2.8	1.7
$123263 n$	1246	132.1906 Crucis	$\begin{array}{llll}12 & 32 & 46\end{array}$	-6348.1	14.2	2.8
123460_{n}	1247	${ }^{133.1906 ~ C r u c i s ~}$	$\begin{array}{llll}12 & 34 & 17\end{array}$	-6052.2	I 5.0	1.0
$123564 n$	1248	134.1906 Muscae	123519	-6410.2	I 4.2	>2.8
12.4061 n	1249	135.1906 Crucis	124019	-61 17.2	I 1.4	0.8
124361 n	125°	136.1906 Crucis	$\begin{array}{llll}12 & 43 & 36\end{array}$	-61 13.5	15.0	1.0
$124564 n$	1251	137.1906 Muscae	124526	-64 55.5	14.0	2.4
124863 n	1252	138.1906 Crucis	$\begin{array}{llll}12 & 48 & 22\end{array}$	$-63 \quad 23.4$	12.7	I. 1
125162 n	1253	139.1906 Crucis	$\begin{array}{llll}12 & 515\end{array}$	-6256.5	14.0	I. 3
125262n	1254	140.1906 Centauri	12 526	-62 25.6	10.2	0.7
I25564n	1255	141.1906 Centauri*)	$\begin{array}{llll}12 & 55 & 37\end{array}$	-64 5.4	8.5	0.4
I 25664 n	1256	142.1906 Muscae	$\begin{array}{lllll}12 & 56 & 39\end{array}$	-6442.6	I 3.2	2.5
125763 n	1257	143.1906 Centauri	$\begin{array}{llll}12 & 57 & 13\end{array}$	$\begin{array}{ll}-63 & 7.5\end{array}$	14.0	3.1
125764n	1258	144.1906 Muscae	$\begin{array}{llll}12 & 57 & 23\end{array}$	-64 15.1	I 3.4	1.2
125860 n	1259	145.1906 Centauri	$\begin{array}{ll}12 & 57 \\ 1\end{array}$	-6014.0	I I. 5	1.5
$125964 \mathrm{an}_{\mathrm{n}}$	1260	146.1906 Muscae	125921	-64 58.6	10.5	r. 6
$125964 \mathrm{~b}_{\mathrm{n}}$	1261	147.1906 Muscae	125923	-6445.6	14.7	>2.3
130662 n	1262	148.1906 Centauri	13 626	-6252.0	I 1.5	1.0
1 30763 n	1263	149.igo6 Centauri	13 7	-63 37.1	8.8	1.6
1 30962_{n}	1264	150.1906 Centauri	13 9	-6230.7	12.3	1.2
${ }^{1} 31362 \mathrm{n}$	1265	151.1906 Centauri	$\begin{array}{llll}13 & 13\end{array}$	-6224.1	12.9	1.3
131560n	1266	152.1906 Centauri	I3 1539	-60 47.1	10.4	4.0
r31864n	1267	153.1906 Muscae	131816	-64 8.4	10.5	> 3.5

Remarks.
053004 n . Suspected of variation in 1904 . 130763 n . This star is CPD. $-63^{\circ} 2632$. For period, see below.
125162_{n}. Probably of the Algol Type.
125262n. Probably of the Algol Type.
125564 n . This star is CPD. $-63^{\circ} 2485$. For period, see below.
125664n. Follows a pair of fifteenth magnitude stars by o.2.
131362a. Probably of the Algol Type. Has a hazy appearance, and may be double.

I3I864n. Discovered independently from its spectrum, by Mrs. W. P. Fleming, four days after original discovery.

The variable, $130763 n$ (149.1906 Centauri) was found to be of the Algol Type, and was observed on 256 plates, of which 27 showed it near minimum brightness. The observed times of minimum are well satisfied by the formula J. D. $2410000.35+2.4787 \mathrm{I} E$. The spectrum is of the class B 8 A. A full discussion of the observations will be published in an early number of the Annals.

The variable, 125564 n (141.igo6 Centauri) was observed on a large number of plates, and has been found to be of especial interest on account of the unusual character of its light curve. It varies only from magnitude 8.5 to 8.9 , in a period represented by the formula
J. D. $2410000.15+$ Od $^{\text {d }} 93796 E$.

It was at first thought to be of the Algol Type, but it appears probable that the light is slightly but continuously changing even near maximum, in which case it should be classed as a variable of short period. The observations will be published in the forthcoming number of the Annals mentioned above, but it seems desirable to give here the principal results. The star was difficult to observe, particularly when near maximum, and for this reason was independently measured four times on nearly all of the plates taken with the I -inch Cooke lens, and on all the plates taken with the 8 -inch Bache Telescope when the variable was faint. The errors of observation were thus reduced one-half. The average deviation of a single observation from

[^0]the mean of four，was ± 0.03 magnitudes．On account of the small range，the phase was computed for each of the plates which were measured four times， 136 in number，al－ though，in the case of Algol variables，this is usually done
only for the plates taken near the times of minima．The observations were then arranged in the order of phase，and the means of the phases and magnitudes were taken for each group of five．

Table II．125564n（ini．igo6 Centauri）．Mean phases and magnitudes．

Mean Phase	Mean Mag．	Res．	Mean Phase	Mean Mag．	Res．
-0.448	8.48	-1	-0.135	8.58	-7
-0.400	8.52	+3	-0.117	8.68	-2
-0.358	8.54	+4	-0.088	8.77	+1
-0.307	8.49	-2	-0.069	8.87	+6
-0.243	8.53	0	-0.047	8.83	-3
-0.195	8.58	+1	-0.028	8.89	0
-0.158	8.57	-4	+0.012	8.87	-3

In Table II，the first column gives the mean phases and the second the mean magnitudes for the successive groups．Six plates are included in the last group，at mean phase +0.444 ．These quantities were plotted，using the phases as abscissas and the magnitudes as ordinates，and a smooth curve was drawn through the points thus given．The
residuals from this curve，expressed in hundredths of a magnitude，are given in the third column．The average deviation of a single point is ± 0.02 magnitude，and that of observations on individual plates is ± 0.05 ．The coor－ dinates of the light curve are given in Table III．

Table III．Light curve．

Phase	Mag．
0.00	8.90
0.05	8.86
0.10	8.73
0.15	8.62
0.20	8.56

Phase	Mag．
0.25	8.53
0.30	8.5 I
0.35	8.50
0.40	8.49
0.45	8.49

The deviations are large enough to make it uncertain whether it is symmetrical，although this has been assumed．

Ephemerides for the two variables are given in Table IV． In the first half of the table，every thirtieth minimum for six months beginning with the epoch 8080 is given for variable 125564n（141．1906 Centauri），and in the second
half，every tenth minimum covering the same period and beginning with the epoch 3060 is given for variable ${ }^{1} 30763 \mathrm{n}$ （ 149.1906 Centauri）．The successive columns，in each half of the table，give the number of the epoch，the Julian Day and decimal following Greenwich Mean Noon，the date，and the Greenwich Mean Time of minima．

Table IV．Ephemerides for variables 125564 and $130763 n$（ 14 x and i49．1906 Centauri）．

Epoch	J．D．	Date
8080	7578.867	1907 Jan． $2^{\text {d }} 20^{\mathrm{h}} 52^{\mathrm{m}}$
8110	7607.006	＊$\quad 3 \mathrm{r} 08$
8140	7635.145	Febr． 28330
8170	7663.283	Mar． 28648
8200	7691.422	April 2510
8230	7719.561	May 231330
8260	7747.699	》 June 201650
8290	7775.838	July $18 \quad 2010$

Harvard College Observatory， 1906 Nov． 10.

Epoch	J．D．	Date
3060	7585.203	$1907 \mathrm{Jan} . \quad 9^{\text {d }} 4^{\text {h }} 53^{\text {m }}$
3070	7609.990	＂Febr． 22350
3080	7634.777	》 271842
3090	7659.564	＊Mar． 241334
3100	7684.351	＊April 18827
3110	7709.139	＊May 33320
3120	7733.926	》 June 62217
3130	7758.713	July 11710

Edzuard C．Pickering．

Notiz betr．Nebel nahe BD．$-3^{\circ} 696$ ．Die von Herrn E．Esclangon bei BD．$-3^{\circ} 696$ gesehenen Nebel oder Kometenfragmente konnte ich nicht wahrnehmen，und ebenso blieb die Dez． 17 um Komet 1906 h herum vorgenommene Nachsuche nach Begleitern erfolglos．C．W．Wirtz．

[^0]: *) Im Zirkular steht irrtumlich Musca als Sternbild angegeben. Kr.

