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Abstract

High-quality text generation capability of re-
cent Large Language Models (LLMs) causes
concerns about their misuse (e.g., in massive
generation/spread of disinformation). Machine-
generated text (MGT) detection is important to
cope with such threats. However, it is suscep-
tible to authorship obfuscation (AO) methods,
such as paraphrasing, which can cause MGTs
to evade detection. So far, this was evaluated
only in monolingual settings. Thus, the suscep-
tibility of recently proposed multilingual detec-
tors is still unknown. We fill this gap by com-
prehensively benchmarking the performance
of 10 well-known AO methods, attacking 37
MGT detection methods against MGTs in 11
languages (i.e., 10 × 37 × 11 = 4,070 combi-
nations). We also evaluate the effect of data
augmentation on adversarial robustness using
obfuscated texts. The results indicate that all
tested AO methods can cause evasion of auto-
mated detection in all tested languages, where
homoglyph attacks are especially successful.
However, some of the AO methods severely
damaged the text, making it no longer read-
able or easily recognizable by humans (e.g.,
changed language, weird characters).

1 Introduction

Recent advances in Language Modeling have
birthed Large Language Models (LLMs) which ex-
hibit significant improvements, including the abil-
ity to generate texts easily misconstrued as human-
written (Zellers et al., 2019). In addition, LLMs
have been found to exhibit emergent abilities (Wei
et al., 2022), such as performing several NLP tasks
at or over the human level, e.g., an LLM passing
academic exams designed for humans in top 10%
of test takers (Achiam et al., 2023). While this is
a celebratory feat for the NLP community, LLMs
currently have several shortcomings like the gener-
ation of hate and biased speech (Deshpande et al.,

Figure 1: Benchmarking authorship obfuscation tech-
niques for machine-generated text detection.

2023; Venkit et al., 2023), the generation of mem-
orized and plagiarized content (Nasr et al., 2023;
Carlini et al., 2021; Lee et al., 2023), and the gen-
eration of mis/disinformation (Lucas et al., 2023;
Chen and Shu, 2023a; Vykopal et al., 2024; Zellers
et al., 2019). Furthermore, we find that some of
these LLMs like ChatGPT, Flan-T5 (Chung et al.,
2022), Falcon (Almazrouei et al., 2023), LLaMA
(Touvron et al., 2023), etc. can have their alignment
tuning bypassed by jailbreaking prompting tech-
niques (Lucas et al., 2023; Chen and Shu, 2023b).
Therefore, due to the great potential to be mis-
used, it is imperative that at the minimum, we can
accurately distinguish Machine-Generated Texts
(MGT) from human-written ones.

The MGT detection task has been studied very
well for the binary case (Turing Test), showing
that accurate detection of machine-generated texts
is possible (Uchendu et al., 2023; Crothers et al.,
2023; Wu et al., 2023). On the other hand, in
this work, we investigate the less comprehensively
studied problem for MGT detection–Authorship
Obfuscation (AO), which refers to the process of
masking an author’s writing style/signature, while
preserving semantics. In the MGT detection task,
AO represents an attack vector for MGT evading
detection, being successful when true positives (i.e.,
detected MGT) are changed to false negatives (i.e.,
undetected MGT).

We evaluate the robustness of MGT detectors
to adversarial perturbations by implementing AO
techniques (see Figure 1 for an illustration). Since
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the task has been solely studied for monolingual set-
tings, mostly English (Zellers et al., 2019; Mitchell
et al., 2023), but also Chinese or Russian (Orzhen-
ovskii, 2022; Pu et al., 2022; Guo et al., 2023a),
we focus on the multilingual perspective. Our key
contributions are:

(1) We provide the first comprehensive multi-
lingual benchmark of AO methods to evade the
MGT detection by implementing 10 AO methods
under 3 categories: Backtranslation, Paraphras-
ing, and Text edits. We confirmed that eight of the
ten used AO methods are usable in multilingual
settings. Homoglyph-based attacks reached 70%
attack success in some languages.

(2) We provide a unique dataset of multi-
lingual obfuscated texts (human and machine-
generated), which resulted into approximately
740k samples (although some of them contains the
same text as original, i.e., the obfuscation failed).
The dataset is available at Zenodo upon request for
research purposes only1.

(3) We provide the first evaluation of robust-
ness of multilingual MGT detection methods
against authorship obfuscation. We evaluate 37
multilingual MGT detectors using the MULTI-
TuDE (Macko et al., 2023a) multilingual bench-
mark dataset, containing 11 languages and 8 LLMs.
Out of multiple novel findings, we found out, for
example, that while basic ChatGPT paraphrasing
is not an effective AO technique, the homoglyph
attacks are very effective if not considered during
detector training or text preprocessing.

(4) We evaluate the effect of data augmentation
using obfuscated texts on adversarial robustness
of multilingual detectors. We show that in most
cases even simple data augmentation can improve
the robustness of detectors to AO techniques.

2 Related Work

With the advancements of LLMs, the MGT detec-
tion methods also adapt to multilingual settings
(Wang et al., 2023; Macko et al., 2023a). However,
it is known that MGT detection is susceptible to
AO methods (e.g. paraphrasing), which can drop
the detection performance even by 90% (Crothers
et al., 2022; Krishna et al., 2023; Shi et al., 2023).
As previously mentioned, AO methods have been
evaluated in monolingual settings only. For some
other NLP tasks, adversarial attacks (as a subset
of AO) have been evaluated in multilingual set-

1
https://doi.org/10.5281/zenodo.13846588

tings (Rosenthal et al., 2021; Wang et al., 2021).
However, multilingual evaluation of AO in MGT
detection task is still missing, thus the severity of a
potential threat of detection evasion is unknown.

2.1 MGT Detection
The current most popular MGT detectors are rep-
resented by two main groups: fine-tuned and sta-
tistical models. Fine-tuned models are transformer-
based models fine-tuned specifically for the MGT
detection task (Uchendu et al., 2021; Munir et al.,
2021; Ai et al., 2022; Liyanage et al., 2022).
There are also available several models already
pre-trained for the MGT detection task, such as
RoBERTa-base-OpenAI-Detector (Solaiman et al.,
2019), Longformer detector (Li et al., 2023),
ChatGPT-Detector-RoBERTa-Chinese (Guo et al.,
2023b), GROVER detector (Zellers et al., 2019),
etc. These can be directly used in a zero-shot man-
ner for detection of MGT. However, they are mostly
monolingual. Multilingual models, such as XLM-
RoBERTa (Conneau et al., 2020) or mBERT (De-
vlin et al., 2019), can be fine-tuned for the task on a
custom dataset to be used as multilingual detectors
(Wang et al., 2023; Macko et al., 2023a).

Statistical models use the statistical distribution
of human-written and machine-generated texts to
calculate the differences between the two. These
detectors are usually based on a pre-trained LLM
without fine-tuning, such as GPT-2 (Radford et al.,
2019), mGPT (Shliazhko et al., 2022), Falcon (Al-
mazrouei et al., 2023), etc. to calculate a single
or multiple metrics. Usually, a separate classifier
(e.g., Logistic Regression or Random Forest) is
trained to make a prediction based on such metrics.
Popular statistical models include LLMDeviation
(Wu and Xiang, 2023), Rank (Gehrmann et al.,
2019), GLTR Test 2 (Gehrmann et al., 2019), MFD
(Wu and Xiang, 2023), DetectGPT (Mitchell et al.,
2023), or DetectLLM (Su et al., 2023). There are
new promising statistical methods available, such
as Fast-DetectGPT (Bao et al., 2024), GPT-who
(Venkatraman et al., 2024), DNA-GPT (Yang et al.,
2024), or Binoculars (Hans et al., 2024), which are
however not covered in this study.

2.2 MGT Obfuscation
To evaluate the adversarial robustness of MGT de-
tectors, researchers have implemented several AO
methods, which can be grouped into: Backtrans-
lation, Paraphrasing, and Text edits. Backtrans-
lation is the process of changing a text from one
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language to another and then back to the original
(e.g., English → Spanish → English) (Almishari
et al., 2014; Keswani et al., 2016). The idea is that
the final output, the backtranslated version, will be
subtly different from the original and thus, evade
accurate detection. Backtranslation has been well
studied in the authorship attribution niche field,
making it suitable to apply to this task (Altakrori
et al., 2022). Next, Paraphrasing is similar to the
backtranslation method, however, the goal is to
paraphrase/re-write the text and keep it in the same
language as the original. It is currently the most
popular AO technique in this detection task (Sada-
sivan et al., 2023; Krishna et al., 2023; Lu et al.,
2023; Shi et al., 2023; Koike et al., 2024; Tripto
et al., 2024). In Text edits, the goal is to obfuscate
authorship through one or more of the linguistic
categories: Lexical, Syntactic, Morphological, or
Othographic. Various text-edit attacks are avail-
able, such as lexical-based attacks implemented
in GPTZzzs2 or DFTFooler (Pu et al., 2023), a
syntactic-based attack implemented in ALISON
(Xing et al., 2024), or an orthographic attack im-
plemented in GPTZeroBypasser3.

3 Methodology

The methodology is illustrated in Figure 1, sum-
marizing key components. We benchmark 10 well-
known AO methods attacking 37 MGT detection
methods against texts in 11 languages (i.e., 10 × 37
× 11 = 4,070 combinations). All source codes, data,
and full results are publicly available to enable full
replication of our study4.

3.1 Authorship Obfuscation Methods
To make the scope of this work feasible, we have
used fully automated AO methods (leaving out
human-in-the-loop methods) without any heavy
modification (out-of-the-box, just changing the
base model and/or tokenizer to a multilingual ver-
sion if available). A single run of these methods
have been used without any combinations (i.e., no
iterative modification of the texts). We have used
10 existing AO methods in this work (see Table 1,
links to and parameters of the AO methods are
available in Appendix B), grouped into three main
categories: backtranslation, paraphrasing, and text
edits. We aimed to use at least two representatives
of each group, while avoiding paid services and

2
https://github.com/Declipsonator/GPTZzzs

3
https://github.com/o2161405/GPTZero-Bypasser

4
https://github.com/kinit-sk/mAO

AO Method Description

B
ac

kt
ra

ns
la

tio
n

m2m100
(Fan et al., 2021)

A dedicated multi-language machine translation
model.

nllb-200
(Costa-jussà et al.,
2022)

A research-purpose machine translation model.

Pa
ra

ph
ra

si
ng

Pegasus-paraphrase A fine-tuned PEGASUS model for paraphrasing
task, working on a sentence level.

DIPPER
(Krishna et al., 2023)

A contextual paragraph-level paraphraser with
a controllable diversity, based on English-only
T5-xxl.

ChatGPT A popular OpenAI chat model. We have used the
basic prompt of “Paraphrase the following
text in <language> language: <text>”.

Te
xt

ed
its

GPTZzzs A tool using an English dictionary of synonyms
to replace a number of words.

GPTZeroBypasser A homoglyph attack to replace 9 specific Latin
letters for Cyrillic letters and inserting a zero-
width joiner pseudorandomly.

HomoglyphAttack Our generic version of a homoglyph attack using
the whole confusables table to psudorandomly
replace letters for their homoglyphs.

ALISON
(Xing et al., 2024)

An adversarial perturbation attack that requires
no queries to the target LLM, instead it targets its
own classifier trained on most frequent ngrams
from the train corpus.

DFTFooler
(Pu et al., 2023)

An adversarial perturbation attack that attacks
only machine-labeled samples, also requires no
queries to the target model.

Table 1: Authorship obfuscation methods overview.

including at least one representative with naturally
multilingual capability.

Backtranslation uses English (as a high re-
source language) as an intermediary language for
non-English texts and Spanish (as a representative
from a different language family branch) for En-
glish texts. Since we have not found any dedicated
multilingual paraphrasing method available, we
have used ChatGPT instead (as used for this pur-
pose in literature, e.g., Tripto et al., 2024; Cegin
et al., 2023). Text edits include synonym, homo-
glyph, as well as specialized adversarial attacks.

3.2 Dataset

As a source of original unobfuscated texts, we
use the MULTITuDE benchmark dataset (Macko
et al., 2023b) containing about 8k human-written
news texts along with 66k texts generated by 8
LLMs (i.e., alpaca-lora, gpt-3.5-turbo, gpt-4, llama,
opt, opt-iml-max, text-davinci-003, vicuna) in 11
languages (i.e., Arabic, Catalan, Chinese, Czech,
Dutch, English, German, Portuguese, Russian,
Spanish, Ukrainian). For each AO method, we
duplicate the MULTITuDE data and replace the
texts by their obfuscated version (we retry this if
some obfuscated texts are the same as the unobfus-
cated ones; we limit the number of trials to 10). We
evaluate similarity between the obfuscated and the
original texts using a range of similarity metrics
along with a human check of data pseudo-random
subset to gauge the quality of the obfuscation and
detect potential pitfalls (see Appendix C).
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3.3 MGT Detection Methods
The MGT detection methods used in this work
are grouped into three categories (based on their
nature): fine-tuned, pre-trained, and statistical.

We include fine-tuned methods which are based
on multilingual language models (monolingual
ones were omitted due to having low performance
in the original MULTITuDE benchmark). They are
trained on various portions of the train split of the
MULTITuDE dataset (for monolingual and multi-
lingual fine-tuning using all LLMs data) using the
published scripts of the MULTITuDE benchmark5.
These include the following models: mDeBERTa-
v3-base (He et al., 2022), XLM-RoBERTa-large
(Conneau et al., 2020), BERT-base-multilingual-
cased (Devlin et al., 2019), mGPT (Shliazhko et al.,
2022), and OPT-IML-Max-1.3B (Iyer et al., 2022).

As pre-trained methods, we include publicly
available detection models that were fine-tuned for
MGT detection tasks using different datasets (i.e.,
out-of-distribution data) and use them in a zero-
shot manner in this work. These include RoBERTa-
Base and RoBERTa-Large OpenAI Detectors (So-
laiman et al., 2019), ChatGPT-detector-RoBERTa
and ChatGPT-detector-RoBERTa-Chinese (Guo
et al., 2023a), Longformer Detector (Li et al.,
2023), RoBERTa-base-autextification-Detection6,
and ruRoBERTa-ruatd-binary7.

As for statistical methods, we include single-
metric methods (Entropy by Lavergne et al., 2008,
LogLikelihood by Mitchell et al., 2023, Rank by
Gehrmann et al., 2019, LogRank by Mitchell et al.,
2023, LLMDeviation by Wu and Xiang, 2023,
DetectLLM-LRR by Su et al., 2023), multi-metric
methods (GLTR Test 2 Features by Gehrmann
et al., 2019, MFD by Wu and Xiang, 2023),
and perturbation-based methods (DetectGPT by
Mitchell et al., 2023, DetectLLM-NPR by Su et al.,
2023). Due to the long run-time of perturbation-
based methods, these have been used only on a por-
tion of the test set. All of the mentioned statistical
methods are implemented in the publicly available
IMGTB framework8 (Spiegel and Macko, 2024),
which was used in its default configuration (i.e., Lo-
gistic Regression classifier for predictions without
hyper-parameters optimization). Analogously to
the fine-tuned methods, the classifiers of the statis-
tical methods have been trained using the original

5
https://github.com/kinit-sk/mgt-detection-benchmark

6
www.huggingface.co/arincon/roberta-base-autextification

7
https://huggingface.co/orzhan/ruroberta-ruatd-binary

8
https://github.com/kinit-sk/IMGTB

MULTITuDE data only (i.e., unobfuscated).

4 Experiments and Results

Firstly, our experiments focus on finding whether
the existing AO methods (so far evaluated primarily
for English) are even usable for non-English lan-
guages. Secondly, we focus on finding how robust
the existing MGT detection methods are in regard
to susceptibility to AO. Lastly, we evaluate the ef-
fect of using obfuscated texts for data augmentation
to increase their adversarial robustness.

To compare MGT detection performance, we use
standard metrics, namely AUC ROC (area under
the curve of receiver operating characteristic) as a
classification-threshold independent metric (not af-
fected by a threshold calibration on a domain data)
and Macro avg. F1-score as a metric balancing be-
tween a precision and a recall of the classification
commonly used for the MGT detection task using
imbalanced datasets. We further provide Macro
avg. F1-score values theoretically achievable on
the used data with the classification thresholds cal-
ibrated based on the ROC curve for optimal (i.e.,
maximal difference between TPR and FPR, where
TPR is true positive rate and FPR is false posi-
tive rate), 1% FPR and 5% FPR conditions. We
are aware that such a performance is not actually
achievable due to calibration on the evaluation data
(i.e., data leakage). Therefore, we are not using
it to compare performance of the MGT detection
methods, but to evaluate effect of AO on the detec-
tion (i.e., compare AO methods), while not being
biased due to sub-optimal predictions.

We use two primary metrics to evaluate the effect
of AO methods. ASR (attack success rate) mea-
sures the effectiveness of changing true positives
to false negatives, considering all AO methods as
attacks on detection. AUC ROC drop (detection
performance decrease) is used for measuring the ef-
fect of obfuscated texts on detection performance.

Before diving deeper into the experiments, let
us briefly examine the general detection perfor-
mance on our data (i.e., difficulty of the data for
this task). Table 2 shows a comparison of detection
performance of all MGT detection methods using
the whole test set (i.e., the original MULTITuDE
human and machine texts from the test split and
the obfuscated machine texts). Obfuscated human
texts are not used in the experiments due to un-
certain labeling after obfuscation (i.e., whether the
texts modified by machine should still be consid-
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Rank MGT Detection Method Category AUC ROC Macro avg. Macro avg. Macro avg. Macro avg.
(sorted) F1-score F1-score (optimal) F1-score (1% FPR) F1-score (5% FPR)

1 XLM-RoBERTa-large (all) F 0.9247 0.5745 0.5119 0.2296 0.4538
2 XLM-RoBERTa-large (ru) F 0.9231 0.5983 0.4709 0.3298 0.4290
3 mDeBERTa-v3-base (all) F 0.9076 0.5388 0.4917 0.2826 0.4057
4 mDeBERTa-v3-base (ru) F 0.8895 0.6434 0.5160 0.1497 0.3405
5 mDeBERTa-v3-base (es) F 0.8616 0.5185 0.4743 0.1633 0.3573
6 BERT-base-multilingual-cased (all) F 0.8515 0.5215 0.4479 0.2176 0.3594
7 mGPT (all) F 0.8511 0.5347 0.4640 0.2525 0.3110
8 BERT-base-multilingual-cased (es) F 0.8505 0.5306 0.4764 0.0875 0.2648
9 mGPT (ru) F 0.8427 0.5901 0.4924 0.0110 0.0110
10 XLM-RoBERTa-large (es) F 0.8346 0.5035 0.4996 0.0110 0.2747
11 mGPT (es) F 0.8312 0.5074 0.4363 0.0110 0.3217
12 OPT-IML-Max-1.3B (all) F 0.8261 0.5265 0.4406 0.0110 0.1958
13 OPT-IML-Max-1.3B (es) F 0.7697 0.5024 0.4905 0.0110 0.0110
14 BERT-base-multilingual-cased (ru) F 0.7315 0.5072 0.3823 0.0602 0.0602
15 BERT-base-multilingual-cased (en) F 0.7198 0.4999 0.4361 0.1231 0.2303
16 OPT-IML-Max-1.3B (ru) F 0.7101 0.5346 0.4063 0.0776 0.1961
17 XLM-RoBERTa-large (en) F 0.6815 0.5285 0.3734 0.1274 0.2073
18 MFD S 0.6713 0.4799 0.3564 0.1069 0.2526
19 RoBERTa-large-OpenAI-Detector P 0.6618 0.2266 0.4972 0.4672 0.4997
20 Entropy S 0.6191 0.4972 0.2433 0.1562 0.2229
21 mGPT (en) F 0.6178 0.4936 0.3181 0.0110 0.0110
22 Longformer Detector P 0.6135 0.4972 0.2531 0.0582 0.1362
23 mDeBERTa-v3-base (en) F 0.6112 0.4660 0.4166 0.0152 0.0775
24 RoBERTa-base-OpenAI-Detector P 0.5955 0.1924 0.4972 0.4328 0.4897
25 OPT-IML-Max-1.3B (en) F 0.5824 0.5452 0.1489 0.0968 0.1489
26 DetectLLM-NPR S 0.5764 0.4926 0.2844 0.0636 0.1469
27 ChatGPT-Detector-RoBERTa-Chinese P 0.5585 0.3463 0.4107 0.0110 0.0110
28 GLTR Test 2 S 0.5385 0.4922 0.3001 0.0454 0.1188
29 DetectGPT S 0.5382 0.4926 0.2700 0.0581 0.1231
30 ChatGPT-Detector-RoBERTa P 0.5311 0.1036 0.4972 0.0110 0.4551
31 DetectLLM-LRR S 0.5250 0.4966 0.2587 0.0573 0.1494
32 RoBERTa-base-autextification-Detection P 0.4946 0.4883 0.0727 0.0727 0.0727
33 LogRank S 0.4669 0.4965 0.2504 0.0344 0.0635
34 LLMDeviation S 0.4589 0.4967 0.2349 0.0292 0.0664
35 LogLikelihood S 0.4508 0.4966 0.2521 0.0323 0.0595
36 ruRoBERTa-ruatd-binary P 0.4406 0.4772 0.0110 0.0110 0.0110
37 Rank S 0.3859 0.4972 0.0110 0.0110 0.0110

Table 2: Detection performance comparison of all MGT detection methods using all MULTITuDE test data (human
and machine samples) and machine samples obfuscated by each AO method. Macro avg. F1-score (optimal) is just
a theoretical performance and refers to this metric after calibration of the classification threshold based on ROC
curve maximizing difference between TPR (true positive rate) and FPR (false positive rate). Similarly, Macro avg.
F1-score (1% FPR) and (5% FPR) refer to this metric for the classification threshold closest to (but below) 1% and
5% of FPR. For the exact calculations of such thresholds, see the published source code. F refers to fine-tuned, P to
pre-trained, and S to statistical MGT detection methods category.

ered as human) (Tripto et al., 2024). Based on the
results of achieved AUC ROC values, existing de-
tection methods can be also used for distinguishing
between human-written and obfuscated machine-
generated texts. However, based on Macro avg.
F1-score maximum values, the data are quite chal-
lenging for the task. A high difference between
AUC ROC and Macro avg. F1-score values are
due to highly imbalanced data with a ratio between
human and machine classes around 1:80.

4.1 Multilingual Capability of AO Methods

In this experiment, we aim to answer the follow-
ing research question: RQ1: Are the available
out-of-the-box automated AO methods usable in
multilingual settings? The objective is to find out
whether an adversary can actually easily use the
available methods to evade detection of MGTs in
non-English languages. Is there a difference in the
effect between languages (and their relationships)?
Are there differences between AO method cate-
gories in transferability to non-English languages?

To answer these questions, we measure ASR of
individual AO methods for each language by using
optimal predictions of all MGT detection meth-
ods (i.e., the classification thresholds optimized to
maximize the difference between TPR and FPR).
Table 3 shows the results, where a darker color
represents a higher ASR value. For each test lan-
guage, we test whether the differences between AO
methods are statistically significant. To do this, we
conduct repeated measures ANOVA tests for each
test language: we use ASR for a given test lan-
guage as a dependent variable, the MGT detection
methods as “subjects” and the AO method as an in-
dependent within-subjects variable. For all 11 test
languages, the observed differences are statistically
significant (p < 0.05). We further conduct post
hoc pairwise tests between pairs of AO methods
per each test language for a more in depth analysis.

To avoid biased results due to low-quality
machine-generated texts, the results are reported
for the data generated by the three best LLM gen-
erators (gpt-4, gpt-3.5-turbo, vicuna) based on the
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Test Language [mean (±confidence interval)]
AO Method (Category) ar ca cs de en es nl pt ru uk zh → Average
m2m100-1.2B (B) 0.1060

(±0.19)
0.2759
(±0.13)

0.1429
(±0.16)

0.2451
(±0.13)

0.3063
(±0.11)

0.2251
(±0.12)

0.2691
(±0.11)

0.2484
(±0.11)

0.2014
(±0.14)

0.1449
(±0.13)

0.1841
(±0.05)

0.2136

nllb-200-distilled-1.3B (B) 0.0983
(±0.01)

0.3262
(±0.02)

0.1980
(±0.01)

0.1987
(±0.01)

0.2133
(±0.06)

0.1846
(±0.01)

0.2307
(±0.01)

0.1990
(±0.01)

0.1868
(±0.01)

0.1542
(±0.01)

0.2725
(±0.00)

0.2057

Pegasus-paraphrase (P) 0.1706
(±0.03)

0.5279
(±0.05)

0.4143
(±0.04)

0.4564
(±0.08)

0.1912
(±0.08)

0.4730
(±0.06)

0.4877
(±0.05)

0.5883
(±0.05)

0.1395
(±0.05)

0.0489
(±0.04)

0.2754
(±0.07)

0.3430

DIPPER (P) 0.2425
(±0.03)

0.1830
(±0.06)

0.2042
(±0.05)

0.2191
(±0.06)

0.1556
(±0.05)

0.2478
(±0.05)

0.2120
(±0.04)

0.2645
(±0.04)

0.1199
(±0.04)

0.0719
(±0.05)

0.2991
(±0.12)

0.2018

ChatGPT (P) 0.0803
(±0.00)

0.1076
(±0.10)

0.0958
(±0.06)

0.1020
(±0.11)

0.1332
(±0.13)

0.0798
(±0.11)

0.0920
(±0.11)

0.0766
(±0.12)

0.1026
(±0.08)

0.0831
(±0.03)

0.1052
(±0.00)

0.0962

GPTZzzs (T) 0.0053
(±0.14)

0.0741
(±0.07)

0.0173
(±0.11)

0.0308
(±0.12)

0.4140
(±0.06)

0.0849
(±0.13)

0.0797
(±0.09)

0.0928
(±0.13)

0.0031
(±0.06)

0.0010
(±0.05)

0.0095
(±0.11)

0.0739

GPTZeroBypasser (T) 0.3764
(±0.20)

0.4698
(±0.17)

0.2328
(±0.13)

0.4492
(±0.14)

0.5752
(±0.17)

0.5378
(±0.15)

0.5634
(±0.15)

0.5857
(±0.16)

0.4713
(±0.18)

0.3633
(±0.15)

0.1923
(±0.10)

0.4379

HomoglyphAttack (T) 0.3767
(±0.00)

0.7154
(±0.05)

0.4593
(±0.01)

0.6440
(±0.02)

0.7684
(±0.14)

0.7033
(±0.05)

0.7447
(±0.04)

0.7495
(±0.05)

0.5371
(±0.00)

0.4147
(±0.00)

0.1131
(±0.00)

0.5660

ALISON (T) 0.0216
(±0.02)

0.0451
(±0.04)

0.0180
(±0.03)

0.0275
(±0.03)

0.1092
(±0.06)

0.0312
(±0.02)

0.0298
(±0.02)

0.0340
(±0.02)

0.0227
(±0.03)

0.0261
(±0.03)

0.0094
(±0.04)

0.0340

DFTFooler (T) 0.0036
(±0.16)

0.2149
(±0.13)

0.1105
(±0.16)

0.3061
(±0.17)

0.3011
(±0.07)

0.2206
(±0.14)

0.3147
(±0.14)

0.2678
(±0.15)

0.0960
(±0.10)

0.0372
(±0.05)

0.0081
(±0.14)

0.1710

↓ Average 0.1481 0.2940 0.1893 0.2679 0.3167 0.2788 0.3024 0.3107 0.1880 0.1345 0.1469

Table 3: Attack success rate of AO methods based on classification thresholds of individual MGT detection methods
optimized for each language separately. Only human data and machine data generated by the selected best three
LLM generators (gpt-4, gpt-3.5-turbo, vicuna) are used. Only MGT detection methods achieving above 0.8 AUC
ROC per each language on original test data are included (see Table 14). Per-language mean values of all detection
methods are reported along with 95% confidence interval error bounds. B refers to backtranslation, P to paraphrasing,
and T to text edits AO method category.

text similarity to human-written counterparts (see
Table 8). Similarly, to avoid low-performing de-
tectors affecting the mean values, we include only
detection methods achieving above 0.8 AUC ROC
per each test language on original test data (see
Table 14). It results in averaging different sets of
MGT detection methods for each language; there-
fore, we provide an ablation study including all
detection methods and all LLM-generated data in
Appendix D. The results might be also influenced
by a potential overfit on the test data (due to cali-
bration of the classification thresholds). Therefore,
we also provide an ablation study with thresholds
calibrated by using only 10% of the original (unob-
fuscated) test data (it confirmed the conclusions).

All (even English-only) AO methods are us-
able in multilingual settings. The results indicate
that each AO method is able to successfully cause
evading detection at least for some samples. How-
ever, only in about 12% of cases, the ASR reached
0.5 on average (representing about 50% chance of
the obfuscation being successful). Thus, a practical
usage of most of AO methods is questionable.

Effect of the English-only AO methods is in-
consistent. GPTZzzs affects mostly English, as
expected since it uses an English dictionary of
synonyms. Other English-only AO methods seem
to have lower (the lowest in some cases) effect
on English than on the other languages. Pegasus-
paraphrase seems to achieve unusually high ASR

on non-English languages, but not affecting non-
Latin scripts as much. Similar behavior (regard-
ing scripts) can be observed for DFTFooler, al-
though in a lesser intensity. On the other hand, DIP-
PER seems to affect non-Latin scripts in a higher
amount. A high ASR of Pegasus-parahrase cannot
be solely due to changed language of the texts after
obfuscation, since DIPPER changed the language
for almost twice as many texts but achieves only
about a half ASR.

Homoglyph-based attacks are most success-
ful across languages. For most languages, these
attacks offer above 50% chance of successfully
avoiding MGT detection. This effect can be ex-
pected since these attacks change the characters of
the words, thus influencing inner representations
(embeddings) in the detection models. However,
such attacks can be easily detected/alleviated by
preprocessing (e.g., by detecting multi-script texts).
Out of the test languages, Chinese seems to be the
most resistant to this kind of AO.

Backtranslation and other paraphrasers are
more successful than ChatGPT in obfusation.
However, we have used only a basic prompt for
paraphrasing by ChatGPT. A more sophisticated
prompt directing the writing style could help to
increase the ASR. Nevertheless, the ChatGPT para-
phrasing does not suffer by language change in mul-
tilingual settings as do the English-only dedicated
paraphrasers (Pegasus-parphrase and DIPPER).
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Test Language [mean (±confidence interval)]
ar ca cs de en es nl pt ru uk zh → Average

Tr
ai

n
L

an
gu

ag
e

en -12.73%
(±8.59%)

-22.54%
(±8.37%)

-9.28%
(±6.10%)

-12.07%
(±5.41%)

-3.93%
(±3.00%)

-19.20%
(±7.59%)

-23.63%
(±8.75%)

-19.79%
(±7.79%)

-16.62%
(±7.83%)

-14.51%
(±7.44%)

-7.26%
(±2.97%)

-14.69%

es -5.28%
(±4.99%)

-8.21%
(±5.30%)

-3.64%
(±4.02%)

-7.67%
(±4.01%)

-21.54%
(±10.07%)

-5.15%
(±3.60%)

-9.31%
(±5.50%)

-8.28%
(±5.39%)

-11.24%
(±5.95%)

-8.02%
(±5.00%)

-2.86%
(±1.75%)

-8.29%

ru -3.90%
(±3.69%)

-12.58%
(±6.61%)

-3.22%
(±2.99%)

-4.70%
(±4.67%)

-17.11%
(±9.37%)

-6.68%
(±4.94%)

-11.50%
(±5.51%)

-8.03%
(±5.99%)

-2.80%
(±1.50%)

-3.30%
(±1.94%)

-3.87%
(±1.87%)

-7.06%

all -4.77%
(±4.05%)

-8.72%
(±4.27%)

-4.01%
(±2.60%)

-8.00%
(±3.75%)

-2.14%
(±1.79%)

-4.65%
(±2.68%)

-11.11%
(±4.73%)

-6.71%
(±3.59%)

-4.35%
(±2.23%)

-4.56%
(±2.59%)

-4.27%
(±2.09%)

-5.75%

C
at

eg
or

y

F -6.67%
(±2.80%)

-13.01%
(±3.19%)

-5.04%
(±2.05%)

-8.11%
(±2.22%)

-11.18%
(±3.67%)

-8.92%
(±2.62%)

-13.89%
(±3.18%)

-10.70%
(±2.96%)

-8.75%
(±2.61%)

-7.60%
(±2.40%)

-4.57%
(±1.11%)

-8.95%

P -9.58%
(±7.23%)

-3.07%
(±6.73%)

-5.94%
(±6.22%)

-6.76%
(±6.72%)

-20.46%
(±7.89%)

-7.00%
(±6.71%)

-3.63%
(±6.04%)

-8.30%
(±6.26%)

-3.91%
(±7.86%)

-5.73%
(±6.53%)

-0.59%
(±4.98%)

-6.82%

S -6.22%
(±7.36%)

-9.28%
(±10.31%)

-7.10%
(±9.28%)

-13.66%
(±8.20%)

-17.79%
(±9.98%)

-14.32%
(±8.14%)

-10.04%
(±8.69%)

-12.76%
(±8.20%)

-19.42%
(±7.95%)

-14.54%
(±8.54%)

-6.22%
(±3.50%)

-11.94%

Table 4: AUC ROC drop of differently fine-tuned MGT detection methods (top) and of different categories (F –
fine-tuned, P – pre-trained, S – statistical) of MGT detection methods (bottom). Per-language mean value is reported
for each group (train language or category) along with 95% confidence interval error bounds. Only test data of AO
methods passing the quality check are used.

4.1.1 Human Validation of Readability
Such an experiment properly evaluates the impact
of AO methods on the automated MGT detection
methods. However, the AO methods could have
severely damaged the texts, which would be ei-
ther unreadable by humans or clearly suspicious.
Therefore, we have done a manual human check
(see Appendix C) of the obfuscated data sample by
three human evaluators (average Pearson correla-
tion between annotations of 0.7, total annotation
agreement accuracy of 0.65 with majority 2 of 3
accuracy of 0.99). Based on such a quality check
along with text-similarity analysis between unob-
fuscated and obfuscated texts, Pegasus-paraphrase
and DIPPER AO methods are unusable in the mul-
tilingual settings. Therefore, these two methods are
disqualified from the further experiments (although
included in the Appendices for a reference).

4.2 Adversarial Robustness of Multilingual
MGT Detection Methods

This experiment aims to answer the following re-
search question: RQ2: How robust are multilin-
gual MGT detection methods against out-of-the-
box automated AO methods? Namely, is there a dif-
ference in robustness between languages or MGT
detection method categories? Also, is there a dif-
ference between monolingually and multilingually
fine-tuned MGT detection methods?

To answer these questions, we measure general
detection performance (AUC ROC) drop caused by
texts being obfuscated by individual AO methods
for each language separately. A smaller AUC ROC
drop (a higher value) means a detection method
is more robust against obfuscation. To see differ-
ences, we provide aggregated results based on train

language used for fine-tuning and based on MGT
detection method category in Table 4. Analogously
to the previous experiment, we have tested statisti-
cal significance for each test language. AUC ROC
and AUC ROC drop values per each AO method
and each test language is reported in Appendix E.

There are clear differences among languages
and among MGT detection method categories.
All of them are most sensitive to homoglyph at-
tacks, both of the attacks having similar effect on
fine-tuned and pre-trained methods. However, sta-
tistical methods are more resistant to GPTZeroBy-
passer and more vulnerable to HomoglyphAttack.
Fine-tuned and statistical methods are also affected
by backtranslation, unlike pre-trained methods.

English is most vulnerable to obfuscation in
pre-trained methods. However, this might be in-
fluenced by being mostly represented by English-
only detection models. In fine-tuned and statistical
methods, Arabic, Czech and Chinese are more re-
sistant to obfuscation than the others. However,
these observations are not statistically significant
due to high variation between AO methods.

English-only fine-tuned MGT detection meth-
ods are least robust against obfuscation. These
methods are affected more by obfuscation of non-
English texts. On the other hand, detection methods
fine-tuned monolingually by Spanish or Russian
are mostly sensitive to English texts obfuscation.
Multilingually fine-tuned detection methods are the
most robust, although difference between them and
the Russian or Spanish monolingually fine-tuned
methods are not statistically significant.
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4.3 Multilingual Obfuscation for Data
Augmentation

Finally, this experiment aims to answer the follow-
ing research question: RQ3: Does the training of
multilingual MGT detection methods also on obfus-
cated data increase their adversarial robustness for
individual languages? Is the effect the same when
using texts obfuscated by individual AO methods
separately and by all of them combined?

To answer these questions, we measure AUC
ROC and focus on a difference before and after
adversarial retraining by data augmentation. We re-
fer to these detection methods as originally trained
and adversarially trained. For this experiment, we
use only multilingually fine-tuned detection meth-
ods to limit the scope. As in the previous experi-
ments, only obfuscated machine-class samples (of
AO methods passing the quality check) were used
for augmenting the train data for adversarial re-
training. This caused highly imbalanced (human
vs. machine classes) train set; therefore, we have
pseudorandomly upsampled the minority class us-
ing a simple duplication method. For the results not
to be biased due to this difference in the fine-tuning
process, we have also retrained original detection
methods in this manner. For individual AO meth-
ods data adversarial retraining, we have selected
one from backtranslation, one from paraphrasing,
one from homoglyph attacks, and one from adver-
sarial attacks, based on the highest absolute number
of successfully obfuscated texts. For each adversar-
ial retraining process, we used the same amounts
of original and obfuscated samples.

The performance results of originally and ad-
versarially trained MGT detection methods in Fig-
ure 2 show that in general adversarial retraining

OPT-IML-Max XLM-R-large mBERT mDeBERTa mGPT
0.800
0.825
0.850
0.875
0.900
0.925
0.950
0.975
1.000

AU
C 

RO
C

originally trained
adversarially trained m2m100-1.2B
adversarially trained ChatGPT

adversarially trained HomoglyphAttack
adversarially trained DFTFooler
adversarially trained all

Figure 2: Detection performance (AUC ROC) of origi-
nally (leftmost bar) and adversarially trained MGT de-
tection methods on the test data including all unobfus-
cated texts and obfuscated texts by AO methods passing
the quality check. Note that the y-axis starts at 0.8.

by data augmentation using obfuscated texts
increases the overall performance on the used
test set. However, in some cases of adversarially
trained models, we observe a decrease in the over-
all performance. To provide more insights, Table 5
in Appendix E shows the results per AO method
(i.e., a portion of the test set containing obfuscated
machine-class texts by a particular AO method).
It provides absolute AUC ROC values as well as
relative values reflecting the effect of adversarial
retraining (i.e., whether it helped or not).

Table 5 shows the results per AO method (i.e.,
a portion of the test set containing obfuscated
machine-class texts by a particular AO method). It
provides absolute AUC ROC values (mean across
detection methods) to illustrate performance on dif-
ferent portions of the test set, as well as relative
values reflecting the effect of adversarial retrain-
ing. Using texts obfuscated by all AO methods
for adversarial retraining slightly decreases the per-
formance on the original test data, but it signifi-
cantly increases the performance for homoglyph
attacks, having negligible impact on other portions
of the test data. Using m2m100-1.2B and Chat-
GPT increases performance for backtranslation and
paraphrasing, but slightly drops the performance
in other cases, especially HomoglyphAttack. Us-
ing HomoglyphAttack significantly increases per-
formance for homoglyph attacks, but slightly de-
creases performance in other cases. And finally,
using DFTFooler increases performance for most
of the text-edits attacks, but slightly drops perfor-
mance in other cases.

There are differences in the effect of adver-
sarial retraining based on the used AO method
data. Using texts obfuscated by all AO methods is
the best option on average, while using backtransla-
tion only is the worst option (although comparable
with ChatGPT basic paraphrasing). Adversarial
retraining using single AO method data does not
only increase the performance on that particular
AO method obfuscated test data, but transfers also
to some other obfuscated texts. For example, using
adversarial attack also increased performance for
homoglyph attacks. For additional per-language
results, see Table 21 in Appendix E.

5 Discussion

Existing authorship-obfuscation methods
present a potential threat in non-English
languages. All of them are able to confuse all

6355



Absolute AUC ROC ↑ Relative AUC ROC Difference ↓

AO Method (Category) or
ig

in
al

ly
tr

ai
ne

d

al
l

m
2m

10
0-

1.
2B

C
ha

tG
PT

H
om

og
ly

ph
A

tt
ac

k

D
FT

Fo
ol

er

al
l

m
2m

10
0-

1.
2B

C
ha

tG
PT

H
om

og
ly

ph
A

tt
ac

k

D
FT

Fo
ol

er

original 0.9372 0.9139 0.9275 0.9312 0.9270 0.9317 -2.54% -1.07% -0.64% -1.09% -0.58%
m2m100-1.2B (B) 0.9069 0.8985 0.9392 0.9019 0.8911 0.8951 -1.02% 3.56% -0.57% -1.80% -1.32%
nllb-200-distilled-1.3B (B) 0.9060 0.8989 0.9234 0.9214 0.8900 0.8957 -0.87% 1.89% 1.70% -1.81% -1.14%
ChatGPT (P) 0.9254 0.9169 0.9258 0.9587 0.9132 0.9116 -0.97% 0.01% 3.67% -1.35% -1.52%
GPTZzzs (T) 0.9311 0.9170 0.9216 0.9258 0.9221 0.9349 -1.58% -1.05% -0.57% -0.97% 0.41%
GPTZeroBypasser (T) 0.8443 0.9783 0.8316 0.8548 0.9554 0.9197 16.27% -1.71% 1.37% 13.43% 9.07%
HomoglyphAttack (T) 0.8580 0.9760 0.8219 0.8183 0.9903 0.9453 14.15% -4.34% -4.63% 15.91% 10.40%
ALISON (T) 0.9328 0.9346 0.9244 0.9252 0.9215 0.9234 0.16% -0.93% -0.80% -1.22% -0.99%
DFTFooler (T) 0.9172 0.9306 0.9031 0.9074 0.9183 0.9626 1.44% -1.58% -1.05% 0.14% 5.04%
↓ Average 0.9065 0.9294 0.9021 0.9050 0.9254 0.9244 2.78% -0.58% -0.17% 2.36% 2.15%

Table 5: Comparison of detection performance between originally and adversarially trained MGT detection methods
(in columns) on the original (unobfuscated) and per AO method (obfuscated) data (shown in rows). Mean across
detection models absolute AUC ROC values are shown in the left part of the table. Relative difference in AUC ROC
caused by adversarially trained methods in comparison to originally trained are shown in the right part of the table.

detection methods at least for some texts. There
is a sole exception of GPTZeroBypasser not
being able to fool RoBERTa-base-autextification-
Detection in any test language (due to its rather
random detection ability). Still, in majority
of cases (combinations of AO method, MGT
detection method, and test language), the attack
success rate is below 50%. However, we have not
considered combinations of multiple AO methods
or sophisticated adjustments to multilingualism.

Pre-processing to avoid homoglyphs can pro-
tect against this type of attacks. Homoglyphs
are usually considered as being able to fool hu-
mans due to visual similarity of characters but not
the computers due to unrelated binary representa-
tions. If the classification models are not trained
considering such cases, homoglyph-including sam-
ples can easily be misclassified. However, pre-
processing steps specifically targeting homoglyphs
(e.g., characters of different scripts contained in a
single word) can presumably alleviate this kind of
attacks. Data augmentation using such obfuscated
samples also helps, as shown in our experiments.

A simple data augmentation using obfuscated
texts can increase adversarial robustness of
MGT detection methods. Usually, a complex
adversarial training including generation of adver-
sarial examples targeting a specific model is used
to increase adversarial robustness of a model. We
have shown that inclusion of generic obfuscated
samples (not necessarily being adversarial exam-
ples) also helps to increase the adversarial robust-
ness. We also observe a transferability between AO
methods, meaning that using samples from one AO
method for adversarial training increases resistance
to another AO method during testing.

6 Conclusion

In this work, we have done the first comprehensive
benchmark of authorship obfuscation methods in
multilingual settings. We have also done the first
evaluation of adversarial robustness (using author-
ship obfuscation methods) of multilingual machine-
generated text detection methods. We have crafted
a new public dataset of 740k obfuscated texts,
which has wide usage possibilities, even beyond the
purpose outlined in this work (e.g., to study differ-
ences in obfuscated human-written and obfuscated
machine-generated texts, or to evaluate robustness
of multi-class authorship-attribution systems).

Our results (namely nonzero attack success rate
values) indicate that the existing authorship ob-
fuscation methods, although focused primarily on
English, are usable in all 11 tested languages, thus
posing a potential threat for automated multilingual
detection. However, human quality check of the ob-
fuscated texts disqualified two of them as unusable
in non-English and/or non-Latin script languages.
The adversarial robustness results show that there
are differences among machine-generated text de-
tection method categories as well as among tested
languages. The results confirmed that English
monolingual fine-tuning of multilingual detectors
is not suitable, since it is the least resistant against
obfuscation. As we have shown, the adversarial
retraining using a simple data augmentation by ob-
fuscated texts can significantly increase the adver-
sarial robustness of detectors, especially against
homoglyph and paraphrasing attacks.

Future work should be focused on iterative and
hybrid authorship obfuscation of multilingual texts
to evaluate severity of such threat on machine-
generated text detection.
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Limitations

Selection of AO Methods. We have limited the
scope of this work by constraining which author-
ship obfuscation methods (e.g., fully automated)
have been used under which conditions, as de-
scribed in Section 3.1. We have limited the num-
ber of trials of obfuscation methods to 10, leav-
ing some texts not modified (i.e., they might have
remained the same as the original). Due to com-
putational and time costs, we have avoided paid
services (e.g., Google Translation9) and slow ad-
versarial attacks (e.g., TextFooler10). As already
noted, in real settings, actors trying to evade the
detection of machine-generated texts might use a
combination of AO methods or use humans in the
loop.

Settings of AO Methods. We have used only the
default settings of AO methods where available. By
tuning the obfuscation settings, one could achieve
slightly different results, as shown by our abla-
tion study for HomoglyphAttack in Appendix D
(Table 13). Therefore, a comparison between in-
dividual AO methods (e.g., the best and worst AO
methods) should be interpreted with this in mind.
However, general observations about multilingual
usage of existing AO methods, per-language differ-
ences, or adversarial robustness evaluations are not
significantly affected by these and still hold.

Dataset Selection. We have used a single
dataset (MULTITuDE) for experiments, limiting
the number of languages for training (3) and for
evaluation (11), limiting the number of LLMs used
to generate the machine texts (8), and limiting the
domain of the texts to news articles. Extension in
all the mentioned aspects as well as in the number
of samples (especially better balancing between
human and machine classes) could help the general-
izations; however, not influencing the conclusions
we could already make.

Evaluation of Obfuscation Quality. We eval-
uated the quality (usability) of the selected AO
methods using a range of heuristics (i.e., similarity
metrics, change in text length, language change,
etc., see Appendix C). Additionally, we did a man-
ual quality check on a small random subset of the
obfuscated data to evaluate their quality from the
users’ perspective, i.e., whether the obfuscation

9
https://cloud.google.com/translate?hl=en

10
https://github.com/jind11/TextFooler

does not make the texts easily detectable by hu-
mans in the process. Nevertheless, we did not eval-
uate the quality on the whole dataset, which was
unfeasible due to the scale of our dataset (740k
obfuscated texts).

Ethics Statement

Our work identifies the most effective authorship
obfuscation methods for each tested language, thus
identifying potential vulnerabilities of machine-
generated text detection methods. Although there
is a risk that this can be misused by adversaries, the
benefits of our work outweigh such a risk. First,
we use existing freely available AO methods. Sec-
ondly, although we identify weaknesses of already
existing detection methods, we also provide simple
means to eliminate them through data augmenta-
tion during adversarial retraining.

We use an existing data resource in our work
(MULTITuDE) in accordance with its intended use
and license. As a part of our work, we extend
this resource by generating obfuscated human and
machine-generated texts. We will publish this data
(for research purposes only) together with our code
to ensure reproducibility of our work.
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A Computational Resources

In the experiments, we have utilized a computa-
tional infrastructure consisting of 1× A100 40GB
GPUs for application of the authorship obfuscation
methods, text-similarity metrics calculations, and
machine-generated text detectors requiring LLM
inference and fine-tuning of pre-trained models.
Cumulatively, these processes required approxi-
mately 1,875 GPU hours. For other processes, such
as data analysis, simpler metric calculations (not
requiring GPU), using some obfuscation methods
(ChatGPT inference via OpenAI API, GPTZzzs,
GPTZeroBypasser, and HomoglyphAttack), and

results analysis, we used Google Colab11 without
GPU acceleration.

B Authorship Obfuscation Methods

The used authorship obfuscation methods, grouped
into three categories, are summarized in Table 6
along with the used default parameters or settings
for obfuscation.

AO Method Parameters

B
ac

kt
ra

ns
la

tio
n m2m100-1.2B12

(Fan et al., 2021)
We have used English as an intermediary lan-
guage for non-English texts and Spanish for En-
glish texts.

nllb-200-distilled-1.3B13

(Costa-jussà et al., 2022)
We have used English as an intermediary lan-
guage for non-English texts and Spanish for En-
glish texts, with max_length set to 512.

Pa
ra

ph
ra

si
ng

Pegasus-paraphrase14 We have used the model for paraphrasing each
sentence separately, with max_length of 60,
num_beams of 10, and temperature of 1.5,
as provided in exemplar usage on HuggingFace.

DIPPER15

(Krishna et al., 2023)
We have used both the lex_diversity and
order_diversity set to 40 (as the most inten-
sive settings in the DIPPER paper), the nucleus
sampling with top_p of 0.75 and max_length
of 512.

ChatGPT16 We have used a basic paraphrasing prompt
of “Paraphrase the following text in
<language> language: <text>”. We have
limited the number of output tokens to 512, and
used the nucleus sampling with top_p of 0.95.

Te
xt

ed
its

GPTZzzs17 We have used a random seed of 42. We have
set 30% of words to be replaced by synonyms
using Zaibacu Thesaurus and 50% of adjectives
to changed emphasis on, without ignoring quo-
tations and without using only common words.

GPTZeroBypasser18 We have used a random seed of 42, inserting a
zero-width joiner pseudorandomly with a proba-
bility of 0.2.

HomoglyphAttack We have used a random seed of 42. We have
used the whole confusables table19 to psudoran-
domly replace letters for their homoglyphs with
a probability (of a character being replaced) set
to 0.1.

ALISON20

(Xing et al., 2024)
We have use bert-base-multilingual-cased as a
base model and min_length of 2, other param-
eters used the default values.

DFTFooler21

(Pu et al., 2023)
We have used bert-base-multilingual-cased as
the backend model and the number of samples
to attack set to 100,000 to obfuscate all texts.
Other parameters used the default values.

Table 6: Authorship obfuscation methods parameters.

C Post-Obfuscation Similarity Analysis

To evaluate the similarity between the obfuscated
and the original texts (and thus the quality of the
obfuscation), we have used the following metrics:
METEOR (Banerjee and Lavie, 2005) as a stan-
dard metric used in machine translation based on

11
https://colab.research.google.com/

12
https://huggingface.co/facebook/m2m100_1.2B

13
https://huggingface.co/facebook/nllb-200-distilled-1.3B

14
https://huggingface.co/tuner007/pegasus_paraphrase

15
https://github.com/martiansideofthemoon/

ai-detection-paraphrases
16
https://openai.com/blog/chatgpt

17
https://github.com/Declipsonator/GPTZzzs

18
https://github.com/o2161405/GPTZero-Bypasser

19
https://www.unicode.org/Public/security/8.0.0/confusables.

txt
20
https://github.com/EricX003/ALISON

21
https://github.com/jmpu/DeepfakeTextDetection/tree/main/

DFTFooler
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AO Method METEOR ↑ BERTScore ↑ USE ↑ ngram ↑ TF ↑ LD ↓ CharLenDiff → 1 LangCheck ↓
m2m100-1.2B 0.452 (±0.22) 0.853 (±0.07) 0.842 (±0.13) 0.485 (±0.18) 0.810 (±0.16) 0.467 (±0.21) 0.678 (±0.24) 0.55%
nllb-200-distilled-1.3B 0.398 (±0.23) 0.833 (±0.08) 0.797 (±0.17) 0.431 (±0.20) 0.775 (±0.18) 0.542 (±0.33) 0.638 (±0.39) 0.30%
Pegasus-paraphrase 0.331 (±0.24) 0.708 (±0.15) 0.575 (±0.34) 0.324 (±0.23) 0.646 (±0.28) 0.698 (±0.40) 0.556 (±0.49) 28.17%
DIPPER 0.276 (±0.23) 0.760 (±0.10) 0.683 (±0.26) 0.282 (±0.23) 0.528 (±0.34) 0.704 (±0.28) 0.756 (±0.32) 51.79%
ChatGPT 0.566 (±0.22) 0.867 (±0.07) 0.884 (±0.11) 0.546 (±0.18) 0.819 (±0.16) 0.418 (±0.22) 0.920 (±0.24) 1.38%
GPTZzzs 0.968 (±0.06) 0.974 (±0.03) 0.988 (±0.02) 0.918 (±0.09) 0.986 (±0.02) 0.046 (±0.05) 1.017 (±0.02) 2.78%
GPTZeroBypasser 0.131 (±0.10) 0.651 (±0.21) 0.375 (±0.18) 0.168 (±0.14) 0.130 (±0.17) 0.495 (±0.17) 1.238 (±0.03) 37.33%
HomoglyphAttack 0.568 (±0.10) 0.778 (±0.05) 0.762 (±0.11) 0.596 (±0.06) 0.179 (±0.16) 0.094 (±0.02) 1.003 (±0.00) 2.74%
ALISON 0.987 (±0.06) 0.991 (±0.02) 0.993 (±0.01) 0.971 (±0.04) 0.968 (±0.07) 0.009 (±0.01) 1.005 (±0.01) 2.77%
DFTFooler 0.948 (±0.07) 0.977 (±0.02) 0.990 (±0.02) 0.920 (±0.08) 0.963 (±0.06) 0.033 (±0.04) 1.004 (±0.01) 2.78%

Table 7: Similarity analysis between obfuscated and original texts [mean (± std)]. LD is normalized Levenshtein
distance, LangCheck is percentage of texts with changed languages based on FastText predictions, arrows refer to
values representing more similar texts, boldfaced values represent the most similar texts for each metric.

LLM Generator METEOR ↑ BERTScore ↑ USE ↑ ngram ↑ TF ↑ LangCheck ↓
alpaca-lora-30b 0.110 (±0.07) 0.668 (±0.04) 0.516 (±0.20) 0.170 (±0.08) 0.619 (±0.20) 1.01%
gpt-3.5-turbo 0.139 (±0.07) 0.678 (±0.04) 0.584 (±0.20) 0.215 (±0.09) 0.650 (±0.20) 0.02%
gpt-4 0.163 (±0.08) 0.688 (±0.04) 0.629 (±0.21) 0.253 (±0.10) 0.667 (±0.21) 0.00%
llama-65b 0.099 (±0.07) 0.619 (±0.06) 0.448 (±0.22) 0.138 (±0.10) 0.513 (±0.23) 14.29%
opt-66b 0.116 (±0.08) 0.655 (±0.05) 0.464 (±0.25) 0.175 (±0.10) 0.595 (±0.23) 3.53%
opt-iml-max-1.3b 0.106 (±0.08) 0.635 (±0.06) 0.402 (±0.26) 0.159 (±0.10) 0.548 (±0.23) 4.80%
text-davinci-003 0.123 (±0.07) 0.674 (±0.04) 0.542 (±0.21) 0.196 (±0.09) 0.620 (±0.21) 0.00%
vicuna-13b 0.131 (±0.07) 0.667 (±0.04) 0.548 (±0.21) 0.199 (±0.09) 0.630 (±0.21) 2.89%

Table 8: Similarity analysis between machine-generated and human-written texts in original MULTITuDE data
[mean (± std)]. LangCheck is percentage of texts with intended languages mismatching FastText predictions, arrows
refer to values representing more similar texts, boldfaced values represent the most similar texts for each metric.

unigrams, BERTScore (Zhang et al., 2019) with
mBERT model as a contextual embeddings based
similarity metric that is more robust to adversarial
texts, and cosine similarity of USE (multilingual
version of universal sentence encoder) (Yang et al.,
2020) sentence-level embeddings as a semantic
similarity metric. For a better explainability, we
have also used character-level ngram22 (3-grams
in our case) as a language-independent string sim-
ilarity metric in the form of a ratio of the shared
ngrams between two strings and cosine similar-
ity of TF (term frequency) (Beil et al., 2002) as
a word-level frequency similarity metric by using
polyglot23 multilingual tokenizer. All of the men-
tioned metrics represent a score between 0 and 1,
while closer to 1 means higher similarity. In addi-
tion, we have measured amount (severity) of text
modification by using the Levenshtein distance as a
character-level edit distance24, which was normal-
ized to the text length (a number closer to 0 means
lesser modification). Since some LLMs occasion-
ally fail in the task by generating duplicated char-
acters, we have calculated a ratio of character-level
lengths between obfuscated and unobfuscated texts
after removal of subsequent duplicate characters
(e.g., ’ssssssss’ is changed to a single ’s’ for the cal-

22
https://pypi.org/project/ngram

23
https://github.com/aboSamoor/polyglot

24
https://github.com/roy-ht/editdistance

culation purpose). We call this ratio CharLenDiff.
Such a ratio value above 1 represents that the obfus-
cation lengthened the text and between 0 to 1 means
that obfuscation shortened the text (while not tak-
ing duplicated characters into account). Also, since
multiple of the used AO methods are English-only
by their nature, we have checked possible changed
language of the obfuscated texts by FastText25 lan-
guage detection.

A summary of the post-obfuscation analysis is
provided in Table 7. For a reference, a summary of
per-generator similarity analysis between the cor-
responding human-written and machine-generated
texts in the original MULTITuDE dataset is pro-
vided in Table 8. Based on the results, we can see
that the texts obfuscated by adversarial attacks are
the most similar to the original versions. On the
other hand, English-only paraphrasers (Pegasus-
paraphrase and DIPPER) are clearly the outliers
(by most of the metrics). As LangCheck indicates,
these methods probably changed the language of
the texts to English (or incorporated several En-
glish parts), which must be considered during the
experiments. Based on CharLenDiff, we might
assume that Pegasus-paraphrase AO method short-
ened the obfuscated texts by a high amount on
average due to failing of the model to generate a
meaningful text (shorter strings of duplicated char-

25
https://github.com/facebookresearch/fastText/
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Test Language [mean (± std)]
AO Method ar ca cs de en es nl pt ru uk zh
m2m100-1.2B 0.9 (±0.31) 0.8 (±0.41) 0.9 (±0.25) 0.8 (±0.41) 0.7 (±0.47) 0.9 (±0.31) 0.8 (±0.43) 0.9 (±0.25) 0.8 (±0.53) 1.0 (±0.00) 0.7 (±0.52)
nllb-200-distilled-1.3B 1.0 (±0.00) 0.6 (±0.72) 0.6 (±0.68) 0.6 (±0.76) 0.8 (±0.43) 0.5 (±0.73) 0.5 (±0.78) 0.8 (±0.57) 0.8 (±0.50) 0.9 (±0.31) 0.9 (±0.35)
Pegasus-paraphrase -1.0 (±0.00) 0.2 (±0.68) 0.5 (±0.51) 0.4 (±0.63) 0.8 (±0.46) 0.2 (±0.95) 0.4 (±0.61) 0.4 (±0.77) -1.0 (±0.00) -1.0 (±0.00) -1.0 (±0.00)
DIPPER -0.9 (±0.51) -0.7 (±0.65) -0.9 (±0.43) -1.0 (±0.18) 0.5 (±0.78) -0.5 (±0.82) -0.9 (±0.35) -0.9 (±0.51) -1.0 (±0.00) -1.0 (±0.00) -1.0 (±0.00)
ChatGPT 1.0 (±0.00) 0.9 (±0.40) 0.9 (±0.51) 0.6 (±0.82) 0.9 (±0.37) 1.0 (±0.00) 1.0 (±0.00) 1.0 (±0.00) 0.9 (±0.37) 1.0 (±0.00) 0.8 (±0.63)
GPTZzzs 1.0 (±0.00) 1.0 (±0.00) 1.0 (±0.00) 1.0 (±0.00) 1.0 (±0.00) 1.0 (±0.00) 1.0 (±0.00) 1.0 (±0.00) 1.0 (±0.00) 1.0 (±0.00) 1.0 (±0.00)
GPTZeroBypasser 1.0 (±0.00) 0.7 (±0.48) 0.7 (±0.48) 0.7 (±0.48) 0.7 (±0.48) 0.7 (±0.48) 0.6 (±0.50) 0.6 (±0.49) 0.9 (±0.25) 0.9 (±0.35) 0.6 (±0.49)
HomoglyphAttack 0.3 (±0.48) 0.3 (±0.48) 0.3 (±0.48) 0.3 (±0.48) 0.3 (±0.48) 0.3 (±0.48) 0.3 (±0.48) 0.3 (±0.48) 0.3 (±0.48) 0.4 (±0.49) 0.6 (±0.50)
ALISON 1.0 (±0.00) 1.0 (±0.00) 1.0 (±0.00) 1.0 (±0.00) 1.0 (±0.00) 1.0 (±0.00) 1.0 (±0.00) 1.0 (±0.00) 1.0 (±0.00) 1.0 (±0.00) 1.0 (±0.00)
DFTFooler 1.0 (±0.00) 1.0 (±0.00) 1.0 (±0.00) 1.0 (±0.00) 1.0 (±0.00) 1.0 (±0.00) 1.0 (±0.00) 1.0 (±0.00) 1.0 (±0.00) 1.0 (±0.00) 1.0 (±0.00)

Table 9: Human quality check of the obfuscated data subset. Mean value for each AO method and each test language
is reported, where -1.0 is the lowest quality (a red-like background color gradient) and 1.0 is the highest quality (a
green-like background color gradient).

acters mentioned above). Also, there is indicated
a severe language change for GPTZeroBypasser
AO method. In this case, however, we assume that
FastText language detection was confused due to
a change of portion of Latin characters to Cyrillic,
while in HomoglyphAttack, the distribution of ho-
moglyphs using different scripts is not as uniform
(thus not causing the same effect). Homoglyph at-
tacks achieve lower values for most of the similar-
ity metrics, which is expected since tokens as well
as ngrams are affected by changed characters (in
contrast to humans being possibly fooled visually
by such texts). Backtranslation and paraphrasing
AO methods behave similarly in this analysis, both
categories tending to shorten the texts (ChatGPT
being exception, where shortening is not as severe).

C.1 Human Quality Check

The aim of the human quality check is to evaluate
the obfuscated data quality, i.e., whether the obfus-
cated data is/is not clearly damaged from a human
view. Massive human study is infeasible due to the
scope and complexity of the work (it would require
proficient annotators in 11 languages); therefore,
a manual quality check by three human evaluators
(selected from the paper authors) has been executed
to identify unusable AO methods.

To reduce load and noise by LLM generators, we
use just the obfuscated human data for AO evalua-
tion (except for DFTFooler, which obfuscates only
machine-class samples, where GPT-4 generated
data are used instead). We have pseudo-randomly
selected 10 samples per each test language for each
AO method, which resulted in N = 1100 samples.
The samples were annotated on the 3 step scale:

• -1 – unusable text – no meaningful text at all
(e.g., just some numbers, or repeated/random
characters), text completely in a different lan-
guage than intended, massive repetition (more
than one duplicated word)

• 0 – obviously damaged but readable text –
mixed languages (partly in the intended lan-
guage), missing letters (e.g., letters with ac-
cents), mixed script (changed characters)

• 1 – no obvious damage in the text – no obvious
modification unusual for a human text

The annotations by the three annotators achieved
averaged pairwise Pearson correlation of 0.7. The
total annotation agreement accuracy of 0.65 (i.e.,
full agreement – 65% of the samples were anno-
tated by the same values by all three reviewers).
When considering majority agreement (i.e., 2 of 3
annotations matched for a given sample), accuracy
achieved 0.99.

The mean quality annotation values are provided
in Table 9 per each AO method and for each test
language. Pegasus-paraphrase and DIPPER AO
methods are clearly disqualified form being usable
for some non-English languages. Also, homoglyph
attacks are identifiable by humans; however, if not
used intensively, they can deceive a human reader.

An example of obfuscated texts by each AO
method with a corresponding annotation of the
quality and explanation in a comment is provided
in Table 10.

D Ablation Study

For ablation study regarding attack success rate
(ASR) experiments, in which we included only de-
tection methods achieving above 0.8 AUC ROC
per each language (based on original MULTITuDE
test data subset) and data generated by only best
three LLM generators, we provide full coverage
(all detection methods, all LLM generated data) in
Table 11. Similarly, the results calculated when
the classification thresholds are calibrated by using
only 10% of the test data are provided in Table 12.
Although the values are slightly different from Ta-
ble 3, the general conclusions hold.
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AO Method Obfuscated Text Quality Comment
original Los dos soldados franceses que permanecían ingresados en el Hospital Universitario de Albacete tras ... N/A
m2m100-1.2B Los muertos dos soldados franceses que quedaron en el Hospital Universitario de Albacete tras el acc... 1
nllb-200-distilled-1.3B Los dos soldados franceses que fueron ingresados en el Hospital Universitario de Albacete después de... 1
Pegasus-paraphrase The hospital Universitario de Albacete tras el accidente el pasado lunes de un F-16, ha sido traslad... 1
DIPPER Most importantly, the Italian minister of defense visited the wounded in the hospital in Los Llanos... -1 language change
ChatGPT Los dos soldados franceses que estaban hospitalizados en el Hospital Universitario de Albacete despu... 1
GPTZzzs Los dos soldados franceses que permanecían ingresados en el Hospital Universitario de Albacete tras ... 1
GPTZeroBypasser Los dos sol dados franceses que permanecían ingresados en el Hospital Universitario... 0 multiple scripts
HomoglyphAttack Los dos soldados franceses Que permaecín ingesados en el Hṏspit’al Uni

∨
ersitario de Abacȩte trǟs ... 0 weird characters

ALISON Los dos soldados franceses que permanecían ingresados en el Hospital Universitario de Albacete tras ... 1
DFTFooler Los dos soldados franceses que permanecían ingresados en el Hospital Universitario de Albacete tras ... 1

Table 10: An example of original and obfuscated sample by each AO method along with a human annotation.

Test Language [mean (±confidence interval)]
AO Method ar ca cs de en es nl pt ru uk zh → Average
m2m100-1.2B 0.3177

(±0.12)
0.3101
(±0.11)

0.2008
(±0.12)

0.2671
(±0.10)

0.2727
(±0.11)

0.2389
(±0.11)

0.2764
(±0.10)

0.2495
(±0.11)

0.2729
(±0.11)

0.2510
(±0.11)

0.2911
(±0.09)

0.2680

nllb-200-distilled-1.3B 0.2890
(±0.04)

0.3475
(±0.03)

0.2492
(±0.04)

0.2369
(±0.04)

0.1985
(±0.05)

0.2195
(±0.04)

0.2564
(±0.03)

0.2297
(±0.04)

0.2721
(±0.04)

0.3025
(±0.06)

0.3350
(±0.02)

0.2669

Pegasus-paraphrase 0.3259
(±0.09)

0.4803
(±0.05)

0.4151
(±0.05)

0.4367
(±0.06)

0.1708
(±0.06)

0.4469
(±0.05)

0.4542
(±0.05)

0.5319
(±0.04)

0.2898
(±0.08)

0.2228
(±0.06)

0.2371
(±0.08)

0.3647

DIPPER 0.3614
(±0.08)

0.1842
(±0.05)

0.2096
(±0.06)

0.2151
(±0.05)

0.1382
(±0.04)

0.2148
(±0.05)

0.1853
(±0.04)

0.2262
(±0.04)

0.2314
(±0.07)

0.2418
(±0.07)

0.3444
(±0.09)

0.2320

ChatGPT 0.2355
(±0.04)

0.1878
(±0.07)

0.1865
(±0.06)

0.1801
(±0.09)

0.1211
(±0.10)

0.1426
(±0.09)

0.1735
(±0.09)

0.1528
(±0.09)

0.2154
(±0.07)

0.2044
(±0.07)

0.2095
(±0.02)

0.1826

GPTZzzs 0.0481
(±0.10)

0.0837
(±0.05)

0.0362
(±0.08)

0.0629
(±0.09)

0.3269
(±0.04)

0.1094
(±0.09)

0.0860
(±0.06)

0.1181
(±0.09)

0.0296
(±0.08)

0.0300
(±0.11)

0.0387
(±0.09)

0.0882

GPTZeroBypasser 0.5392
(±0.13)

0.4947
(±0.14)

0.3705
(±0.13)

0.5409
(±0.11)

0.6147
(±0.14)

0.5374
(±0.13)

0.5696
(±0.13)

0.5947
(±0.13)

0.5170
(±0.13)

0.4818
(±0.13)

0.3095
(±0.10)

0.5064

HomoglyphAttack 0.5723
(±0.04)

0.6496
(±0.04)

0.4868
(±0.02)

0.6305
(±0.04)

0.6839
(±0.11)

0.6324
(±0.05)

0.7009
(±0.03)

0.6687
(±0.05)

0.5520
(±0.03)

0.5449
(±0.03)

0.2532
(±0.02)

0.5796

ALISON 0.0740
(±0.07)

0.0679
(±0.06)

0.0625
(±0.06)

0.0700
(±0.05)

0.0945
(±0.04)

0.0705
(±0.05)

0.0582
(±0.06)

0.0751
(±0.05)

0.0867
(±0.08)

0.1208
(±0.07)

0.0337
(±0.07)

0.0740

DFTFooler 0.0459
(±0.10)

0.2070
(±0.11)

0.1376
(±0.12)

0.3230
(±0.12)

0.2289
(±0.05)

0.2299
(±0.12)

0.2841
(±0.12)

0.2810
(±0.11)

0.1616
(±0.11)

0.1474
(±0.10)

0.0397
(±0.08)

0.1896

↓ Average 0.2809 0.3013 0.2355 0.2963 0.2850 0.2842 0.3045 0.3128 0.2628 0.2547 0.2092

Table 11: Ablation of attack success rate of AO methods based on classification thresholds of individual MGT
detection methods optimized for each language separately. Per-language mean values of all detection methods are
reported along with 95% confidence interval error bounds.

Test Language [mean]
AO Method ar ca cs de en es nl pt ru uk zh → Average
m2m100-1.2B 0.0980 0.2455 0.1281 0.2295 0.2545 0.1738 0.2474 0.2062 0.1718 0.1419 0.1155 0.1829
nllb-200-distilled-1.3B 0.0954 0.2792 0.1589 0.1756 0.1670 0.1338 0.2109 0.1450 0.1513 0.1400 0.1542 0.1647
Pegasus-paraphrase 0.1572 0.4963 0.3787 0.4410 0.1570 0.4026 0.3532 0.4889 0.0597 0.0734 0.1358 0.2858
DIPPER 0.2405 0.1499 0.1585 0.1143 0.1153 0.0919 0.0910 0.1051 0.0885 0.0810 0.2267 0.1330
ChatGPT 0.0847 0.0768 0.0865 0.1137 0.1071 0.0577 0.0919 0.0627 0.0804 0.0791 0.0826 0.0839
GPTZzzs 0.0036 0.0540 0.0145 0.0189 0.3712 0.0369 0.0290 0.0364 0.0013 0.0005 0.0079 0.0522
GPTZeroBypasser 0.3639 0.4910 0.2516 0.5986 0.5430 0.6894 0.6778 0.7087 0.4551 0.3692 0.2067 0.4868
HomoglyphAttack 0.3446 0.7220 0.4143 0.6106 0.7376 0.6785 0.7383 0.7286 0.4699 0.3848 0.0858 0.5377
ALISON 0.0201 0.0283 0.0171 0.0261 0.0739 0.0216 0.0240 0.0221 0.0154 0.0245 0.0071 0.0255
DFTFooler 0.0023 0.1961 0.1001 0.2533 0.2625 0.1165 0.1603 0.1349 0.0361 0.0228 0.0056 0.1173
↓ Average 0.1410 0.2739 0.1708 0.2582 0.2789 0.2403 0.2624 0.2639 0.1530 0.1317 0.1028

Table 12: Ablation of attack success rate of AO methods based on classification thresholds of individual MGT
detection methods optimized for each language separately by using 10% of original (unobfuscated) test data. Only
MGT detection methods achieving above 0.8 AUC ROC per each language on original test data are included.

Test Language [mean]
Detector ar ca cs de en es nl pt ru uk zh

a)
MFD 0.9427 0.9293 0.7589 0.8467 0.7289 0.8888 0.8417 0.7203 0.9071 0.9699 0.3180
RoBERTa-base-OpenAI-Detector 0.9855 0.6718 0.9501 0.8781 0.9941 0.2658 0.8682 0.3069 1.0000 0.8889 0.7921
XLM-RoBERTa-large (en) 0.6619 0.9105 0.9172 0.7779 0.3806 0.9669 0.9025 0.9828 0.9530 0.9719 0.1622

b)
MFD 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
RoBERTa-base-OpenAI-Detector 0.6662 0.2029 0.3918 0.5938 0.9776 0.1907 0.5462 0.2855 0.5481 0.2253 0.6237
XLM-RoBERTa-large (en) 0.0826 0.1299 0.1376 0.1152 0.0454 0.1884 0.1456 0.1837 0.1905 0.2283 0.0468

Table 13: Ablation of attack success rate of the best-performing AO method HomoglyphAttack for the selected
MGT detection methods. a) original settings used in the experiments, b) less intensive settings.
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For ablation of attack success rate of AO meth-
ods depending on the obfuscation settings, we per-
formed HomoglyphAttack (as the most successful
attack in our study) using a less intensive settings
(changing characters to their homoglyphs with a
probability of 0.01 instead of 0.1 in the original ex-
periments). The classification threshold calibration
was the same as in original experiments, i.e., the
thresholds calibrated per-language using the orig-
inal (unobfuscated) test data. The results for the
three selected MGT detection methods (one of each
category with the highest attack success rates in the
original experiment) are provided in Table 13. As
shown, the ASR is much lower in the less intensive
settings. Using these settings, the HomoglyphAt-
tack was not able to fool the MFD statistical MGT
detection method for any sample in any language.
The results indicate that the achieved attack success
rates are highly sensitive to the used settings for
obfuscation. Even low-performing AO methods,
such as ALISON, can achieve higher attack success
rates with proper settings adjustments. We have
not experimented with settings optimization.

For ablation study regarding detection perfor-
mance, such as reported in Figure 2, we provide the
results in Figure 3 for filtered test samples, in which
the obfuscated texts meet the chosen similarity met-
rics (reported in Table 7) thresholds in addition to
not using the data of AO methods not passing the
quality check in general. These thresholds include:
CharLenDiff is in the interval of (0.5, 2), LD is
above 1, and METEOR, BERTScore, USE, ngram,
and TF are above 0.5. The results show that the
detection methods performance is slightly higher
when using such high-quality texts than when using
the whole test set including noise. The differences
between originally trained and adversarially trained

OPT-IML-Max XLM-R-large mBERT mDeBERTa mGPT
0.800
0.825
0.850
0.875
0.900
0.925
0.950
0.975
1.000

AU
C 

RO
C

originally trained
adversarially trained m2m100-1.2B
adversarially trained ChatGPT

adversarially trained HomoglyphAttack
adversarially trained DFTFooler
adversarially trained all

Figure 3: Ablation of detection performance (AUC
ROC) of originally (leftmost bar) and adversarially
trained MGT detection methods on the high-quality test
data. Note that the y-axis starts at 0.8.

detection methods are lower, but shows the same
trend. Nevertheless, the adversarial retraining used
not only high-quality obfuscated texts, but all of
them, which could affect the results.

E Results Data

Table 14 shows a per-language comparison of AUC
ROC detection performance of all MGT detection
methods using subset of MULTITuDE test data,
namely all human samples along with the machine
samples generated by the selected three best LLM
generators (gpt-4, gpt-3.5-turbo, vicuna), generat-
ing the texts most similar to human counterparts
based on automated similarity metrics. Tables 15–
17 include resulted mean values (across detection
methods) of AUC ROC detection performance per
each AO method data and per each test language.
To see differences between MGT detection method
categories, we provide the results separately for
them. Furthermore, we provide AUC ROC drop
in Tables 18–20, reflecting the robustness of MGT
detection method categories in regard to each AO
method.

Table 21 provides the results of per-language
comparison of AUC ROC drop caused by obfus-
cated data before and after adversarial retraining,
reflecting whether the adversarial robustness is in-
creased or decreased. As the results indicate, it
is increased in most cases (only in four cases it
was slightly decreased, even those are not statis-
tically significant). For example, HomoglyphAt-
tack caused mean AUC ROC drop of −17.68%
for the German texts in originally trained MGT
detection methods and only of −3.21% in adver-
sarially trained methods; thus, resulting in 14.47%
difference.
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Test Language [AUC ROC]
Rank MGT Detection Method Category ar ca cs de en es nl pt ru uk zh all

1 XLM-RoBERTa-large (all) F 0.981 0.990 0.990 0.982 0.994 0.995 0.982 0.977 0.988 0.988 0.958 0.983
2 mDeBERTa-v3-base (all) F 0.938 0.987 0.937 0.925 0.995 0.993 0.984 0.987 0.991 0.980 0.935 0.966
3 XLM-RoBERTa-large (ru) F 0.964 0.967 0.995 0.981 0.959 0.983 0.971 0.966 0.993 0.981 0.934 0.954
4 mDeBERTa-v3-base (es) F 0.936 0.985 0.979 0.971 0.929 0.993 0.985 0.980 0.964 0.973 0.925 0.952
5 BERT-base-multilingual-cased (all) F 0.906 0.986 0.932 0.898 0.995 0.991 0.945 0.975 0.982 0.950 0.871 0.951
6 XLM-RoBERTa-large (es) F 0.965 0.971 0.984 0.974 0.839 0.986 0.979 0.968 0.971 0.972 0.957 0.946
7 mDeBERTa-v3-base (ru) F 0.963 0.923 0.993 0.958 0.882 0.941 0.953 0.886 0.988 0.988 0.893 0.933
8 BERT-base-multilingual-cased (es) F 0.877 0.980 0.938 0.940 0.698 0.987 0.984 0.970 0.925 0.921 0.947 0.917
9 mGPT (all) F 0.960 0.944 0.916 0.977 0.996 0.986 0.962 0.974 0.988 0.964 0.710 0.911

10 mGPT (ru) F 0.978 0.944 0.944 0.972 0.757 0.960 0.939 0.922 0.987 0.975 0.741 0.906
11 mGPT (es) F 0.930 0.970 0.901 0.976 0.939 0.991 0.989 0.980 0.964 0.957 0.904 0.906
12 BERT-base-multilingual-cased (ru) F 0.933 0.915 0.943 0.893 0.714 0.890 0.926 0.902 0.978 0.953 0.838 0.890
13 XLM-RoBERTa-large (en) F 0.836 0.976 0.934 0.948 0.998 0.909 0.943 0.890 0.926 0.898 0.909 0.874
14 OPT-IML-Max-1.3B (all) F 0.486 0.957 0.933 0.903 0.996 0.981 0.929 0.982 0.913 0.807 0.393 0.858
15 BERT-base-multilingual-cased (en) F 0.725 0.967 0.891 0.840 0.996 0.898 0.900 0.891 0.823 0.885 0.740 0.856
16 MFD S 0.727 0.766 0.703 0.899 0.955 0.945 0.901 0.938 0.837 0.858 0.761 0.833
17 OPT-IML-Max-1.3B (es) F 0.685 0.948 0.868 0.906 0.896 0.982 0.958 0.981 0.616 0.641 0.450 0.812
18 mDeBERTa-v3-base (en) F 0.602 0.907 0.869 0.765 0.998 0.938 0.856 0.780 0.703 0.835 0.547 0.802
19 DetectLLM-LRR S 0.659 0.931 0.886 0.881 0.939 0.911 0.938 0.887 0.734 0.764 0.663 0.791
20 mGPT (en) F 0.511 0.884 0.863 0.860 0.997 0.936 0.884 0.899 0.795 0.796 0.596 0.782
21 LLMDeviation S 0.615 0.961 0.905 0.876 0.965 0.911 0.958 0.896 0.684 0.775 0.683 0.765
22 GLTR Test 2 S 0.599 0.893 0.874 0.850 0.943 0.912 0.939 0.914 0.672 0.791 0.702 0.759
23 LogRank S 0.596 0.965 0.917 0.873 0.972 0.916 0.960 0.904 0.669 0.762 0.689 0.758
24 LogLikelihood S 0.581 0.963 0.912 0.853 0.971 0.907 0.960 0.900 0.634 0.738 0.685 0.743
25 OPT-IML-Max-1.3B (ru) F 0.518 0.562 0.865 0.725 0.714 0.742 0.703 0.704 0.918 0.815 0.603 0.696
26 Rank S 0.558 0.869 0.729 0.767 0.829 0.769 0.875 0.736 0.598 0.511 0.606 0.683
27 OPT-IML-Max-1.3B (en) F 0.353 0.832 0.770 0.788 0.997 0.758 0.663 0.785 0.480 0.497 0.373 0.674
28 ChatGPT-Detector-RoBERTa-Chinese P 0.734 0.819 0.547 0.709 0.564 0.536 0.854 0.618 0.615 0.509 0.918 0.638
29 DetectLLM-NPR S 0.527 0.758 0.685 0.628 0.690 0.687 0.711 0.689 0.668 0.717 0.506 0.636
30 DetectGPT S 0.452 0.765 0.792 0.584 0.685 0.630 0.640 0.652 0.616 0.635 0.503 0.593
31 Longformer Detector P 0.532 0.677 0.513 0.621 0.974 0.782 0.726 0.672 0.476 0.472 0.551 0.588
32 ChatGPT-Detector-RoBERTa P 0.513 0.502 0.427 0.736 0.855 0.709 0.681 0.640 0.489 0.461 0.628 0.570
33 RoBERTa-large-OpenAI-Detector P 0.688 0.479 0.471 0.448 0.927 0.564 0.412 0.730 0.614 0.585 0.475 0.544
34 RoBERTa-base-OpenAI-Detector P 0.637 0.510 0.574 0.480 0.952 0.518 0.440 0.504 0.707 0.455 0.430 0.542
35 ruRoBERTa-ruatd-binary P 0.577 0.505 0.501 0.484 0.611 0.496 0.507 0.495 0.619 0.591 0.505 0.535
36 RoBERTa-base-autextification-Detection P 0.500 0.478 0.501 0.509 0.500 0.533 0.351 0.512 0.500 0.500 0.500 0.489
37 Entropy S 0.563 0.117 0.164 0.417 0.303 0.373 0.151 0.346 0.584 0.425 0.539 0.419

Table 14: Per-language detection performance (AUC ROC) comparison of all MGT detection methods using original
MULTITuDE test data (human and machine samples of the 3 selected best LLM generators – gpt-4, gpt-3.5-turbo,
vicuna). F refers to fine-tuned, P to pre-trained, and S to statistical MGT detection methods category. MGT detection
methods achieving above threshold (0.8) performance are highlighted.

Test Language [mean (±confidence interval)]
AO Method ar ca cs de en es nl pt ru uk zh → Average
original 0.7696

(±0.13)
0.8832
(±0.10)

0.8997
(±0.09)

0.8843
(±0.08)

0.8788
(±0.16)

0.9098
(±0.11)

0.8797
(±0.09)

0.8766
(±0.10)

0.8653
(±0.12)

0.8661
(±0.11)

0.7470
(±0.09)

0.8600

m2m100-1.2B 0.7875
(±0.09)

0.7986
(±0.04)

0.8721
(±0.03)

0.8476
(±0.04)

0.8232
(±0.06)

0.8635
(±0.04)

0.7970
(±0.05)

0.8271
(±0.04)

0.8264
(±0.07)

0.8351
(±0.06)

0.7114
(±0.08)

0.8172

nllb-200-distilled-1.3B 0.7702
(±0.09)

0.7958
(±0.06)

0.8657
(±0.04)

0.8584
(±0.05)

0.8431
(±0.08)

0.8731
(±0.06)

0.8163
(±0.07)

0.8376
(±0.05)

0.8290
(±0.07)

0.8269
(±0.07)

0.6972
(±0.09)

0.8194

Pegasus-paraphrase 0.7904
(±0.10)

0.6742
(±0.07)

0.7820
(±0.05)

0.7486
(±0.05)

0.8876
(±0.07)

0.7562
(±0.06)

0.7205
(±0.06)

0.6580
(±0.06)

0.8620
(±0.08)

0.9105
(±0.08)

0.7576
(±0.09)

0.7771

DIPPER 0.7729
(±0.10)

0.8976
(±0.05)

0.9157
(±0.04)

0.9148
(±0.06)

0.8925
(±0.06)

0.9163
(±0.05)

0.8908
(±0.07)

0.8894
(±0.06)

0.8833
(±0.09)

0.9083
(±0.07)

0.7346
(±0.08)

0.8742

ChatGPT 0.7932
(±0.09)

0.8582
(±0.04)

0.8793
(±0.04)

0.8779
(±0.04)

0.9192
(±0.05)

0.9108
(±0.04)

0.8588
(±0.04)

0.8871
(±0.04)

0.8571
(±0.07)

0.8588
(±0.05)

0.7348
(±0.09)

0.8577

GPTZzzs 0.7664
(±0.13)

0.8720
(±0.13)

0.8966
(±0.11)

0.8796
(±0.09)

0.8328
(±0.17)

0.8989
(±0.12)

0.8665
(±0.12)

0.8611
(±0.12)

0.8643
(±0.13)

0.8657
(±0.12)

0.7417
(±0.09)

0.8496

GPTZeroBypasser 0.5593
(±0.10)

0.5623
(±0.05)

0.7840
(±0.03)

0.6962
(±0.04)

0.5560
(±0.07)

0.6619
(±0.04)

0.5471
(±0.05)

0.5880
(±0.05)

0.6524
(±0.07)

0.6683
(±0.06)

0.6609
(±0.08)

0.6306

HomoglyphAttack 0.5955
(±0.09)

0.5562
(±0.05)

0.7756
(±0.03)

0.6680
(±0.04)

0.5985
(±0.06)

0.6646
(±0.04)

0.5359
(±0.04)

0.5839
(±0.04)

0.6458
(±0.07)

0.6715
(±0.06)

0.7003
(±0.08)

0.6360

ALISON 0.7645
(±0.09)

0.8793
(±0.06)

0.8967
(±0.05)

0.8811
(±0.04)

0.8769
(±0.05)

0.9064
(±0.05)

0.8747
(±0.06)

0.8746
(±0.05)

0.8616
(±0.08)

0.8602
(±0.07)

0.7476
(±0.10)

0.8567

DFTFooler 0.7673
(±0.12)

0.8406
(±0.12)

0.8766
(±0.09)

0.8013
(±0.11)

0.8666
(±0.06)

0.8773
(±0.12)

0.7984
(±0.12)

0.8213
(±0.12)

0.8358
(±0.10)

0.8570
(±0.08)

0.7427
(±0.10)

0.8259

↓ Average 0.7397 0.7834 0.8585 0.8234 0.8159 0.8399 0.7805 0.7913 0.8166 0.8298 0.7251

Table 15: AUC ROC per-language mean value along with 95% confidence interval error bounds of finetuned MGT
detection methods. A higher value indicates better detection performance.
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Test Language [mean (±confidence interval)]
AO Method ar ca cs de en es nl pt ru uk zh → Average
original 0.6058

(±0.21)
0.5872
(±0.19)

0.5494
(±0.17)

0.5849
(±0.18)

0.7259
(±0.20)

0.5791
(±0.24)

0.6011
(±0.11)

0.5851
(±0.22)

0.5403
(±0.26)

0.5061
(±0.19)

0.5642
(±0.05)

0.5845

m2m100-1.2B 0.6190
(±0.07)

0.5606
(±0.07)

0.5490
(±0.10)

0.5881
(±0.06)

0.6593
(±0.23)

0.5733
(±0.12)

0.6032
(±0.11)

0.5766
(±0.10)

0.5317
(±0.06)

0.5019
(±0.05)

0.6191
(±0.05)

0.5802

nllb-200-distilled-1.3B 0.6175
(±0.08)

0.5645
(±0.10)

0.5644
(±0.09)

0.5895
(±0.08)

0.6810
(±0.23)

0.5806
(±0.10)

0.5968
(±0.15)

0.5776
(±0.08)

0.5451
(±0.10)

0.4955
(±0.04)

0.6282
(±0.13)

0.5855

Pegasus-paraphrase 0.5027
(±0.09)

0.6986
(±0.12)

0.6258
(±0.16)

0.7059
(±0.10)

0.6843
(±0.23)

0.6490
(±0.12)

0.7079
(±0.15)

0.6343
(±0.08)

0.5664
(±0.15)

0.6266
(±0.12)

0.6427
(±0.14)

0.6404

DIPPER 0.6373
(±0.07)

0.7657
(±0.09)

0.7213
(±0.11)

0.7271
(±0.13)

0.7037
(±0.05)

0.7405
(±0.07)

0.7696
(±0.13)

0.7600
(±0.09)

0.7081
(±0.08)

0.7265
(±0.03)

0.6126
(±0.05)

0.7157

ChatGPT 0.6150
(±0.27)

0.5463
(±0.23)

0.5189
(±0.27)

0.5700
(±0.24)

0.7226
(±0.20)

0.5447
(±0.24)

0.5544
(±0.26)

0.5366
(±0.25)

0.5540
(±0.16)

0.5026
(±0.26)

0.5651
(±0.26)

0.5664

GPTZzzs 0.6001
(±0.30)

0.5764
(±0.36)

0.5466
(±0.30)

0.5818
(±0.31)

0.5400
(±0.35)

0.5608
(±0.34)

0.5942
(±0.27)

0.5630
(±0.31)

0.5386
(±0.24)

0.5049
(±0.25)

0.5544
(±0.14)

0.5601

GPTZeroBypasser 0.4257
(±0.08)

0.5705
(±0.08)

0.4310
(±0.08)

0.4552
(±0.06)

0.4316
(±0.21)

0.4919
(±0.07)

0.5543
(±0.12)

0.4533
(±0.06)

0.5006
(±0.08)

0.4517
(±0.03)

0.5017
(±0.05)

0.4789

HomoglyphAttack 0.3287
(±0.07)

0.5825
(±0.09)

0.4844
(±0.08)

0.4737
(±0.07)

0.3595
(±0.18)

0.4998
(±0.09)

0.5343
(±0.13)

0.5089
(±0.08)

0.3958
(±0.08)

0.3980
(±0.03)

0.5113
(±0.05)

0.4615

ALISON 0.5728
(±0.09)

0.5702
(±0.11)

0.5241
(±0.10)

0.5506
(±0.09)

0.6221
(±0.17)

0.5334
(±0.08)

0.5756
(±0.13)

0.5441
(±0.07)

0.5020
(±0.12)

0.4708
(±0.03)

0.5490
(±0.11)

0.5468

DFTFooler 0.5995
(±0.27)

0.5773
(±0.21)

0.5334
(±0.28)

0.5505
(±0.21)

0.5700
(±0.23)

0.5522
(±0.21)

0.5786
(±0.23)

0.5402
(±0.24)

0.5296
(±0.22)

0.4970
(±0.28)

0.5509
(±0.19)

0.5527

↓ Average 0.5567 0.6000 0.5499 0.5797 0.6091 0.5732 0.6064 0.5709 0.5375 0.5165 0.5727

Table 16: AUC ROC per-language mean value along with 95% confidence interval error bounds of pretrained MGT
detection methods. A higher value indicates better detection performance.

Test Language [mean (±confidence interval)]
AO Method ar ca cs de en es nl pt ru uk zh → Average
original 0.4016

(±0.23)
0.7323
(±0.27)

0.7015
(±0.27)

0.6212
(±0.25)

0.7704
(±0.27)

0.6837
(±0.26)

0.6698
(±0.26)

0.6629
(±0.26)

0.4793
(±0.24)

0.4904
(±0.25)

0.5320
(±0.15)

0.6132

m2m100-1.2B 0.4290
(±0.11)

0.6965
(±0.11)

0.7139
(±0.11)

0.5449
(±0.05)

0.6403
(±0.10)

0.6246
(±0.07)

0.6353
(±0.08)

0.6272
(±0.06)

0.4453
(±0.10)

0.4916
(±0.06)

0.5102
(±0.09)

0.5781

nllb-200-distilled-1.3B 0.4209
(±0.11)

0.6625
(±0.09)

0.6721
(±0.12)

0.5834
(±0.06)

0.7240
(±0.06)

0.6493
(±0.05)

0.6620
(±0.05)

0.6344
(±0.05)

0.4581
(±0.11)

0.4809
(±0.05)

0.4987
(±0.11)

0.5860

Pegasus-paraphrase 0.6235
(±0.11)

0.4384
(±0.06)

0.3884
(±0.08)

0.3613
(±0.06)

0.7208
(±0.06)

0.3753
(±0.05)

0.3781
(±0.07)

0.3645
(±0.05)

0.6362
(±0.11)

0.5748
(±0.06)

0.6806
(±0.11)

0.5038

DIPPER 0.4482
(±0.11)

0.6695
(±0.08)

0.5411
(±0.12)

0.5152
(±0.19)

0.7532
(±0.14)

0.5182
(±0.16)

0.6084
(±0.13)

0.5215
(±0.20)

0.3924
(±0.16)

0.3471
(±0.09)

0.5180
(±0.10)

0.5303

ChatGPT 0.4714
(±0.19)

0.7422
(±0.05)

0.7317
(±0.16)

0.6521
(±0.14)

0.7339
(±0.07)

0.7000
(±0.16)

0.7253
(±0.10)

0.6930
(±0.16)

0.4978
(±0.23)

0.5459
(±0.27)

0.5576
(±0.17)

0.6410

GPTZzzs 0.3945
(±0.16)

0.6899
(±0.28)

0.6873
(±0.26)

0.5959
(±0.23)

0.4414
(±0.28)

0.6114
(±0.26)

0.6242
(±0.26)

0.5982
(±0.24)

0.4760
(±0.21)

0.4896
(±0.25)

0.5148
(±0.11)

0.5567

GPTZeroBypasser 0.3384
(±0.11)

0.7223
(±0.11)

0.7172
(±0.11)

0.5908
(±0.06)

0.6557
(±0.21)

0.6245
(±0.10)

0.6683
(±0.07)

0.6475
(±0.08)

0.2956
(±0.09)

0.2752
(±0.05)

0.4710
(±0.10)

0.5460

HomoglyphAttack 0.2007
(±0.10)

0.2646
(±0.12)

0.2709
(±0.11)

0.2533
(±0.05)

0.2846
(±0.12)

0.2596
(±0.07)

0.2666
(±0.08)

0.2740
(±0.06)

0.2156
(±0.09)

0.2097
(±0.05)

0.4248
(±0.09)

0.2658

ALISON 0.3977
(±0.08)

0.7212
(±0.14)

0.6980
(±0.14)

0.6113
(±0.06)

0.7473
(±0.10)

0.6710
(±0.07)

0.6623
(±0.13)

0.6502
(±0.08)

0.4670
(±0.08)

0.4739
(±0.04)

0.5304
(±0.06)

0.6028

DFTFooler 0.3953
(±0.13)

0.5848
(±0.22)

0.6132
(±0.28)

0.4304
(±0.25)

0.5682
(±0.06)

0.4908
(±0.23)

0.4791
(±0.23)

0.4721
(±0.24)

0.3245
(±0.15)

0.4331
(±0.16)

0.5146
(±0.14)

0.4824

↓ Average 0.4110 0.6295 0.6123 0.5236 0.6400 0.5644 0.5799 0.5587 0.4262 0.4375 0.5230

Table 17: AUC ROC per-language mean value along with 95% confidence interval error bounds of statistical MGT
detection methods. A higher value indicates better detection performance.

Test Language [mean (±confidence interval)]
AO Method ar ca cs de en es nl pt ru uk zh → Average
m2m100-1.2B 2.65%

(±2.23%)
-9.39%
(±5.99%)

-3.09%
(±1.96%)

-4.27%
(±2.58%)

-7.22%
(±4.07%)

-5.42%
(±3.01%)

-9.88%
(±4.47%)

-5.84%
(±3.20%)

-4.63%
(±2.17%)

-3.69%
(±2.25%)

-5.10%
(±3.51%)

-5.08%

nllb-200-distilled-1.3B -0.49%
(±2.56%)

-10.40%
(±4.24%)

-3.96%
(±3.80%)

-3.13%
(±1.76%)

-4.60%
(±2.43%)

-4.49%
(±2.57%)

-7.66%
(±3.13%)

-4.82%
(±2.20%)

-4.86%
(±2.80%)

-5.39%
(±4.06%)

-7.25%
(±3.31%)

-5.18%

Pegasus-paraphrase 1.51%
(±10.10%)

-24.87%
(±11.71%)

-13.82%
(±8.30%)

-16.21%
(±10.41%)

1.13%
(±2.49%)

-18.22%
(±11.15%)

-19.67%
(±11.27%)

-26.19%
(±12.22%)

-1.49%
(±7.64%)

4.96%
(±7.37%)

0.75%
(±9.47%)

-10.19%

DIPPER 2.38%
(±8.83%)

2.38%
(±5.51%)

1.88%
(±3.31%)

3.76%
(±4.19%)

1.76%
(±2.44%)

0.91%
(±3.39%)

1.55%
(±3.64%)

1.91%
(±4.79%)

2.40%
(±2.81%)

5.46%
(±3.41%)

-1.53%
(±7.65%)

2.08%

ChatGPT 3.74%
(±4.13%)

-3.26%
(±3.06%)

-2.50%
(±2.92%)

-0.89%
(±1.68%)

4.98%
(±2.12%)

-0.10%
(±1.70%)

-2.87%
(±3.72%)

1.12%
(±1.60%)

-1.33%
(±2.32%)

-1.26%
(±2.49%)

-2.67%
(±3.47%)

-0.46%

GPTZzzs -0.57%
(±0.36%)

-1.37%
(±0.78%)

-0.36%
(±0.21%)

-0.56%
(±0.30%)

-5.56%
(±3.33%)

-1.28%
(±0.92%)

-1.64%
(±0.86%)

-1.90%
(±1.16%)

-0.14%
(±0.09%)

-0.05%
(±0.03%)

-0.87%
(±0.46%)

-1.30%

GPTZeroBypasser -31.12%
(±12.80%)

-37.22%
(±13.99%)

-13.15%
(±12.45%)

-21.36%
(±10.26%)

-40.25%
(±16.55%)

-28.32%
(±12.00%)

-38.86%
(±13.23%)

-33.63%
(±13.22%)

-26.50%
(±12.92%)

-24.23%
(±12.02%)

-12.64%
(±4.29%)

-27.93%

HomoglyphAttack -26.33%
(±9.48%)

-37.14%
(±10.84%)

-14.12%
(±8.98%)

-24.64%
(±8.75%)

-35.18%
(±15.47%)

-27.71%
(±10.46%)

-39.82%
(±9.51%)

-33.71%
(±10.66%)

-27.75%
(±10.01%)

-24.05%
(±9.26%)

-7.28%
(±2.61%)

-27.07%

ALISON -0.79%
(±0.69%)

-0.37%
(±0.95%)

-0.38%
(±0.62%)

-0.34%
(±0.70%)

-0.17%
(±0.85%)

-0.39%
(±0.72%)

-0.64%
(±0.65%)

-0.21%
(±0.93%)

-0.52%
(±0.57%)

-0.83%
(±0.95%)

0.02%
(±0.51%)

-0.42%

DFTFooler -0.43%
(±0.34%)

-4.97%
(±2.79%)

-2.73%
(±1.95%)

-9.69%
(±4.74%)

-1.43%
(±1.42%)

-3.65%
(±3.42%)

-9.74%
(±5.67%)

-6.60%
(±4.00%)

-4.30%
(±3.94%)

-1.28%
(±1.40%)

-0.75%
(±0.49%)

-4.14%

↓ Average -4.94% -12.66% -5.22% -7.73% -8.65% -8.87% -12.92% -10.99% -6.91% -5.04% -3.73%

Table 18: AUC ROC drop of finetuned MGT detection methods. Per-language mean value is reported along with
95% confidence interval error bounds. A higher drop (i.e., a lower value – a darker color) indicates that the detection
ability is affected by the corresponding AO method in a greater scale.
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Test Language [mean (±confidence interval)]
AO Method ar ca cs de en es nl pt ru uk zh → Average
m2m100-1.2B 2.51%

(±9.04%)
-4.92%
(±6.36%)

-0.26%
(±3.72%)

0.28%
(±4.54%)

-10.91%
(±13.18%)

-1.12%
(±3.06%)

-0.60%
(±6.69%)

-1.45%
(±3.62%)

-2.04%
(±6.00%)

-0.99%
(±4.10%)

10.28%
(±24.37%)

-0.84%

nllb-200-distilled-1.3B 1.86%
(±6.45%)

-4.42%
(±13.28%)

0.77%
(±14.72%)

0.21%
(±9.27%)

-7.97%
(±12.19%)

-0.26%
(±8.27%)

-1.38%
(±9.46%)

-1.26%
(±6.30%)

-1.36%
(±18.85%)

-2.93%
(±21.19%)

12.11%
(±26.97%)

-0.42%

Pegasus-paraphrase -18.71%
(±40.93%)

17.78%
(±28.60%)

9.65%
(±37.18%)

19.99%
(±32.35%)

-7.19%
(±11.87%)

13.94%
(±38.86%)

18.13%
(±33.19%)

7.83%
(±38.48%)

9.06%
(±47.50%)

21.98%
(±49.37%)

15.64%
(±36.74%)

9.83%

DIPPER 3.62%
(±39.63%)

28.49%
(±33.96%)

30.00%
(±45.69%)

21.63%
(±35.07%)

-3.58%
(±6.58%)

27.45%
(±41.35%)

27.91%
(±40.94%)

27.88%
(±38.16%)

31.05%
(±25.13%)

41.80%
(±48.43%)

9.56%
(±47.02%)

22.35%

ChatGPT 1.44%
(±7.19%)

-7.51%
(±7.09%)

-6.02%
(±8.10%)

-2.94%
(±8.24%)

-0.04%
(±4.53%)

-5.45%
(±8.31%)

-8.05%
(±4.82%)

-7.92%
(±7.87%)

1.67%
(±9.62%)

-0.58%
(±5.23%)

-0.50%
(±11.96%)

-3.26%

GPTZzzs -0.98%
(±1.80%)

-1.71%
(±2.33%)

-0.54%
(±1.70%)

-0.44%
(±1.97%)

-22.46%
(±26.49%)

-2.59%
(±3.98%)

-0.93%
(±3.85%)

-3.31%
(±4.90%)

-0.32%
(±0.90%)

-0.21%
(±0.54%)

-1.71%
(±3.15%)

-3.20%

GPTZeroBypasser -31.85%
(±44.71%)

-2.43%
(±60.72%)

-22.35%
(±49.26%)

-23.93%
(±49.49%)

-44.88%
(±40.66%)

-20.22%
(±51.41%)

-5.61%
(±50.66%)

-25.98%
(±45.02%)

-1.96%
(±47.99%)

-11.32%
(±48.09%)

-10.52%
(±26.95%)

-18.28%

HomoglyphAttack -43.28%
(±36.40%)

0.65%
(±29.90%)

-10.42%
(±31.17%)

-17.05%
(±33.53%)

-46.49%
(±35.83%)

-14.80%
(±37.36%)

-5.96%
(±30.54%)

-12.81%
(±35.56%)

-18.51%
(±60.36%)

-21.03%
(±37.78%)

-9.38%
(±5.52%)

-18.10%

ALISON -5.26%
(±5.12%)

-2.61%
(±3.34%)

-5.16%
(±7.76%)

-5.48%
(±6.69%)

-13.49%
(±23.78%)

-8.36%
(±13.04%)

-3.57%
(±5.85%)

-7.03%
(±10.85%)

-6.62%
(±5.69%)

-6.98%
(±7.58%)

-2.61%
(±3.30%)

-6.11%

DFTFooler -1.05%
(±1.49%)

-1.62%
(±7.17%)

-3.52%
(±8.53%)

-4.73%
(±24.28%)

-17.45%
(±16.19%)

-3.24%
(±13.86%)

-2.90%
(±15.28%)

-6.65%
(±16.68%)

-2.15%
(±2.24%)

-1.79%
(±1.39%)

-2.38%
(±2.50%)

-4.32%

↓ Average -9.17% 2.17% -0.78% -1.25% -17.45% -1.46% 1.70% -3.07% 0.88% 1.80% 2.05%

Table 19: AUC ROC drop of pretrained MGT detection methods. Per-language mean value is reported along with
95% confidence interval error bounds. A higher drop (i.e., a lower value – a darker color) indicates that the detection
ability is affected by the corresponding AO method in a greater scale.

Test Language [mean (±confidence interval)]
AO Method ar ca cs de en es nl pt ru uk zh → Average
m2m100-1.2B 6.97%

(±6.23%)
-2.02%
(±10.05%)

1.60%
(±4.50%)

-11.59%
(±11.19%)

-11.25%
(±23.56%)

-7.55%
(±9.28%)

-3.66%
(±7.77%)

-4.81%
(±5.48%)

-8.58%
(±6.52%)

0.39%
(±2.99%)

-5.04%
(±7.16%)

-4.14%

nllb-200-distilled-1.3B 4.91%
(±5.85%)

-3.88%
(±19.31%)

-1.71%
(±10.60%)

-5.68%
(±7.97%)

-2.94%
(±13.17%)

-4.09%
(±8.27%)

-0.17%
(±5.95%)

-3.78%
(±5.40%)

-5.78%
(±5.69%)

-2.13%
(±3.92%)

-6.72%
(±10.18%)

-2.91%

Pegasus-paraphrase 67.02%
(±42.20%)

-21.23%
(±64.83%)

-26.60%
(±70.02%)

-40.46%
(±42.26%)

-2.57%
(±16.73%)

-41.69%
(±39.83%)

-34.14%
(±49.40%)

-42.13%
(±41.54%)

37.60%
(±34.57%)

14.42%
(±26.13%)

32.96%
(±29.22%)

-5.17%

DIPPER 5.66%
(±23.34%)

-0.02%
(±29.41%)

-10.70%
(±47.52%)

-16.25%
(±23.44%)

0.93%
(±14.13%)

-21.83%
(±28.24%)

-3.64%
(±30.60%)

-19.30%
(±28.77%)

-27.03%
(±31.74%)

-35.43%
(±45.69%)

-6.06%
(±16.21%)

-12.15%

ChatGPT 21.70%
(±13.69%)

0.08%
(±4.58%)

2.58%
(±7.10%)

4.85%
(±3.32%)

-4.13%
(±2.72%)

2.30%
(±2.58%)

6.36%
(±9.85%)

4.24%
(±5.17%)

4.38%
(±4.00%)

12.26%
(±8.29%)

6.28%
(±6.74%)

5.54%

GPTZzzs -2.31%
(±2.26%)

-4.13%
(±8.55%)

-1.62%
(±2.59%)

-4.10%
(±5.27%)

-33.10%
(±42.59%)

-10.37%
(±12.56%)

-5.74%
(±7.34%)

-9.63%
(±10.60%)

-0.81%
(±0.81%)

-0.20%
(±0.81%)

-3.91%
(±3.16%)

-6.90%

GPTZeroBypasser -16.43%
(±29.57%)

-9.32%
(±34.10%)

-5.42%
(±32.17%)

-5.34%
(±35.17%)

-19.48%
(±32.81%)

-10.18%
(±35.62%)

-4.40%
(±35.16%)

-4.62%
(±33.66%)

-42.54%
(±34.88%)

-48.16%
(±42.89%)

-12.05%
(±15.55%)

-16.18%

HomoglyphAttack -60.98%
(±36.79%)

-40.91%
(±80.86%)

-42.57%
(±73.17%)

-55.91%
(±45.63%)

-48.46%
(±59.29%)

-56.31%
(±47.36%)

-48.74%
(±56.66%)

-54.03%
(±47.55%)

-62.52%
(±38.86%)

-61.80%
(±42.87%)

-23.73%
(±18.44%)

-50.54%

ALISON -1.48%
(±2.17%)

-0.84%
(±2.63%)

-0.33%
(±1.07%)

-1.56%
(±1.85%)

-2.25%
(±3.34%)

-1.78%
(±1.68%)

-0.87%
(±1.44%)

-1.92%
(±2.10%)

-3.28%
(±3.22%)

-3.81%
(±3.65%)

-0.52%
(±0.80%)

-1.69%

DFTFooler -2.10%
(±2.41%)

-13.20%
(±25.23%)

-9.35%
(±18.82%)

-29.95%
(±31.24%)

-20.72%
(±28.41%)

-26.54%
(±27.10%)

-23.08%
(±30.09%)

-27.51%
(±32.54%)

-36.28%
(±23.44%)

-12.89%
(±10.20%)

-4.03%
(±3.48%)

-18.69%

↓ Average 2.30% -9.55% -9.41% -16.60% -14.40% -17.80% -11.81% -16.35% -14.48% -13.74% -2.28%

Table 20: AUC ROC drop of statistical MGT detection methods. Per-language mean value is reported along with
95% confidence interval error bounds. A higher drop (i.e., a lower value – a darker color) indicates that the detection
ability is affected by the corresponding AO method in a greater scale.

Test Language [mean (±confidence interval)]
AO Method ar ca cs de en es nl pt ru uk zh → Average
m2m100-1.2B -1.36%

(n.s.)
1.60%
(n.s.)

2.11%
(±1.50%)

1.60%
(n.s.)

1.10%
(±0.50%)

0.50%
(±0.50%)

2.18%
(±1.50%)

1.43%
(±0.50%)

0.72%
(n.s.)

0.97%
(n.s.)

-1.20%
(n.s.)

0.88%

nllb-200-distilled-1.3B 1.34%
(n.s.)

1.86%
(±2.00%)

3.31%
(±1.50%)

0.72%
(n.s.)

0.90%
(±0.50%)

0.48%
(±0.50%)

0.90%
(n.s.)

0.94%
(±1.00%)

1.38%
(±0.50%)

1.85%
(±1.00%)

-1.77%
(n.s.)

1.08%

Pegasus-paraphrase -0.31%
(n.s.)

7.43%
(±5.50%)

7.21%
(±4.50%)

8.50%
(±4.50%)

1.16%
(±0.50%)

3.55%
(±2.50%)

6.61%
(±3.50%)

8.11%
(±4.50%)

1.12%
(±0.50%)

1.82%
(±1.00%)

3.57%
(n.s.)

4.43%

DIPPER 1.21%
(n.s.)

2.26%
(±1.50%)

3.23%
(±2.00%)

2.57%
(±1.50%)

0.78%
(±0.50%)

1.02%
(±0.00%)

3.26%
(±1.00%)

2.07%
(±1.00%)

1.70%
(±0.50%)

2.33%
(±1.50%)

0.13%
(n.s.)

1.87%

ChatGPT 2.09%
(n.s.)

1.05%
(n.s.)

2.18%
(±1.50%)

1.27%
(n.s.)

0.52%
(±0.50%)

0.40%
(±0.50%)

1.41%
(±1.50%)

0.88%
(±1.00%)

1.20%
(±0.50%)

1.63%
(±1.50%)

0.39%
(n.s.)

1.18%

GPTZzzs 0.19%
(±0.00%)

0.81%
(±0.50%)

0.24%
(±0.00%)

0.34%
(±0.50%)

1.04%
(±1.00%)

0.54%
(±0.50%)

0.38%
(±0.50%)

0.98%
(±0.50%)

0.01%
(n.s.)

0.00%
(n.s.)

0.33%
(±0.50%)

0.44%

GPTZeroBypasser 11.80%
(±7.00%)

8.07%
(±6.00%)

8.66%
(±3.50%)

12.57%
(±5.50%)

4.78%
(±3.00%)

5.76%
(±3.00%)

9.57%
(±5.50%)

8.44%
(±4.50%)

6.40%
(±3.00%)

8.50%
(±3.50%)

5.78%
(n.s.)

8.21%

HomoglyphAttack 11.77%
(±9.00%)

6.86%
(±6.00%)

6.73%
(±3.50%)

14.47%
(±7.50%)

2.64%
(±1.50%)

3.74%
(±3.00%)

8.33%
(±6.50%)

6.82%
(±5.00%)

5.34%
(±3.50%)

7.37%
(±4.50%)

5.03%
(±4.50%)

7.19%

ALISON 0.69%
(n.s.)

0.68%
(n.s.)

0.17%
(n.s.)

0.61%
(n.s.)

0.17%
(n.s.)

0.10%
(n.s.)

0.49%
(n.s.)

0.30%
(n.s.)

0.40%
(±0.50%)

0.70%
(n.s.)

0.73%
(±0.50%)

0.46%

DFTFooler 0.18%
(±0.00%)

3.96%
(±3.00%)

2.05%
(±1.00%)

5.38%
(±3.50%)

0.72%
(±0.50%)

1.17%
(±1.00%)

4.14%
(±2.50%)

2.54%
(±1.50%)

0.50%
(±0.50%)

0.83%
(±0.50%)

0.37%
(±0.50%)

1.99%

↓ Average 2.76% 3.46% 3.59% 4.80% 1.38% 1.73% 3.73% 3.25% 1.88% 2.60% 1.33%

Table 21: Per-language AUC ROC drop difference between originally and adversarially trained MGT detection
methods. Per-language mean difference value is reported for each AO method along with 95% confidence interval
error bounds. The results that are not statistically significant are marked by (n.s.). A higher number represents more
robust MGT detection after adversarial retraining.
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