Published November 29, 2024
| Version v1
Dataset
Open
Rural population count at 1 km for 2000-2020 based on WorldPop and GHS-SMOD urbanization level
Description
Rural population count at 1 km grid in EPSG:4326 for 2000-2020 (annual). This is only an estimate of the rural population. This probably misses many rural areas, especially in the tropics. The maps were derived using two data sources:
Rural population is estimated using the following translation rules for GHS-SMOD (note: these are arbitrary rules based on the GHS-SMOD documentation):
- Class 30: “Urban Centre grid cell” = 0% rural
- Class 23: “Dense Urban Cluster grid cell” = 0.5% rural
- Class 22: “Semi-dense Urban Cluster grid cell” = 2% rural
- Class 21: “Suburban or per-urban grid cell” = 15% rural
- Class 13: “Rural cluster grid cell” = 95% rural
- Class 12: “Low Density Rural grid cell” = 100% rural
- Class 11: “Very low density rural grid cell” = 100% rural
The nighttime images are based on: https://doi.org/10.5281/zenodo.7750174
- Schiavina, Marcello; Melchiorri, Michele; Pesaresi, Martino (2023): GHS-SMOD R2023A - GHS settlement layers,
application of the Degree of Urbanisation methodology (stage I) to GHS-POP R2023A and GHS-BUILT-S R2023A,
multitemporal (1975-2030). European Commission, Joint Research Centre (JRC) [Dataset] doi:
10.2905/A0DF7A6F-49DE-46EA-9BDE-563437A6E2BA PID: http://data.europa.eu/89h/a0df7a6f-49de-46ea-
9bde-563437a6e2ba
Files
00_rural_population_count.png
Files
(2.7 GB)
Name | Size | Download all |
---|---|---|
md5:212286a02d256b848b8a66f43d933741
|
1.5 MB | Preview Download |
md5:5a2aaa469bc88a4f9edbd30661679ad6
|
31.2 MB | Preview Download |
md5:68906560de4b645fb058a7b35482170f
|
31.2 MB | Preview Download |
md5:65d92fd5725abf8a03dd62a7a1a2ed3e
|
31.2 MB | Preview Download |
md5:7e8394c5cfbcc560a7b25f196b2fec5e
|
31.1 MB | Preview Download |
md5:3b1347647eabac00e826a48d8050942c
|
31.1 MB | Preview Download |
md5:e2b619c23596f4c5e8e30cd8f075f41c
|
31.1 MB | Preview Download |
md5:2d2b8d956f454c7ff03966a5e0ba3662
|
31.1 MB | Preview Download |
md5:ecee88c1465cc81cf03c7ae04d9f8cc4
|
31.1 MB | Preview Download |
md5:3958d75d8bad835500e757a5498625d4
|
31.1 MB | Preview Download |
md5:f45819e7048f7d861b569eb547f4cf20
|
31.1 MB | Preview Download |
md5:91d9e46b10f5d73ae53c8c6b958abddd
|
31.2 MB | Preview Download |
md5:c97900968629dfb2a5bca245deb653cc
|
31.2 MB | Preview Download |
md5:59cd54279b83559a4a795c0b0134e0b3
|
30.0 MB | Preview Download |
md5:9c2887b941a1e970749e171a342c11ae
|
31.8 MB | Preview Download |
md5:2f9289350fa19e256db2b3ee07450880
|
31.3 MB | Preview Download |
md5:9af8d5ce2bcdd22cedc0e67d3ef6272b
|
31.0 MB | Preview Download |
md5:2847eaa3dbf9e6a4860f0da207c5271a
|
30.7 MB | Preview Download |
md5:bf8595e6511793551a2fa24a722bca94
|
35.4 MB | Preview Download |
md5:dc3772bd3a597614a8180085c45d5520
|
35.8 MB | Preview Download |
md5:7e771730350d1fece77fde4fd8295ac8
|
35.8 MB | Preview Download |
md5:58f0c285d35d5cd02fb7d7de2756509b
|
37.5 MB | Preview Download |
md5:e8ace2539487ea9dd682c869a2b904bd
|
88.2 MB | Preview Download |
md5:061ebe3e8cc7731ec2eae190770adf79
|
87.7 MB | Preview Download |
md5:bd35fb4c27a5affd50f78a1d8f256bad
|
87.8 MB | Preview Download |
md5:2c25e0cbbc7885556481ff0556fa3cdc
|
88.0 MB | Preview Download |
md5:d1e1ce2f6c6affbbdd8d903f81bfe9bc
|
88.2 MB | Preview Download |
md5:7b4a06da5f1e68a7f6c10cb544639bd0
|
88.8 MB | Preview Download |
md5:fbf494924a6807037564d33279c7d867
|
88.9 MB | Preview Download |
md5:b6349156a111de981ed4a776e2d7e5a1
|
89.4 MB | Preview Download |
md5:bd0d709ef276503faeaa269d1dccba49
|
89.5 MB | Preview Download |
md5:4471f0558011c5c9aca1eeab82976b16
|
90.0 MB | Preview Download |
md5:6c34f54b1e6bd4b2f0f86fc2b7bec957
|
90.5 MB | Preview Download |
md5:ffdcbaa19f2c19e0187392ad9ddbdbda
|
91.1 MB | Preview Download |
md5:9fb7e2da8cfd8ec87c9fc234957aadea
|
92.0 MB | Preview Download |
md5:f2a270148d7344d623116405dec24b68
|
91.8 MB | Preview Download |
md5:588bcc7b45a6a48d4e402a5595259f97
|
92.5 MB | Preview Download |
md5:7e9d22bb7ee541d04260d149beb964fc
|
93.1 MB | Preview Download |
md5:a4ecc1ba5e0ddb0703c5ddb92f749397
|
93.3 MB | Preview Download |
md5:cc37116025590c2578856b03ba282128
|
93.7 MB | Preview Download |
md5:bbab20f98ac78d9abc32428ef5d038ee
|
93.9 MB | Preview Download |
md5:1e125e77fffb11ed6985bc7a872bf710
|
94.4 MB | Preview Download |
md5:d8aa89dc28a5451b8a2e51f2649b56c5
|
94.7 MB | Preview Download |
md5:4b3ef973e01bfcc172dd0f42228dfeee
|
4.9 MB | Preview Download |
md5:cf0698c94ececd0828d94d0d0b6a3d9e
|
4.9 MB | Preview Download |
md5:dce4dedb305aee9c009a18f48d88dd9c
|
4.9 MB | Preview Download |
md5:47369152c64c7af57b18cf28ab07aa94
|
4.9 MB | Preview Download |
md5:3e92284dcb330a3afbe8158d545d59ab
|
4.9 MB | Preview Download |
md5:0a4de4c236336b210a6badc3fd90e734
|
4.9 MB | Preview Download |
md5:8e3c248bd62c08d7af8c5a39fe7d36fe
|
4.9 MB | Preview Download |
md5:88c51f0f86f9593144d12a1d8f86acda
|
5.0 MB | Preview Download |
md5:bbe5be57da1b5bac0d94a0e4a8c4d7ec
|
5.0 MB | Preview Download |
md5:10155d37f499d449d1a9488853c752b4
|
5.0 MB | Preview Download |
md5:62592c246f4905bb46b31b4954ea70b6
|
5.0 MB | Preview Download |
md5:c5fb30e7ca985b5226a7a147b9888eba
|
5.0 MB | Preview Download |
md5:de35c2472cee72c280e295c5d95f1148
|
5.1 MB | Preview Download |
md5:f2c9ab0d547929778d6b0105dcc1638a
|
5.1 MB | Preview Download |
md5:96e413a5e646a96cab2aa4f406a0b932
|
5.1 MB | Preview Download |
md5:fb4e3d0a630c326f9fafc493757c3e62
|
5.1 MB | Preview Download |
md5:24a8262bcd24c6b4986880c49d7223c8
|
5.1 MB | Preview Download |
md5:6d843f4d3ae868e054782c4a913531e5
|
5.1 MB | Preview Download |
md5:09b9591abd738fee9619c85c1ea8e711
|
5.1 MB | Preview Download |
md5:5f2f7fc4329fee3a00a567daaab0b77e
|
5.2 MB | Preview Download |
md5:6e989c1a6140badbada4c2c3c97112db
|
5.2 MB | Preview Download |
Additional details
Related works
- Is supplement to
- Dataset: 10.5281/zenodo.7750174 (DOI)
Dates
- Created
-
2024-11-29
References
- Schiavina, Marcello; Melchiorri, Michele; Pesaresi, Martino (2023): GHS-SMOD R2023A - GHS settlement layers, application of the Degree of Urbanisation methodology (stage I) to GHS-POP R2023A and GHS-BUILT-S R2023A, multitemporal (1975-2030). European Commission, Joint Research Centre (JRC) [Dataset] doi: 10.2905/A0DF7A6F-49DE-46EA-9BDE-563437A6E2BA PID: http://data.europa.eu/89h/a0df7a6f-49de-46ea- 9bde-563437a6e2ba
- Lloyd, C. T., Chamberlain, H., Kerr, D., Yetman, G., Pistolesi, L., Stevens, F. R., ... & Tatem, A. J. (2019). Global spatio-temporally harmonised datasets for producing high-resolution gridded population distribution datasets. Big earth data, 3(2), 108-139.