8. Beitrag zur Kenntnis der trägen Masse bewegter Elektronen; von E. Hupka.

(Auszug aus der Berliner Dissertation.)

A. Einleitung.

Die Weiterbildung, welche die Lehre von der Elektrizität und vom Magnetismus in neuester Zeit auf atomistischer Grundlage gefunden hat, führte zu einer Revision und einer damit verbundenen klareren Erkenntnis verschiedener aus anderen Teilen der Physik übernommenen Grundbegriffe. Namentlich erfuhr die Vorstellung von der Trägheit der Masse eine Erweiterung: Während der älteren Elektrodynamik in Übereinstimmung mit der Mechanik ein funktionaler Zusammenhang zwischen der Trägheit und dem Bewegungszustand fremd war, verlangten die neueren Elektronentheorien im Gegensatz dazu die Abhängigkeit der trägen Masse eines Elektrons von seiner Geschwindigkeit. Unter ihnen beanspruchen augenblicklich wegen ihres systematischen Ausbaues zwei Theorien ein erhöhtes Interesse, die Theorie des starren Elektrons von Hrn. Abraham¹) und die Lorentz-Einsteinsche²) Theorie. Der Unterschied zwischen beiden wird am besten durch ihre Stellung zum Relativitätsprinzip charakterisiert. Dieses besagt, daß die Gleichungen der Bewegung unverändert ihre Form behalten, gleichgültig ob man sie auf ein absolut ruhendes oder auf ein gegen dieses beschleunigungsfrei fortschreitendes Koordinatensystem bezieht. Während die Abrahamsche Theorie — mit Hrn. Planck möge sie der Kürze halber als Kugeltheorie bezeichnet werden - das Relativitätsprinzip fallen läßt, macht es die Lorentz-Einsteinsche Theorie, im folgenden Relativtheorie genannt, in Verbindung mit einer passenden Definition der Zeit zur Grundlage aller weiteren Entwicke-

¹⁾ M. Abraham, Ann. d. Phys. 10. p. 105. 1903.

²⁾ H. A. Lorentz, Versl. Kon. Akad. v. Wet. Amsterdam 1904. p. 809; A. Einstein, Ann. d. Phys. 17. p. 891. 1905.

Annalen der Physik. IV. Folge. 31. 12

lungen. Es ist selbstverständlich, daß ein derartiges Ausgehen von verschiedenen Punkten bei Bewegungsvorgängen notwendig auch zu voneinander abweichenden Folgerungen führen muß. die unter geeigneten Umständen eine Prüfung durch die Erfahrung und damit eine Entscheidung zwischen den Theorien zulassen. Die meiste Aussicht auf Erfolg bietet eine Untersuchung der von beiden Theorien in gleicher Weise geforderten, aber nicht in gleicher Weise formulierten Abhängigkeit der trägen Masse bewegter Elektronen von der Geschwindigkeit. Hr. W. Kaufmann hat in seiner schönen Arbeit "Über die Konstitution des Elektrons"¹) den experimentellen Nachweis für jene Abhängigkeit erbracht. Die von ihm mitgeteilten Zahlen lassen sich mit keiner der beiden genannten Theorien vollkommen in Einklang bringen. Die Abweichungen liegen in beiden Fällen außerhalb der von Hrn. Kaufmann angegebenen Fehlergrenze seiner Versuche. Nach seinen Messungen und denen der Herren H. Starke²), A. Bestelmeyer³), J. Classen⁴) u. a. darf man das Vorhandensein einer Beziehung zwischen der trägen Masse der Elektronen und ihrer Geschwindigkeit als experimentell sichergestellt betrachten. Zu einer Kritik der Theorien waren diese Versuche noch nicht ausreichend. Kürzlich hat Hr. A. H. Bucherer⁵) Versuche beschrieben, welche für die Richtigkeit der Relativtheorie sprechen. Bei der Bedeutung, welche der Gegenstand für die Weiterbildung der Theorien besitzt, dürfte eine erneute Prüfung der Frage mit anderen Mitteln nicht überflüssig sein. Die Herren Kaufmann und Bucherer haben mit den β -Strahlen von Radiumsalzen gearbeitet. Im Gegensatz hierzu wurden die im folgenden mitgeteilten Messungen, welche schon vor der Publikation des Hrn. Bucherer im Gange waren, an Kathodenstrahlen hoher Geschwindigkeit angestellt. Zwar ließen

¹⁾ W. Kaufmann, Berl. Ber. 1905. p. 949; Ann. d. Phys. 19. p. 497. 1906.

²⁾ H. Starke, Verh. d. Deutsch. Phys. Ges. 5. p. 241. 1903.

³⁾ A. Bestelmeyer, Ann. d. Phys. 22. p. 429. 1907.

⁴⁾ J. Classen, Physik. Zeitschr. 9. p. 762. 1908; Verh. d. Deutsch. Phys. Ges. 10. p. 700. 1908; Jahrb. d. Hamb. Wiss. Anst. 25. 1907.

⁵⁾ A. H. Bucherer, Physik. Zeitschr. 9. p. 755. 1908; Verh. d. Deutsch. Phys. Ges. 10. p. 688. 1908; Ann. d. Phys. 28. p. 585. 1909.

die Versuche des Hrn. Starke bei Zulassung einer selbständigen Entladung kaum ein genügendes Geschwindigkeitsintervall erwarten, wie es im Interesse der Meßgenauigkeit wünschenswert gewesen wäre; dagegen gestattete die Vollkommenheit der modernen Evakuationsmethoden die Anwendung hoher statischer Spannungen zur Beschleunigung der auf irgend eine Weise einmal erzeugten Kathodenstrahlen, ohne daß man eine sichtbare Entladung und die damit verknüpften Komplikationen zu befürchten hatte. Diesem Umstande wurde Rechnung getragen: Ein Elektronenstrom wurde lichtelektrisch ausgelöst und dann durch hohe Spannungen auf erhebliche Geschwindigkeiten gebracht.

B. Die Versuche.

1. Die Theorie der Versuche.

Da die Austrittsgeschwindigkeit der in dieser Weise erzeugten Strahlen nach den Messungen der Herren E. Ladenburg¹)²) und K. Markau²) nur einige Volt beträgt, also gegenüber den schließlich erlangten Endgeschwindigkeiten hier als verschwindend klein angesehen werden kann, so darf man den Berechnungen die von Hrn. Planck³) für diesen Fall angegebenen Gleichungen zugrunde legen. Dieselben lauten für beide Theorien gemeinsam:

(1)
$$E = \varepsilon P \cdot 10^8 = q p - H;$$

$$(2) p = \epsilon \, \mathfrak{H} \, \varrho$$

Hierin bedeutet E die Energie, H das kinetische Potential eines mit der Geschwindigkeit q bewegten Elektrons, ϵ das elektrische Elementarquantum in elektromagnetischem Maße, -P das beschleunigende Potential in Volt, \mathfrak{H} die Stärke des zur magnetischen Ablenkung verwandten Feldes, ϱ den Krümmungsradius der Bahnkurve und $p = \partial H/\partial q$ den Impulsvektor. Der Unterschied der beiden Theorien wird durch die Beziehungen charakterisiert:

¹⁾ E. Ladenburg, Physik. Zeitschr. 8. p. 590. 1907.

²⁾ E. Ladenburg u. K. Markau, Physik. Zeitschr. 9. p. 821. 1908.

³⁾ M. Planck, Physik. Zeitschr. 7. p. 753. 1906; Verh. d. Deutsch. Phys. Ges. 8. p. 418. 1906.

E. Hupka.

(3)
$$H = -\frac{3}{4}\mu_0 c^2 \left(\frac{c^2 - q^2}{2 q c} \ln \frac{c + q}{c - q} - 1\right) \text{ f. d. Kugelth},$$

(4)
$$\mathcal{U} = -\mu_0 c^2 \left(\sqrt{1 - \frac{q^2}{c^2}} - 1 \right)$$
 f. d. Relativth.;

c ist die Lichtgeschwindigkeit, μ_0 die Masse des Elektrons für q = 0. Setzt man noch $\beta = q/c$ und $\eta_0 = \epsilon/\mu_0$, so folgt aus (1) und (3) bzw. (1) und (4):

(I)
$$\begin{cases} (5) \quad P = \frac{9 \cdot 10^2 \cdot c}{4 \eta_0} \left(\frac{1}{\beta} \ln \frac{1+\beta}{1-\beta} - 2 \right) \text{ f. d. Kugelth.,} \\ (6) \quad P' = \frac{3 \cdot 10^2 \cdot c}{\eta_0} \left(\frac{1}{\sqrt{1-\beta'^2}} - 1 \right) \text{ f. d. Relativth.} \end{cases}$$

Aus $p = \mu q$ (μ die träge Masse des Elektrons für die Geschwindigkeit q) und der Kombination der Gleichung (2) mit (3) bzw. (4) folgt:

(II)
$$\begin{cases} (7) \quad \frac{1}{c} \eta_0 \ \mathfrak{H} \ \varrho \ = \ \frac{3}{4} \ \frac{1}{\beta} \left(\frac{1+\beta^2}{2\beta} \ln \frac{1+\beta}{1-\beta} - 1 \right) \ \text{f. d. Kugelth.,} \\ (8) \quad \frac{1}{c} \eta_0 \ \mathfrak{H} \ \varrho \ = \ \frac{\beta'}{\sqrt{1-\beta'^2}} \ \text{f. d. Relativth.} \end{cases}$$

Die Gleichungen (I) enthalten außer bekannten Konstanten nur die Größen β und η_0 , die Gleichungen (II) außerdem noch die Versuchsdaten \mathfrak{H} und ϱ . Man kann also unter Zugrundelegung einer bestimmten Zahl für η_0 aus (I) mit Hilfe von Pdie Geschwindigkeitsfunktion β ermitteln und dann nach (II) die Konstanz von η_0 prüfen. Diejenige Theorie, nach welcher sich diese Konstanz aus den Messungswerten ergibt, wird den Tatsachen gerecht.

Zu denselben Gleichungen wird man auch durch eine andere Überlegung geführt. Bezeichnet man, wie früher, mit Edie Energie des Elektrons, und zwar mit E für die Geschwindigkeit q, mit E_0 für die Anfangsgeschwindigkeit q_0 , mit P und P_0 die entsprechenden Potentiale in Volt und mit edas elektrische Elementarquantum in elektrostatischem Maße, mit a den Radius des Elektrons im Ruhezustand, so folgt aus dem Energieprinzip die Relation:

(9)
$$E - E_0 = \frac{e(P - P_0)}{300}.$$

172

In der Kugeltheorie ist die gesamte Energie elektromagnetischer Natur; also, wenn W diese Energie ist,

$$\mathcal{E}-\mathcal{E}_0=\mathcal{W}-\mathcal{W}_0.$$

Nun ist aber im Falle der Flächenladung

(10)
$$W = \frac{e^2}{2a} \frac{1}{\beta} \ln \frac{1+\beta}{1-\beta}:$$

im Falle der Volumenladung dagegen:

(11)
$$W = \frac{3 e^2}{5 a} \frac{1}{\beta} \ln \frac{1+\beta}{1-\beta};$$

oder da

(12)
$$\frac{e^2}{a} = \frac{3}{2} \mu_0 c^2$$
 f. d. flächenhafte Ladung,

(13)
$$\frac{e^2}{a} = \frac{5}{4} \mu_0 c^2$$
 f. d. räumliche Ladung

ist, so gilt ohne Rücksicht auf die Verteilung der Ladung:

(14)
$$\frac{P-P_0}{300} = \frac{3\mu_0 e^2}{4e} \left(\frac{1}{\beta} \ln \frac{1+\beta}{1-\beta} - \frac{1}{\beta_0} \ln \frac{1+\beta_0}{1-\beta_0} \right).$$

In der Relativtheorie kommt zu der rein elektromagnetischen Energie W noch eine innere potentielle Energie L des Elektrons hinzu. Die Energiegleichung lautet danach:

(15)
$$W - W_0 + L - L_0 = \frac{e(P - P_0)}{300}.$$

Im Falle der Flächenladung ist:

(16)
$$W = \frac{e^3}{2 a \sqrt{1-\beta^2}} \left(1+\frac{\beta^2}{3}\right),$$

(17)
$$L - L_0 = \frac{e^3}{6 a} \left(\sqrt{1 - \beta^2} - \sqrt{1 - \beta_0^2} \right).$$

Setzt man diese Werte in (15) ein, so folgt:

(18)
$$\frac{P-P_0}{300} = \frac{e}{6a} \left(\frac{3+\beta^2}{\sqrt{1-\beta^2}} - \frac{3+\beta_0^2}{\sqrt{1-\beta_0^2}} + \sqrt{1-\beta^2} - \sqrt{1-\beta_0^2} \right).$$

Im Falle der Volumenladung ist die rechte Seite mit $^{6}/_{5}$ zu multiplizieren. Führt man die Substitutionen (12) und (13)

aus, so erhält man die von der Art der Ladungsverteilung unabhängige Beziehung:

(19)
$$\frac{P - P_0}{300} = \frac{\mu_0 e^2}{4 e} \left(\frac{3 + \beta^2}{\sqrt{1 - \beta^2}} - \frac{3 + \beta_0^2}{\sqrt{1 - \beta_0^2}} + \sqrt{1 - \beta^2} - \sqrt{1 - \beta_0^2} \right).$$

Setzt man

$$\frac{e}{\mu_0 c} = \frac{\varepsilon}{\mu_0} = \eta_0,$$

so wird

(20)
$$P - P_0 = -\frac{9 \cdot 10^2 c}{4 \eta_0} \left(\frac{1}{\beta} \ln \frac{1+\beta}{1-\beta} - \frac{1}{\beta_0} \ln \frac{1+\beta_0}{1-\beta_0} \right) f. d. Kugelth.,$$

(21)
$$P - P_0 = \frac{3 \cdot 10^2 c}{4 \eta_0} \left(\frac{1}{\sqrt{1 - \beta^2}} - \frac{1}{\sqrt{1 - \beta_0^2}} \right)$$
 f. d. Relativth.,

und hiernach für kleine Werte der Anfangsgeschwindigkeit in Übereinstimmung mit den Gleichungen (5) und (6):

(22)
$$P = \frac{9 \cdot 10^2 c}{4 \eta_0} \left(\frac{1}{\beta} \ln \frac{1+\beta}{1-\beta} - 2 \right)$$
 f. d. Kugelth.,

(23)
$$P' = \frac{3 \cdot 10^2 c}{\eta_0} \left(\frac{1}{\sqrt{1 - \beta'^2}} - 1 \right)$$
 f. d. Relativth.

In Reihenentwickelung lauten diese Gleichungen:

(22 a)
$$P = \frac{3 \cdot 10^2 c}{2 \eta_0} \left(\beta^2 + \frac{3}{5} \beta^4 + \ldots + \frac{3}{2 n + 1} \beta^{2 n} + \ldots \right)$$
für die Kugeltheorie,

(23 a)
$$P' = \frac{3 \cdot 10^2 c}{\eta_0} \left(\frac{1}{2} \beta'^2 + \frac{3}{8} \beta'^4 + \dots + (-1)^n {n \choose -\frac{1}{2}} \beta'^{2n} + \dots \right)$$

für die Relativtheorie.

Für kleine Geschwindigkeiten kann man sich mit dem Anfangsglied der Entwickelung begnügen. Man erhält dann für beide Theorien übereinstimmend:

(24)
$$P = P' = \frac{3 \cdot 10^2 \cdot c}{2 \eta_0} \beta^2.$$

In der älteren Theorie der Elektrizität und des Magnetismus, welche eine Abhängigkeit der Masse von der Geschwindigkeit nicht kannte, wurde diese Gleichung auch für höhere Geschwindigkeiten als streng gültig betrachtet.

Es dürfte der Mühe verlohnen, die obigen Gleichungen, wie es schon Hr. Planck getan hat, einmal daraufhin zu diskutieren, welche Schlüsse sich aus ihnen für den quantitativen Unterschied der Theorien ziehen lassen. Ein Strahl von bestimmtem Entladungspotential P besitzt eine bestimmte Energie E, welche unabhängig von der speziellen Wahl der Theorie ist. Es gilt somit die Beziehung:

(25)
$$\frac{3}{2} \left(\frac{1}{2\beta} \ln \frac{1+\beta}{1-\beta} - 1 \right) = \frac{1}{\sqrt{1-\beta^{\prime 2}}} - 1.$$

Die magnetische Ablenkbarkeit wird charakterisiert durch den reziproken Wert von $(1/c) \eta_0 \mathfrak{H} \varrho$. Hieraus folgt:

$$\begin{aligned} \beta' < \beta, \\ \frac{\beta'}{\sqrt{1-\beta'^2}} > \frac{3}{4} \frac{1}{\beta} \Big(\frac{1+\beta^2}{2\beta} \ln \frac{1+\beta}{1-\beta} - 1 \Big), \end{aligned}$$

d. h. ein Strahl von bestimmtem Entladungspotential besitzt nach der Kugeltheorie eine größere Geschwindigkeit und eine größere magnetische Ablenkbarkeit als nach der Relativtheorie. Der Unterschied verschwindet für sehr kleine und für sehr große Potentiale; ein Maximum erhält man, wie zuerst Hr. Planck bewiesen hat, für $P = 3,2.10^5$ Volt ($\beta = 0,834$). Die halbe Lichtgeschwindigkeit entspricht einem Entladungspotential von ca. 75000 Volt, wenn man die Kugeltheorie zugrunde legt, und von ca. 78000 Volt, wenn man die Relativtheorie für die Berechnung benutzt.¹)

2. Die praktische Ausführung.

a) Die Apparatur und die experimentelle Technik.

Die durch diese theoretischen Überlegungen vorgezeichnete Idee wurde mittels der aus Fig. 1 ersichtlichen Anordnung verwirklicht. Durch Bestrahlung mit dem Lichte einer Quarzquecksilberlampe L wurde an einer Kupferkathode Kin einem mittels Kokosnußkohle und flüssiger Luft hochgradig evakuierten Entladungsrohr R ein Elektronenstrom ausgelöst. Durch ein zwischen Kathode und Anode A angelegtes Feld stark beschleunigt, passierte der Strahl die als Diaphragma ausgebildete Anode mit konstanter Geschwindigkeit und warf

¹⁾ Hr. Kaufmann gibt in seiner Arbeit "Über die Konstitution des Elektrons" die zur Erreichung der halben Lichtgeschwindigkeit notwendige Spannung zu 140000 Volt an; die Abweichung von den oben angegebenen Zahlen rührt offenbar von einem Versehen her.

das Schattenbild zweier kreuzweise über ein zweites Diaphragma D gespannten Wollastondrähte auf einen am Ende des Rohres angebrachten Phosphoreszenzschirm P. Wurde durch ein hinter dem zweiten Diaphragma senkrecht zur Rohrachse orientiertes Spulenpaar NS ein Strom geschickt (der Kürze halber im folgenden als Magnetstrom bezeichnet), so wurde der Strahl abgelenkt, das Schattenbild verschob sich von a nach b. Um von den störenden Einflüssen des Erd-

Fig. 1.

feldes frei zu sein, wurde das Entladungsrohr in einem völlig eisenfreien Gestell in Richtung des magnetischen Meridians festgeschraubt; die Ablenkungen erfolgten in vertikaler Richtung.

Ein Verfahren, hohe statische Spannungen zu erzeugen, und mit großer Genauigkeit zu messen, hat Hr. C. Müller¹) im hiesigen Physikalischen Institut ausgearbeitet und kürzlich

¹⁾ C. Müller, Diss. Berlin 1908; Ann. d. Phys. 28. p. 585. 1909.

beschrieben. Die dort angegebene Methode gelangte hier zur Anwendung. Die Kathode war mit dem negativen Pol einer Leidener Flaschenbatterie B verbunden, welche von einer für hohe Potentialdifferenzen konstruierten Influenzmaschine J von 90 cm Scheibendurchmesser gespeist wurde; positiver Pol und Anode waren durch Blitzableiter geerdet. Reguliert werden konnte die Spannung durch einen unterteilten Spitzennebenschluß E. Die Messung erfolgte an einer bifilaren Drehwage Wmit Zeigerablesung, welche nach Funkenschlagweiten auf Grund der Messungen des Hrn. Müller geeicht war.

Fig. 2.

Der Magnetstrom wurde einer Akkumulatorenbatterie Cvon 20 Volt entnommen, durch einen Schieberheostaten Gvariiert und an einem in Paraffinöl getauchten, von der Physikalisch-Technischen Reichsanstalt geeichten Normale von 0,1 Ohm durch Abzweigung mit dem Kompensationsapparat Ogemessen.

Die Beobachtung des abgelenkten Schattenbildes geschah mit Hilfe eines Mikroskopes H von etwa 16 facher Vergrößerung.

Vielfach begegnet man der auf Erfahrungen an hochfrequenten Wechselströmen sich stützenden Ansicht, daß auch im besten Vakuum die Anwendung einigermaßen erheblicher Spannungen sich wegen der schließlich eintretenden Zertrümmerung der Glaswände verbietet. Nach meinen Versuchen

kann ich diese Auffassung, soweit Wechselstrom in Betracht kommt, durchaus bestätigen. Anfangs hoffte ich durch Vergrößerung des Kathodenfalles höhere Entladungspotentiale zu erzielen, indem ich isolierte Elektroden zwischen Kathode und Anode einschaltete. Mit einem Gelingen war nur dann zu rechnen, wenn diese Zwischenelektroden das Lumen der Röhre völlig ausfüllten. Der benutzte Wechselstrom wurde von einem mit einem Wehneltunterbrecher betriebenen Induktorium von 30 cm Funkenlänge geliefert. Es zeigte sich hierbei, daß bei einer gewissen vom Abstand der Elektroden abhängigen Grenzspannung unter hell glänzender Funkenbildung eine Aufreißung der inneren Glaswand eintrat; die Funkenbahn markierte sich ähnlich einer vom Pfluge im Ackerboden gezogenen Furche. Während also hiernach der Anwendung größerer Entladespannungen bei Wechselstrom ein schnelles Ziel gesetzt ist, liegen die Verhältnisse bei Gleichstrom ganz anders. Die Durchbohrung des Dielektrikums unter dem Einfluß wechselnder elektrischer Felder ist auf einen Energie verbrauchenden Strom zurückzuführen. Nun ist aber der für diesen Strom maßgebende Wechselstromverlustwiderstand, wie die Erfahrung lehrt, gegenüber dem bei Gleichstrom in Betracht kommenden Isolationswiderstand von sehr kleiner Größe. Für ein Telephonkabel¹) ergibt z. B. die Gleichstrommessung einen Isolationswiderstand von 1000 Megohm, dagegen einen Verlustwiderstand bei Wechselstrom von etwa 100000 Ohm; ein gewickelter Papierkondensator²) von 2 Mikrofarad besitzt einen Isolationswiderstand von ca. 70 Millionen Ohm und einen Verlustwiderstand von etwa 2500 Ohm bei Wechselstrom von 800-900 Perioden (Sprechströmen). Eine einwandfreie Erklärung dieser Tatsache steht augenblicklich noch aus. Ein Teil des Verlustes ist vielleicht auf molekulare Reibungsvorgänge zurückzuführen, welche durch die wechselnde dielektrische Polarisation bedingt werden; die Folge hiervon wäre ein Zurückbleiben der elektrischen Induktion hinter der Intensität des elektrischen Feldes. Der Verlust im Dielektrikum

¹⁾ Béla Gati, Elektrotechnik und Maschinenbau (Wien) 26. p. 263. 1908.

²⁾ Nach den Messungen im Kaiserl. Telegr.-Vers.-Amt.

würde dann ein Analogon zu dem bei magnetischen Körpern durch die Hysteresis hervorgerufenen Verlust bilden.¹) Nach den neuesten Untersuchungen des Hrn. E. v. Schweidler²) ist diese Annahme zur quantitativen Erklärung der beobachteten Erscheinungen nicht ausreichend. Vielleicht kommt hierzunoch ein Leitungsstrom, etwa elektrolytischer Art. Jedenfalls aber ist so viel sicher, daß man bei Gleichstrom eine wesentlich geringere Beanspruchung des Dielektrikums, im vorliegenden Falle der Glaswand des Entladungsrohres, zu befürchten hat als bei Wechselstrom.

Über die Durchschlagsfestigkeit hoher Vakua hat Hr. Madelung³) Versuche angestellt, welche ihn zu dem Schlusse führten, daß die Funkenspannung im hohen Vakuum einem der Schlagweite proportionalen Grenzwerte zustrebt und daß die Durchschlagsfestigkeit nicht über 40000 Volt pro mm steigt. Dieser Erfahrung Rechnung tragend, wurden die Elektroden K und A in einem Abstande von 4 cm angeordnet; auch die Glaswand hatte von der Kathodenplatte überall diese Entfernung, wenn man von der zum Schutze über den Stiel der Platte geschobenen Röhre absieht. Eine Beschädigung des Glases ist denn auch selbst bei den höchsten zur Anwendung gelangten Spannungen nicht eingetreten.

Eine Anzahl von verschiedenen in der physikalischen Technik gebräuchlichen Methoden zur Herstellung hoher Vakua wurde kürzlich von den Herren Heuse und Scheel⁴) in der Physikalisch-Technischen Reichsanstalt einer Kritik unterzogen. Das Resultat dieser Versuche kann dahin ausgesprochen werden, daß die höchsten Grade der Verdünnung sich nur bei Anwendung von Kokosnußkohle und flüssiger Luft erreichen lassen. Die hiermit erzielten tiefsten Drucke (0,000007 mm) wurden nach einem Vorpumpen mit einer Gaedepumpe in etwa 2 Stunden erhalten. Auch mit dem von Hrn. Soddy⁵) ahgegebenen Verfahren der Calciumverdampfung habe ich Ver-

¹⁾ B. Monasch, Ann. d. Phys. 22. p. 905. 1907.

²⁾ E. v. Schweidler, Ann. d. Phys. 24. p. 711. 1907.

³⁾ E. Madelung, Physik. Zeitschr. 8. p. 68. 1907.

⁴⁾ K. Scheel u. W. Heuse, Zeitschr. f. Instrumentenk. 29. p. 46. 1909.

⁵⁾ F. Soddy, Proc. Roy. Soc. 78. (A) p. 429. 1907.

suche angestellt. In dem einen Falle wurde ein mittels eines lockeren Kontaktes in den Netzstrom geschalteter Calciumstift durch direkte Kurzschlußwirkung und Lichtbogenbildung zum Verdampfen gebracht. Ein anderes Mal wurden erbsengroße Calciumstücke in ein am Ende verschlossenes, an den Rezipienten gekittetes Porzellanrohr gefüllt und dieses vorsichtig mit der Gebläseflamme bis zur Rotglut erhitzt. Die auf diese Weise erzielten Verdünnungsgrade waren nicht unbeträchtlich; z. B. wurde ein Gefäß von ca. ¹/, Liter Inhalt im Augenblick der Verdampfung vom Wasserstrahlvakuum auf hartes Röntgenvakuum ausgepumpt. Für die vorliegenden Zwecke war die Methode indessen nicht ausreichend. Das Kohle-flüssige Luftverfahren kam daher hier allein zur Anwendung. An den erweiterten, den Phosphoreszenzschirm tragenden Teil des Entladungsrohres war seitlich ein etwa 15 cm langes, 2 cm weites Gefäß angeschmolzen, welches bis zur Hälfte mit Kokosnußkohle gefüllt war. Ein Bausch Glaswolle verhinderte das Hineinfallen der Kohlestücke in das Entladungsrohr. Der Apparat wurde mit der Quecksilberpumpe so verbunden, daß das Kohlerohr eine horizontale Lage bekam. Ein ca. 8 cm weiter Blechmantel wurde darüber geschoben und darauf von unten mit einem Vielflammenbrenner bis dicht an die Schmelztemperatur des Glases erhitzt.

Auf die Herstellung der Kohle wurde besondere Sorgfalt verwandt. Die Schalen einer Kokosnuß wurden bis auf etwa Erbsengröße zerkleinert und in einer mit einem durchlöcherten Deckel versehenen Blechbüchse unter vermindertem Luftzutritt durch trockene Destillation verkohlt. Der Prozeß konnte als beendet angesehen werden, wenn die dabei sich entwickelnden gelblich-weißen Rauchwolken verschwanden. Das so hergerichtete Produkt besaß ein grauschwarzes Aussehen und matte Bruchflächen; wegen seines beträchtlichen Teergehaltes war es für die Evakuation nicht verwendbar; es mußte in einem Glasrohr unter Vakuum geglüht werden. Dieses geschah an der Wasserstrahlpumpe durch ca. 6-7 stündiges Erhitzen des Rohres bis auf etwa 400° C. Hierdurch erhielt die Kohle eine tiefschwarze Färbung, der Bruch erschien glänzend und muschelig. Auch dieses Präparat konnte erst, nachdem mehrere Tage lang im hohen Vakuum (Quecksilberpumpe) die noch überschüssigen Kohlenwasserstoffe durch dauerndes Pumpen und Glühen entfernt waren, für die Versuche benutzt werden; die beiden zur Trocknung vorgeschalteten Phosphorpentoxydgefäße färbten sich hierbei braun und mußten wiederholt ausgewechselt werden. Erst wenn die Trocknungsgefäße unverändert weiß blieben, konnte mit den definitiven Versuchen begonnen werden. Es erwies sich hierbei als zweckmäßig, die Quecksilberpumpe nicht dauernd im Betrieb zu halten, sondern intermittierend zu arbeiten: zunächst wurde so lange evakuiert, bis die Glaswand einer als Vakuumindikator dienenden, mit dem Rezipienten kommunizierenden Geisslerschen Röhre lebhaft grün fluoreszierte; dann wurde die Pumpe angehalten und so lange gewartet, bis der Kathodendunkelraum infolge der Gasabgabe aus der Kohle nur noch etwa 1 mm betrug; hierauf wurde die Pumpe wieder in Gang gesetzt und bis zum Eintritt der Glasfluoreszenz evakuiert: die Pumpe wurde wieder angehalten, bis der Kathodendunkelraum auf 1 mm zusammengeschrumpft war usw. Vielleicht ist für die rasche Entleerung des Rezipienten ein gewisses Druckgefälle günstig, während bei niederen Drucken die ins Gewicht fallende Gasreibung an den Glaswänden der Evakuation hemmend entgegensteht. Trotzdem dauerte auch jetzt noch der Prozeß etwa 6-8 Stunden. Schließlich, wenn eine zum Indikator parallel angelegte Funkenstrecke von 3 cm bei aufs äußerste erhitzter Kohle ansprach, wurde der Rezipient von der Pumpe getrennt. Ungefähr gleichzeitig und unabhängig voneinander wurde von den Herren Heuse und Scheel, von Hrn. Regener im hiesigen Physikalischen Institut und von mir ein vielleicht aussichtsvolles Verfahren der Evakuation mit Kokosnußkohle und flüssiger Luft angewandt: Man schmilzt mehrere Kohlegefäße hintereinander an den zu evakuierenden Rezipienten, erhitzt alle Gefäße gleichzeitig unter dauernder Evakuation mit der Pumpe - es genügt eine Wasserstrahlpumpe -; dann wird eines der Gefäße auf Zimmertemperatur abgekühlt; dieses saugt die von den anderen Gefäßen abgegebenen Gasmassen in sich hinein; das abgekühlte Gefäß wird vom Rezipienten abgeschmolzen, darauf das nächste Kohlegefäß abgekühlt, vom Rezipienten getrennt usw., bis nur noch ein einziger Kohlebehälter bleibt. Setzt man diesen nun in

flüssige Luft, so erhält man wohl die höchste erreichbare Verdünnung. Nach Erfahrungen, welche Hr. E. Tieffenbach im hiesigen Physikalischen Institut gemacht hat, erfolgt beim Eintauchen der Kohle in flüssige Luft nach einem ziemlich raschen Abfall der Temperatur auf etwa -100° C. die weitere Erniedrigung äußerst langsam. Daher wurde nach dem Eintauchen der Kohle in flüssige Luft unter beständigem Nachfüllen der verdunsteten Mengen 3-4 Stunden gewartet, ehe mit den Messungen begonnen wurde.

Die in der soeben angegebenen Weise hergestellten Vakua vertrugen eine Belastung von ca. 90000 Volt, ohne daß selbständige Entladung eintrat. Unter diesen Umständen treten Erscheinungen auf, welche in hohem Maße merkwürdig sind. Trotz des Vorhandenseins einer Entladespannung, welche in Luft von Atmosphärendruck einer Schlagweite von ca. 8 cm zwischen 5 cm-Kugeln entspricht, nimmt das Auge auch nicht den geringsten Lichteindruck im Rohre wahr. Läßt man ultraviolettes Licht auf die Kathode fallen, so bildet sich ein heller Fleck auf dem Phosphoreszenzschirm ab. Blendet man durch Zwischenschaltung von Glasplatten die Strahlungsquelle ab, so verschwindet die Erscheinung. War die Verdünnung keine ausreichende --- dies war namentlich nach längerem Lagern der Entladungsröhren unter Atmosphärendruck der Fall -so traten bei höheren Spannungen Vakuumfunken auf. Diese Funken besaßen einen hellen Glanz und verursachten kaum ein nennenswertes Geräusch; sie waren imstande, durch Erregung von Schwingungen in Zimmern, welche 20 m und mehr entfernt lagen. Kurzschlüsse in den dort befindlichen Stromleitungen zu verursachen. Mit dem Handspektroskop untersucht, zeigten sie, abgesehen von einer gelben Linie, vor allem das Aluminiumspektrum. Ist das Vakuum härter, die Funkenfolge daher seltener, so geht der Entladung eine Fluoreszenz des Glases vorauf. Hr. Reichenheim¹) hat kürzlich die Fluoreszenzfarben, welche das Glas unter der Einwirkung von Kathodenstrahlen annimmt, einer Untersuchung unterzogen. Hierbei fand er, daß an Stelle der gewöhnlichen gelblich-

¹⁾ O. Reichenheim, Verhandl. d. Deutsch. Physik. Gesellsch. 11. p. 45. 1909.

grünen Färbung mitunter das Fluoreszenzlicht eine ausgesprochen blaue Tönung zeigte. Hr. Reichenheim führte diese Erscheinung auf das Auftreten von Sekundärstrahlen zurück. Auch bei den hier mitgeteilten Versuchen waren beide Färbungen zu bemerken, und zwar die grüne Fluoreszenz im relativ schlechten Vakuum, die blaue Fluoreszenz im relativ guten Vakuum.¹) Vielleicht deutet dies darauf, daß die blaue Farbe die eigentliche, dem Glase zukommende Fluoreszenzfarbe ist, während die Grünfärbung von adhärierenden Gasschichten herrührt.

Der kreisrunde, himmelblaue Phosphoreszenzfleck zeichnete sich mit großer Randschärfe auf dem Schirm ab, die auch durch die mikroskopische Vergrößerung nicht beeinträchtigt wurde. Seine Eigenhelligkeit war, wenn man die geringe Zahl der beim lichtelektrischen Effekt ausgelösten Elektronen berücksichtigt, sehr beträchtlich: im verdunkelten Zimmer konnte man die Erscheinung aus einer Entfernung von mehreren Metern deutlich beobachten. Um störende Aufladungen des Schirmes zu verhindern — die Leitfähigkeit der Substanz war meistenteils an sich hierzu schon ausreichend — wurde ein engmaschiges Drahtgeflecht, das zur Erde abgeleitet war, über den Schirm gespannt.

Als Ultraviolettstrahlungsquelle kam eine von der Firma Heraeus hergestellte Quarzquecksilber-Hochdrucklampe für 220 Volt zur Anwendung, die unter Benutzung eines passenden Ballastwiderstandes gewöhnlich mit 130—140 Volt Klemmenspannung und ca. 3,5 Amp. vom Netz aus betrieben wurde. Ein als Gehäuse dienender Zinkkasten, welcher eine Ausbreitung der Strahlen im Zimmer verhinderte, ließ durch einen unter 45° angebrachten Tubus das Licht mittels eines Quarzfensters in das senkrecht darunter aufgestellte Entladungsrohr eintreten. Um eine Beeinflussung des Magnetfeldes durch den Lampenstrom zu eliminieren, wurde der die Zuleitung besorgende Draht dicht am Leuchtrohr der Lampe vorbeigeführt; im übrigen ergaben Kontrollversuche mit einem künstlichen Stromlauf bei einer Steigerung des Stromes von

¹⁾ Um Mißverständnissen vorzubeugen, möge erwähnt werden, daß derartig unzureichende Vakua niemals zu Messungen benutzt wurden.

2 auf 5 Amp. keine merkliche Verschiebung des Phosphoreszenzfleckes.

Das Quarzfenster war eine von der Firma Busch in Rathenow bezogene Platte von 4 cm Durchmesser, welche senkrecht zur optische Achse geschnitten war. Zum Aufkitten auf den abgeschliffenen Rand des Glastubus diente weißer Kittlack Nr. 849 A von Liliendahl in Neudietendorf. Dieses Material hat sich für Vakuumkittungen außerordentlich bewährt. Es ist wegen seines niedrigen Schmelzpunktes, wegen seiner Feinkörnigkeit und vor allem wegen seiner Zähigkeit dem gebräuchlichen roten Siegellack vorzuziehen. Die bei Anwendung des letzteren als Kittmittel schließlich eintretenden Undichtigkeiten rühren meist von mikroskopisch kleinen, mit bloßem Auge nicht wahrnehmbaren Sprüngen und Rissen her. welche bei der Sprödigkeit der Substanz durch mechanische Erschütterungen oder durch Temperaturungleichheiten erzeugt werden. Wäscht man durch Behandlung mit Alkohol den Schellack aus, so erhält man ein infolge seines Calciumgehaltes unter dem Einfluß von Kathodenstrahlen schön himmelblau phosphoreszierendes Material.

Die Kathode war aus Kupfer gefertigt, da Kupfer nächst der Kohle — bei Kohle (Ruß) war kein genügendes Vakuum zu erwarten — lichtelektrisch am wirksamsten ist. Für die Diaphragmenplatten wurde Aluminium gewählt, weil dieses im Vakuum die geringsten Gasmengen abgibt. Leider habe ich englisches Aluminium, welches absorbierte Gase nur in geringem Maße enthält¹), nicht erhalten können, doch genügten einige im hohen Vakuum durch sehr hohe Spannungen hervorgerufene Funken, um die Elektroden hinreichend zu entgasen.

Zur Erlangung eines geeigneten Phosphoreszenzmittels habe ich lange Zeit vergebliche Versuche mit den Fabrikaten verschiedener Firmen angestellt; als brauchbar erwies sich schließlich Kahlbaumsche Sidotblende. Das weiße Pulver wurde mit einer 30 proz. Natronwasserglaslösung in einem Porzellantiegel zu einem milchigen Brei angerührt, mit einem Marderhaarpinsel auf eine vorher etwas angewärmte Spiegel-

¹⁾ R. v. Hirsch u. F. Soddy, Phil. Mag. (6) 14. p. 779. 1907.

glasplatte gleichmäßig aufgetragen und schließlich der Überzug über einer Bunsenflamme in angemessener Entfernung möglichst rasch getrocknet. Der fertige Schirm wurde dann am Ende des Rohres in gleicher Weise wie die Quarzplatte aufgekittet. Die beiden Kittstellen waren gegen die Zersetzung durch ultraviolettes Licht oder auftreffende Kathodenstrahlen durch Abblendung sorgfältig geschützt.

Die Magnetspulen NS trugen je 400 Windungen von 1 mm starkem Emailledraht, der in drei Lagen auf zwei Buchsbaumrollen von 6 cm Durchmesser und 15 cm Länge aufgewickelt war. Das ganze Aggregat, Entladungsrohr und Spulen, wurde von einem durch seitliche Streben versteiften hölzernen Rahmen getragen; eine Reihe von Messingschrauben und Klammern diente zum bequemen Festspannen. Mittels zweier Holzzwingen wurde das Gestell auf einen Eichentisch geschraubt. Schläge mit einem schweren Schmiedehammer in 5 cm Entfernung von einem Bein des Experimentiertisches auf den Steinfußboden hatten keine merkliche Verschiebung des Phosphoreszenzfleckes zur Folge.

Bei der Erzeugung und Messung der beschleunigenden Potentiale wurde ein Teil der Anordnung des Hrn. Müller direkt übernommen. Beim Arbeiten mit dieser Apparatur wurde die gleiche Sorgfalt beobachtet, welche Hr. Müller angewandt hatte; besonders hinsichtlich der Isolation wurden die früher erprobten Vorsichtsmaßregeln getroffen. Ich hatte mich dabei wiederholt in dankenswerter Weise des sachkundigen Rates von Hrn. Müller selbst zu erfreuen. Die Eichung erfolgte im Interesse der Störungsfreiheit mit Hilfe der schalenförmigen Elektroden, für welche die Messungen des Hrn. Müller am genauesten sind. Die Funkenverzögerung wurde durch Röntgenstrahlen aufgehoben. Die Röntgenröhre, ein Fabrikat der Firma Gundelach, mit Wasserkühlung der Antikathode, wurde mit einem Induktor von 30 cm Funkenlänge und Wehneltunterbrecher betrieben. Die Messung des Elektrodenabstandes erfolgte mit einem Kathetometer Bambergscher Konstruktion. Der positive Pol aller Teile der Hochspannungsapparatur stand durch drei 2 cm breite Kupferbänder mit einem Blitzableiter in Verbindung. Die Metallstreifen waren in etwa 3 m Abstand vom Erdboden an den

Annalen der Physik. IV. Folge. 31.

Blitzableiter angelötet. Nur auf diese Weise war es möglich, die sonst bei Anlegung des Erdpoles an die Gas- oder Wasserleitung im ganzen Gebäude auftretenden Störungen (Funkensprühen aus den Gas- und Wasserhähnen) zu vermeiden.

Zum Regulieren des Magnetstromes diente ein fester 10 Ohm-Widerstand und ein mit diesem in Reihe geschalteter Schieberheostat von 2,5 Ohm. Zur Strommessung wurde ein Kompensationsapparat nach Raps benutzt. Das Normalelement des Apparates war mit einem von der Physikalisch-Technischen Reichsanstalt geprüften Normalelement verglichen worden. Das als Nullinstrument dienende Galvanometer besaß einen Widerstand von 1000 Ohm und eine Empfindlichkeit von 2,7.10⁻⁹ Amp. pro Millimeter Ausschlag.

Das Ablesemikroskop war mit einer an einer Trommel meßbaren Fadeneinstellung versehen; es wurde von einem $1^{1}/_{4}$ m hohen Fernrohrstativ getragen.

Die Einzelheiten des Entladungsrohres, besonders die Dimensionen der verschiedenen Teile sind aus Fig. 2 zu ersehen.

b) Die Messungen und ihre Resultate.

Die angewandte Meßmethode war eine relative. Die absolute Größe der Ablenkungen wurde nicht bestimmt, dagegen bei variabler Potentialdifferenz der Elektroden durch passende Regulierung des Magnetstromes konstant gehalten und diese Konstanz mit dem Mikroskop geprüft. Hiernach ergab sich der Gang einer Versuchsreihe ungefähr wie folgt: Zwischen Kathode und Diaphragmenplatte A wurde eine bestimmte Potentialdifferenz eingestellt und gleichzeitig der Magnetstrom J auf eine bestimmte Stärke reguliert; dann wurde das Schattenbild des Drahtkreuzes mit dem Faden im Mikroskop zur Deckung gebracht und Strom und Spannung abgelesen. Hierauf wurde bei unveränderter Lage des Mikroskops und Entladungsrohres ein neuer Spannungswert eingestellt, der Magnetstrom entsprechend verändert und im Moment der Koinzidenz von Mikroskopfaden und Schattenbild Spannung und Stromstärke wiederum abgelesen usw. Auf diese Weise erhielt man direkt die für die weitere Rechnung notwendigen Daten, d. h. eine Reihe von zusammengehörigen Werten von

P und *J* bzw. von *P* und \mathfrak{H} , welche der gleichen Ablenkung *a b* des Kathodenstrahlenbündels, also auch gleichem ρ entsprachen.

Die Genauigkeit der mikroskopischen Ablesung betrug etwa 0,015 mm, die gesamte Ablenkung ab etwa 15-30 mm. Der größte mögliche Fehler bei der Bestimmung des Potentials wird auf \pm 80 Volt veranschlagt. Der größte mögliche Fehler der Strommessungen beträgt \pm 0,5 Promille. Statische Ladungen im Innern des Rohres waren bei keiner zur Berechnung gelangenden Versuchsreihe zu konstatieren. Derartige Ladungen machen sich schon lange, bevor sie dem Auge durch die Glasfluoreszenz sichtbar werden, durch irreguläre, flackernde Ablenkungen des Phosphoreszenzfleckes im Mikroskop bemerkbar.

Zur Erläuterung der folgenden Tabellen sei noch erwähnt, daß die in der letzten Spalte aufgeführte Größe C(1) aus der Division der Gleichungen (II) durch den Magnetstrom J gefunden wurde. Setzt man nämlich das magnetische Feld $\mathfrak{H} = K.J$, worin K eine innerhalb einer Versuchsreihe konstante Größe bedeutet, so gehen die linken Seiten der Gleichungen (II) über in die Form $\frac{1}{e}\eta_0 K J \rho$, und durch Division mit J erhält man hieraus für diejenige Theorie, welche mit den Tatsachen im Einklang ist, für die Größe $C_{(\beta)} = \frac{1}{2} \eta_0 K \rho$ einen vollkommen konstanten Wert. Die dem Falle konstanter Masse entsprechenden Zahlen sind aus der Gleichung (24) ermittelt worden. Den Berechnungen von β aus (I) bzw. (24) ist der von Hrn. Classen gefundene Wert $\eta_0 = 1,77.10^7$ zugrunde gelegt; dieselbe Zahl erhalten auch Hr. Bucherer¹) und neuerdings Hr. Wolz²) bei ihren Mes-Die Wahl einer anderen Zahl beeinflußt nur die absungen. solute Größe von $C_{(a)}$, ohne ihren Gang wesentlich zu stören; die am Schlusse angegebene Tabelle X zeigt dies in deutlicher Statt. des Wertes $\eta_0 = 1,77.10^7$ wurde in diesem Weise. Falle $\eta_0 = 1,80.10^7$ gewählt.

¹⁾ A. H. Bucherer, Ann. d. Phys. 28. p. 585; 29. p. 1063. 1909.

²⁾ K. Wolz, Ann. d. Phys. 30. p. 273. 1909.

Tabelle I.

Spannung P in Volt	Spannung P in Volt Magnetstrom J in C.G.S. Konst. Masse β		Kugeltheorie β	Relativ- theorie β	Konst. Masse $C_{(\beta)}$	Kugeltheorie $C_{(eta)}$	Relativ-theorie $C_{(eta)}$
					3,73+	3,83+	3,85+
17430	0,06845	0,261835	0,256496	0,255000	0,0953	0,0202	0,0079
19310	07211	275594	269474	268013	918	209	80
2096 0	07518	287127	280 170	278569	892	205	83
23340	07943	302993	294901	292979	846	197	81
24710	08178	311750	302985	300872	821	193	79
26520	08480	322969	313214	310936	785	178	79
29560	08966	340983	329492	326874	730	170	78
30450	09104	346075	334058	331384	714	159	81
32540	09420	357758	344549	341547	679	154	81
36130	09943	376973	361601	358128	613	147	78
38160	10229	387427	370799	367029	575	139	75
40000	10482	396655	378830	374841	542	130	75
42130	10768	407073	387910	383594	503	125	76
44170	11035	416810	396247	391701	472	124	80
46010	11274	425400	403569	398797	433	111	75
47930	11517	434200	411062	405978	401	108	75
49920	11768	443120	418612	413246	355	090	6 5
51980	12018	452170	42513 5	420 586	325	084	75
53500	12198	458722	431610	425797	306	088	81
55460	12433	467056	438575	432425	265	081	75
57760	12702	476650	446411	440022	226	076	78
59800	12935	484989	453211	446492	194	073	79
62320	13222	495111	461439	454319	145	048	74
66410	13676	511078	474228	466536	071	042	70
			Tabell	e II.			
		ſ	1		2,09+	2,14 +	2,15+
19440	0,12983	0,276520	0,270343	0,268883	0,0398	0,0062	0,0002
20320	13278	282707	276035	274516	391	57	01
22250	13908	295836	288267	286492	371	63	01
23830	14402	306153	297851	295813	358	59	03.
25510	14914	316764	307551	305341	340	51	01
26340	15160	321877	312218	309978	332	49	06
27300	15436	327686	317528	315082	329	55	09
28690	15836	335931	324937	322394	313	48	07
30700	16402	347500	335338	332606	286	35	03
31600	16643	352550	339944	337008	283	40	08

Spannung P in Volt	Magnetstrom J in C.G.S.	Konst. Masse eta	Kugeltheorie eta	Relativ- theorie β	Konst. Masse $c_{(eta)}$	Kugeltheorie $\mathcal{C}_{(eta)}$	Relativ-theorie $C_{(eta)}$
					2,09+	2,14+	2,15+
32100	0,16782	0,355325	0,342395	0,339452	0,0277	0,0034	0,0004
34370	17383	367682	353374	350172	254	34	06
35490	17673	373618	358645	355235	-241	33	04
37400	18158	383545	367376	363723	223	29	04
38600	18461	389645	372719	368943	206	23	02
40740	18980	400300	382005	377937	190	24	07
42220	19337	407510	388292	383954	174	22	04
44470	19865	418227	397458	392858	153	19	06
45590	20128	423470	401922	397177	139	13	02
48500	20787	436770	413225	408097	111	09	05
51600	21473	450520	424759	419253	080	02	06
53240	21825	457611	430686	424906	068	02	08
			Tabell	e III.			
				0.00-0.00	2,28+	2,35+	2,36 +
31690	0,15143	0,353054	0,340387	0,337448	0,0515	0,0098	0,0074
34270	15770	367150	352904	349708	482	92	76
39830	17042	395809	378088	374130	426	85	78
43400	17822	413170	893140	388682	883	76	70
47100	18599	430420	407844	402892	342	68	69
50890	19369	447400	422188	416714	299	57	69
53900	19960	460433	433031	427168	268	52	70
57330	20619	474867	444959	438603	231	48	70
60220	21161	486689	454591	447824	199	41	69
62930	21659	497522	463371	456182	171	34	70
66300	22267	510667	473893	466213	134	28	69
68880	22723	520512	481693	473628	106	27	68
72000	23264	532175	490850	482328	075	18	69
74080	23623	539800	496779	487973	051	11	67
			Tabell	e IV.			
	1			· ·	2,53+	2,61+	2,63+
32310	0,13747	0,356492	0,343423	0,340462	0,0632	0,0153	0,0040
33180	13936	361258	347683	344566	623	156	42
35870	14506	375618	360418	356953	594	157	43
37630	14873	384725	368422	364724	567	146	37

Tabelle II (Fortsetzung).

E. Hupka.

Tabelle IV (Fortsetzung).

Spannung P in Volt	Magnetstrom J in C.G.S.	Konst. Masse β	Kugeltheorie eta	Relativ- theorie β	Konst. Masse $c_{(eta)}$	Kugeltheorie $C_{(eta)}$	Relativ- theorie $C_{(eta)}$
39020	0 15152	0 391764	0 374552	0 370741	2,53 + 0.0555	2,61 + 0.0147	2,63+ 0.0046
42240	15791	407609	388377	384035	512	138	47
44860	16289	420060	399032	394362	488	140	47
47530	16790	432370	409530	404491	452	132	44
50670	17364	446440	421391	415928	411	120	41
54110	17972	461340	433778	427888	370	110	42
57450	18546	475367	445365	438999	332	109	45
60520	19066	487900	455577	448776	290	096	39
64720	19752	504544	469043	461584	244	088	44
67240	20 154	514267	476756	468968	217	090	46
69830	20565	524087	484489	476304	184	082	42
72150	20925	545125	491277	482735	158	075	42
75860	21491	546250	501782	492694	117	070	47
78320	21866	555037	508527	499108	084	060	41
I			Tabel	le V.	I	1	
		1			2.36-	243+	2 45 +
33430	0.15020	0.362617	0.348908	0.345745	0.0542	0.0157	0.0037
35940	15592	375983	360737	357270	514	152	33
38510	16160	389200	372326	368551	484	148	34
40550	16598	399373	381198	377142	461	141	34
42980	17110	411160	391445	386999	431	134	30
45950	17715	425130	403333	398565	398	129	32
49510	18419	441300	417056	411780	358	122	33
51680	18841	450860	425049	419539	330	110	31
55650	19585	467856	439250	433052	288	110	32
57600	19946	475978	445871	439495	263	102	30
60200	20414	486611	454525	447761	237	098	30
63420	20980	499444	464924	457679	206	094	36
66300	21481	510667	473893	466213	173	090	37
68780	21905	520125	481398	473346	145	087	33
69840	22083	524122	484519	476332	134	084	33
73400	22677	537312	494840	486127	094	072	32
75440	23009	544725	500631	491598	074	072	36
77620	23365	552550	506608	497283	048	065	33
79190	23617	558100	510882	501323	031	064	34

Spannung P in Volt	Magnetstrom J in C.G.S.	Konst. Masse eta	Kugeltheorie eta	Relativ- theorie β	Konst. Masse $c_{(eta)}$	Kugeltheorie $C_{(eta)}$	Relativ- theorie $C_{(eta)}$
34270	0,14404	0,367150	0,352904	0,349708	2,49+ 0,0590	2,57 + 0,0130	2,59 + 0,0022
36930	14966	381127	365239	361679	562	131	22
39900	15576	396164	378394	374423	534	127	25
43710	16335	414640	394391	389924	4 84	116	22
44780	16540	419680	398709	394053	474	118	23
50300	17579	444800	420051	414605	403	102	20
54480	18332	462911	435093	429157	352	088	20
57920	18932	477300	446951	440530	311	085	20
61270	19502	490911	458041	451112	272	075	20
64130	19975	502237	467174	459847	2 43	072	25
67530	20534	515387	477639	469818	199	066	20
69610	20862	523262	483842	475685	182	067	24
71600	21176	530687	489700	481243	161	062	26
74160	21581	540100	497007	488190	126	050	21
76620	21957	548975	503866	494675	102	050	25
77280	2206(0)	551325	505676	496396	092	046	23

Tabelle VL

Tabelle VII.

						I.	1
					2,51+	2,60+	2,62 +
34690	0,14334	0,369383	0,354880	0,351618	0,0670	0,0116	0,0004
37480	14919	383956	367740	364071	636	111	02
40960	15624	401382	382940	378858	591	099	02
45200	16442	421650	400392	395673	545	099	05
48850	17120	438340	414552	409398	504	093	11
53490	17957	458690	431574	425763	444	075	05
58160	18765	478289	447762	441291	388	071	06
60920	19231	489511	456891	450043	354	060	05
64120	19759	502200	467308	459817	317	063	06
65770	20024	508612	472278	464660	301	053	08
68700	20498	519825	481163	473121	260	045	00
71010	20859	528437	487963	479628	234	040	04
7350 0	21248	537675	495125	486399	205	030	01
75080	21488	543425	499629	490660	189	030	06
77500	21857	552112	506278	496970	160	025	04
78840	22053	556862	509953	500446	151	031	11
79 92 0	22219	560675	512816	503152	134	022	05

E. Hupka.

Tabelle VII (Fortsetzung).

Spannung P in Volt	Magnetstrom J in C.G.S. Konst. Mass		Kugeltheorie β	Relativ- theorie β	Konst. Masse $C_{(eta)}$	Kugeltheorie $\mathcal{C}_{(eta)}$	Relativ- theorie $C_{(\beta)}$			
					2,51+	2,60+	2,62+			
81550	0,22460	0,566357	0,517134	0,507236	0,0116	0,0020	0,0006			
82780	22642	570612	520378	5103 0 5	101	018	07			
84800	22934	577537	525536	515162	082	017	10			
87170	23286	585543	531531	520826	046	004	02			
88400	23457	589671	534559	523662	038	005	06			
Tabelle VIII.										
					1,89+	1,94+	1,95+			
35540	0,19415	0,373883	0,358880	0,355461	0,0357	0,0125	0,0078			
37880	20070	386000	369559	365811	333	117	83			
4020 0	20687	397636	379703	375678	322	122	96			
42230	21244	407560	388335	383994	285	101	77			
44500	21831	418370	397579	392980	264	097	77			
47860	22665	433880	410797	405718	243	102	86			
50370	23271	445110	420304	414855	227	105	93			
52550	23794	454644	428200	422540	207	097	93			
54430	24257	462700	434915	428985	175	079	78			
56450	24720	471200	441988	435696	162	084	83			
58700	25231	480511	449585	443004	144	084	85			
60160	25563	486444	454394	447634	129	077	83			
61650	25897	492433	459290	452272	115	073	82			
65000	26630	505637	469931	462403	088	069	85			
66880	2703(0)	512900	475660	467913	075	072	88			
67850	27252	516611	478614	470727	057	062	79			
70020	27703	524800	485048	476839	042	063	83			
			Tabell	e IX.						
					2,84+	2,93 +	2,95+			
45330	0,14608	0,422250	0,400902	0,396174	0,0505	0,0119	0,0045			
48300	15096	435860	412466	407353	473	118	51			
51320	15578	449280	423745	+418252	441	118	61			
53670	15949	459460	432214	426380	409	109	59			
55800	16279	468489	439783	433548	379	109	65			
58200	16647	478456	447897	441418	341	099	53			
60630	17015	488333	455938	449128	301	081	45			

Spannung P in Volt	Magnetstrom J in C.G.S.	Konst. Masse eta	Kugeltheorie eta	Relativ- theorie eta	Konst. Masse $C_{(eta)}$	$\mathbf{Kugeltheorie}_{C_{l, \boldsymbol{\beta}}}$	Relativ- $theorie ~C_{(eta)}$			
					2,84+	2,93 +	2,95+			
62740	0,17321	0,496767	0,462769	0,455602	0,0280	0,0082	0,0051			
65250	17680	506600	470694	463136	253	085	59			
67100	17955	513738	476477	468558	212	076	41			
69430	18278	522578	483312	475178	190	069	51			
71650	18590	530878	489847	481379	157	056	4 6			
72940	18765	5356 2 5	493529	484879	144	055	50			
75700	19135	545678	501344	492276	117	057	59			
77430	19372	551863	506087	496787	088	049	53			
Tabelle X.										
			1		3,76+	3,86+	3,89+			
17430	0,06845	0,264047	0,258598	0,257166	0,0975	0,0233	0,0010			
19310	07211	277920	271618	270193	941	235	16			
20960	07518	289547	282401	280788	914	235	15			
23340	07943	305550	297283	295268	868	231	10			
24710	08178	314386	305378	303214	843	220	10			
26520	08480	325693	315703	313326	807	212	09			
29560	08966	343858	332067	329451	751	197	17			
30450	09104	348992	336700	333905	735	189	12			
32540	09420	360775	347251	344149	699	190	17			
3613 0	09943	380155	364385	360863	633	179	15			
38160	10229	390700	373623	369845	595	169	16			
40000	10482	400000	381745	377681	561	165	15			
42130	10768	410509	390898	386456	522	163	14			
44170	11035	420330	399266	394588	491	161	18			
46010	11274	428990	406626	401740	452	146	15			
47930	11517	437867	414144	409002	419	142	17			
49920	11768	446860	421738	416274	373	125	07			
51980	12018	455989	42932 6	423606	342	121	14			
53500	12198	462590	434832	428902	324	127	25			

Tabelle IX (Fortsetzung).

E. Hupka.

Tabelle X (Fortsetzung).

Spannung P in Volt	Magnetstrom J in C.G.S.	Konst. Masse eta	Kugeltheorie β	Relativ- theorie β	Konst. Masse $C_{(eta)}$	Kugeltheorie $C_{(eta)}$	Relativ- theorie $C_{(g)}$
					3,76+	3,86+	3,99+
55460	0,12433	0,471000	0,441819	0,435529	0,0283	0,0120	0,0017
57760	12702	480678	449715	443128	242	118	18
59800	12935	489078	456543	449707	210	110	25
62320	13222	499289	464786	457546	162	094	18
66410	13676	515400	477657	469836	086	086	18

Die Versuche sprechen, wie man sieht, zugunsten der Relativtheorie. Während nämlich der nach der Relativtheorie berechnete Wert von $C_{(g)}$ mit sehr geringer Abweichung um einen konstanten Mittelwert schwankt, zeigt die entsprechende nach der Kugeltheorie berechnete Größe $C_{(e)}$ eine mit wachsender Spannung P nahezu gleichmäßige Abnahme. Dieselbe beträgt bei den einzelnen Reihen etwa 6 bis 28 mal soviel wie die mittlere Schwankung von $C_{(g)}$ in der Relativtheorie um einen Mittelwert. Entsprechend einer weiter oben aus theoretischen Überlegungen gezogenen Folgerung sind die nach der Kugeltheorie berechneten Werte von β sämtlich größer als die ihnen äquivalenten Zahlen in der Relativtheorie. Ganz extreme Abweichungen erhält man unter der Annahme konstanter Masse. Hier würden die Strahlen schon bei einem Entladungspotential von ca. 250000 Volt die volle Lichtgeschwindigkeit erreichen. Die Größe $C_{(s)}$, welche der magnetischen Ablenkbarkeit umgekehrt proportional ist, fällt ebenso, wie es die Theorie fordert. in der Kugeltheorie stets kleiner aus als in der Relativtheorie.

Eine graphische Darstellung der Versuche (Tab. I-IX) findet sich in den Kurven der Fig. 3-11. Die der Annahme konstanter Masse entsprechenden Kurven sind in den Figuren aus Platzmangel fortgelassen; sie würden ebenfalls einen nahezu geradlinigen Verlauf zeigen und mit der Horizontalen einen Winkel von etwa 70° bilden. Extrapoliert man die Versuchsreihen graphisch durch Verlängerung der Kurven im Sinne abnehmender Spannungen, so wird man auf gemeinsame Schnittpunkte geführt, die in der Nähe des Nullpotentials liegen.

Die hier erzielten Geschwindigkeiten, 0,5 c und darüber, sind die größten, welche man bisher durch Beschleunigung mittels elektrostatischer Felder erzielt hat. Der Erzeugung wesentlich größerer Beschleunigungen durch Anwendung höherer Spannungen stellen sich erhebliche Schwierigkeiten experimenteller Natur entgegen. Entsprechend der dadurch gegebenen Begrenzung des Geschwindigkeitsintervalls mußten an die Genauigkeit der Potentialmessungen sehr hohe Anforderungen gestellt werden. Die Annahme eines Fehlers von etwa 800 Volt in Verbindung mit einem bestimmten Fehlergesetz ermöglicht eine Deutung der Versuchsresultate im Sinne der Kugeltheorie. Von wesentlicher Bedeutung ist daher eine Diskussion der Genauigkeit der Messungen des Hrn. Müller. Es kommt dabei nicht so sehr auf die Richtigkeit der Absolutbeträge der Funkenpotentiale an, als vielmehr auf die relative Beziehung der Einzelwerte zueinander, da die Multiplikation der Absolutwerte mit einem der Zahl 1 nahe kommenden Faktor nur von geringem Einfluß auf das Resultat der oben mitgeteilten Messungen ist. Eine Unterlage für eine derartige Prüfung bietet eine von Hrn. Müller (Diss. Berlin 1908, S. 70) angegebene Tabelle. Hr. Müller stellt darin die Zahlen zusammen, welche er für die Funkenspannung bei 40 mm Schlagweite zwischen nahezu ebenen Flächen durch Vergleich mit den Funkenpotentialen bei 10, 20 und 30 mm erhielt. Der bequemeren Übersicht wegen möge diese Zusammenstellung hier nochmals Platz finden:

								103 200	Volt
10	$\mathbf{m}\mathbf{m}$	ergab	für	die	Schlagweite	4 0	mm: <	103800	,,
								104100	,,
20	,,	"	"	,,	,,	4 0	"	103 800	,,
30	"	"	"	,,	,,	4 0	"	104100	,,

Die durchschnittliche Abweichung dieser Einzelwerte vom Mittel 103800 Volt beträgt danach 240 Volt, also ca. 1/4 Proz. Die Bestimmung der einzelnen Zahlen erfolgte an verschiedenen Tagen; im Gegensatz dazu erstreckten sich die hier vorgenommenen Eichungen nur auf wenige Stunden. Die im folgenden mitgeteilte Eichtabelle und ihre graphische Dar-

 ა	Vor den Ab	lenkungen	Nach o	den Ablenk	ungen	5.0
Reihenfolg	Skalenteile der Bifilarwage	Schlagweite in mm	Skalenteile der Bifilarwage	Schlagweite in mm; gemessen	Schlagweite in mm; durch Interpolation gefunden	Abweichun in Volt
1.	6.83	5.61	7,79	6.00	6.00	0
2.	17,25	9,67	12,34	7,76	7,75	+ 28
3.	26,38	12,94	21,77	11,29	11,30	-27
4.	36,04	16,21	34,19	15,59	15,60	- 24
5.	48,29	20,24	49,50	20,62	20,60	+ 48
6.	59,32	23,76	66,03	25,92	25,90	+ 50
7.	68,87	26,83	79,61	30,24	30,25	- 23
8.	77,41	29,55	85,08	31,99	32,01	- 46
9.	86,21	32,36	94,65	35,03	35,08	-115
10.	95,29	35,28				
					1	

Eichtabelle.¹)

1) Jeder der in obenstehender Tabelle aufgeführten Einzelwerte ist das Mittel aus zehn aufeinander folgenden Beobachtungen. stellung in Fig. 12 und 13 stellt den typischen Fall der vor und nach einer Versuchsreihe erhaltenen Eichungen dar. Die letzte Kolonne der Tabelle zeigt die Abweichungen der am Schluß einer Beobachtungsreihe ermittelten Eichpunkte gegen die den gleichen Skalenteilen der Biblarwage entsprechenden

Zahlen, welche auf Grund der am Anfang aufgenommenen Eichkurve durch Interpolation gefunden wurden. Fig. 13 stellt das Gebiet maximaler Abweichung in 5 fach vergrößertem Maßstabe dar. Auch bei den übrigen hier mitgeteilten Versuchsreihen ergaben sich die vor und nach den Ablenkungsmessungen aufgenommenen Eichungen in gleich guter Übereinstimmung. Berücksichtigt man die geringe Größe dieser Abweichungen, so muß man annehmen, daß die bei der Bestimmung des Entladungspotentials vorkommenden Fehler sich im wesentlichen auf die Fehler der Müllerschen Potentialmessungen reduzieren. Es ist aber nach der oben mitgeteilten

Tabelle, sowie nach den übrigen Angaben des Hrn. Müller nicht anzunehmen, daß diese Fehler 1/4 Proz. übersteigen. Die Deutung der Ablenkungsversuche zugunsten der Kugeltheorie würde aber einen Fehler von ca. 1 Proz. erfordern.

Von Bedeutung ist, worauf mich Hr. Einstein freundlichst aufmerksam gemacht hat, eine Abschätzung des Fehlers, welcher dadurch entsteht, daß die Strahlen schon während

Annalen der Physik. IV. Folge. 31.

ihrer Beschleunigung infolge der Streuung des magnetischen Kraftfeldes in dem zwischen A und K gelegenen Teile des Entladungsrohres eine gewisse Ablenkung erfahren. Die aus den Messungen gezogenen Schlüsse werden durch die absolute Größe dieser Ablenkung nicht beeinflußt, sondern nur durch ihre Änderung während einer Versuchsreihe. Das von den Spulen herrührende magnetische Feld besaß, wie eine Untersuchung mit dem ballistischen Galvanometer zeigte, an der Stelle des ersten Diaphragmas A, d. h. am Ende des beschleunigten Teiles der Strahlenbahn, eine Stärke von ca. 3,2 Proz. des Wertes in der Achse der Spulen und nahm gegen die Kathodenplatte hin sehr rasch ab (schon in 5 mm Abstand von der Kathode war es bei einem Spulenstrom von 4,5 Amp. unmerklich klein): in der Mitte zwischen A und K betrug die Stärke des Feldes ca. 0.5 Proz. der Feldstärke in der Achse der Spulen. Setzt man voraus, daß dieses mittlere Feld mit konstanter Intensität innerhalb des ganzen beschleunigten Bereiches zwischen A und K wirkt, so ergibt sich unter der vereinfachenden Annahme, daß die Elektronen sich mit konstanter Masse bewegen, für die Strahlenbahn eine Zykloide. Der dieselbe erzeugende Kreis rollt auf einer zur Strahlenbahn senkrechten Geraden ab. Die Gleichung der Bahnkurve lautet, wenn die x-Achse in die Richtung des beschleunigenden elektrischen Feldes und die y-Achse senkrecht zum elektrischen und magnetischen Feld gelegt wird,

$$x = \frac{P'}{\eta_0 s \,\mathfrak{H}^{\prime 2}} \left(1 - \cos \frac{s \,\mathfrak{H}^\prime c \,\beta_x}{P'} \right),$$
$$y = \frac{P'}{\eta_0 s \,\mathfrak{H}^{\prime 2}} \left(\frac{s \,\mathfrak{H}^\prime c \,\beta_x}{P'} - \sin \frac{s \,\mathfrak{H}^\prime c \,\beta_x}{P'} \right).$$

Hierin bedeutet P' das die Gesamtbeschleunigung erzeugende Potential in C.G.S., η_0 die spezifische Ladung des Elektrons, s den Abstand der Platten K und A, \mathfrak{H}' das mittlere magnetische Feld zwischen K und A, und β_x das Verhältnis der Geschwindigkeit an der Stelle x, y zur Lichtgeschwindigkeit; alle Größen in elektromagnetischem Maße gemessen. Die Winkelabweichung der Strahlen gegen die x-Achse ist gegeben durch den Ausdruck:

$$\frac{1}{2}\frac{s\,\mathfrak{H}'\,c\,\beta_x}{P'}.$$

An der Stelle x = s ist $c\beta$ die durch das Entladungspotential gegebene Endgeschwindigkeit. Setzt man die Anfangs- und Endwerte von β innerhalb einer Versuchsreihe in die obige Formel ein, so erhält man die in beiden Fällen vorhandene Neigung der Strahlen gegen die x-Achse an der Stelle des Diaphragmas A. Man kann dann den Fehler abschätzen, den man dadurch begeht, daß man die Ablenkung der Strahlen während ihrer Beschleunigung nicht berücksichtigt. Für die in den Tabb. I und VII wiedergegebenen Versuchsreihen ist die angedeutete Rechnung durchgeführt worden. Sie ergibt eine Winkeländerung von 4 Sek. für Tab. I bei einer durchschnittlichen Neigung von ca. 3,3 Min. und von 7 Sek. für Tab. VII bei einer durchschnittlichen Neigung von ca. 5 Min. Die durch diese Winkeländerung hervorgerufene Verschiebung des Phosphoreszenzfleckes beträgt, wenn man eine diesem Winkel entsprechende Drehung des ganzen Kathodenstrahlenbündels um das Fadenkreuz als Achse annimmt, im ersten Falle 0,0033 mm, im zweiten 0,0056 mm. Die Verschiebung des Phosphoreszenzfleckes schwankt danach zwischen 0,17 und 0,28 Promille der Gesamtablenkung. Bei der Geringfügigkeit dieses durch die Ablenkung der Strahlen im beschleunigten Teile der Entladungsbahn verursachten Fehlers ist eine Beeinflussung der aus den Messungen gezogenen Schlüsse kaum zu erwarten.

C. Zusammenfassung, Schluß.

Durch die mitgeteilten Versuche wurde gezeigt, daß die Aufrechterhaltung hoher Spannungen bis 90000 Volt im hohen Vakuum ohne Eintreten selbständiger Entladung sehr wohl möglich ist, und daß man auf diese Weise zu sehr schnellen Kathodenstrahlen gelangt (q > 0,5 c). Die so erzielten Geschwindigkeiten stehen zwar noch erheblich hinter denen der schnellsten β -Strahlen zurück, dafür aber besitzen die durch elektrische Felder beschleunigten Elektronenstrahlen vor den β -Strahlen den Vorzug der Homogenität und eignen sich daher besonders für genaue Messungen.

Das wichtigste Resultat der beschriebenen Versuche ist jedoch ein Beitrag zur Entscheidung der miteinander im Wettstreit liegenden Theorien von Abraham und LorentzEinstein. Die mitgeteilten Messungen sprechen zugunsten der letzteren. Zu demselben Ergebnis ist bekanntlich auch Hr. Bucherer gelangt. Das bisher vorliegende Beobachtungsmaterial ist indessen noch nicht ausreichend, um die für die gesamte Physik und vielleicht nicht nur für diese so überaus wichtige Frage nach der Gültigkeit des Relativitätsprinzips definitiv zu beantworten. Es ist darum sehr zu wünschen, daß noch weitere Versuche in dieser Richtung angestellt werden unter möglichster Variation der Methode und, wenn angängig, unter Heranziehung möglichst verschiedener physikalischer Vorgänge.

Diese Untersuchung wurde im Physikalischen Institut der Universität Berlin auf Anregung und unter Leitung von Hrn. Geh. Reg.-Rat Prof. Dr. Rubens ausgeführt. Für eine große Reihe von Ratschlägen und für die stets rege Anteilnahme an dem Fortschreiten der Arbeit bin ich Hrn. Geheimrat Rubens zu tiefstem Danke verpflichtet. Dem gleichen Gefühle gegen die Herren Geheimrat Prof. Dr. Planck und Prof. Dr. Wehnelt möchte ich für viele das schließliche Gelingen fördernde Fingerzeige Ausdruck verleihen. Den Herren Dr. v. Baeyer und Dr. Regener schulde ich für manche mir bei den Versuchen zuteil gewordene Hilfe meinen aufrichtigen Dank. Zum Schlusse muß ich noch meines lieben Freundes, Hrn. stud. phil. Gehrts gedenken, der mich in der aufopferndsten Weise bei der Ablesung der Instrumente unterstützt hat.

Berlin, Physikalisches Institut der Universität.

(Eingegangen 3. November 1909.)