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Introduction

* Global storm-resolving models (GSRMs) are the next avenue of climate modelling.
* Due to the high resolution, parameterizations of convection and clouds are avoided.

e Standard-resolution models have substantial cloud biases over the Southern Ocean (SO), affecting
radiation and sea surface temperature.

* We evaluated SO clouds in a GSRM version of ICON and the ERA5 and MERRA-2 reanalyses.

* The SO is dominated by low clouds, which cannot be observed accurately from space due to
overlapping clouds, attenuation, and ground clutter.

* We analysed about 2400 days of lidar observations from 31 voyages and a station using a ground-
based lidar simulator.



Voyages and stations

* We analysed 31 voyages of RV Polarstern, RSV
Aurora Australis, RV Tangaroa, RV Nathaniel B.
Palmer, HMNZS Wellington, and a station in the
Southern Ocean south of 40°S between 2010 and
2021.

o A total of about 2400 days of observations were
included.

e Ceilometer Vaisala CL51 and CT25K operating at
910 nm and Lufft CHM 15k operating at 1064 nm
were used on the voyages.

e Radiosondes were launched and surface
meteorological quantities measured continuously
on multiple voyages.

» We subsetted the data by latitude into high- (55+°S)
and low-latitude SO (40-55°S), cyclnic activity
based on cyclone tracking, and stability using
lower tropospheric stability.
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Lidar simulator

* An instrument simulator is needed
for an unbiased comparison with a
model.

* We used the Automatic Lidar and
Ceilometer Framework (ALCF).

* ALCF is based on the instrument
simulator COSP.

* |t calculates simulated lidar
backscatter from the model fields of
cloud liquid and mixing ratio, cloud
fraction, temperature, and pressure.

* Cloud mask is determined based on
a threshold.

* Cloud occurrence by height is
determined from the cloud mask.

@ ALCF
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ICON

» We used Cycle 3 storm-resolving version of the Icosahedral Nonhydrostatic
Weather and Climate Model (ICON) in development by the NextGEMS project.

 The horizontal resolution is about 5 km.
* 4 years of coupled simulations in 2021-2024.

e Unlike current GCMs, it does not parametrise mass flux but resolves convection
explicitly.

e Turbulence is parametrised.
* Grid box cloud fraction is always either 0 or 100%.

e The model is free-running. Therefore, when comparing to observations, we take the same geographical
location and time relative to the start of the year.



Filtering precipitation
using machine learning

* Profiles with precipitation cannot be easily
distinguished from clouds in observations.

e They cannot be compared with the models,
which do not provide precipitation mixing
ratios.

e Instruments such as a rain gauge are not
reliable on ships.

e We train a convolutional artificial neural
network (ANN) to recognise precipitation in
lidar backscatter.

 Human-performed observations are used as a
training reference.

e The ANN achieves 65% sensitivity and 87%
specificity when the true positive rate (26%) is
made to match observations.

(a) ANN diagram

Input (16 x 24 x 1) —— Convolution 2D (64, 3 x 3) —— Maximum pooling 2D (2 x 2) — Convolution 2D (128, 3 x 3) —— Maximum pooling 2D (2 x 2) —‘

L—» Convolution 2D (256, 3 x 3) — Maximum pooling 2D (1 x 2) — Dropout (20%) — Flatten —— Dense (64) —— Dense (4) —— Output (4)

(b) Random example near-surface lidar backscatter samples of 5 min (horizontal axis) by 0-250 m (vertical axis)
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Cyclonic situations

Su bSEtting by CyClOniC (a) ERAS (20010‘2013) (b) ICON (20021-2024)
activity and stability
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e All data subsetted by cyclonic activity using
cyclone tracking and by stability using lower
tropospheric stability.
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Cloud occurrence by height

* We aggregated data from all voyages > . — OBS; CF 80% (72-89%); SW 147; LW 210
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Cloud occurrence by height - -

* Fog or near-surface clouds are strongly
lacking in the reanalyses.

* The models have a higher-altitude peak (at
about 500 m) than observations.

* The reanalyses exhibit the too few, too
bright bias previously identified in climate
models.

* Qutgoing top of atmosphere (TOA)
shortwave (SW) radiation in the reanalyses is
similar to or higher than in the satellite

* [CON underestimates both cloud fraction
and outgoing TOA SW radiation.

e Unstable sitations are especially problematic
for ICON, with a strongly overestimated peak
at 500 m.
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Thermodynamic profiles

* We analysed about 2300 radiosonde profiles south of
40°S from the 24 RV Polarstern voyages, MARCUS,
NBP1704, TAN1702, and TAN1802 campaigns.

 Spatially and temporally colocated profiles were taken
from ICON and the reanalyses.

o Virtual potential temperature well-represented, except
for ICON at 40-55°S, which is too cold at 5 km height.
Consequently, it is too unstable.

e Variance of virtual potential temperature is too small in
ICON.

*|CON is too humid in the first 1 km.
* MERRA-2 is too humid by up to 20%.
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eBiases are similar across the subsets.

*|CON is colder in potential temperature by upto 5 K
in the 40-55°S subset.

* [ICON too dry between 1 and 3 km in the 40-55°S and
unstable subsets.
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Daily total cloud fraction

e Calculated from the lidar cloud mask as the
daily total cloud fraction, irrespective of
height.

* Observations have the greatest
representation of high cloud cover (5-8
oktas), peaking at 7 oktas.

* ICON tends to be 1 okta clearer than the
observations, peaking at 6 oktas, and highly
underestimating days with 8 oktas.

* The reanalyses underestimate cloud cover by
about 2 oktas and strongly underestimate
days with 7 and 8 oktas.
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35 A

Daily total cloud fraction .
* The cyclonic subset has the highest cloud 315
cover, with 8 oktas occurring half the ;|
days. 0-
* This is not represented by ICON or the .
reanalyses at all. .
e High-latitude SO tends to have greater §
cloud cover, peaking at 8 oktas. > 20

e The largest biases are presentin ERA5 in

the unstable subset, in which ERA5 peaks 0

at 3 oktas, whereas the observations peak
at 7 oktas and show negligible cloud
cover below 5 oktas.
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Conclusions

* ICON and the reanalyses underestimate the total cloud fraction by about 10 and 20%, respectively. ICON
and ERAS5 overestimate the cloud occurrence peak at about 500 m, potentially explained by their lifting
condensation levels being too high.

* The reanalyses strongly underestimate near-surface clouds or fog.

 MERRA-2 tends to underestimate cloud occurrence at all heights.

* In daily cloud cover, ICON and the reanalyses tend to be about 1 and 2 oktas clearer, respectively.

e Compared to radiosondes, potential temperature is accurate in all, but ICON is too unstable over the low-
latitude SO and too humid in the boundary layer.

* SO cloud biases are a substantial issue in the GSRM but are an improvement over the lower-resolution
reanalyses.

 Explicitly resolved convection and cloud processes were not enough to address the model cloud biases.



