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Introduction

⦁ Global storm-resolving models (GSRMs) are the next avenue of climate modelling.

⦁ Due to the high resolution, parameterizations of convection and clouds are avoided.

⦁ Standard-resolution models have substantial cloud biases over the Southern Ocean (SO), affecting
   radiation and sea surface temperature. 

⦁ We evaluated SO clouds in a GSRM version of  ICON and the ERA5 and MERRA-2 reanalyses.

⦁ The SO is dominated by low clouds, which cannot be observed accurately from space due to    
   overlapping clouds, attenuation, and ground clutter.

⦁ We analysed about 2400 days of lidar observations from 31 voyages and a station using a ground-
   based lidar simulator.



Voyages and stations
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A total of about 2400 days of observations were 
included.

⦁

We analysed 31 voyages of RV Polarstern, RSV 
Aurora Australis, RV Tangaroa, RV Nathaniel B. 
Palmer, HMNZS Wellington, and a station in the 
Southern Ocean south of 40°S between 2010 and 
2021.

⦁

Ceilometer Vaisala CL51 and CT25K operating at 
910 nm and Lu� CHM 15k operating at 1064 nm 
were used on the voyages.

⦁

Radiosondes were launched and surface 
meteorological quantities measured continuously 
on multiple voyages.

⦁

We subsetted the data by latitude into high- (55+°S) 
and low-latitude SO (40–55°S), cyclnic activity 
based on cyclone tracking, and  stability using 
lower tropospheric stability.

⦁



Lidar simulator

PS81/3 observed CL51

PS81/3 ERA5 simulated CL51

An instrument simulator is needed 
for an unbiased comparison with a 
model.

⦁

We used the Automatic Lidar and 
Ceilometer Framework (ALCF).
⦁

ALCF is based on the instrument 
simulator COSP.

⦁

It calculates simulated lidar 
backscatter from the model fields of 
cloud liquid and mixing ratio, cloud 
fraction, temperature, and pressure.

⦁

Cloud mask is determined based on 
a threshold.

⦁

Cloud occurrence by height is 
determined from the cloud mask.
⦁



ICON

⦁ We used Cycle 3 storm-resolving version of the Icosahedral Nonhydrostatic
   Weather and Climate Model (ICON) in development by the NextGEMS project.

⦁ The horizontal resolution is about 5 km.

⦁ 4 years of coupled simulations in 2021–2024.

⦁ Unlike current GCMs, it does not parametrise mass flux but resolves convection
   explicitly.

⦁ Turbulence is parametrised.

⦁ Grid box cloud fraction is always either 0 or 100%.

⦁ The model is free-running. Therefore, when comparing to observations, we take the same geographical 
   location and time relative to the start of the year.



Filtering precipitation 
using machine learning

Convolution 2D (64, 3 × 3) Maximum pooling 2D (2 × 2) Convolution 2D (128, 3 × 3) Maximum pooling 2D (2 × 2)Input (16 × 24 × 1)

Convolution 2D (256, 3 × 3) Maximum pooling 2D (1 × 2) Dropout (20%) Dense (64) Dense (4)Flatten Output (4)

(a) ANN diagram

(b) Random example near-surface lidar backscatter samples of 5 min (horizontal axis) by 0‒250 m (vertical axis)

(c) Receiver operating characteristic (d) Measured and predicted precipitation time series
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precipitation dry

Profiles with precipitation cannot be easily 
distinguished from clouds in observations.

⦁

They cannot be compared with the models, 
which do not provide precipitation mixing 
ratios.

⦁

Instruments such as a rain gauge are not 
reliable on ships.

⦁

We train a convolutional artificial neural 
network (ANN) to recognise precipitation in 
lidar backscatter.

⦁

Human-performed observations are  used as a 
training reference.
⦁

The ANN achieves 65% sensitivity and 87% 
specificity when the true positive rate (26%) is 
made to match observations.

⦁



All data subsetted by cyclonic activity using 
cyclone tracking and by stability using lower 
tropospheric stability.

⦁

Cyclonic situations

(a) ERA5 (2010–2013) (b) ICON (2021–2024)
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(c) ERA5 (2010–2013) (d) ICON (2021–2024)
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Subsetting by cyclonic
activity and stability

The cyclonic and non-cyclonic subsets and  the 
stable and unstable subsets are mutually 
exclusive.

⦁



Cloud occurrence by height
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We aggregated data from all voyages 
and stations, each weighted equally.
⦁

The total cloud fraction is 
underestimated in ICON and the 
reanalyses by about 10% and 20%, 

⦁

ICON overestimates cloud occurrence 
below 1 km and underestimates it 
above.

⦁

MERRA-2 underestimates cloud 
occurrence at all heights.
⦁

ERA5 simulates cloud occurrence 
relatively well above 1 km but 
strongly underestimates it near the 
surface.

⦁
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Cloud occurrence by height

Fog or near-surface clouds are strongly 
lacking in the reanalyses.
⦁

The models have a higher-altitude peak (at 
about 500 m) than observations.
⦁

The reanalyses exhibit the too few, too 
bright bias previously identified in climate 
models.

⦁

Outgoing top of atmosphere (TOA) 
shortwave (SW) radiation in the reanalyses is 
similar to or higher than in the satellite 

⦁

ICON underestimates both cloud fraction 
and outgoing TOA SW radiation.
⦁

Unstable sitations are especially problematic 
for ICON, with a strongly overestimated peak 
at 500 m.

⦁
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2291 profiles

Thermodynamic profiles

We analysed about 2300 radiosonde profiles south of 
40°S from the 24 RV Polarstern voyages, MARCUS, 
NBP1704, TAN1702, and TAN1802 campaigns.

⦁

Spatially and temporally colocated profiles were taken 
from ICON and the reanalyses.
⦁

Virtual potential temperature well-represented, except 
for ICON at 40–55°S, which is too cold at 5 km height. 
Consequently, it is too unstable.

⦁

Variance of virtual potential temperature is too small in 
ICON.
⦁

ICON is too humid in the first 1 km.⦁

MERRA-2 is too humid by up to 20%.⦁
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(e) Non-cyclonic
RFO = 80%
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(f) Stable
RFO = 60%

1336 profiles
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Thermodynamic profiles

ICON is colder in potential temperature by up to 5 K 
in the 40–55°S subset.
⦁

Biases are similar across the subsets.⦁

ICON too dry between 1 and 3 km in the 40–55°S and 
unstable subsets.
⦁



Daily total cloud fraction

Daily total cloud fraction (okta)
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(a) AllCalculated from the lidar cloud mask as the 
daily total cloud fraction, irrespective of 
height.

⦁

Observations have the greatest 
representation of high cloud cover (5–8 
oktas), peaking at 7 oktas.

⦁

ICON tends to be 1 okta clearer than the 
observations, peaking at 6 oktas, and highly 
underestimating days with 8 oktas.

⦁

The reanalyses underestimate cloud cover by 
about 2 oktas and strongly underestimate 
days with 7 and 8 oktas.

⦁
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(b) 40–55°S
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(c) 55+°S
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(e) Non-cyclonic
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(d) Cyclonic
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(g) Unstable
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(f) Stable

Daily total cloud fraction

The cyclonic subset has the highest cloud 
cover, with 8 oktas occurring half the 
days.

⦁

This is not represented by ICON or the 
reanalyses at all.
⦁

High-latitude SO tends to have greater 
cloud cover, peaking at 8 oktas.
⦁

The largest biases are present in ERA5 in 
the unstable subset, in which ERA5 peaks 
at 3 oktas, whereas the observations peak 
at 7 oktas and show negligible cloud 
cover below 5 oktas.

⦁



Conclusions

⦁ ICON and the reanalyses underestimate the total cloud fraction by about 10 and 20%, respectively. ICON 
   and ERA5 overestimate the cloud occurrence peak at about 500 m, potentially explained by their li�ing 
   condensation levels being too high.

⦁ The reanalyses strongly underestimate near-surface clouds or fog.

⦁ MERRA-2 tends to underestimate cloud occurrence at all heights.

⦁ In daily cloud cover, ICON and the reanalyses tend to be about 1 and 2 oktas clearer, respectively.

⦁ Compared to radiosondes, potential temperature is accurate in all, but ICON is too unstable over the low-
   latitude SO and too humid in the boundary layer.

⦁ SO cloud biases are a substantial issue in the GSRM but are an improvement over the lower-resolution 
   reanalyses.

⦁ Explicitly resolved convection and cloud processes were not enough to address the model cloud biases.


