
Scalable and Flexible IoT data analytics: when
Machine Learning meets SDN and Virtualization

Jordi Serra, Luis Sanabria-Russo, David Pubill and Christos Verikoukis, Senior Member, IEEE
Telecommunications Technological Center of Catalonia (CTTC), 08860 Castelldefels, Spain

E-mails: {jserra,lsanabria,dpubill,cveri}@cttc.es

Abstract—This paper deals with Internet of Things (IoT) data
analytics in a collaborative platform where computing resources
are available both at the network edge and at the backend
cloud. Thereby, the requirements of both low-latency and delay-
tolerant IoT applications can be met. Moreover, this platform
faces the challenging heterogeneous features of IoT data, i.e. its
high dimensionality or its geo-distributed and streaming data
nature. The proposed approach relies on two pillars. On the
one hand, recent advances of machine learning (ML) techniques
are leveraged to describe how the IoT data analytics can be
performed in our platform. On the other hand, the virtualization,
centralized management, global view and programmability of
the computing and network resources is considered to fulfill
the requirements of the ML methods. Unlike the related work,
herein the interplay and synergies between those two pillars is
explained. Also the ML methods for this collaborative platform
are described in more detail.

Index Terms—IoT, SDN, Large-Scale Machine Learning, online
learning, MANO, NFV, Edge-Cloud computing.

I. INTRODUCTION

IoT is a technological revolution, as it will connect to
the Internet a huge amount of heterogeneous devices that
are equipped with computing, communications, sensing and
actuating capabilities, see e.g. [1]. Thereby, IoT will provoke
a data deluge and it will be one of the main contributors to the
Big Data paradigm. Groundbreaking applications are expected
by connecting the IoT devices globally to the Internet, though
to obtain economic benefits the huge amount of generated data
must be analyzed. Thus, IoT applications must be equipped
with a brain that permits to infer, learn and extract information
from the IoT data [2]. This capacity is provided by ML tools.

The conventional approach, for IoT data analytics, has been
to send all the data to the cloud, where ML tools are applied
to extract valuable information for the end-user applications.
The rationale is that third-party companies provide ubiquitous
access to a large pool of computing and storage resources.
Thereby, at the cloud, the ML tools have access to all the
IoT devices’ measurements, which leads to obtain deeper
insights about the problem than performing local analytics
at computing nodes that are close to the IoT devices. E.g.
one can take time-variable measurements throughout the smart
energy grid and send them to the cloud to detect anomalies in
any part of the network, thanks to the global view about the
problem. However, this cloud-based data analytics has several
potential drawbacks. First, the high-dimensionality of the IoT
data can impair the ML algorithms, as the computational
burden to implement them can be high [3], which leads

to performance loss of ML methods. Also, the third-party
company can charge a high economic cost for the use of
its computational and storage resources. Second, the network
between the IoT devices and the cloud may support a large
traffic load, as IoT will generate a huge amount of data.
In that case, the network offers a poor service and leads
to a performance loss of the ML algorithms. These issues
are exacerbated in IoT applications requiring low latency,
such as in predictive fault diagnosis in Industry 4.0 [4], self-
driving vehicles [5] or anomaly detection in smart energy grids
[6]. The communication and computational delays incurred
by the cloud-based ML methods may severely impact the
performance of those applications. In order to circumvent the
drawbacks of the cloud-based approach, several works have
proposed to perform the data analytics at the network edge,
see [1], [7], [8]. This approach is so-called edge-computing
(EC), as the pool of resources is closer to the data sources, i.e.
the IoT devices, which permits to reduce the communication
latency and to alleviate the traffic network load. Moreover,
the data dimensionality at each EC node is smaller than in the
cloud as the analytics are performed on the available local data,
which reduces the computational burden of the ML methods.
The price to pay is that the ML algorithms are suboptimal
compared to their counterparts in the cloud, as the latter have
a global view of the data set and the former a local view.

The previous paragraphs highlight the pros and cons to carry
out the IoT data analytics at the cloud or at the network edge.
Thereby, herein to obtain the advantages of those two options,
a collaborative edge-cloud IoT data analytics architecture is
proposed. Namely, the proposed solution relies on application
virtualization [9] to deploy the ML service in a flexible manner
at virtual computing resources available at the network edge
or at the cloud, which are managed by the Management and
Orchestration (MANO) and the Virtual Infrastructure Manager
(VIM) controllers. Moreover, to meet the Quality of Service
(QoS) requirements of the IoT application and deal with the
dynamic network state, the proposed architecture will rely on
the use of a Software Defined Network (SDN) framework.

The rest of the paper is organized as follows. In section
II the related work and contributions are described. Section
III presents the collaborative edge-cloud platform and relevant
scenarios for IoT data analytics. In section IV, ML methods,
the SDN controller and the MANO are presented as the key
tools to face the scenarios of section III. Finally, section V
concludes the paper.



II. RELATED WORK AND CONTRIBUTIONS

Several works have considered a collaborative edge-cloud
network architecture for IoT data analytics, though this re-
search topic is in its infancy. Namely, the authors in [1]
provide the features, challenges and enablers for big IoT
data analytics. They highlight the need of a collaborative
edge-cloud architecture to process IoT data with different
requirements, e.g. low latency versus delay-tolerant needs. The
former is analyzed at the edge and the latter at the cloud.
Moreover, the cloud guides the operation of the EC thanks
to its network-wide view and massive amount of historical
information about the network. SDN is proposed as an enabler
for a collaborative edge-cloud computing framework, as it
controls the network under different dynamic network states.
The work in [10] is rather generic and conceptual, as in [1].
Namely, the pros and cons of EC and Cloud computing (CC)
are explained to propose a layered and hierarchical architecture
integrating both of them. Also they highlight the need of
a coordinated edge-cloud management to address challenges
such as the set up and release of cloud resources dynamically
or the QoS guarantees of the tasks to be computed in such
a dynamic and hierarchical system. In [11] the authors deal
with the computation offloading of IoT tasks in a collaborative
edge-cloud computing framework. They consider a hybrid
fiber-wireless edge network, i.e. fiber links between EC servers
and access points (AP) and wireless links between APs and
IoT devices. Then, they propose a game-theoretic approach
to deal with the computation offloading problem among IoT
devices, EC and CC servers. On the other hand, [12] proposes
an SDN enabled architecture for the cloud and edge interplay
in the context of 5G networks. They consider the virtualization
of storage and computing resources of the edge, assuming a C-
RAN. This SDN approach enables the global view of the net
resources state and a programmable control plane. Thereby,
[12] claims that users’ quality of experience and network
resources usage are improved, as their SDN approach leads to
assign dynamically the tasks to the proper EC and CC nodes.

Herein, as in the related work, a collaborative edge-cloud
computing platform is considered for IoT data analytics.
However, unlike in those works, herein we describe the ML
algorithms that permit to analyze big IoT data with different
latency requirements at the collaborative edge-cloud platform.
The features and requirements of these ML algorithms defi-
nitely determine the requirements of the collaborative edge-
cloud computing architecture and their key actors, i.e. SDN
and resource virtualization controllers. Also, we highlight how
SDN and the virtualization of computing and storage resources
at the edge and the cloud are fundamental for the proper
performance of the ML algorithms. That is, to circumvent
the impairments posed by the dynamic state of the network
and to adapt to the available computing and storage resources
both at the CC and the EC platforms. Moreover, leveraging
the virtualization of the computing and storage resources, the
proposed architecture provides the flexibility to deploy the ML
algorithms both at the network edge and at the cloud.

III. COLLABORATIVE EDGE-CLOUD COMPUTING: SYSTEM
MODEL AND SCENARIOS

The aim of this section is twofold. First, the system model
of the proposed collaborative edge-cloud computing platform
is described. Second, several scenarios for IoT data analytics
are introduced, within the context of that platform.

In Fig. 1 we display the system model of the collabora-
tive Edge-Cloud Computing platform. The system model is
composed of three layers. The top layer is called backend
cloud and it is composed of data centers or CC clusters with
large computing and storage resources, whose main aim is
to perform data analytics of large volumes of data in delay-
tolerant applications. We consider that each of those data
centers are geographically distributed. Moreover, the backend
cloud contains the SDN controller, the VIM and the MANO
controller. They have a global view about the state of the
virtual computing, storage and communications resources of
the overall system. Thereby, they are the cornerstone for the
efficient allocation of resources required by the IoT applica-
tions at hand, see section IV for further details.

The middle layer in Fig. 1 transports all the data between
the IoT devices and the backend cloud and is so-called the
core network. It consists of networking nodes such as metro
aggregation gateways, routers, switches and firewalls. It is
assumed that all of them allow the VIM manager to virtualize
their resources and a logical control of their functions through
software interfaces, which is driven by the SDN controller.

The bottom layer is called edge network. Its main compo-
nents are the IoT devices and a set of EC nodes to analyze
the IoT data closer to their origin, which leads to reduce the
latency and the backhaul network load. The EC nodes are
virtual machines (VM) either within the EC server or other
access network node, as it is described below in more detail.
The IoT devices have sensing, computing and communication
capabilities and they are the sources of the IoT data. Due to
the heterogeneity of IoT devices’ communication interfaces,
we consider that the edge network corresponds to a set of
heterogeneous access networks. For instance, the IoT devices
can be within a C-RAN in 5G networks. In this case, they
are within the coverage area of a Remote Radio Head (RRH),
which communicates via a fronthaul link with the base band
unit (BBU). The BBU is a pool of computing and storage
resources that centralizes and implements all or part of the
physical and Medium Acces Control (MAC) layers of the
RRHs. Moreover, an EC server with computing and storage
resources is available for the IoT data analytics. This EC server
can be deployed either within the BBU or close to it, as
suggested in [13]. Thereby, the EC nodes will be mainly VM
within the EC server, but they could be VM within the BBU
or even within the RRH if they are equipped with enough
computing and storage resources.

Another possibility is that the IoT devices are within the
coverage of a small cell or macro-cell in 4G-LTE or 5G
systems. In these cases the EC server can reside at the macro
base station sites [13]. The IoT devices can be also within



the LAN controlled by a WiFi AP or within a low power
Wireless Personal Area Network (LPWAN) based on the IEEE
802.15.4 technology. In those cases the EC server will be an
entity between the AP and the core net, which is properly
connected via fiber optical links and can be thought as a
powerful gateway deployed to give data analytics services
within malls, sport centers or museums [13] [11].

Fig. 1. System model of the collaborative Edge-Cloud Computing platform.

Next, we present three different scenarios for the IoT data
analytics in the collaborative edge-cloud of Fig. 1. Then,
section IV-C will specify how IoT data analytics in those
scenarios can be properly carried out by leveraging the ML,
SDN and virtualization tools exposed in sections IV-A and
IV-B, respectively.

• In the first scenario, the IoT data analytics are performed
in the backend cloud. This situation applies to delay-
tolerant applications. The dimensionality of the IoT data
is very high both in terms of the observation dimension
and the number of samples in the training set. Thereby,
the IoT data analytics requires large computing and
storage resources.

• In the second scenario, the IoT data analytics are carried
out at the network edge. This applies to IoT applica-
tions requiring low-latency. In this regard, performing
the processing at the backend cloud is not a scalable
or viable solution, as the backhaul and in general the
network supports a huge load due to the aggregation of
geo-distributed Big IoT data. Moreover, the delay for
processing all the data at the backend cloud may be too
high or inefficient compared to analyzing smaller data
sets at the geo-distributed EC servers.

• In the third scenario. Both the backend cloud and the edge
network analyze IoT data. This applies in delay-tolerant
application, in situations where the aim is to reduce the
computational load of the backend cloud or the reduce
the load of the backhaul or the core network. In those
cases a computational offloading strategy is applied to
analyze part of the data at the network edge.

IV. USING ML AND SDN/MANO SYNERGIES FOR IOT DATA
ANALYTICS IN A COLLABORATIVE EDGE-CLOUD

A. Machine Learning in IoT

In this section we present ML tools that address the IoT
data analytics features. They will be used in section IV-C,
jointly with the techniques of section IV-B, to explain how to
analyze the IoT data in the scenarios depicted in section III.
First, it is important to highlight that many ML problems can
be expressed in the form of the optimization problem stated in
(1), e.g. linear regression, logistic regression, support vector
machines (SVM), the sparse PCA or neural nets, see [14] [3].

min
w∈Rd

n∑
i=1

fi(w) + h(w) (1)

where h : Rd → R is usually a convex, non-smooth function
used to impose constraints or enforce desired structures on the
solution, e.g. sparsity; f(w) ,

∑n
i=1 fi(w), fi : Rd → R are

rather general cost functions, i.e. they can be convex or non-
convex, though it is usually assumed that they are smooth [14]
[3]. Moreover, d is the number of features and n the number
of training samples. In the context of IoT n is related to the
number of samples that each IoT device takes, whereas d is
related to the number of IoT devices.

High dimensionality is one of the most remarkable features
of IoT data, i.e. both n and d in (1) can be large. This leads
to a large-scale optimization, which poses serious challenges
to the conventional algorithms that solve convex optimization
problems, i.e. interior point methods. In the high dimensional
setting, these methods incur in a high computational delay or
slow convergence and even they may not converge, see e.g.
[15, Table 1] for the LASSO. Thereby, several approaches
have been proposed recently to address the high dimensional
challenge in ML. One of them are randomization methods.

Randomization algorithms
These techniques rely on an iterative procedure to solve
(1). At each iteration they sample randomly the gradient or
subgradient involved in the optimization procedure, either
along the feature dimension or the training samples dimension
to simplify the computational cost. Namely, for the sake of
simplicity let us assume that all the functions in (1) are
smooth, i.e. h is not present. Then, the traditional Gradient
Descent (GD) method solves (1) by doing the next iterations
wt+1 = wt − ht∇f(wt), where ht > 0 is a stepsize
parameter. However, computing ∇f(wt) is very costly in
large d or n scenarios. Thereby, to simplify this cost, at each
iteration the randomization algorithms just compute ∇f(wt)
at a random subset of the elements. Thereby, the type of
randomized coordinate descent (RCD) algorithms, at each
iteration generates a uniformly random index it within the
set {1, . . . , d} and then computes the iteration

wt+1 = wt − ht∇itf(wt)eit . (2)

Where ∇if(wt) is the i − th partial derivative of f and
eit the i − th unit standard basis vector in Rd. On the other



hand, the Stochastic Gradient Descent (SGD) method, at each
iteration, generates a uniformly random index it within the set
{1, . . . , n} and then computes the iteration

wt+1 = wt − ht∇fit(wt). (3)

That is, SGD just picks one of the functions fit within
the summation f(w) =

∑n
i=1 fi(w) in (1). Both RCD and

SGD have been the benchmark of randomization algorithms,
and variants of them have been proposed to improve their
performance. Focusing on the SGD, it is known that SGD
performs fast iterations but it needs more iterations than the
GD to converge. If the application at hand requires low accu-
racy, then SGD is a good option. Otherwise, variants of the
SGD improve its performance at each iteration by reducing the
variance in the estimation of the gradient, e.g. the Stochastic
Variance Reduced Gradient (SVRG), see [3]. The SVRG
consists of two nested loops. In the outer loop the gradient of
the entire function is computed using the current value of the
parameter vector wt, i.e. ∇f(wt) =

1
n

∑n
i=1∇fi(wt). In the

inner loop, m fast stochastic iterations are done to estimate
the gradient and update wt, by picking at each iteration a
random index i ∈ {1, . . . , n} and performing the operation
w = w − h(∇fi(w)−∇fi(wt) +∇f(wt)).

Distributed ML algorithms
The randomization methods presented above assume that all
the data set is available at a single computing node. However,
in big data settings and when the data source is geo-distributed,
e.g. in IoT, storing and computing all the data in a single node
can be inefficient or even infeasible. Thereby, a more scalable
and efficient solution is to have the data set distributed among
a set of storage and computing nodes. This leads to distributed
ML algorithms, where the computational burden at each node
is reduced drastically. They require iterations based on local
computation, communication among nodes and an update
step. The communication among computing nodes can take
more time than the communication among the processor and
the memory in a single node. Thereby, designing distributed
ML methods that require few and low-latency communication
rounds among nodes is a desirable feature to guarantee the
convergence of the algorithm in a reasonable time. Distributed
versions of the randomization methods introduced above have
been presented in the State-of-the-Art (SoA), e.g. distributed
SVRG algorithms see [3]. Namely, [3] presents a distributed
SVRG method, called Federated (FSVRG), that faces the
challenge of requiring few communications rounds among
nodes. It also takes into account that the size of the data set
can be different at each computing node and that data can
be drawn from a different probability distribution. All these
features make this algorithm appealing in the IoT context,
though it was developed for a rather general framework. As in
the centralized SVRG, the FSVRG relies on two nested loops.
In the inner loop each computing node do in parallel the fast
stochastic iterations mentioned above in the SVRG, by taking
into account the available local data set and a weighting matrix
accounting for the sparsity structure of the data at each node.

The outer loop computes the full gradient, i.e. it is the same
than the SVRG, though first it requires the aggregation of the
parameter vectors w obtained at each node in the inner loop.
This aggregation incorporates a weight to account for the data
set size at each node and the sparsity pattern.

An important feature of distributed ML methods is whether
they are synchronous or asynchronous. As an exemplification
let us consider the popular Alternating Direction Method
of Multipliers (ADMM) algorithm. Synchronous and asyn-
chronous versions of the ADMM have been presented in the
SoA for the distributed setting [14]. For simplicity let us
assume a star topology of computing nodes. Then, distributed
methods rely on a local computation at the worker nodes
followed by a communication of the results to a master
node, which updates a global parameter with this information.
Finally, the master node broadcasts the update to the nodes.
For instance, let us assume N workers and the reformulation
of (1) with a consensus constraint

min
w0,wi∈Rd,wi=w0

N∑
i=1

fi(wi) + h(w0) (4)

Then, in the synchronous distributed ADMM (SD-ADMM)
the workers optimize the augmented Lagrangian function L
related to (4) respect the pairs (wi,λi), where λi is a Lagrange
multiplier. After receiving (wi,λi) the master optimizes L
respect (w0. Then, the master broadcasts w0. Thereby (1) is
solved in a distributed way by the SD-ADMM. Therefore,
in synchronous methods the update step at the master can
not start until all the worker nodes finish their local compu-
tations and the master receives all of them. This constraint
seems reasonable to guarantee the optimal performance of
the algorithm and it has been widely assumed [3] [14].
However, when scaling up the distributed ML methods, the
speed of the algorithms is limited by the slowest nodes, i.e.
the ones with worse computation and communication delays,
which leads to inefficient use of computation resources as
some nodes are idle. To circumvent this issue asynchronous
algorithms allow the master to start the update operation with
the computations of only a subset of workers. The flip side
is that the parameters controlling the asynchrony must be
handled with care, as slight modifications lead to different
convergence conditions or to destroy the convergence [14].
For instance, in the asynchronous distributed ADMM (AD-
ADMM) of [14] the update at the master can start only with the
information received from some nodes, though they consider
that the information of all the nodes must arrive before a
maximum number of iterations τ . Actually, they provide a
relation between the design parameter of the algorithm and
τ that guarantees the convergence of the AD-ADMM to the
Karush-Kuhn-Tucker (KKT) points.

Online ML algorithms
In the previous sections the ML algorithms assume that all
the training set is available, i.e. a batch processing mode.
However, when the underlying scenario is dynamic or low
latency is required, the ML algorithm has only access to



new data points in a sequential manner. In this case, the
ML methods learn sequentially as new samples arrive and
also using the past observations. Thereby, they are so-called
online learning methods. To assess their performance they are
compared, through a metric called regret, to a clairvoyant
offline method that has access beforehand to the learning
information for all the operation times t = 1, . . . , T . Namely,
let xt be the variable to be learnt, ft the training set observa-
tions. The function lt(xt, ft) measures the loss in choosing xt

given the training set ft. In the offline methods ft is known
beforehand and thus they obtain an optimal vector for all t,
i.e. x∗ = argminx

∑T
t=1 lt(x, ft). On the contrary, in online

learning to decide xt only ft,∀u < t is available and lt(xt, ft)
will implicitly account for a prediction error. Thereby, the
regret R measures over time the difference between the losses
obtained by the online learner and the optimal offline learner,
i.e. R =

∑T
t=1 lt(xt, ft) −

∑T
t=1 lt(x

∗, ft). For a centralized
setting, several online learning methods have been proposed
in the SoA to control the regret growth. They are special
cases of a strategy known as follow the regularized leader
see [16]. Also for the distributed setting online versions of
the distributed ML have been proposed to control the regret
growth rate, e.g. the saddle point method in [16].

B. SDN, MANO and VIM

SDN and Network Functions Virtualization (NFV) belong
to the core set of technologies proposed for enabling the
5G vision [17]. The former achieves centralized control of
the network through a SDN controller, which takes care of
the control plane of networking devices. The latter detaches
the functionality from the hardware, realizing virtual network
functions (VNF), e.g. routing or switching, via software.
VNFs, as EC nodes, run on top Compute Nodes (CN) at data
centers controlled by a VIM.

In an IoT setup, the network is expected to be flooded by
great amounts of uncategorized, often redundant, sensor data.
Usually, traffic generated by a geographically distributed layer
of sensors is aggregated and preprocessed at IoT Gateways,
which then forward all the resulting data to a cloud server
that attempts to extract meaningful information applying ML.
Despite yielding optimal results, this cloud approach can be
considered too costly for delay-sensitive or real-time IoT
applications. This is partly due to the overhead imposed
onto the network backhaul. A viable alternative for extracting
meaningful information from massive IoT data involves the
decomposition of the problem into smaller sub-problems, and
the parallelization of the processing across the edge. One of the
advantages of this strategy relates to the proximity of CN to the
client, potentially yielding lower delay. To realize this strategy,
low-latency, secure, and reliable communication should exist
among nodes composing the edge cloud, which is provided by
the SDN controller via virtual tenant networks and NFV [18].
Moreover, ML services in the form of virtual applications are
deployed throughout the edge cloud.

In order to guarantee computing and communications re-
quirements demanded by ML services, a centralized MANO

controller is fed from metrics exposed by the SDN Controller
and VIMs via northbound interfaces (NBI), like RESTful Ap-
plication Programming Interfaces (API). Networking metrics
are gathered by the SDN Controller via southbound inter-
faces (SBI) using protocols such as OpenFlow [19]. Similarly
VIMs such as OpenStack gather and expose details about
CN in the platform. This information is combined at the
MANO controller to describe the current state of the complete
platform, and then to orchestrate the spin off of VMs at
network locations complying with the respective ML services’
network requirements. Widely used MANO controllers such
as OSM [20], provide ample support for a variety of stan-
dard APIs, allowing a single MANO to realize ML services
throughout data centers managed by different VIMs.

C. IoT data analytics leveraging ML, SDN, MANO and VIM
This section deals with the IoT data analytics for the three

scenarios defined in section III within the context of Fig. 1.
Scenario 1: IoT data analytics at the Backend cloud

This case is envisaged for delay-tolerant applications and all
the data is analyzed at the backend cloud. The aggregation of
geo-distributed IoT data leads to a high dimensional setting,
which requires large computational and storage resources at
the backend cloud, and increases notably the backhaul and
core network loads. To face those issues, the MANO controller
makes use of VIM’s APIs to determine the availability of
compute resources for the selected ML service and schedule
the spin off of the corresponding ML worker. To face the
huge network load, the SDN Controller is leveraged, which
modifies network devices’ forwarding decisions in a way that
only the less congested paths towards the ML worker at
the backend cloud are selected. Depending on the available
computing and storage resources, and the dimensionality of the
data, the MANO controller decides whether the ML service
would comprise a single, or several computing nodes. In
the single computing node case, randomization is the most
convenient among the ML techniques proposed in section
IV-A to face high dimensional data analytics in a centralized
setting. The requirement for the SDN controller is to guarantee
a reliable communication path between the edge and the
cloud to avoid a performance degradation due to missing
samples in the ML training set. Distributed ML techniques
are the most convenient methods when the MANO controller
decides to analyze the data using several computing nodes.
To allow the convergence of the distributed ML methods in
a feasible operation time, the SDN controller must ensure a
low latency and reliable communication among the computing
nodes (see section IV-A). Such communication paths are
achieved thanks to the global view of network and compute
resources exposed by the SDN controller and the VIM NBIs,
respectively. Compute nodes can be within the same cloud
computing cluster or geo-graphically distributed in several
cloud computing clusters, see Fig. 1.

Scenario 2: IoT data analytics at the Network Edge
In this scenario the data analytics service is deployed at
the network edge to address the requirements of low-latency



applications. Thereby, online ML is the perfect fit for this
scenario, as in those algorithms the learning process is done
sequentially as new data samples arrive to address a dynamic
scenario with low latency requirements, see section IV-A.
In turn, to address the geo-distributed nature of IoT data,
distributed online learning algorithms are proposed. To this
end, the centralized view of computing resources allows the
VIM and MANO to deploy EC nodes as Virtual Machines
(VM) close to the IoT devices, see Fig. 1. For instance, N
VM can be deployed at N different EC servers of N RANs.
The orchestration of multiple geographically distributed EC
nodes requires fast and reliable communication among them.
This constraint is not only imposed by delay-sensitive appli-
cations, but also by distributed online ML services, as low
latency iterations among EC nodes are needed to guarantee
the convergence and to avoid the performance degradation
in terms of the regret metric see section IV-A. To this end,
the SDN Controller enforces priority for the distributed ML
service traffic between EC nodes. In cases where the data is
localized at a given RAN or when lower latency is required,
one can apply an online learning method at a single EC node.

Scenario 3: IoT data analytics at the Backend and the
network Edge
In this scenario, in delay-tolerant applications, part of the data
is analyzed at the network edge and the rest at the cloud. The
aim is to alleviate the communication load of the backhaul
and the computational load at the backend cloud. The ML
algorithms for the backend cloud are the same than in scenario
1, i.e. either distributed ML or randomization methods to
tackle the high dimensional data, which recall that require low
latency and reliable communication paths among computing
nodes. For the network edge, we propose to use distributed ML
algorithms to tackle the geo-distributed nature of IoT data. The
VIM and SDN controller play a central role in this scenario.
First, they ensure the low latency and reliable communication
required by the distributed ML methods. Second, they provide
a global view of the communication and computing resources
to external applications (such as the MANO controller) via
NBIs. Thereby, they lead to identify whether the backhaul
load or backend computational load are too high, and to create
EC nodes at the network edge to reduce this burden. The
offloading of ML services tasks from the backend to the edge
not only alleviates computation and network loads, but also
could be part of a greater energy or OPEX saving strategies.
In this case, the offloading could be based on estimated energy
consumption or estimated monetary cost when using a third-
party backend cloud infrastructure.

V. CONCLUSIONS

This paper has proposed a collaborative edge-cloud com-
puting architecture to face the challenging requirements of
IoT data analytics. The fundamental tools for this platform
have been presented. Firstly, ML frameworks which fulfill the
needs of IoT data analytics. The second tool is the centralized
and global management of virtual networking and comput-

ing resources. Three different scenarios for the collaborative
edge-cloud platform have been defined, which highlight the
synergies an interplay of the tools mentioned above.

ACKNOWLEDGMENT

This work has been funded by the following projects:
SEMIOTICS (780315), SPOT5G (TEC2017-87456-P) and by
the Generalitat de Catalunya under grant 2017 SGR 891.

REFERENCES

[1] S. K. Sharma and X. Wang, “Live data analytics with collaborative edge
and cloud processing in wireless iot networks,” IEEE Access, vol. 5,
pp. 4621–4635, April 2017.

[2] Q. W. et al., “Cognitive internet of things: A new paradigm beyond
connection,” IEEE Internet of Things, vol. 1, pp. 129–143, April 2014.

[3] J. Konecny, B. H. McMahan, D. Ramage, and P. Richtrik, “Federated
optimization: Distributed machine learning for on-device intelligence,”
arXiv:1610.02527, 2016.

[4] J. W. et al., “Cloud robotics: Current status and open issues,” IEEE
Access, pp. 2797–2807, June 2016.

[5] M. O. et al., “Coalition games for spatio-temporal big data in internet of
vehicles environment: A comparative analysis,” IEEE Internet of Things
Journal, vol. 2, pp. 310–320, August 2015.

[6] J. Hu and A. Vasilakos, “Energy big data analytics and security: Chal-
lenges and opportunities,” IEEE Trans. Smart Grids, vol. 7, pp. 2423–
2436, September 2016.

[7] C. A. et al., “A cloud to the ground: The new frontier of intelligent
and autonomous networks of things,” IEEE Communications Magazine,
vol. 54, pp. 14–20, December 2016.

[8] F. Bonomi and R. M. et al., “Fog computing and its role in the internet
of things,” in in Proceedings of the First Edition of the MCC Workshop
on Mobile Cloud Computing, 2012.

[9] M. Raho, A. Spyridakis, M. Paolino, and D. Raho, “Kvm, xen and
docker: A performance analysis for arm-based nfv and cloud comput-
ing,” in IEEE 3rd Workshop on Advances in Information, Electronic and
Electrical Engineering (AIEEE), 2015, pp. 1–8, IEEE, 2015.

[10] X. Masip-Bruin, E. Marin-Tordera, G. Tashakor, A. Jukan, and
R. Guang-Jie, “Foggy clouds and cloudy fogs: a real need for coordi-
nated management of fog-to-cloud computing systems,” IEEE Wireless
Comm., pp. 120–128, October 2016.

[11] H. Guo, J. Liu, and H. Qin, “Collaborative mobile edge computation
offloading for IoT over fiber-wireless networks,” IEEE Network, pp. 66–
71, February 2018.

[12] Y. Peng, Z. Ning, B. Yuanguo, Y. Li, and S. Xuemin, “Catalyzing cloud-
fog interoperation in 5G wireless networks: an SDN approach,” IEEE
Network, pp. 14–20, October 2017.

[13] T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and D. Sabella,
“On multi-access edge computing: A survey of the emerging 5g network
edge cloud architecture and orchestration,” IEEE Comm. surveys and
tutorials, vol. 19, no. 3, pp. 1657–1681, 2017.

[14] T. Chang, M. Hong, W. Liao, and X. Wang, “Asynchronous distributed
ADMM for large-scale optimization Part I: algorithm and convergence
analysis,” IEEE Trans. on Signal Proc., vol. 64, pp. 3118–3130, June
2016.

[15] V. Cevher, S. Becker, and M. Schmidt, “Convex optimization for big
data,” IEEE Signal Proc. Mag., pp. 32–43, September 2014.

[16] A. Koppel, F. Jakubiec, and A. Ribeiro, “A saddle point algorithm
for networked online convex optimization,” IEEE Trans. Signal Proc.,
vol. 63, pp. 5149–5164, October 2015.

[17] Bell Canada et al., “Network functions virtualisation (nfv): Network
operator perspectives on nfv priorities for 5g.”

[18] A. Mayoral, R. Vilalta, R. Casellas, R. Martinez, and R. Munoz, “Multi-
tenant 5g network slicing architecture with dynamic deployment of
virtualized tenant management and orchestration (mano) instances,” in
Proc. 42nd European Conference on Optical Communication ECOC
2016, pp. 1–3, VDE, 2016.

[19] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: enabling innovation in
campus networks,” ACM SIGCOMM Computer Communication Review,
vol. 38, no. 2, pp. 69–74, 2008.

[20] ETSI, OSM, “Open Source MANO (OSM),” 2018.


