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Abstract—Mixed signal neuromorphic circuits represent a
promising technology for implementing compact and ultra-low
power prosthetic devices that can be directly interfaced to living
tissue. However, to accurately emulate the dynamical behavior
of the biological tissue, it is necessary to determine the optimal
set of specifications and bias parameters for these circuits. In
this paper we show how this can be done for a silicon neuron
design, by applying a statistical Data Assimilation method (DA).
We present a conductance-based silicon neuron based on the
Mahowald-Douglas (MD) design and use the DA method to
estimate its state variables and the ion channels parameters, so
that it can accurately emulate the properties of biological neurons
involved in the Central Pattern Generators (CPGs) responsible
for producing the respiratory and heart-rate rhythms. While
previous work has shown how DA well-estimates and predicts
parameters from membrane voltage measurements using a semi-
empirical Hodgkin-Huxley neural model, here we show how
the same method is suitable for simplified Very Large Scale
Integration (VLSI) circuit designs and demonstrate how it allows
us to reliably predict the response of the MD neuron to different
input current profiles.

I. INTRODUCTION

Mutually inhibitory networks generate the rhythms of life.
These rhythms are supported by Central Pattern Generator
(CPG) such as those located in the medulla which set the
pace of respiration and modulate heart rate [1]. The sequential
pattern of neuron discharge depends in a complex manner
on physiological feedback. This feedback allows heart rate
and respiration to vary over time depending on arterial gas
concentration, blood pressure and lung inflation. Although
the architecture of medullary CPG and generic conductance
models have been established experimentally [1] the inter-
nal parameters of neurons and synapses remain unknown.
Knowledge of these parameters is essential to condition VLSI
models in such a way that they behave identically to biolog-
ical networks. This task is complicated by the fact that the
parameters which control the kinetics of ionic gates and the
conductance of ion channels are inaccessible to experiment.
These parameters are also highly nonlinear which means it is
extremely difficult to fit model parameters by trial and error.

In this paper we use nonlinear optimization to construct
quantitative models of VLSI neurons. The method relies on
Taken’s embedding theorem [2] which states that under certain
conditions the time series observations of the membrane volt-
age induced by a known current protocol will contain all the

information about the model. This approach has successfully
constructed predictive neurons models [3], [4]. Here we use
interior point optimization [5] to construct VLSI models of
the Mahowald-Douglas neuron [6], [7].

We first generated time series voltage sequences by in-
tegrating current protocols with the NaKL Hodgkin-Huxley
model [8]. The membrane voltages were then assimilated over
appropriate time windows to obtain the model parameters. A
set of parameters was obtained by assimilating the MD mod-
els. We then constructed the completed models by inserting
parameters in the model equations. The completed MD model
was then integrated forward to predict the membrane voltage
under arbitrary stimulation.

We also applied the data assimilation method to simulated
data. In these experiments we used the MD model to obtain the
membrane voltage and then to estimate the original model’s
parameters back from it. In Bayesian inference, this is known
as “Posterior Predictive Check (PPC)” [9]. Toth et al [10] have
referred to this as “the twin experiment”. This is a well-defined
inverse problem. A more challenging problem arises when
assimilating data from a real voltage trace or from a voltage
trace synthesized by another model. The lack of knowledge
on the accurate model’s equations and parameters makes the
problem ill-defined. The presented research study in this paper
is focused on an ill-defined problem. We demonstrated the
results from the ill-defined problem. Results from our “twin
experiments” are not shown in this paper.

In Section II we explain why a hardware implementation
of a CPG can be extremely useful for biomedical application,
overcoming the limitation of the software ones. In Section III
we describe the equation of MD model, used for the DA.In
Section IV the method used to extract and predict parameters
of MD models described. In Section V hardware requirements
derived from DA are discussed and finally, in Section VI we
summarize our results with concluding remarks.

II. HARDWARE IMPLEMENTATION OF CPG

Neuromorphic circuits are a class of hybrid analog/digital
circuits that implement hardware models of biological sys-
tems [11]. It has been argued that these types of circuits can be
used to develop a new generation of computing technologies
based on the organizing principles of the biological nervous
system, which are optimally suited for building ultra-low



power devices that have can interact with the environment
in real-time [12]. The styles of computation used in neu-
romorphic circuits are fundamentally different from those
used by conventional computers: as the biological systems
they model, neuromorphic circuits process information us-
ing energy-efficient asynchronous, event-driven, methods and,
most importantly, they are adaptive and fault-tolerant.

With power budgets of hundreds of micro Watts, these
systems are not meant to implement the types of complex deep
networks or machine learning algorithms typically executed
on Field Programmable Gate Arrays (FPGAs), Graphical
Processing Units (GPUs), or Central Processing Units (CPUs)
(that can dissipate from 10 to 107 times more power). On
the other hand, they represent a very promising solution for
implementing compact embedded systems that can process
bio-signals and adopt on-chip and on-line learning strategies
to adapt to the changes in the statistics of both input signals
and internal state variables. Within this context, we explore the
design of a silicon neuron model with circuit specifications and
parameters optimally suited for a hardware implementation of
CPG that can emulate the motor pattern activity of respiratory
CPGs, while reacting in real time to incoming input signals.
Previous works, that use hardware CPG to model the gait
locomotion in robotics applications have already showed how
they can interact with the environment in real-time [13], [14],
[15].

III. THE SILICON NEURON

Figure 1 shows the circuit schematics of the spiking silicon
neuron we propose, derived from the MD design proposed
in [6], [7].

The building blocks of the MD neuron are the trascoduc-
tance amplifier (TCA), follower integrator (FI) and current
mirror (CM). All current and voltage bias variables that end
with an exclamation mark in the figure and represent global
parameters shared among all neurons on the chip which can
be precisely tuned by an on-chip 12bit resolution temperature
compensated bias generator [16]. The basic spiking mecha-
nism comprises three main blocks: the leakage circuit which
models the neuron’s leak conductance; the sodium circuit
which models the effect of the activation and inactivation
channels for producing the spike; and the potassium block
which models the resetting of the neuron. An additional AHP
block provides a second negative feedback mechanism which
introduces additional variables that increase the variety of the
dynamical behavior [17]. The AHP block is in fact responsible
for the spike-frequency adaptation and bursting behaviors of
the neuron. This mechanism is described by:

Im:Ileak+INa+IKd+Iinj+IAHP (D

where I, is the current across the membrane capacitance,
Iieqr 1s the leakage current, Iy, and [x4 the sodium and
potassium current respectively, I;,,; the stimulation current and
I o p is the after-hyperpolarization current. The input current,
injected into the capacitor C,,, increases the membrane volt-
age V,,,. The voltage V,,, depends also on the leakage current
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Fig. 1: The silicon neuron schematic. The basic spike mech-
anism comprises the sodium channel (pink block), potassium
channel (blue block) and the leakage conductance (torquise
block). The yellow block represents the calcium and AHP
conductance.
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Iieqr and the current-voltage relationship is given by the one
of TCAs:

Ileak(vm) = Igleak tanh(CT(Eleak: - Vm)) (2)

where Igicq5 is the maximum bias current of the TCA.

The sodium current is composed by an activation I, and
inactivation I, current. The activation current is associated
to the positive feedback and it turns on when the membrane
potential reaches the voltage threshold T'hres, producing the
spike. The inactivation current is turned on by the slower
negative feedback. The inactivation current is slower than the
activation because it is generated only after the voltage at C,,,
Vina rises above the threshold Thres. After the I,,, turns on,
the V;,, steeply rises and the voltage V., rises above Thres.
The sodium current can be expressed by the equation:

INa(Vma t) = INasat(l - tanh(CTAana(t))) (3)

The potassium conductance is only an inactivation current
and it constitutes the second negative feedback. This current
depends on the voltage at Cy,, Vyyq and it is on as long as Vg
is above the T'hres. V14 increases and decreases linearly with
V., and the current equation can be described by:

IKd(Vm,t) = _Ideat tanh(CTAkad(t)) (4)

The calcium block simulates the intracellular calcium con-
centration. Every spike is converted into a digital pulse of
fixed width trough a spike discriminator and it is used as input
to the adaptation mechanism. For each of them, a calcium
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Fig. 2: Different biologically plausible neuron’s behaviors. Top
figure represents the fast spiking behavior. Middle figure shows
the regular spiking in which the calcium and AHP channels
are active with the corresponding calcium level. Bottom figure
represents the bursting activity with corresponding calcium
level.

current g,y 1S injected into the soma, increasing V.. When
V. reaches the threshold, the AHP circuit is turned on and it
inhibits V;,, leading to spike frequency adaptation or bursting
behavior. V.. decays to a resting concentration through Icgpy -
The MD neuron is able to produce three different biologically
plausible neuron’s behaviors, shown in Fig. 2. The top plot
shows the membrane potential produced by the basic spiking
mechanism. The middle plot shows the spiking behavior with
the spike frequency adaptation (AHP current) mechanism
enabled, and the with the corresponding Calcium level voltage.
The bottom plot shows bursting activity, with the Calcium
level trace superimposed. The bursting behavior was obtained
by properly tuning the parameter controlling the Potassium
conductance levels the AHP amplitudes.

TABLE I: Parameters of the silicon neuron model estimated
from the assimilation window

Parameter Boundaries of parame- | Initial Estimated
ter search interval value value
Cm (pF) 0.1, 5.0 2 3.94
Igiear (PA) | 0.1, 15 1 15.0
Erear (V) | 0.1,5 I 1.56
Thres(V) 0.1, 4 1 2.85
Inasat (MA) | 1, 100 11 28.75
Ikdsat MA) | 1,50 20 1.0
Cn (pF) 1, 20 10 14.01
Ck (pF) 1, 20 10 20
Inatauw (pA) | 1, 100 50 4.25
Ixatau (PA) | 1,100 50 1.0

IV. DATA ASSIMILATION

Data assimilation is a methodology for estimating hidden

variables. The estimation of these parameters involves the
combination of observational data with the underlying dy-
namical principles governing the system under observation.
Data assimilation estimates a best possible representation of
the actual state of the system in order to make a prediction of
a future state of the actual system.
Due to their non-linear nature, inferring the internal param-
eters of neuron and neural networks require sophisticates
algorithms [18]. Takens’ Embedding Theorem [2] explains
how, under certain condition, a non-linear system can be
reconstructed using measurements of a single variable. In this
article we are identifying multichannel conductance models for
assimilating the times series data of CPG respiratory neurons.
Our approach started from the semi-empirical Hodgkin-Huxley
model [8], a typical neuron model for a total of up to 71
parameters [3], [4]. The HH neuron model was simulated
in Matlab and the output voltage trace was re-scaled to
the range O - 10 V. This voltage trace was used to extract
the gating parameters of sodium (Na™) and potassium (K*)
ionic channels based on interior point optimization. Then,
we generated time series voltage sequences by integrating
current protocols with the re-scaled Hodgkin-Huxley model.
This voltage trace was used for data assimilation to extract the
parameters of the MD model. The results in Table I show that
plausible values were extracted for the voltage threshold, Na™
parameters and the membranes capacitance. As mentioned
earlier, we employed different models for data generation and
assimilation. Therefore, our problem is ill-defined and this
explains why some parameter values hit the boundaries of the
search interval.

In Fig. 3, we show the results of model validation, obtained
by using the equations described in Section III to carry
out behavioral simulations. The prediction accuracy of the
assimilated model was assessed by forward integration beyond
the assimilation window. Initially, the full MD model was
constructed by plugging in the extracted parameters to the
equations. The initial states of the gating variables were
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Fig. 3: A voltage trace from HH neuron model was used
to estimate the parameters of a silicon neuron model. The
bottom figure shows the current stimulation (blue line) used
to generate the voltage traces. The top figure shows the
voltage trace from the HH neuron model (black line), the
membrane voltage solution of the constrained optimization
problem (green line) and the predicted membrane voltage (red
line).

obtained from the end of the assimilation window. Then,
the model was used to produce the prediction voltage trace
(red line) by forward integrating the input current of another
window. The width of the data assimilation window was
549.68 ms. The full quantitative model fits well the reference
data (black line).

V. CIRCUIT DESIGN SPECIFICATIONS

Developing VLSI neuromorphic circuits for biomedical
applications raises significant technological challenges, espe-
cially when the device is required to implement biologically
exact and ultra-low power models that should interact in
real-time with the environment. The circuits and methods
proposed here address the challenge of finding the proper
circuit specifications and network parameters that enable an
electronic system to emulate the biological respiratory CPG.
To obtain these specifications and network level parameters, it
is first necessary to derive the optimal parameters of individual
neurons. The parameters we derived are listed in Table I.
These represent the starting point, for deriving the optimal
silicon neuron specifications at the network level. Re-scaled
DA results suggest that C,,,, C),, C should be of the order of
pico Farads, because of the requirement of implementing the
slow respiratory neurons dynamic (0.5-4 Hz). Implementing
such values with modern electronic hardware is not trivial, as
it requires a substantial amount of area. A possible alternative

solution is to decrease the capacitances dimensions and its
input current in order to increase the neuron integration time.
In addition, from Table I is possible to notice that C,, and C}
are bigger than C,,, by a factor of three and four respectively.
To decrease layout area we can design all the capacitances
with the same dimensions of few pico Farads (1-2) and, by
adjusting the relation between injected and leakage currents
we can obtain the same channels dynamic. The two involved
parameters [, 4tq: and Ixqtq,, and it is important their working
range, which should not be below 1 pA otherwise, it is in same
noise range and the system behavior is uncontrollable.
Another important requirement is the dynamic range of the
current. In order to emulate biological neural computing
systems efficiently, such as the respiratory CPG neuron, the
transistor should be biased in the sub-threshold regime. This
is obtained working in a range of current from pico Amperes
to tens of nano Amperes with tunable values to set the desired
behavior. Due to such small currents, during the VLSI design,
it is important to measure the transistor leakage current. This
value should be below 0.1 pF. To minimize the leakage, it is
possible to act on the transistor’s length.

VI. CONCLUSIONS

In this paper we showed how it is possible to estimate the
dynamic state of a conductance-based silicon neuron circuit
using a large scale variational method. Our study has used
interior point optimization to construct two conductance-based
neuron models: a re-scaled version of the HH neuron model
and the silicon MD neuron model. Synthetic biological voltage
traces were obtained from the re-scaled HH neuron model.
The voltage traces were then used to extract the parameters
of the MD model. The differences between the original data
and the resconstructed data arise from differences between
the model used to generate the data and the model used to
perform assimilation. In the VLSI model, the activation and
inactivation variables of Na™ are subtracted rather than mul-
tiplied. Second, the time constants are fixed rather than being
voltage-dependent. Third, the model does not incorporate the
state variable for Na™ activation. It is substituted by a constant
parameter. Despite these differences the results show that our
attempt to fit the biological synthetic data was successful.
DA results provide an important starting point to estimate the
silicon neuron requirements and to move towards implement-
ing more sophisticated VLSI models to correct discrepancies
between data and prediction in Figure 3. These results provide
and important basis for building a quantitative model for a
biologically plausible respiratory CPG network.
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