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ABSTRACT

Although the physics of the bowed violin string are well
understood, most audio feature extraction algorithms for
violin still rely on general-purpose signal processing meth-
ods with latencies and accuracy rates that are unsuitable
for real-time professional-calibre performance. Starting
from a pickup which cleanly captures the motion of the
bowed string with minimal colouration from the bridge
and body, we present a lightweight time-domain method
for modelling string motion using segmented linear regres-
sion. The algorithm leverages knowledge of the patterns of
Helmbholtz motion to produce a set of features which can be
used for control of real-time synthesis processes. The goal
of the paper is not a back-extraction of physical ground
truth, but a responsive, low-latency feature space suitable
for performance applications.

1. INTRODUCTION

The current paper discusses an implementation of a real-
time feature extraction algorithm on the violin, designed
specifically for time-domain bowed string signals. The aim
is to develop digital instruments which use acoustic instru-
ment signals as control information for digital synthesis.
Besides the preservation of ergonomics and physiological
stimuli, this approach enables the new sounds to be closely
related to the response of the acoustic instrument, so that
the player’s learned musical skills still apply.

This approach has been explored and evaluated in vari-
ous studies in the last two decades, with Jehan’s Audio-
Driven Timbre Synthesizer [1], Essl and O’Modhrain iden-
tifying augmented instruments and “reappropriation of in-
strumental gestures” as ways to repurpose existing musical
expertise [2], Janer and Maestre’s voice-driven sound syn-
thesis [3], Tremblay and Schwarz’s concept of “recycling
virtuosity” [4], Puckette’s “grafting” of synthesis patches
onto live musical instruments [5], McMillen’s StringPort
[6] and Poepel’s PhD thesis on audio signal-driven sound
synthesis [7].

Another approach to repurpose player skills is to use a
musical instrument controller with an ergonomically simi-
lar behaviour as an original instrument, which is e.g. stud-
ied in [8]. However, even though physical models could

Copyright: (© 2018 Kurijn Buys et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 3.0 Unported License, which

permits unrestricted use, distribution, and reproduction in any medium, provided

the original author and source are credited.

Andrew McPherson
Queen Mary University of London
a.mcpherson@gmul.ac.uk

be used to regenerate similar sounds from the gesture data
provided by such a controller, it is known that the vibra-
tional behaviour of musical instruments in relation to the
playing gestures is very complex, so that the instrument
would feel unfamiliar to the player. Present-day physical
models of the violin for instance, are still not capable of
reliably predicting the transient details to a given bow ges-
ture [9]. This is in particular so for the control over the
wide variety of subtle sound differences, to which profes-
sional players have invested many years of training.

In addition to Poepel, McMillen and others, we not only
seek to inform new sound generation using generic audio
descriptors, but to rely on the underlying physics of the
bowed string and the related perceptual features, to obtain
specific instrument-related features. We hypothesise that
introducing this instrument-awareness in the design of the
algorithm enables a more efficient and precise implemen-
tation than using generic sound analysis, and more suitable
to reduce the full audio data to preserve principal compo-
nents that are meaningful to the player’s musical expres-
sion. Meanwhile, a much richer and less discrete feature
set is obtained than only MIDI data for instance, so that
the subtleties of the expression are captured.

That being said, our goal is not to have a physically-
accurate set of features (such as the the bowing-parameters,
which can be indirectly acquired using statistical audio anal-
ysis [10]) but one with subjectively relevant qualities, so
we purposely use an empirical approximation, as opposed
to exact physical theories. The interest of this approach is
also underlined in paradigms such as Cook’s “Physically
Informed Sonic Modelling” [11], or Farnell’s “Procedural
Audio” [12]. It is shown in this paper how a piecewise-
linear signal model enables the extraction of extremely pre-
cise sound features, capturing a substantial part of the sound
properties.

The work presented in this paper forms part of a project
with a broader scope, aimed at the design of new musi-
cal instruments that repurpose the expertise of professional
musicians who are known to play with a traditional instru-
ment. As with many other human motor tasks, it is known
that a musical instrument player’s focus is on the target,
that is, the sound, while their gestures are produced by an
internal (sensorimotor) mental model that couples action to
perception [13]. In other words, the player is not actively
thinking about their gestures in a musical performance and
the instrument becomes, so to speak, transparent to the per-
former [14]. Hence, to aid the task of repurposing exper-
tise it is a reasonable idea to promote a familiarity in the
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musical interaction by using the sound of a traditional in-
strument to inform the generation of new sounds.

2. MOTION OF THE BOWED STRING

It is a reasonable assumption that the bowed string vibra-
tion captures almost all the player’s musical intentions, even
though the violin body resonances are disregarded [7, p.
164]. This is so, as the body and sound radiation can be
interpreted as filters on an escaping fraction of the string
energy. As a result, any intended sound output must be no-
ticeable in the original oscillatory mechanism, i.e. in the
string vibration. In this paper we focus on the periodic
regime. Non-periodic regimes (occurring at some note on-
sets or e.g. when the bow force is too high) will be consid-
ered in later work.

2.1 Signal-model Of Oscillation Cycles

In the late nineteenth century, Helmholtz discovered that
the bowed string vibrates in a V-shape, with the corner
traveling up and down the string terminations [15]. Later
Raman developed a theory that could explain the ideal Helm-
holtz motion, assuming a lossless string model with re-
flection coefficients less than unity and a bow-string fric-
tion coefficient relative to the sliding velocity between the
string and the bow [16].

In the time domain, this lossless and non-stiff string dis-
placement is a triangular signal, where the corner position
relative to its neighbouring corners corresponds to the rel-
ative measurement position along the string [17]. How-
ever, in practice the interplay of dissipation and stiffness in
the string and the characteristics of the bow-string interac-
tion can direct this position somewhat towards the middle
(this can be understood for instance in terms of a reduc-
tion of higher harmonics in the Fourier series of a sawtooth
wave, which results in a smoothening of the discontinuity
in that signal, i.e. a relocation of the corner towards the
middle). These losses also cause the otherwise perfectly
sharp corners to become rounded, reducing the high fre-
quency content from the sound, a phenomenon that has
been first described by Cremer, who proposed an empir-
ical model with smoothed corners [18]. Mclntyre further
extended this model to include transient behaviour, which
lead to the “digital waveguide model” of bowed-string mo-
tion [19]. In contrast to the “steady-state” regime where
the oscillations are perfectly repetitive cycles, the oscilla-
tions in the transient regimes are non-repetitive, which is
the result of an energy imbalance between the excitation
(injecting energy into the resonator) and the resonator (col-
lecting and consuming that energy in a standing wave); in
its turn caused by a change of the physical input param-
eters such as the bow speed or force, or a finger pressing
the string. The energy storage property of the resonator
and the nonlinear character of the bow-string interaction
will seek for a new consensus for that given input param-
eter state, which demands a short settling time. Given that
there are relatively few losses in a string resonator, and
the steep stick-slip transition of the bow-string interaction
relatively quickly introduces new energy in the resonator,
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Figure 1. Example of a measured velocity cycle and the
corresponding displacement signal with indication of the
stick and slip regions.

the attack transients are fast while decays are slow. Many
other effects can be distinguished in the vibrational signal
of the string, such as “(multiple) flyback”, “multiple slip”,
“Schelleng ripples”, “bow-string scraping noise”, etc. For
an overview see [9].

2.2 Measurement

One significant advantage of using the string vibration sig-
nal is that it represents a remarkably simple geometric shape
(due to the phase-locking property of the bow-string inter-
action), which enables a relevant time-domain use of the
measured string vibration for real-time analysis, so that
cumbersome and intrusive frequency domain methods can
be avoided.

To minimise the effects of bridge and body resonances, it
is ideal to measure the string signal on the string itself. It
was concluded that the “StringAmp” pick-up system ! was
a suitable system for this task. This system uses the strings
as electric conductors moving in a magnetic field created
by magnets placed under the fingerboard. We developed
a custom preamplifier that allows quadraphonic capture of
the violin strings. Hence, the pick-up system produces a
signal proportional to the velocity of the string at its mea-
sured location, near the fingerboard end at the side of the
bridge. The displacement signal can be easily obtained
from the velocity via numerical integration. Furthermore,
a high-pass filter is used to prevent the amplification of
DC-offset and low frequency noise from the bowing ges-
tures. Appropriate cut-off frequencies are found to be in
the range of 15 Hz to 50 Hz. Figure 1 shows an exam-
ple of a measured velocity oscillation cycle along with the
corresponding displacement signal.

3. SEGMENTATION ALGORITHM

The theoretical findings presented in section 2.1 and our
own empirical observations of string displacement data lead
us to the idea to design of an algorithm that first approxi-
mates the measured displacement signal by an ideal Helm-
holtz signal. While this model only captures an ampli-
tude, fundamental frequency and relative corner position,

! produced by MusikLab Danemark, http://www.stringamp.com
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these features can be obtained directly from each oscil-
lation cycle with sub-sample precision while their time-
variation provides transient effects. We hypothesise that
this information relevantly captures important aspects of
the player’s musical intent.

Given that the Helmholtz motion in the periodic oscilla-
tion regime predicts a cyclic linearly up-and down going
displacement signal, it was concluded that a linear seg-
mented signal model, consisting of two line segments per
cycle, would be an appropriate first model. The mathemat-
ical challenge with this model is to produce a regression of
line segments that minimises the total residual error. In a
first stage (developed in section 3.1), our algorithm identi-
fies these lines-segmented cycles, resulting in initial break-
points, i.e. estimated time values of the Helmholtz corners.
In a second stage (detailed in section 3.2) the break-points
between the segments are optimised with an iterative re-
gression. Finally, in a third stage (explained in section 3.3)
features are extracted from the regressed model and from
its relation to the original data.

3.1 Initial Segmentation Estimation

Given that our algorithm is considering Helmholtz motion
of the string, a fast and computationally lightweight time-
domain detection of the period is possible. In this first
stage, crude estimations of the Helmholtz corners are iden-
tified. The algorithm consists of detecting signal changes
from a positive to a negative RMS threshold and vice versa.
By using thresholds greater than zero, false identifications
by small additional oscillations such as “flybacks” or “Schel-
leng ripples” (see [9]) are avoided. Finally, the location of
the minimum and maximum values between the up and
down transitions are used as initial “break-point” values
(i.e. the time values of the transitions between the linear
segments).

It was empirically found that the displacement signal is
optimal for this task, since its oscillation cycles are most
clearly distinguishable. It should be noted however that
this method requires the RMS calculations to accurately
follow the amplitude of the oscillation, which is so, pro-
vided that the low-pass filter used in the RMS calculation
is appropriately chosen so that it is slow enough to be inde-
pendent of the signal oscillations, but fast enough to follow
transient behaviour. Therefore, on one hand, its cut-off fre-
quency should be sufficiently below the fundamental fre-
quency of the lowest note of interest, while on the other
hand, it should ideally be higher than the frequency of the
amplitude changes caused by transient behaviour. In prac-
tice, a frequency of 150 Hz is found to be suitable for the
detection of all four strings. Only in rare particular cases
does this lead to erroneous results. However, this is not
the focus of this paper and alternative initial segmentation
strategies are envisaged in later work.

Figure 2 shows the positive and negative RMS curves
(in dashed blue) calculated for two measured oscillation
cycles, as well as the initially segmented estimation (in
dashed green).

3.2 Optimisation Through Regression

This algorithm optimises the initially provided break-points
by minimising the mean square error between the linear
segmented model and the data, where the break-points rep-
resent non-linear parameters. The purpose of this proce-
dure is to optimally fit the entire cycle in two line segments,
which represents an approximation that is maximally reli-
able with regard to all data provided to avoid ambiguous
approximations and to improve precision. Since the ef-
fect of any moved break-point influences the regression
of neighbouring segments and therefore could influence
any break-point value in theory, the ideal regression would
require the entire signal to be known in advance. How-
ever, this would not allow for a real-time implementation.
Hence, a compromise is made where a number of N seg-
ments is isolated, i.e. assuming the limiting break-points
®) and Py, to be fixed (where k is a arbitrary first-
break-point index). When that regression is completed, a
new set of NV segments is chosen by removing the oldest
segment (on the left) and including a new segment (on the
right), i.e. with limiting break-points @51 and @ ny1.
While the rightmost regressions will be influenced by the
imprecision of the initial break-point that is held fixed, the
leftmost segments become independent of that effect.

3.2.1 Segmented Regression model

The chosen approach draws on a method proposed by Mug-
geo, which enables a probabilistic linear segmented fit on
a set of discrete data using an iterated optimisation of ini-
tially chosen break-points [20]. Muggeo’s regression model
is based on a discrete set of observations, say {Z,, Y} 2

with no knowledge about the relation between those obser-
vations (as is generally the case for regression problems).
However, in the current case of discretely sampled audio
data with a relevant sampling frequency, it is known that
intermediate data can be approximated by interpolation.
The inclusion of interpolation enables an increased frac-
tional sample precision and avoids conversion to false local
minima (since samples at break-point values can partially
belong to each of the two surrounding segments). It can
be shown that a regression including an increasing amount
of interpolated data converges to using continuous interpo-
lated functions of the explanatory variables Z = Z,, + 2’
and response variables Y =Y, + vy, (where 2/([0, 1) and
y», ([0, 1]) represent the continuous interpolation functions
over one sample), and replacing the summation over the
observations by an integral.

To enforce a regression with a fixed leftmost break-point,
say @y, the regression must be expressed as relative from
that break-point and its ordinate oy, (updated after each re-
gression), which can be achieved by subtraction of it. The
newly defined explanatory variable-function is z = Z —
®,,, the break-points are p; = ®y;, — &y (note that g =
0) and the response function becomes y(z) = Y (Z) —
ayg, but for notational convenience the z argument will
be dropped after the introduction of a variable, or where
it should be clear from the context. The data concerned

2 note that an index n always refer to a sample number while indexes
i, J, ... or numeric indexes refer to a break-point number.
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in this regression is comprised in the restricted domain
z = [0, on][, where @y is the rightmost (fixed) break-
point.

The continuous time model equation can be simply ob-
tained by replacing the discrete with the continuous vari-
ables:

N-1
y(2)=Pozo+ Y Bi(z—wi),+r(z) (D)
=1

where 3y is the slope of the first segment and the suc-
ceeding [3; are the differential segment slopes (i.e. how
much change in slope there is compared to the previous
segment), i.e. Z;’;O B is the slope of segment m, with
i ={1,2,..,N—1}andfori < j, ¢; < ¢; < ¢nN
and r is a residual signal. Hence, the segmented regression
model y,,, to be used in this iterative procedure at each
step s, is

N-1
Y= yﬁ;?) +7) = Byzg + Z (/B’L-Z£S) + %és)) +r®

i=1

(2)
where {00, i, i} are the model’s parameters and

(5) (9) 0 2 <"
20 = (el?), =, e o, ®

+ 2= @ <z

(s)

(s) (s) 0 z2<y

c; = (=11 (z > ©; ) = 4
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are the explanatory variables. After regression, the break-
point values can be updated as follows

(s+1) (s)

Pi =¥ +l

Bi
And iterated regressions are performed until desirable con-

version. Note that hereafter the iteration step argument (s)
will be left out for notational convenience.

®)

3.2.2 Minimising mean square error

To find an optimal fit, first the sum of the least square error
can be expressed

PN
11%2:/0 (y — ym)* dz (6)

and its minima with regard to all parameters are found by
looking for the zeros of the partial derivatives with respect
to the parameters. E.g. for §; this gives

OR> ¥V
= 28:22 — 2z + 2 .
a8, /0 Bj%; yz; + 2B020%;
)
N-1
i=1

i#]

This results is a set of 2N — 1 equations and unknowns,
which can be solved after the integration is calculated for

each term. For terms of the form z;c;>;, z;>ic; and c;c;,
not containing any response variable, the linear interpo-
lation results in linear functions, which allows to analyt-
ically reduce the calculations to only include the lower
and upper limits of the integration. For instance the terms
fow' 2i2j>; dz reduce to

ox — ¥3

3 3
PN — P;
7]*(%*902‘)7

3 + 0ipi(on — @;) (8)

and analogous expressions can be found for the other terms.
Terms containing a response variable require the interpo-
lation equation to be introduced. Writing y = v, + a, 2’
with sample-slopes a,, = Yn+1 — Yn, the integral over z
becomes a sum of integrals over each interpolated sample
Z:gm ff’:Nn” dz’ with n; = |@; — 2,0 | the sample index
of the samf)le where break-point ¢; occurs, and where

1 n<n;
fin=S¢pi—2zn n=mny ©)
0 n; <n

is the fractional part of each sample to be included in the
integration (for each ;). Hence, the "% SN yz e
terms reduce to

X f3 - zsn f2 _f7,2n
Z an% 4 (anzi,n+yn) %

n=n;

10)
and an analogous expression can be found for terms of the
form yc;.

Once the §; and ~y; coefficients are obtained, it can be
verified if y; is inferior to a tolerance value ~yy, of choice,
which ends the iteration if true for all j and otherwise
triggers a new regression with updated break-points using
equation (5). Figure 2 shows an example of a few oscil-
lations with an initial segmentation (in dashed green) and
regressed segmented estimations (in solid red).

3.2.3 Exception Handling

After each regression, apart from the convergence condi-
tion v; < v Vj , tWo more conditions are verified to han-
dle singularities and other exceptions.

While most initially detected segments converge reason-
ably quickly, there are some exceptional cases. Box stip-
ulates that convergence is not necessarily guaranteed with
this linearised iterative regression model [21]. Therefore,
the initial break-points should be chosen in a convex re-
gion around the finally regressed break-point, while the it-
eration updates should not lead the break-points out of that
region. As already reported by Muggeo, in certain cases
the algorithm can stagnate in alternating between two val-
ues, so that the tolerance value 7y, is never reached [22].
In other cases, an alternation with eventual conversion oc-
curs, but often only after a long iterative process. For now,
we simply allow a maximum number of iterations that is
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Figure 2. Example of a few measured steady-state oscilla-
tion cycles (in solid black) produced with an up bow on
the E-string, playing an F# (744 Hz). The blue dashed
lines represent the positive and negative RMS signals, the
dashed green line shows the initial segmentation and the
solid red line shows the regressed segmentation.

sufficient for almost all tested data. It was noted that ex-
ceptions exceeding 100 iterations only occur for particular
wave-shapes, which is not further discussed in this paper.

The foremost exception occurs when the a set of succes-
sive break-points lose the time-order when recalculated af-
ter an iteration. This can occur when the data between the
break-points is significantly conflicting with the model, i.e.
when it is significantly nonlinear in a way that it misleads
the first order Taylor series approximation, leading to an
excessive break-point jump. For such cases, a reasonable
workaround was found by shifting the new break-point val-
ues closer and closer towards the values from the previous
iteration (repeatedly calculating the mean value) until the
time-order conflict is resolved. This exception typically
occurs when the data and initially estimated break-points
do not conform with the model, e.g, for some multiple-
slip, and transient regimes. Since we plan to improve the
initial segmentation strategies for this purpose, we are not
concerned about these exceptions at this stage.

3.3 Feature Extraction

As mentioned earlier, the acoustically-informed segmen-
tation model is expected to provide characteristics that are
inherent to the sound which in its turn captures the player’s
musical intentions.

The features can be extracted from the parameters of a
single complete oscillation cycle, which is defined as one
stick and one slip, or two line segments encompassing three
breakpoints.

3.3.1 Amplitude and fundamental frequency

Provided that the oscillation cycles were identified cor-
rectly in the initial segmentation stage, the amplitude and
the fundamental frequency can be derived directly from the
current model by respectively calculating the signal ampli-
tude between the successive break-points and the temporal
distance between each pair of segments. Multiple consec-
utive periods could be considered, equivalent to a moving
average filter, to reduce noise in the parameters at the cost
of latency.

3.3.2 Relative corner position

The model also enables retrieval of a third cycle-related
feature, given by the position of the middle break-point
within each oscillation cycle (i.e. the corner position rela-
tive to the oscillation cycle, e.g. in figure 1 the ratio of the
stick duration over the stick and slip durations together),
which will be referred to as the “(relative) corner position”
or the “duty cycle”?3 .

This feature bears an interesting relation to physically
known aspects. While the acoustic losses and string stiff-
ness try to bring the duty cycle to 50% (as explained in sub-
section 2.1), it is the bow-string-interaction that tends to
force the duty cycle towards the ideal Helmholtz case [17].
Hence, it may be expected that a bow release from the
string could be identified by a changing corner position to-
wards the middle.

Furthermore, provided the pick-up and bow position are
closer to the bridge than to the nut or the finger pressing
the string (which is the case for the majority of finger posi-
tions), the longest of either the measured up or down going
oscillation sections will correspond to the case where the
Helmbholtz corner is traveling on the nut (or finger) side of
the string and where the string is sticking to the bow (as
indicated in figure 1). Since in this state the string and
the bow nearly coincide in velocity [9], the up or down
movement reveals the bowing direction (and an approxi-
mation of the bow velocity). Therefore, the relative corner
position is expected to alternate between the [0,0.5] and
[0.5, 1] ranges when bow direction changes occur.

3.3.3 Normalised corner position

Another physical fact related to the corner position can be
derived from the theory in section 2. In an ideal Helm-
holtz motion the relative corner position matches the rel-
ative pick-up position in the freely vibrating part of the
string (which can be estimated from the priorly measured
pick-up position and total string length, and using the esti-
mated fundamental frequency). Hence, it can be expected
that the measured deviation from that theoretical predic-
tion is dictated solely by the mentioned interplay between
acoustic losses and bow-string-interaction properties.

In other words, while fingered notes change the relative
pickup-position and thereby the relative corner position,
the ratio of those features, hereafter referred to as the “nor-
malised corner position”, should provide a feature whose
deviation from 1 or —1 reveals a more note-independent
indication of the player’s input.

3.3.4 Root-mean-square deviation (RMSE)

The limitations of the model also potentially carry useful
information, which can be studied by comparing the seg-
mented signal and the original data. For now, we only con-
sider the total root-mean-square deviation (RMSE) of this
residual error, which can be interpreted as a lumped fea-
ture, comprising the combined effects of all other so far

3 We note that the duty cycle of the signal reflects the stick and slip
regions as they pass by the point of measurement, which would be slightly
different than the actual stick and slip regions at the point of bowing.
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Figure 3. Four examples of segmented regressions of mea-
sured violin string displacement signals. The black and or-
ange curves respectively show the measured and regressed
signals.

neglected properties of the original signal. From a phys-
ical viewpoint, most deviations from the ideal Helmholtz
motion are roughly proportional to the amplitude and pe-
riod of the signal. Hence, it is more appropriate to express
the error as relative to these features. Meanwhile, from a
perceptual viewpoint, this independent expression of the
error feature makes it more consistent with timbre.

4. RESULTS

We carried out an evaluation where we instructed an ad-
vanced violin player to perform a set of specific techniques
and a series of musical excerpts. The separately measured
string movement was recorded and analysed with the pre-
sented algorithm. By comparing the feature results with
various amounts of segments N in the regression, it was
found that a number of N = 6 segments results in the op-
timal balance between low-noise features and latency (a
more detailed report on this is out of the scope of this pa-
per), and convergence was obtained in about 10 to 30 iter-
ations with 4, = 1076,

It must be stressed that the purpose of this paper is not to
solve a physical model to provide performance parameters
such as speed or force of the bow, but rather to generate a
parametrisation that responds meaningfully to the changes
in the performer’s actions, which can later be used in real-
time performance applications. This means that there is no
obvious ground truth to compare against in this case.

4.1 Segmented Regressions

Figure 3 shows four examples of segmented linear regres-
sions of oscillation cycles. Figures 3 (a), (b) and (c) are all
steady-state regimes of A4 notes, but they are played with
different playing techniques, which can be noted from fig-
ure 4, where reference to these figures is made in the time
axis. Meanwhile, (d) is an attack transient of an F#5 note.
In most cases, the regressed segmented signal is reason-
ably close to the measured signal. Especially the shorter
segment, corresponding to the bow-string slip-phase, is gen-
erally very linear, except for rare cases such as in figure 3
(c) where “multiple flybacks” occur, i.e. the slip-state is

interrupted by short intermediate sticking phases. It can be
also noted that also all non-modelled effects in these exam-
ples repeat themselves exactly on consecutive cycles, i.e.
they also represent deterministic steady-state components.
All examples also show rounded corners, but it is worth
mentioning that other signal examples showed a wider va-
riety of corner roundings (not plotted). In figure 3 (d), the
low amplitude at the beginning of the note onset proves
vulnerable for bowing gestures causing an offset in the sig-
nal as the first oscillation cycles are not detected. It can be
also seen, in this example, how a second slip (i.e. a second
harmonic) occurs but fades out again quickly.

4.2 Sound Features

Figure 4 (a) shows the obtained features for a few partic-
ular playing techniques, which are annotated at the bot-
tom*. We note that that the data used for this figure only
contains samples without bow changes. Figure 4 (b) shows
the features for the first twelve notes of J.S. Bach’s IT Dou-
ble BWV 1002, along with indication of note-changes and
the played note and string.

The fundamental frequency is compared with an fO esti-
mation provided by the Sonic Visualiser software, which
relies on the LibXtract library [23, p. 69] that implements
an estimation based on the “Average Magnitude Difference
Function”. It should be noted that this estimator uses an at
least four times larger time frame than the oscillation peri-
ods, resulting in a low-pass filtered yet slower response.

4.2.1 Varying bow speed

It is interesting to note that the normalised corner position
deviates more from unity for the lower bow speed. As can
be seen in figure 3 (b), it is likely that the ripples in the
sticking section are biasing the actual corner position. A
closer examination confirmed that a virtually equal corner
position is found between high and low bow speed when
the feature is derived from the initial segmentation (i.e.
using the minimum-to-maximum peaks), which may sup-
port this hypothesis. This example illustrates how effects
that are not taken into account in the model can slightly
influence the features. While there is no significant change
in the average fundamental frequency with changing bow
speed, there is a clearly increased noisiness of this feature
in the low bow speed case. This may be related to the
fact that low oscillation amplitudes are more sensitive to
bowing gestures, which can also be perceived as a more
hesitating sound.

4.2.2 Varying bow force

While a change in bow force also evokes a change in am-
plitude, it does not affect the corner position so much, but
rather the fundamental frequency and its noisiness seems
to show a noticeable correlation.

4.2.3 String release

As predicted by the theory, when the bow is released from
the string, the corner position converges towards 0.5. This

41t should be noted that, in this brief study, the evaluation of the bow-
ing parameters hasn’t been strictly independently evaluated.
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Figure 4. Obtained features for signal samples of various playing techniques (a) and of a musical phrase (b). Playing
techniques and played notes are indicated at the bottom rows. The labels (3a), (3b), (3¢c), (3d) in the timeline refer to the

respective plots of figure 3.

appears to occur quite fast, and it is also worth noting that
it even surpasses this value. The increase in RMSE can
be explained by the fact that the gradually rounding wave
shape diverges more and more from the triangular Helm-
holtz shape. However, the fastest identification of this par-
ticular regime seems to be provided by the corner posi-
tion features. The more precise representation of the nor-
malised corner position reveals a clearly abrupt transition
when the bow releases the string.

4.2.4 Sul tasto bow position’

This bowing technique results in a very good approxima-
tion of the Helmholtz motion, which can be noted from
the remarkably low RMSE feature. Because of this low
RMSE, we can confidently say that the fundamental fre-
quency obtained from the regression is not corrupted by
falsely detected cycles, and that it are failures of the LibX-
tract method that are at the cause of the deviations between
the curves.

4.2.5 Staccato

As shown in figure 3 (c), the first of the played staccato
notes is marked by multiple flybacks in the slip regime.
Meanwhile, the wave shape in the second staccato note is
similar to 3 (a). The flyback regime may well be the cause
of the former’s unusually low normalised corner position.

4.2.6 Musical phrase

As theoretically predicted, most bow direction changes can
be clearly identified from the swap in corner position. It
would be useful if there were a feature threshold that en-
ables separation of note onsets and more steady-state os-
cillation regimes. With the current model, the note onsets
cause erroneous initial segmentations which lead to the
high RMSE values noted in figures 3 (b) and 3 (d), which
would therefore be a potential candidate to identify note-
onsets. However, closer examination revealed that there is

3 Sul tasto means bowing near or over the fingerboard.

no RMSE threshold that enables fully consistent identifi-
cation.

Since various finger positions are used in this excerpt, it
can be noted that the normalised corner position indeed
confirms a behaviour that is more independent from the
note than the relative corner position on its own.

While there appears to be an erroneous leap in pitch at
the end of the first note, closer observation reveals an am-
biguous fundamental frequency situation due to a strong
double-slip oscillation regime. It can be noted that many
dropouts occur in the fundamental frequency obtained by
LibXtract, which is mainly due to the low performance of
this method at low amplitudes.

It is further interesting to note that the notes ES, F#5 and
G5 are played both on the E and A string. The normalised
corner position for all of these notes is somewhat higher
when played on the A string (unlike the low bow speed
note in figure 3 (a), there are no ripples on the signal, ex-
cluding this potential cause). While a more comprehensive
study will be needed to draw pertinent conclusions, it can
be hypothesised that there is an inverse correlation with
the (vibrating) string length, which in turn may be related
to the amount of acoustic losses.

5. CONCLUDING REMARKS

Real measured string displacement signals appear to be-
have reasonably close to the ideal Helmholtz motion of
string vibration. Therefore, we hypothesise that approxi-
mating the measured signal by this signal model using re-
gression yields meaningful parameters with regard to the
character of the sound and therefore to the player’s musi-
cal intent.

As a next step, the extracted parameters take a form that
could easily be adapted to control a musical synthesiser.
The frequency and amplitude parameters have obvious map-
pings for this application. While these can also be ex-
tracted with more generic signal-processing algorithms (e.g.
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[7]), our system takes advantage of the known characteris-
tics of the bowed string. This specific-purpose approach
can provide less ambiguous features regarding the physics
taking place, with low and constant latency (compared to
spectral or windowed methods); which we believe can sig-
nificantly improve fast and reliable quantisation of detailed
musical intentions. Our approach also allows a tuning be-
tween latency and precision based on the number of seg-
ments to be fit at a time.

The corner position enables detection of bow direction,
which could be used to shape the output sound, and its
converge toward 0.5 when the bow leaves the string could
change the state of a connected synthesiser from sustain to
release, even before the violin sound entirely stops. Mean-
while, the deviation of the normalised corner position from
+1 appears to be an indicator of the string length (yet it
may be biased by non-Helmholtz signal deviations, which
will be considered later). The periods of increased RMSE
often correspond to bow changes in a way that could detect
note onsets with less latency than the spectral methods that
are often used for onset detection on string instruments.
Meanwhile, low RMSE values may enable the identifica-
tion of the sul tasto playing style. That being said, it should
be stressed that the goal of this work is not to extract phys-
ical parameters of violin performance, but it suggests a re-
lationship with timbre or tone quality.

Finally, the systematic deviations identified in Figure 3
between the original signal and the segmented linear re-
gression point the way toward further, more detailed fea-
ture extraction which could be used for performance appli-
cations.

The purpose of this paper has been to lay out the the-
oretical and mathematical foundations of a real-time fea-
ture extraction algorithm which draws on the physics of
the bowed string. The next stages of this work will apply
the results to real-time sound synthesis and consider the
subjective response of the performer to the resulting digi-
tal instruments.
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