
TEACHING PROGRAMMING
IN SECONDARY EDUCATION THROUGH SOUND

Theofani S. Sklirou Areti Andreopoulou Anastasia Georgaki
Department of Informatics
and Telecommunications

University of Peloponnese
Tripoli, Greece

fanisklirou@yahoo.gr

Laboratory of Music Acoustics
and Technology (LabMAT)
 National and Kapodistrian

University of Athens
a.andreopoulou@music.uoa.gr

Laboratory of Music Acoustics
and Technology (LabMAT)
 National and Kapodistrian

University of Athens
georgaki@music.uoa.gr

ABSTRACT
It is considered hard to teach programming in secondary
education, while following the steps of the provided cur-
riculum. However, when teaching is supported by suita-
ble methodologies, learning can be ameliorated. Under
this premise, this paper discusses a different teaching
approach to programming in secondary education and
examines the potential benefit of sound-alerts as a com-
plementary teaching tool. Such alerts were created by
pairing sound stimuli to specific programming actions
and operations. Both the selection of sound stimuli as
well as the potential impact of the use of sound alerts on
programming were evaluated through perceptual studies.
Results showed that participants preferred synthesized to
natural (pre-recorded) stimuli for all types of alerts. It
was also revealed that users prefer sound-alerts associat-
ed to pending actions, errors, and successful code execu-
tion, over alerts highlighting a step-by-step execution of
the code.

1. INTRODUCTION
According to a popular definition, programming is the
process of writing, testing, debugging/troubleshooting,
and maintaining the source-code of computer programs
[1]. In Greek secondary education, programming courses
were introduced to the curriculum 25 years ago. Since
then, students have been confronted with problems con-
cerning human computer interaction through coding, as
the latter requires a precise way of thinking realized
through specific syntax [2, 3, 4]. Nevertheless, while the
most common difficulties that students encounter when
learning how to program have been identified, clear strat-
egies for addressing them still remain to be established.

High-school students should be taught programming
concepts independently of specific applications and pro-
gramming languages [5, 6]. They all have different needs
and difficulties, which can be divided into 5 categories
[7]: 1) orientation: discovering the usefulness and bene-
fits of programming, 2) notional machine (the general
properties of the machine): realizing how the behavior of
the physical machine relates to the notional machine, 3)

notation: facing problems related to syntax and seman-
tics, 4) structures: understanding the schemas or plans
that can be used to reach small-scale goals (e.g., using a
loop), and 5) mastering the pragmatics of programming:
learning the skill to specify, develop, test, and debug a
program using the available tools.

Pea has identified certain persistent conceptual lan-
guage-independent “bugs” in how novices program and
understand coding [8]. Students believe that computers
“go beyond the information given” in a program. In addi-
tion, it has been observed that several of them fail to
“translate” a conceptual solution to a problem into the
correct code [9]. The reason might be that students are
not trained to transform conceptual intuitions into code.
Such obstacles, could be overcome by helping students
develop problem-solving skills in addition to logical rea-
soning.

It is known that Artificial languages have a limited
vocabulary compared to natural ones. Yet, teachers use
natural languages to decode and communicate the mean-
ing of programming operations. It has been shown that
multimodal interactions facilitate the understanding of
programming concepts [10, 11]. The most common prac-
tices in Greek schools involve environments with audio-
visual feedback [12, 13]. This paper explores the use of
sound-alerts as a complementary tool to programming
courses, and discusses their potential impact on the stu-
dents’ problem solving skills development.

2. PROGRAMMING IN SECONDARY
EDUCATION: AN OVERVIEW OF

EDUCATIONAL TOOLS
This section presents an overview of the programming
methods used in secondary education, and thoughts
around programming environments, in general. The first
attempts to present programming in a more engaging
manner started in the early ‘70s. Among the most popular
environments were Logo and its derivates Kodu and Alice
[14]. Some of these proposals promoted the use of visual
or virtual programming languages and the simulation of a
dynamic auralization of the program execution [15].

Γλωσσοµάθεια (Glossomatheia) is a pseudocode
based programming environment, written in Pascal, used
in secondary education (high-school) in Greece. [16, 17,
18]. It is a training package, developed with a focus on
laboratory support courses related to the cultivation of
algorithmic and analytical thinking, and the development

Copyright: © 2018 Theofani S. Sklirou. This is an open-access article
distributed under the terms of the Creative Commons Attribution License
3.0 Unported, which permits unrestricted use, distribution, and reproduc-
tion in any medium, provided the original author and source are credited.

SMC2018 - 118

Figure 1. The Glossomatheia programming environment

of methodological skills for students. An example of the
software can be found in Figure 1. As can be seen, it re-
lies heavily on visual cues, using written messages as the
primary communication method with the user. The work
presented in this paper is using Glossomatheia as a basis
for the evaluation of the effect of auditory cues on com-
puter programming comprehension.

The closest approach to an educational tool for pro-
gramming employing audio cues is Scratch. Scratch is
used in education and entertainment, and is suitable for
students at a starting age of 8 years old [19]. Students can
easily create interactive stories, animations, computer
games, music and digital art. Sensors can also be used
with Pico board, a piece of hardware, allowing the inter-
action of Scratch projects with the outside world. The
system offers support for music blocks controlling loop-
sets, play-back etc. [20].

Peep is a Network Auralizer that replaces visual
monitoring with a sonic `ecology' of natural sounds. Each
sound-type represents a specific kind of network event
[21]. The idea of testing auditory feedback using natural
sounds in the system presented in this paper was highly
motivated by Peep. After visualization, information is
transmitted through sound using perceptually relevant
parameters, such as intensity and frequency [22].

Figure 2. The Scrach X environment

3. TEACHING PROGRAMMING
USING BIMODAL INTERACTIONS

According to [23], students in Greek high-schools learn
only basic elements of programming, due to the ineffi-
cient and, in some cases, outdated teaching methods, and
the absence of an interconnection between education and
the industry. In an attempt to alleviate the former, this
paper discusses a methodology for teaching programming
through sound-alerts stimulating psychoacoustic percep-
tion. The explored sound quality characteristics include,
but are not limited to, pitch, tempo, rhythm, timber, loud-
ness, roughness, and sharpness etc. [24]. It has been
shown that the use of physiological measures sensitive to
attention and arousal, in conjunction with behavioral and
subjective measures can lead to the design of auditory
warnings that produce a sense of diversity of program-
ming commands [25]. Given that acoustic and visual
memory make up 90% of the sensory memory, it can be
hypothesized that students receiving both visual and
acoustic feedback will gain a deeper understanding of
programming structures.
 The long-term goal of this project is to assist stu-
dents understand different algorithmic procedures, such
as relational and arithmetic operations, through bimodal
(visual and aural) feedback. The underlying hypothesis is
that through visual and aural interactions students will
comprehend programming structures more effectively.

3.1 Stimulus selection

One crucial component in the design of a bimodal pro-
gramming environment is the selection of the utilized
sound stimuli, which, in order to be conducive to the stu-
dents’ learning, should reflect in a clear and concise man-
ner the algorithmic action they correspond to. In addition,
they should also reflect the aesthetics of the target group,
in this case consisting of senior high-school students.

Hence, a preliminary study was conducted aiming at
the selection of the most appropriate sound stimuli, given
the aforementioned criteria. Two different categories of
sounds were tested, natural (environmental / ecological)
and synthesized. Ecological sounds have richer timber
and pitch variation than synthesized ones and their use is
important.

Five procedures and/or operations were selected for
evaluation: a) reading data from keyboard b) successful
data assignment, c) error, d) arithmetic operation, and e)
relational operation. For each procedure, a pair of sound
stimuli were selected (1 natural and 1 synthesized), such
that they shared common auditory characteristics in terms
of pitch, timbre, speed, and contour. Participants were
asked to select the best fitting sound alerts for each of
tested procedures.

SMC2018 - 119

Figure 3. Preliminary test result overview. Bars
correspond to the selection rate of each sound stimulus
grouped per process and averaged across test repetitions.
Variations between repetitions are marked with error-
bars.

3.2 Protocol overview

146 senior high-school students (67 male), 16 to 17 years
old, participated in this preliminary study. Participants
were divided into 8 groups. Groups were presented with a
pair of stimuli (sound-alerts) for each of the 5 coding pro-
cedures, and were asked to select the alert that best fitted
each procedure in a 2AFC task with no repetitions. Each
group took the test twice, once in the beginning and a
second time at the end of a class, to evaluate response
repeatability. The approximate duration of each test was 5
minutes. Between groups both the order of stimuli and
test procedures were fully randomized, but remained the
same within groups for practical purposes.

3.3 Preliminary Study Results

The stimulus type selection results of the preliminary
study are summarized in Figure 3. As can be seen, the
vast majority of the students (82% - 96%) preferred syn-
thesized alert sounds over natural ones. No significant
deviations were observed as a function of stimulus and/or
procedure presentation order. Student preference, re-
mained roughly unchanged across the 2 test repetitions
(see Figure 3 error-bars). Variations were smaller than
3% across all tested procedures. These results highlight
that synthesized sound-alerts are highly preferred for
such types of interactions.

4. EVALUATION STUDY
Following the preliminary study, a second experiment
was conducted to assess the effectiveness of sound-alerts
as a complementary tool for teaching computer pro-
gramming. 53 senior high-school students (24 male), who
have previously participated in the preliminary study,
volunteered to participate. All of them were taking, at the
time, programming classes at school using Glossomathe-
ia.

Figure 4. Max/MSP test interface (evaluation study)

4.1 Experimental Protocol

Participants were presented with 3 ready-to-run pro-
gramming scenarios in Glossomatheia and Max/MSP.
The Max/MSP patch was designed to have an identical
user-interface to Glossomatheia. Its only difference was
that it complemented visual feedback with sound-alerts.
The sound stimuli utilized for the alerts were selected
from the most preferred sounds of the preliminary study.
 Participants were allowed to interact with both envi-
ronments and were afterwards asked to fill a question-
naire evaluating the effect of auditory feedback on the
comprehension of the code functionality. For each tested
scenario, user ratings were collected on a 5AFC Linkert
scale with the following anchors: no affect, minor affect,
neutral, moderate affect, major effect. The questionnaire
concluded with a “general comments” section, where
participants could share their thoughts and feedback on
the tested system.

4.2 Teaching scenarios

The following 3 teaching scenarios were tested:

4.2.1. Scenario 1: Data entry

The code performed an assignment of a numerical value
to a pre-defined variable. Upon execution, the program
waited for user-input from the keyboard. If the input val-
ue was numeric an assignment was performed and the
program concluded. Yet, if user-input was not numeric,
the code returned an error and waited for new input.

When this scenario was evaluated in Glossomatheia,
the waiting time for user-input was indicated by a flash-
ing cursor on the computer screen. In the Max/MSP envi-
ronment, except for the flashing cursor, users heard a
sound-alert informing them of a pending action. If the
user-input was numeric, Glossomatheia, printed the as-
signment on screen and the code concluded, while
Max/MSP complemented the visualization with a sound-
alert indicating successful assignment. If user-input was
not numeric, Glossomatheia printed an error message on
screen, while Max/MSP produced an additional sound-
alert, indicating an erroneous action.

SMC2018 - 120

Table 1. Participant evaluations of the effect of sound-alerts on code comprehension

4.2.2. Scenario 2: Arithmetic operation

The code performed an assignment of a numerical value
to a pre-defined variable followed by a simple numerical
operation (addition to a constant). The first part concern-
ing the assignment of user-input to a variable was identi-
cal to scenario 1. Hence the code worked exactly as de-
scribed in Section 4.2.1, and both Glossomatheia and
Max/MSP alerts remained the same. When the arithmetic
operation was executed Glossomatheia printed the result
on the computer screen, while the Max/MSP test-
environment produced a complementary sound-alert indi-
cating that an arithmetic operation had been performed.

4.2.3. Scenario 3: Relational operation

The code performed an assignment of a numerical value
to a pre-defined variable followed by a simple relational
operation (comparison of the input to the numerical value
of 1). The first part concerning the assignment of user
input to a variable was identical to scenario 1. Hence the
code worked exactly as described in Section 4.2.1, and
both Glossomatheia and Max/MSP code alerts remained
the same. When the relational operation was executed
Glossomatheia printed the boolean result on the computer
screen, while the Max/MSP test environment produced a
complementary sound-alert indicating that a relational
operation had been performed.

4.3 Results

Participant evaluations of the effect of sound-alerts on code
comprehension are summarized in Table 1. As can be seen,
more than 60% of the assessors indicated that the use of
sound-alerts had a positive effect (moderate or major) on
code comprehension of the following operations/actions:
waiting for data input (read), successful assignment of data
to a variable, and erroneous code execution (error). In addi-
tion, it appears that the use of sound-alerts had no effect
(neutral) to users in the case of arithmetic and relational
operations, fact which could be interpreted in two different
ways: either users preferred sound-alerts for events perti-
nent to the correct or erroneous execution of the code and
for notifications of pending actions, or the specific experi-
ment design and rating questions were not appropriate for
testing the effectiveness of sound-alerts on other types of
operations.
It should also be noted that out of the 53 participants less
than 12% indicated that the complementary use of sound-
alerts had no effect on code comprehension (Table 1). The
remaining students did feel that the auditory cues had an
impact on code understanding. This observation is also re-
flected on Figure 5, which plots user evaluations averaged

across the three tested scenarios. As can be seen, approxi-
mately 57% of the students felt that the effect was moderate
or major compared to 19% who felt that the effect was mi-
nor or non-existent.

5. CONCLUSIONS & FUTURE WORK

This paper discussed the potential benefits of using audi-
tory cues (sound-alerts) as a complementary tool for
teaching programming in secondary education. The work
was based on the hypothesis that bimodal user interac-
tions could positively impact the students’ development
of problem solving skills, and improve their comprehen-
sions of programming code. Two studies were presented.
The first assessed the type of sounds which would be
preferable for such a task, while the second whether or
not the use of sound-alerts affects code comprehension.

Two different sound categories were considered: rec-
orded excerpts of bird sounds (natural sounds) and elec-
tronic sounds from synthesizers (synthesized sounds).
Five computational procedures and/or operations were
evaluated (reading data from keyboard, successful data
assignment, error, arithmetic operation, and relational
operation. For each procedure, a pair of sound stimuli
were selected and paired to a sound from each of the two
categories. The sound pairs shared common musical and
psychoacoustic properties, such as the perceived pitch
and loudness [24, 27], while varying in terms of timbre.

Figure 5. Overall evaluation of the use of sound-alerts on
code comprehension averaged across all gteaching
scenarios.

Operation No affect Minor affect Neutral Moderate affect Major affect
Read 11,32% 0,00% 24,53% 30,19% 33,96%
Assignment 11,32% 1,89% 7,55% 35,85% 43,40%
Error 9,43% 3,77% 15,09% 39,62% 32,08%
Arithmetic 13,21% 15,09% 37,74% 16,98% 16,98%
Relational 9,43% 18,87% 35,85% 28,30% 7,55%

SMC2018 - 121

Auditory display connects psychoacoustics with cog-
nition based on sound attributes. The most important as-
pects in auditory design relate to whether the listener can
hear changes of particular parameters in a given sound.
Timbre is a catch-all term in both psychoacoustics and
auditory display, often used to imply various sound at-
tributes. The ability to distinguish sounds of different
timbres has been important in mapping data to audio. On
the other hand, pitch is the most commonly used auditory
display dimension. This is because it is easy to manipu-
late and, generally speaking, changes in pitch are easily
perceived. [26].

Participants showed very strong and consistent pref-
erence towards synthesized sounds, rejecting natural ones
almost unanimously across all tested procedures. This can
be attributed to the fact that the context of the selected
natural sounds (bird voices) could not be directly associ-
ated with the technical concept of the task.

In the second study, participants had to evaluate the
effect of sound-alerts on code comprehension, given three
programming scenarios. Overall, students rated the use of
auditory feedback positively. 57% of them indicated that
the cues had a moderate to major effect on their under-
standing, while only 11% indicated no effect at all. Inter-
estingly enough, participants showed stronger preference
for sound-alerts related to pending activities and correct
or erroneous executions of the code than to other opera-
tions. This can be related to the fact that sound alerts
work well as memory boost [28], hence notifying users of
any code-related events that require action. Our interpre-
tation of the ratings is further supported by some of the
provided written feedback. For example, some students
wrote: "I prefer the sounds for success and error", "the
pending action sound helped me understand that was time
to input some data", "sound alerts for numerical and rela-
tional operations were not so important".

Certain participants indicated that a combination of
sound-alerts and voice messages could be effective. This
is certainly a route worth exploring as this project ad-
vances. In moving forward, the first step would be to in-
clude sound-alerts for more procedures and operations,
and test them against more complex teaching scenarios.
Such will include looping, conditional statements, data
sorting, element searching etc.

Acknowledgments

The authors would like to thank all students who partici-
pated on the two studies presented in this paper.

6. REFERENCES
[1] M. Saeli, J. Perrenet, W. Jochems, B. Zwaneved,

“Teaching Programming in Secondary School: A
Pedagogical Content Knowledge Perspective”, 2011,
Retrieved from https://files.eric.ed.gov/
fulltext/EJ1064282.pdf, [Last visited 05/04/2018]

[2] N. Avouris, “Introduction to Human Communication
– Computer”, Athens: Diavlos, 2000.

[3] M. Grigoriadou, A. Gogolou, E. Gouli, K. Glezos,
M. Boubouka, K. Papanikolaou, C. Tsagkanou, E.
Kanidis, D. Dukakis, S. Fragkou, and H. Verginis,
“Teaching Approaches and Tools for teaching IT”,
Athens: New Technologies, 2009.

[4] A. Robins, J. Rountree and N. Rountree, “Learning
and Teaching Programming: A Review and
Discussion. Computer Science Education”, 2003.

[5] C. Stephenson, J. Gal-Ezer, B. Haberman and A.
Verno, “The New Educational Imperative:
Improving High School Computer Science
Education” (Rep. No. Final Report of the CSTA
Curriculum Improvement Task Force – February
2005).

[6] P. Szlávi, and L. Zsakó, “Programming versus
application”, In: Mittermeir, R.T. (Ed.), ISSEP 2006,
LNCS 4226, 2006, 48–58.

[7] B. Du Boulay, “Some difficulties of learning to
program”, In: Soloway, E., Spohrer, J.C. (Eds.),
Studying the Novice Programmer, London,
Lawrence Erlbaum Associates, 1989, 283–299.

[8] R.D. Pea, “Language-independent conceptual
“bugs” in novice programming”, Journal of
Educational Computing Research, 1986, 2, 25–36.

[9] M. Weigend, “From intuition to program.
Programming versus application”, In: Mittermeir,
2006.

[10] K. Tsolakidis and M. Fokidis, “Virtual reality in
education”, Athens, 2007.

[11] A. Vakaloudi, “Teaching and learning with new
technologies theory and practice”, Athens: Patakis,
2003.

[12] S. Aslanidou, “Educational Technology, From the
audiovisual in the digital treatment”, 2010.

[13] C. Kelleher and R. Pausch, “Lowering the Barriers
to Programming: A Taxonomy of Programming
Environments and Languages for Novice
Programmers”, ACM-Computer-Surveys, 2005.

[14] Noss, R., “Children Learning Logo Programming”
Interim Report No. 2 of the Chiltern Logo
Project, Advisory Unit for Computer Based
Education, Hatfield, United Kingdom, 1984.

[15] Beanz, the magazine for kids, code, and computer
science (https://www.kidscodecs.com/resources/pro
gramming/education/), [Last visited 05/04/2018]

[16] Spinet (http://spinet.gr/glossomatheia/), [Last visited
05/04/2018]

[17] Algorithmos (http://www.algorithmos.gr/glossomat
heia.html), [Last visited 05/04/2018]

SMC2018 - 122

[18] Ebooks.edu.gr (http://ebooks.edu.gr/courses/DSGL-
C101/document/4c65902ff3dk/4e52d483egdp/4e52e
406mj6l.pdf), [Last visited 05/04/2018]

[19] Scratch Wiki (https://wiki.scratch.mit.edu/wiki/
ScratchX), [Last visited 05/04/2018]

[20] P. Kirn, “Roland and MIT want to use music to
teach kids programming”, 2018, Retrieved from
http://cdm.link/2018/01/roland-mit-want-use-music-
teach-kids-programming/, [Last visited 05/04/2018]

[21] M. Gilfix, A. Couch, “Peep (The Network
Auralizer): Monitoring Your Network With Sound”,
https://www.usenix.org/legacy/events/lisa00/gilfix/g
ilfix_html/, [Last visited 05/04/2018]

[22] V. Cerf , “Communications of the ACM.
The sound of programming”. Retrieved from
https://cacm.acm.org/magazines/2018/4/226379-the-
sound-of-programming/fulltext, [Last visited
05/04/2018]

[23] I. Milne, G. Rowe, “Difficulties in Learning and
Teaching Programming—Views of Students and
Tutors”, 2002, Retrieved from
http://www.swisseduc.ch/informatik-
didaktik/programmieren-lernen/docs/milne.pdf,
[Last visited 05/04/2018]

[24] K. Genuit, “Sound quality in environment:
“Psychoacoustic mapping”, 2004,
https://doi.org/10.1121/1.4785535

[25] J. L. Burt, D. S. Bartolome, D. W. Burdette and J.
R. Comstock JR, “A psychophysiological evaluation
of the perceived urgency of auditory warning
signals”, 2007, Pages 2327-2340,
https://doi.org/10.1080/00140139508925271

[26] B. Walker and G. Kramer, “Ecological Psychoa-
coustics and Auditory Displays: Hearing, Grouping,
and Meaning Making”, Retrieved from
http://sonify.psych.gatech.edu/~walkerb/publications
/pdfs/2004WalkerKramer-
Ecological_psychoacoustics.pdf [Last visited
31/05/2018]

[27] H. Fastl, “Psychoacoustic basis of sound quality
evaluation and sound engineering”, 2006, Retrieved
from https://mediatum.ub.tum.de/doc/1138486/file.
pdf, [Last visited 05/04/2018]

[28] D. Yarbrough, “ Sound the alarm: how sounds affect
our memory and emotions”, 2017, Retrieved from
https://www.voxmagazine.com/music/sound-the-
alarm-how-sounds-affect-our-memory-and-
emotions/article_153c4146-be25-11e7-b9ab-
8b1620bcc28d.html

SMC2018 - 123

