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ABSTRACT 
This paper presents a new model for segmenting symbol-
ic music data into phrases. It is based on the idea that 
melodic phrases tend to consist of notes, which increase 
rather than decrease in length towards the phrase end. 
Previous research implies that the timing of note events 
might be a stronger predictor of both theoretical and 
perceived segmentation than pitch information. Our ap-
proach therefore relies only on temporal information 
about note onsets. Phrase boundaries are predicted at 
those points in a melody where the difference between 
subsequent note-to-note intervals reaches minimal values. 
On its own, the proposed model is parameter-free, does 
not require adjustments to fit a particular dataset, and is 
not biased towards metrical music. We have tested the 
model on a set of 6226 songs and compared it with exist-
ing rule-based segmentation algorithms that had been 
previously identified as good performers: LBDM and 
Grouper. Next, we investigated two additional predictors: 
meter and the presence of pauses. Finally, we integrated 
all approaches into a meta-classifier, which yielded a 
significantly better performance than each of the individ-
ual models. 

1. INTRODUCTION
Melodic segmentation refers to the subdivision of melo-
dies into smaller meaningful groups. When hearing a 
piece of music, listeners - whether musically trained or 
not - will perceive stronger or weaker points of closure in 
the melody. Experts in music theory are able to identify 
these points by analyzing the score. Researchers in Music 
Information Retrieval (MIR) have attempted to automati-
cally identify and reliably predict points in melody indi-
cated as group borders by either listeners or music theo-
rists. The quality of any proposed model is therefore 
established as the degree of agreement with human rat-
ings. In MIR, segmentation has been mostly investigated 
at phrase level, rather than at lower levels in the structural 
hierarchy, such as motifs. What complicates the task is 
the fact that the task does not have a single "correct" 
solution. The perception of boundaries between phrases is 
subjective, especially where the border is weak or ambig-
uous. Musicians, as well as musically untrained listeners, 
have been shown to display differences (between groups 
and within groups) when indicating phrase boundaries 
(e.g. Deliège, 1987, Peretz, 1989, Thom et al., 2002; 
Bozkurt et al., 2014, Hartmann et al., 2017). In this sense, 

no model can predict human judgments infallibly. 
The formal definition of the criteria used by listeners for 
melodic segmentation laid out by Lerdahl and Jackendoff 
(1983) in A Generative Theory of Tonal Music (GTTM) 
has been frequently used as a point of departure for the 
MIR segmentation task. GTTM derives from the rules 
defined by Gestalt psychology, such as proximity and 
similarity. The Grouping Preference Rules of Lerdahl and 
Jackendoff postulate that listeners cluster tones into 
groups on the basis of a set of rules, including temporal 
proximity (slur/rest - GPR 2a; inter-onset-interval  - GPR 
2b); degree of change in register (GPR 3a), dynamics 
(GPR 3b), articulation (GPR 3c) or length (GPR 3d); 
symmetry (GPR 5), and motivic similarity (GPR 6). A 
boundary is perceived in places where the temporal prox-
imity, or the change in the individual properties men-
tioned above, is greater than that of the neighbouring 
transitions. The last two rules describe listeners' prefer-
ence for group shapes that are symmetrical (GPR 5), and 
the tendency to place parallel shapes into parallel groups 
(GPR 6). While the authors of GTTM separated grouping 
from meter and treated them as independent entities, they 
emphasized that grouping and meter interact, and struc-
tures are perceived most clearly where they are in mutual 
accordance. 
The validity of GPRs was largely supported in listening 
experiments; the effects of long inter-onset-intervals 
(IOI) and rests (GPR 2b and 2a) were typically found 
stronger than those of pitch changes (e. g. Deliège, 1987; 
Frankland and Cohen, 2004; Peretz, 1989). Of course, the 
durational proportions of events in music scores are not 
the same as in live music. Yet, the use of long notes at 
phrase ends is frequently further accented in performance 
practice, in that performers lengthen the last note of the 
phrase, and insert a micropause (Friberg et al. 1998); 
although Cambouropoulos (2001) suggests that it is not 
always the last note that is lengthened, but, in some cases, 
the penultimate note, resulting in the delay of the phrase-
final note onset. Pauses are salient dividers between con-
secutive phrases, as they often precede phrase starts 
(Temperley, 2001). In vocal music at least, singers need a 
pause to breathe in, and this is usually reflected in the 
music score. Bruderer's (2008) results show that in West-
ern popular music, IOIs, pauses, and timbre change con-
tribute most to the perception of boundaries. Repetition 
and motivic similarity also provide the listener with cues 
about phrase boundaries. While the identification of pat-
tern similarity is a non-trivial task, there are indications 
that metrical context plays a strong role in similarity 
perception: repetitions often begin at phrase starts (Tem-
perley, 2001), and patterns sharing the same meter are Copyright: © 2018 Cenkerová, Z., et al. This is an open-access article 
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more often rated as similar (Gabrielsson, 1973). Ahlbäck 
(2007) shows that listeners might not recognize even 
exact repetitions if the repeated fragments start at differ-
ent points in the metrical hierarchy.  
We introduce a model based on the assumption that inter-
onset-intervals (IOI) within music phrases tend to get 
longer as the phrase progresses, and longest towards the 
phrase end. This pattern is best seen on simple recitative 
songs, such as Gregorian chant. Our aim is to create a 
parsimonious, general, parameter-free model which does 
not require additional changes to reflect the specifics of 
the music data. Previous research suggests that temporal 
information provides more salient grouping cues than 
pitch information; our model is therefore based solely on 
the timing of note events. 
We are interested in comparing the predictive power of 
this approach with that offered by other kinds of temporal 
information, such as offset-to-onset intervals (rests) and 
metrical symmetry, and with existing rule-based, Gestalt-
derived models. 

2. COMPUTATIONAL SEGMENTATION
Several algorithms have been proposed to deal with seg-
mentation of both symbolic and audio music data. Exist-
ing models for automatic segmentation of melodies in the 
symbolic form are largely limited to monophonic data 
and can be roughly divided into two groups. Rule-based 
models derive from expert knowledge and intuitions of 
music theorists, and are usually based on the principles of 
Gestalt psychology. The second group of models is driv-
en by computational rather than musical knowledge, 
using supervised and unsupervised machine learning. In 
the first case, algorithms are trained on a portion of the 
data (or another music corpus), and the collected infor-
mation serves to make predictions on the remaining data. 
With unsupervised learning, phrases are predicted based 
on statistical regularities of note-to-note relationships (for 
a recent review, see Rodríguez Lopez, 2016).  
The model we propose belongs to the Gestalt tradition. 
Tenney and Polansky (1980) are commonly credited as 
authors of one of the earliest Gestalt-based models, but 
the ones that we will review here in more detail are 
LBDM and Grouper, as they have been consistently re-
ported as best-performing when tested on larger datasets.  

2.1 LBDM 

The Local Boundary Detection Model (LBDM) intro-
duced by Cambouropoulos (2001) operates on local 
changes in pitch, IOIs, and rests. The Change Rule places 
a phrase border between any two consecutive intervals 
that are not identical with respect to these three parame-
ters. The border strength is proportional to the degree of 
change between the two intervals. The Proximity Rule 
assigns a higher border strength on the larger interval out 
of any two consecutive, non-identical intervals. The de-
fault settings for the relative weights of pitch, IOI, and 
rest intervals are set to .25, .5, and .25, respectively. 
LBDM results in a profile of border strengths, and uses 
thresholding for separating borders from non-borders. 

Studies that have tested LBDM on larger amounts of data 
include Thom et al. (2002), whose dataset comprised over 
2600 songs from the Essen collection. The authors per-
formed an optimization for their dataset by trying out 
different combinations from a predefined grid of parame-
ter values, and with the best-performing setting obtained 
in this way reported a mean F-score of .50. Pearce et al. 
(2010) used a smaller Essen subset (1705 songs); their 
implementation using the default weights and a threshold 
of .05 yielded a mean F of .63. 

2.2 Grouper 

The Grouper Program proposed by Temperley (2001) 
relies only on temporal information (note-to-note inter-
vals and meter) and analyses the score as a whole, per-
forming all possible analyses and selecting the favourites 
using three criteria. The Gap Score is the sum of IOI and 
OOI (offset-to-onset interval) of two consecutive notes; 
phrases are assigned a bonus based on the Gap Score 
between the notes at the border. Secondly, phrases re-
ceive a logarithmic penalty for deviating from an optimal 
phrase length, set by default to 8. As a third step, Grouper 
penalizes phrases that are not metrically "in phase" with 
the preceding phrase, meaning that they do not start on 
the same beat on the highest and second-highest metrical 
levels. For example, a phrase starting on the first beat 
should be preferably followed by a phrase that also starts 
on the first beat. The list of beats is provided by the Me-
ter Program, which calculates a metrical structure for a 
given melody using a division of timepoints into small 
units called pips. The experimental test of Grouper com-
puted by Thom et al. (2002) gave a mean F-measure of 
.62; Pearce et al. (2010) obtained an average F-score of 
.66 with their data. 

3. NEW MODEL: IOI DIFFERENCES
In this model, boundaries are selected by calculating 
differences between successive IOIs (ΔIOI), or, in other 
words, second-order differences between note onset 
times. OOIs are not considered; any note followed by a 
pause is treated as if it was lengthened by the duration of 
the pause. Boundary candidates are chosen only from 
negative IOI differences, that is, from transitions where a 
longer IOI is followed by a shorter IOI.  

Figure 1. Rhythmic representation of "Happy Birthday": 
on = note onset (in beats), IOI = inter-onset-intervals (in 
beats), ΔIOI = difference in successive inter-onset-
intervals (in beats).  
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In the example in Figure 1, there are three occurrences of 
a negative ΔIOI: we could theoretically place a boundary 
after the first dotted note, after the pause, and after the 
second dotted note.It is obvious that due to rhythmic 
variability within phrases, creating boundaries at all nega-
tive ΔIOIs would lead to oversegmentation. In this way, 
we would perhaps detect many true boundaries, but at the 
same time, too many of the identified boundaries would 
be false. Because we expect the largest negative IOIs to 
occur at phrase ends, we considered only the lowest value 
of ΔIOI in each song. In the example above, a boundary 
would be placed before the second dotted note where 
ΔIOI = -1.25, splitting the music sample into two equal 
groups. Any other ΔIOI equal to -1.25 occurring earlier 
or later in the same melody would also be chosen as a 
boundary. 

4. METHOD

4.1 Dataset 

The Essen Folksong Collection (Schaffrath, 1995) is a set 
of 6,236 mostly Germanic folksongs in symbolic format, 
with phrases annotated by music experts. It comprises 
simple diatonic melodies with a clear metrical structure. 
Because large collections of symbolic music data with 
annotated phrase borders are not readily available, the 
Essen corpus has been widely used in testing segmenta-
tion models. The obvious disadvantage of using the same 
dataset repeatedly is that findings cannot be generalized 
to other music styles and traditions. Its advantage, how-
ever, is that it presents a convenient basis against which 
different models can be tested and their performances 
compared. 

4.2 Models and Implementation 

For comparison of performance, we chose models based 
on Gestalt-like rules coming from musical knowledge. 
LBDM, Grouper, and a simplified version of GPR 2a 
(Pause). To account for symmetry, we added two models 
based on metrical structure: Temperley's Meter, and Me-
ter Finder. To make outputs comparable, all models were 
set up to return a binary vector of ones (boundaries) and 
zeros (non-boundaries). We assumed there was always a 
boundary before the first note onset of every song. As a 
final step, we combined all models to make a compound 
model.  

4.2.1 Previous Models 

1. LBDM was implemented in the version offered by
MIDI Toolbox (Eerola and Toiviainen, 2004). Instead of
using default settings, LBDM was optimized for the Es-
sen dataset, and computed with weights w1(pitch) = .10,
w2(IOI) = .23, w3(rest) = .67, and a threshold of .20.
Rather than choosing predefined values for these parame-
ters, we used a Genetic Algorithm search heuristic (sin-
gle-objective optimization with bound constraints) to find
optimal parameter values. An objective function was used

to calculate the F-measure of each song for a given set of 
weight and threshold values, and to finally obtain the 
negative of the mean F-measure across songs. The algo-
rithm converged to an optimal solution, that is, a set of 
parameter values that would minimize the negative of the 
mean F-measure across songs. It is worth noting that the 
optimal combination of parameters assigned the lowest 
weight to the pitch rule, compared to the other two rules. 

2. Grouper was computed using original code by Tem-
perley (2001). While its author does not recommend it, it
is possible to run Grouper without metrical information
provided by the Meter Program. This variant uses just the
first two of its three rules, that is, it bases the analysis
only on IOIs, OOIs, and a preferred phrase length. We
considered it instructive to include Grouper in both ver-
sions - with (2a) and without (2b) the beat list output
from Meter - to see how much the metrical information
adds to its performance.

3. Meter is a program which generates a beat list to be
used by Grouper (Temperley, 2001). We decided to use it
on its own to obtain a segmentation based on metrical
regularity itself. Meter returns a hierarchy of beats on five
different metrical levels, with 0 as the lowest and 4 as the
highest level. Most commonly, the downbeat comes with
the first note onset. Some songs, however, start with an
anacrusis, and the downbeat comes with a later note on-
set. For the purposes of segmentation, we are interested
in a regular distribution of strong beats on the highest
metrical level, starting with the first note onset. The rea-
son for this is that if a phrase starts on a particular beat, it
is likely that the next phrase will start on the same-level
beat, as seen in the example in Figure 1. Our implementa-
tion therefore shifts the beat list given by Meter cyclical-
ly, so that the first strong (level 4) beat occurs at the first
onset, and phrase boundaries are then placed at every
note with a level 4 onset.

4. Pause. To test for the importance of pauses in seg-
menting melodies, we have included a simple all-or-
nothing rest rule reminiscent of GPR 2a. With this rule, a
boundary is placed after any pause, irrespective of its
length.

4.2.2 New Approaches 

5. ΔIOI is the implementation of our segmentation model
as described earlier (see 3 above).

6. Meter Finder is an algorithm proposed by Toiviainen
and Eerola (2005). The authors used autocorrelation to
classify melodies into "double meter" or "triple meter"
categories, and reported a correct classification rate of
over 90% for the Essen corpus. This straightforward
classification approach lends itself well for comparison
with Meter. Based on the Meter Finder categorization, a
simple metrical grid has been constructed for every piece.
Melodies in double meter had a boundary placed every 8
beats from the first note onset; melodies in triple meter,
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every 6 beats. If a predicted boundary did not coincide 
with a note onset, it was left out. 

7. ΔIOI OR Meter Finder OR Pause. Based on prelim-
inary results we decided to incorporate a model that uses
evidence from three aspects of note events timing: IOIs,
rests, and metrical information. This rule generates a
phrase border at any timepoint where either of the three
models, 5, 6, or 4, assumes a phrase break. Each of these
models has a relatively low recall rate on its own; taking
a disjunction of their prediction sets was expected to
enhance recall.

8. Compound Model is based on a different approach
from all the other models, in that it uses a machine learn-
ing component. We performed logistic regression to
make a meta-classifier with all the models from the pre-
vious analysis to see if their combination would result in
improved results. In addition to the binary outputs gener-
ated by models 1, 2a, 2b, 3, 4, 5, and 6, we also included
probabilistic model versions where possible.
LBDM(prob) is the profile of boundary strengths returned
by LBDM before thresholding. The weights used are
identical to the binary version. Meter(prob) is a modifica-
tion of the original output of the Meter Program. As ex-
plained earlier, Meter returns a profile of beats with as-
signed metrical hierarchy values (0 to 4). We took the
exponential of these values and shifted them cyclically in
the same way as in the binary version, so that the first
note onset of any song had the highest hierarchical level
(4). Meter Finder(prob) returns a metrical hierarchy pro-
file on three levels. For songs in double meter, the
boundary on every 16th beat is the strongest, with a
weight of 1. A weaker boundary (w = .66) coincides with
every eighth beat, the weakest (w = .33) with every fourth
beat. Melodies in triple meter get a similar hierarchy
profile, with decreasing weights placed on every 12th,
6th, and 3rd beat. Boundaries are only considered (and
weighted) if they coincide with a note onset. Δ IOI(prob)
calculates all ΔIOI values of the piece and replaces the
positive ΔIOI values with zeros. Our model selection
approach consisted of an exhaustive search for the best fit
out of each possible combination of the 14 models (7
binary, 4 probabilistic, 3 interactions) based on its log
likelihood and then, using the Akaike and Bayesian in-
formation criterion (AIC and BIC) estimators, penalizing
its log likelihood according to the number of predictor
variables of the model. The lowest AIC was obtained
combining all models except the binary version of ΔIOI.
The combination with the lowest BIC excluded the binary
versions of LBDM and ΔIOI. We report the results of the
latter model with the lowest BIC, as it uses less elements.
Possible overfitting was investigated by computing 10
times 10-fold cross-validation on the compound model.
The mean  F-measure across 10 folds and 10 iterations
was very similar to the one reported (mean F = .76; min =
.75, max = .78). Note that this cross-validation analysis,
as well as the AIC/BIC calculations,  was computed for
concatenated data from all songs.

5. RESULTS

5.1 Preliminary phrase analysis 

Figure 2. IOI relative to phrase length for all phrases of 
the dataset, interpolated by 100. The dark line denotes the 
median (percentile 50). The various degrees of shading 
(darker near the centre of the range, fainter towards the 
edge of the range) depict the dispersion of the middle 
20%, 40%, 60%, and 80% of the observed values. 

As a first step, we performed an analysis of all phrases of 
the Essen collection to see if the assumption that notes 
tend to lengthen towards the phrase endings has any mer-
it. The number of note-onset events in the annotated 
phrases range from 2 to 49, with a median of 8, suggest-
ing that the songs have sometimes been segmented on 
different hierarchical levels. To estimate changes in IOI 
for different temporal positions within phrases, we first 
computed IOI vectors for all individual phrases. Each 
vector included the last IOI in the phrase: to do this, we 
added an extra note to the end of each phrase. This added 
note corresponded either to the first note onset of the 
following phrase or, if it was the final phrase of the song, 
to a phantom note at the end of the song. All IOI vectors 
obtained in this way were divided by the number of note 
onsets within the phrase, excluding the added note onset 
at the end of the phrase. Subsequently, to compare the 
IOI vectors across all phrases from all songs, each vector 
of within-phrase IOIs was interpolated to a length of 100 
points. As a result, all vectors were scaled to have the 
same length, regardless of their absolute phrase length 
(Figure 2). The IOIs displayed an ascending tendency at 
the ends of phrases.  

5.2 Model comparison 

The results are summarized in Table 1, with the highest 
values obtained for each of the three measures marked in 
bold. Paired two-sample sign tests between the F-scores 
obtained for each song of the 7 binary models (LBDM, 
Grouper with Meter, Grouper without Meter, Meter, 
Pause, ΔIOI, and Meter Finder) show that out of the 21 
possible model pairs, there are three cases where the 
differences between models do not reach significance at 

SMC2018 - 69



an alpha of .001: LBDM - Meter Finder, Meter - Pause, 
and Grouper - Meter Finder. The Compound performed 
significantly better than any other model, based on the 
sign test results.  

Model Precision Recall F 
Grouper with Meter .77 .73 .74 
Grouper without Meter .68 .66 .66 
LBDM .81 .60 .65 
Meter .59 .70 .61 
Pause (GPR 2a) .98 .48 .60 
Compound (BIC) .92 .68 .75 
ΔIOI OR Meter Finder 
OR Pause 

.64 .81 .68 

Meter Finder .70 .64 .64 
ΔIOI .79 .54 .58 

Table 1. Mean Precision, Recall, and F-scores of existing 
models (top) and new approaches (bottom). Both groups 
are sorted in order of their F-scores.  

6. DISCUSSION
There are several points that we would like to highlight in 
the discussion. 

1. The approach based on minimal IOI differences does
not on its own reach the performance of LBDM and
Grouper. Its lower predictive power is partially compen-
sated by its simplicity and versatility. The finding that the
optimal LBDM setting assigns a minimal weight to the
Pitch rule supports the importance of timing over pitch in
melodic segmentation. Also, LBDM was outperformed
by Grouper, which does not use pitch information.

2. It is interesting to compare our results for LBDM and
Grouper with other studies. LBDM with optimized pa-
rameters found by the Genetic Algorithm generated better
results than those reported by Pearce et al. (2010) on their
set of 1705 songs, and the improvement was even more
pronounced compared to the results computed by Thom
et al. (2002) on a set of over 2600 songs. Grouper, im-
plemented in the original version as designed by its au-
thor, obtained an F of .74 on our dataset, which is consid-
erably higher than the .62 and .66 reported in the above-
mentioned studies.

3. As noted before e.g. by Pearce et al. (2010), pauses
constitute highly reliable indicators of phrase borders in
the Essen corpus. The Pause rule obtained the highest
precision score, implying that almost all rests in the cor-
pus occur between rather than within phrases. As dis-
cussed earlier, pauses present an important cognitive
divider for music listeners, but there is some debate as to
their relevance in symbolic data. It has been argued that
with folk tunes, pauses marked in music scores are some-
times only a convention used by transcribers to visually
mark segment borders or "breathing points" which the
singer may and may not use in their actual performance
(Rodríguez Lopez, 2016). This question requires a deeper

investigation of the congruence of folk song performanc-
es and their transcriptions. One possibility is to use the 
method employed by Bruderer (2008) with Western pop-
ular songs, a style in which scores are also created by 
transcribing performances. Bruderer manually time-
alligned MIDI data with recordings; this approach leads 
to a more realistic time representation of both pauses and 
note onsets.  

4. For the songs of the Essen collection, metrical sym-
metry was a relevant predictor of their phrase layout.
Meter Finder outperformed Meter, which is remarkable
considering that it predicts phrase boundaries at regular
intervals starting with the first onset, without any further
information about how the melody progresses. At the
same time, Meter Finder presumably misses a portion of
true boundaries in cases where the prediction does not
fall on a note onset. Modifying the model to include im-
perfectly aligned note onsets resulted in improved recall,
but lower precision, with similar F-scores.

5. The model integrating three temporal predictors - min-
imum IOI differences, pauses, and meter - performed
better than all the other individual models, except Group-
er with Meter, and yielded the highest recall score. This is
an encouraging result, warranting further investigation.
Instead of a union (OR) operation, the three temporal
criteria could perhaps be combined in a different manner,
leading to further performance enhancement.

6. The Compound ensemble classifier generated the best
mean F-score, and performed significantly better than
each of the other models. Compared to the second-best
Grouper with Meter, its slightly lower recall is balanced
out by a considerable improvement in precision.

7. Our main focus was on state-of-the-art techniques for
rule-based boundary detection; we also tried to address
the problem of dimensionality by finding an optimal
model based upon AIC/BIC values. However, the select-
ed model is still relatively high-dimensional and thus
difficult to interpret. In the future, we will utilize feature
selection and dimensionality reduction techniques to
assess the relative contribution of predictor variables to
the model and reduce the risk of multicollinearity.

7. CONCLUSIONS
We conclude that basing melodic segmentation on tem-
poral information alone is a valid approach, and that 
different elements of timing - the preference for negative 
IOIs, the presence of rests, and metrical symmetry, con-
verge to an optimal task solution. At this time, our find-
ings are limited to European ethnomusicological material. 
Studies investigating non-Western music, such as 
Bozkurt et al. (2014), suggest that models performing 
well on European folk music do not necessarily give 
good segmentations of melodies coming from different 
traditions. The need for corroboration on more diverse 
music samples applies to computational models of me-
lodic segmentation in general. 
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