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A B S T R A C T   

Latent heat thermal energy storages (LHTES) exploit the high energy density of phase change material (PCM). 
The typically low thermal conductivity of PCM limits the charging and discharging rates and poses considerable 
challenges for dynamic storage operation. To operate LHTES efficiently and to exploit their full potential, new 
methods are required to obtain accurate and fast models for state of charge estimation and control tasks. In 
LHTES the heat transfer in low viscosity PCM is driven by conduction and also significantly by convective 
transport. In previous works, various high-precision models have been developed which employ finite element, 
difference and volume methods to solve the coupled Navier–Stokes and energy equations, but they incur large 
computational effort. In the present work, a novel, high-fidelity model reduction technique is proposed to 
achieve real-time capability while preserving high model accuracy. The idea is to short-cut the laborious solution 
of the Navier–Stokes equations by an efficiently parametrized, data-based model which approximates the stream 
function of the typical convection flow pattern by singular value decomposition. To account for the complexity of 
the solution-dependent flow domain, a suitable transformation method is proposed. The efficiency and accuracy 
of the proposed reduction method is demonstrated in typical operating modes.   

1. Introduction 

1.1. Motivation 

Due to the volatile nature of renewable energy sources, their efficient 
use requires the application of thermal energy storage systems (TES). 
TES are essential to decouple energy supply and consumption, which in 
turn improves the performance and reliability of energy systems as a 
whole [28]. In particular, the energy-intensive industries rely on 
balancing energy supply and demand to achieve the necessary flexibility 
for an effective use of resources and to incorporate renewable energy 
sources. 

There are three main types of storage media in TES systems: sensible, 
latent and chemical, see Gil et al. [24]. In sensible TES, the energy is 
stored with increasing/decreasing temperature of the storage media, e. 
g. in the packed rock bed thermal storage. Latent heat thermal energy 
storage (LHTES) mainly use the phase transition to store energy in a 
small temperature range. The third storage mechanism is based on 

completely reversible chemical reactions to store and fully recover 
thermal energy, e.g. in oxidation–reduction reactions. 

LHTES consist of phase change material (PCM) to store energy with 
high energy density and at an almost constant temperature level, see 
Agyenim et al. [1] and Zalba et al. [62]. A drawback of many PCMs is 
their low thermal conductivity which limits the charging and dis-
charging rates and poses significant challenges for dynamic operation of 
the storage. Some methods to increase the thermal conductivity are 
summarized by Tao and He [56] and Ibrahim et al. [28]. Bondareva 
et al. [9] investigated the addition of nanoparticles in PCM to increase 
conduction. Typical LHTES configurations incorporate aluminum fins in 
PCM for thermal conductivity enhancement, such as the setup shown in 
Fig. 1. Due to the complex dependency of the temperature distribution 
on the total energy content and the low thermal conductivity of PCM, 
the thermodynamic state is distributed over the domain and thus the 
state of charge cannot be measured directly. For an efficient imple-
mentation of LHTES in industrial energy systems, knowledge of the 
distributed thermodynamic state and its dynamic behavior is of crucial 
importance. In order to realize state of charge estimation with an 

* Corresponding author at: Institute for Mechanics and Mechatronics, TU Wien, Getreidemarkt 9/E325, 1060 Vienna, Austria. 
E-mail address: dominik.pernsteiner@tuwien.ac.at (D. Pernsteiner).  

Contents lists available at ScienceDirect 

Applied Thermal Engineering 

journal homepage: www.elsevier.com/locate/apthermeng 

https://doi.org/10.1016/j.applthermaleng.2020.116228 
Received 25 May 2020; Received in revised form 14 October 2020; Accepted 15 October 2020   

mailto:dominik.pernsteiner@tuwien.ac.at
www.sciencedirect.com/science/journal/13594311
https://www.elsevier.com/locate/apthermeng
https://doi.org/10.1016/j.applthermaleng.2020.116228
https://doi.org/10.1016/j.applthermaleng.2020.116228
https://doi.org/10.1016/j.applthermaleng.2020.116228
http://creativecommons.org/licenses/by/4.0/


Applied Thermal Engineering xxx (xxxx) xxx

2

observer such as the extended Kalman filter as well as to enable model- 
based control, an accurate and real-time capable model is required that 
contains all relevant effects. The two most relevant effects that occur 
when modeling the heat transfer of low-viscosity PCMs are conduction 
and convection. The computation of these effects with finite element, 
finite difference or finite volume methods for the coupled energy 
equation and the Navier–Stokes equations requires high computational 
effort and leads to simulation models which typically cannot be 
computed in or faster than real-time, see Kasper [29]. 

1.2. PCM modeling approach 

Relevant heat transfer mechanisms in PCM are conduction and nat-
ural convection. Dutil et al. [21] and Liu et al. [35] review options for 
mathematical modeling and simulation of PCM. Analytical solutions 
only exist for a limited number of phase change problems, as for example 
for the one-dimensional Stefan-problem, see Radhakrishnan and 
Balakrishnan [44]. 

Fortunato et al. [23] state that the effect of natural convection is 
widely neglected in modeling PCM thermal storage systems due to its 
complexity. However, the legitimacy of such simplification strongly 

Nomenclature 

Acronyms 
ARX Auto regressive model with exogenous input 
DMD Dynamic Mode Decomposition 
LHTES Latent Heat Thermal Energy Storage 
PCM Phase Change Material 
PGD Proper General Decomposition 
POD Proper Orthogonal Decomposition 
SVD Singular Value Decomposition 
TES Thermal Energy Storage 

Index 
∧ estimated quantity 
0 initial 
in incoming flow 
L liquid 
out outgoing flow 
ref reference 
S solid 
* transformed quantity 
con constant 
cub cubic 
lin linear 
max maximal 
min minimal 
norm normalized 
qu quadratic 
red reduced system 

Parameters and variables 
α heat transfer coefficient 

(
W/(m2K)

)

β volumetric thermal expansion coefficient (1/K)

v̂red estimation of the current magnitude of the spatial modes in 
the reduced system 

Σ matrix with singular values 
Θ parameter vector 
f force density 

(
kg/(m2s2)

)

g gravitational acceleration vector 
(
m/s2)

R regressor matrix 
r regressor using current measurement values 

U left singular vector 
u velocity vector (m/s)
V right singular vector 
Δt time step (s)
ΔxPCM cavity PCM dimension in x direction (m)

ΔyPCM cavity PCM dimension in y direction (m)

Q̇ heat flow (W)

∊ mushy region temperature range (K)

γ activation function 
μ dynamic viscosity 

( (
Ns)/m2)

ρ density 
(
kg/m3)

Ω coordinate transformation 
Ψ stream function 

(
m2/s

)

ξ,η transformed space coordinates (m)

c specific heat capacity (J/(kgK))

H enthalpy (J)
h specific enthalpy (J/kg)
k thermal conductivity (W/(mK))

Lx,Ly length of PCM cell in x, y direction (m)

n number of simulation/ measurement values 
q heat flux 

(
W/m2)

RTF real-time factor 
T temperature (◦C)
t time (s)
tcomp computation time of simulation (s)
Tcorner temperature near the heated wall (◦C)
tend end time of simulation (s)
Tm melting temperature of PCM (◦C)
Tspread maximum temperature difference (◦C)
u,v velocity components in x, y direction (m/s)
x,y space coordinates (m)

xliquid primary flow liquid ratio 
xswitch liquid ratio which accounts for a switching flow regime 

Symbols 
𝒟,∂𝒟 spatial domain, boundary of spatial domain 
𝒟flow primary flow domain 
𝒟unit unit domain 
∇ Nabla operator: ∇ = (∂/∂x, ∂/∂y)
∂ partial derivative  

Fig. 1. Scheme of a typical LHTES configuration with PCM and aluminum fins 
for heat transfer enhancement. 
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depends on the type of PCM encapsulation and is potentially violated for 
PCM with low viscosity in the liquid phase. Bondareva and Sheremet 
[10] investigated the influence of geometric parameters of fins such as 
length and width on convection modes and thus on the melting rate. In a 
numerical study with an experimentally validated model, Vogel et al. 
[59] analysed the impact of natural convection on melting in so-called 
flat plate LHTES filled with the common high-temperature PCM so-
dium nitrate and potassium nitrate (KNO3-NaNO3) and found a signif-
icant heat transfer enhancement depending on the geometry of PCM 
enclosures due to convective transport. This finding was confirmed by 
Kasper [29], who numerically investigated the impact of natural con-
vection on melting of PCM in an encapsulation depending on its 
orientation. 

When considering heat transfer due to conduction in PCM in more 
than one dimension, numerical methods, as for example the enthalpy 
method and the effective heat capacity method, which were summarized 
by Liu et al. [35], have to be applied. Nedjar [40] state that especially 
finite element methods are able to handle complex coupled thermo-
mechanical problems with various and complex boundary conditions. 
The effective heat capacity method was, for example, applied by Ten-
chev et al. [57] in a moving-mesh finite element model considering both 
conduction and natural convection. A similar approach was pursued by 
Kasper [29], using the effective heat capacity method and an adaptation 
of the finite difference code published by Seibold [51] to solve the two- 
dimensional Navier–Stokes equations arising in convection modeling. 
This provided an experimentally validated coupled finite element/ finite 
difference model for PCM cavity simulations and is adopted in the 
present work as a reference model for the model reduction approach. 

1.3. Innovation 

The modeling approaches for PCMs described in the above section 
are computationally highly demanding and not suitable for real-time 
models. Fig. 2 outlines the main contribution of this work - a model 
reduction method aiming to cut down computational requirements 
strongly while retaining high accuracy. The energy and the Navier–-
Stokes equations are coupled via the velocity field u. A first analysis of 
the method proposed by Kasper [29] showed that the Navier–Stokes 

equations require about 80% of the computation time. Therefore, in this 
work a novel reduction method is developed to model the relevant 
convection effects in PCM in a simplified form without fully solving the 
Navier–Stokes equations. The model reduction approach is data-based 
and relies on the stream function derived from the velocity field ob-
tained in a reference simulation. A suitable transformation is introduced 
to map the active flow domain (whose shape depends on the solution 
itself) to a unit domain to account for the changing flow domain of the 
PCM. The stream function snapshots are decomposed into modes of 
space and time using singular value decomposition (SVD). It is found 
that the temporal behavior of the dominant modes of the velocity field 
can be obtained from thermal properties of the domain, such as liquid 
ratio and temperature gradient. The resulting reduced model is able to 
reconstruct the stream function and thus the velocity field without 
solving the Navier–Stokes equations in the real-time simulation. The 
new model reduction method is evaluated based on simulations of 
typical storage operating modes and shows highly accurate results 
achieved with considerably lower computation times. 

1.4. Model reduction methods 

1.4.1. Overview 
Model reduction methods have been a major research topic in recent 

decades and have been addressed in numerous reviews. Benner et al. [5] 
conducted a survey of model reduction methods for linear systems and 
Reis and Stykel [45] provided an overview of approaches in coupled 
systems. Antoulas et al. [2] divided the reduction methods into two main 
categories: moment matching based methods and SVD-based methods. 
The former group can be implemented iteratively but does not have 
global error bounds, see Antoulas et al. [2] for an overview of linear 
implementations and Astolfi [4] for the nonlinear enhancement of this 
method. The approach developed in this paper is based on the latter 
group. An example of SVD-based reduction methods in linear systems is 
balanced truncation, where the system is transformed via principal 
component analysis to a basis in which the hard-to-reach states are 
simultaneously difficult to observe and are simply truncated for the 
reduced model. This method was first introduced by Moore [38], and a 
short overview of implementations is given by Gugercin and Antoulas 

Fig. 2. Coupling of the dominant effects in the detailed and reduced model.  
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[26]. Other SVD-based methods for linear systems are the Hankel-norm 
approximation and the singular pertubation, see Glover [25] and Liu 
and Anderson [36], respectively. Proper orthogonal decomposition 
(POD), first introduced by Lumley [37], is a popular method for non- 
linear complexity reduction problems. The basic idea is to extract the 
most significant characteristics of a system’s behavior and represent 
them in a set of orthonormal basis vectors. For this purpose, the POD 
basis vectors are determined empirically by examining sample data 
collected over a range of relevant system dynamics and identifying the 
most energetic modes. The system’s governing equations are projected 
onto the reduced-order subspace defined by the POD basis vectors. This 
low-dimensional description of the system’s dynamics is obtained 
directly from the Galerkin projection of the governing equations on the 
POD modes. This yields an explicit POD reduced model that can be 
solved instead of the original system, see Chinesta et al. [14] and 
Volkwein [60]. 

More recent methods for model reduction of nonlinear systems are 
the dynamic mode decomposition (DMD) developed by Schmid [50] and 
the proper generalized method (PGD), see Chinesta et al. [15] and Néron 
and Ladeveze [41]. In contrast to the POD method, the PGD technique is 
an ”a priori” iterative model reduction method which does not rely on 
particular bases. DMD is data-driven and, in contrast to POD, the DMD 
modes attempt to describe the dynamics in the timeseries rather than 
best reconstructing a dataset, see Tu et al. [58]. Brunton et al. [13] 
proposed the data-based regression method SINDY, combining DMD and 
sparse regression and exemplified it in applications of uniform flow 
vortex shedding and discovering the sparse equations structure in a 
noisy Lorentz system. Other model reduction techniques are based on 
the combination of machine learning and SVD, which demands a lot of 
training data, see e.g. Prasad and Bequette [43]. Furthermore, Swischuk 
et al. [55] demonstrate the importance of embedding physical con-
straints as well as of incorporating knowledge such as conservation laws 
within the learned models. 

1.4.2. Model reduction in fluid dynamics 
Particularly in the field of fluid dynamics, modeling often reaches the 

limits of computing power and is therefore the subject of current 
research regarding model reduction methods. The coupled partial dif-
ferential equations to be solved in this area represent a particular 
challenge. Rowley and Dawson [48] and Lassila et al. [32] summarized 
model reduction approaches in flow analysis. Bistrian and Navon [7] 
compared the DMD and POD approaches to derive a reduced model for 
the shallow water equation. Rowley et al. [47] presented a framework 
for applying POD to compressible fluids with small temperature gradi-
ents and moderate Mach numbers. Rowley [46] successfully applied a 
balanced POD method to a channel flow. Dumon et al. [20] used the 
PGD method to solve the Navier–Stokes equations in the case of a lid- 
driven cavity for different Reynolds numbers. Liberge and Hamdouni 
[34] applied the POD technique to a flow around an oscillating cylinder 
using a fictitious domain. Stabile and Rozza [54] compared two different 
pressure stabilisation strategies for POD methods in a lid-driven cavity 
problem and in a flow around a circular cylinder for moderate Reynolds 
number. Kutz [30] emphasized the potential of deep learning in fluid 
dynamics, but also pointed out unresolved issues such as the number of 
layers/nodes and the amount of training data required. Applicatons of 
reduction techniques using neural nets in fluid dynamics can be found in 
Wang et al. [61] for forced convection and in San and Maulik [49] for 
natural convection. 

Most of the model reduction approaches for fluid dynamics pre-
sented are highly complex and laborious to adapt. One research gap is 
the lack of methods to efficiently reduce dominant flow patterns to a 
simple model. In the present work, an easy-to-implement data-based 
approach is developed to address this issue. 

1.4.3. Model reduction with varying domains 
A large number of problems is found on partial differential equations 

with time-varying spatial domains, such as melting/solidification pro-
cesses, crystal growth, and hydraulic fracturing. However, only a few 
model reduction approaches have been developed specifically consid-
ering this aspect so far. 

Armaou and Christofides [3] expressed the partial differential 
equation system of a diffusion–reaction process with respect to an 
appropriate time-invariant coordinate derived from an analytical 
expression. A POD method was applied to the resulting transformed 
time-invariant system. Fogleman et al. [22] applied the POD to flows of 
an engine combustion process within a time-varying domain. They 
transformed the velocity fields to a fixed domain in such a way that the 
divergence-free property remained preserved, which is relevant also in 
the present context. Dauvergne and del Barrio [18] presented a 
simulation-free POD model reduction method for multidimensional heat 
conduction problems with phase change. They decomposed the problem 
into a heat conduction and source-term problem for the phase change. 
Narasingam and Kwon [39] partitioned the domain into multiple sub-
domains and then applied POD to each local domain. Recently Sidhu 
et al. [52] developed a model reduction method for the fracture prop-
agation in a hydraulic fracturing process with moving boundaries. They 
could consider the time-varying spatial domain as a time-invariant one 
by assuming the fraction width zero where the fraction has not propa-
gated into the domain. 

Our newly developed model reduction method solves the problem of 
varying flow domains by first converting the velocity field into the 
stream function which preserves the continuity of the flow per defini-
tion. Then the stream function is mapped to a unit domain in which the 
dominant modes can be efficiently identified. 

1.5. Main contributions 

To the best of the authors’ knowledge, no model reduction technique 
for convection problems with phase change and the associated problem 
of a varying flow domain has been presented so far. The main contri-
butions of this paper are as follows:  

• A novel and efficient high-fidelity model reduction concept for 
convective heat transfer in phase change problems is developed, 
which takes changing flow domains into account.  

• The new approach considerably reduces the computational effort 
and realizes the real-time capability of the model. 

• Simulation studies are conducted and discussed, showing the effec-
tiveness and accuracy of the proposed model reduction in typical 
operation modes of an LHTES application.  

• In contrast to the solution of the complete Navier–Stokes equations, 
the accuracy of the reduced model is less dependent on the time step 
and mesh size. 

1.6. Paper structure 

The paper is organised as follows: In Section 2, the detailed model 
and its fundamental equations are presented. Section 3 describes the 
model reduction approach through stream functions, transformation 
and SVD as well as the assumptions made. In Section 4, simulation 
studies to demonstrate the effectiveness of the proposed model reduc-
tion are performed. In Section 5 the results of the model reduction are 
compared and different aspects are discussed. 

2. Detailed model 

The reduction approach is demonstrated using a two-dimensional 
rectangular PCM domain with aluminum fins as heat conducting struc-
tures. For reasons of symmetry, modelling of a LHTES configuration as 
illustrated in Fig. 3 is reduced to a single, so called PCM cell, consisting 
only of one fin section of the storage. 
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2.1. Fundamental Equations 

A detailed multi-phase thermodynamic model including melting/ 
solidification, heat conduction, and natural convection in two di-
mensions is considered for the PCM cell, developed and thoroughly 
documented in Kasper [29]. It underlies the basic conservation laws of 
mass, momentum and energy. Multiple PCM cell models were success-
fully coupled with a Ruths steam storage in a co-simulation in Pern-
steiner et al. [42]. In order to simplify modeling of a PCM cell to the 
significant occurring phenomena, the following assumptions are made 
therein:  

• Heat transfer is driven by conduction and natural convection, both 
being relevant phenomena.  

• Material properties, apart from density, are constant in each phase 
but they can take on different values for the liquid and solid phases.  

• Density is assumed constant and the same for both phases except for 
the buoyancy term in the liquid domain (Boussinesq approximation). 
Therein, the only body force arises due to the gravitational acceler-
ation in vertical direction. This is a common and widely used 
approach, see Vogel et al. [59].  

• Phase change is modeled by means of the apparent heat capacity 
method (see [8,17]), meaning that the phase transition takes place in 
a small temperature region T ∈ [Tm − ε,Tm + ε] defined by the 
melting temperature Tm and mushy region parameter ε.  

• The phase ratio only depends on T (no temperature hysteresis, no 
dynamics, no rate dependency, no subcooling).  

• No relevant surface effects nor dentrite growth occur.  
• Dissipation and pressure terms are neglected in the energy Eq. (1) 

due to small Eckert numbers, Ec≪1.  
• The depth of the PCM enclosure in z-direction, is assumed large 

enough for wall boundary layer effects to be negligible, hence the 
problem is reduced to two dimensions (no heat flow or convection in 
z-direction). 

The governing equations within the framework of these assumptions 
are the energy Eq. (1), continuity Eq. (2) and Navier–Stokes Eqs. (3) as 
follows: 

ρPCMc
∂T
∂t

= kPCM∇⋅(∇T) − ρPCMc(u⋅∇)T (1)  

∇⋅u = 0 (2)  

ρPCM
∂u
∂t

+ ρPCM(u⋅∇)u − μ∇⋅(∇u) = f(T) − ∇pPCM (3)  

Therein, the temperature field T = T(x, y, t) is treated as dependent 
variable in the energy Eq. (1), and the velocity field u = [u, v]T with 
spatial components u(x, y, t) and v(x, y, t) is treated as dependent vari-
able in the Navier–Stokes Eq. (3), see Chorin [16]. The variable pPCM 

stands for the pressure in the PCM. The symbols ρPCM, c, k and μ denote 
the parameters density, apparent heat capacity 

c(T)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

cS if :T < Tm − ε
Δlm +cS⋅(Tm +ε − T)+ cL⋅(T − (Tm + ε))

2ε if :Tm − ε⩽TT⩽Tm +ε

cL if :T > Tm + ε

,

(4)  

heat conductivity and dynamic viscosity, respectively. The force density 
f describes the buoyancy force 

f = ρg ≅ ρ0g
(
1 − β

(
T − Tref

) )
, (5)  

which is calculated via the Boussinesq approximation [11] as given in 
Huang et al. [27] by the volumetric thermal expansion coefficient β, the 
constant (reference) density ρ0, a reference temperature Tref , and the 

gravitational standard acceleration vector g, g = g
[

0
− 1

]

with g = 9.81 

m/s2. 

Fig. 3. PCM cell dimensions.  
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2.2. Discretization 

The PCM cell conduction/convection model developed by Kasper 
[29] uses a finite element discretization to model the time-dependent 
energy Eq. (1) and applies a finite difference scheme to solve the 
incrompressible Navier–Stokes Eqs. (2) and (3) in each time step. The 
obtained velocity field is used for the next time step of the energy 
equation. 

The finite element method uses a standard Galerkin finite element 
approach with four-noded bilinear rectangular elements for the energy 
Eq. (1). The set of incompressible two-dimensional Navier–Stokes Eqs. 
(2) and (3) is treated separately from the heat transfer part of the model 
via a finite difference discretization based on a MATLAB® code available 
on the course homepage(http://math.mit.edu/~gs/cse/) of “Compu-
tational Science and Engineering” at the Massachusetts Institute of 
Technology. This open source code, created and documented by Seibold 
[51], was implemented and extended to meet specific requirements in 
the diploma thesis of Kasper [29]. The main numerical concept used 
therein is the fractional step method [16,19], which is applied to split 
the Navier–Stokes system into equations that are significantly simpler to 
work with. 

2.3. Boundary conditions 

The geometry of the considered PCM cell suggests symmetry 
reduction of the simulation to single aluminum fin sections. Conse-
quently, the symmetry boundaries, in this case chosen as upper and 
lower boundaries of the computational domain, are treated as adiabatic: 

q|∂𝒟2 , ∂𝒟4
= 0 (6)  

For the left and right boundaries type-3 boundary conditions, also 
known as Robin or heat-transfer boundary conditions, 

q|∂𝒟3
= αin⋅(T(x, y, t) − Tin), (7)  

q|∂𝒟1
= αout⋅(T(x, y, t) − Tout), (8)  

are prescribed following Newton’s law of cooling, where αin, αout are heat 
transfer coefficients, q is the specific heat flux across the boundary, and 
Tin,Tout present boundary temperatures at the left and right wall sur-
faces, respectively. 

Regarding the velocity field u = [u, v]T, no-slip boundary conditions 
are set for the domain boundaries, 

u|∂𝒟 = 0. (9) 

Furthermore, the velocity is set to zero if the PCM is not completely 
liquefied: 

u|T<Tm+ε = 0. (10)  

This is also done for any solid material (here, aluminum) in the 
computational domain, see Kasper [29]. 

2.4. Features of the model 

The model presented above is able to model heat transfer by con-
vection and conduction in PCM. It fully solves the Navier–Stokes equa-
tions, thus providing a highly accurate velocity field in the liquid 
domain. It was validated in Kasper [29] against experimental data from 
Brent et al. [12], resulting in an error of 3% in the liquid fraction. 
However, for realistic problem sizes it is not real-time capable by a factor 
of 5 or more and it is found that the computation of the Navier–Stokes 
equations consumes about 80% of the time. To achieve real-time capa-
bility, a model for high accuracy heat transfer and good accuracy of the 
velocity field is developed, utilized to determine the convection terms in 
the energy equation and hence achieve the overall solution quickly. This 

enables a model suitable for estimating the state of charge and con-
trolling an LHTES. 

3. Reduced model 

The basic idea is to replace the solution of the Navier–Stokes equa-
tions by a simplified data-driven model, that explains the velocity field 
from few selected properties of the energy equation, such as the size of 
the relevant domain in which convection acts and the temperature 
distribution driving the convection. The reduction relies on snapshots of 
data of the velocity field derived from high-fidelity simulation studies. 
First, the assumptions under which the proposed model reduction is 
admissible are discussed. Then the pre-processing of the sampled data is 
described: flow domain identification, representation of the velocity 
field via the stream function and the transformation to a unit domain. 
The data is decomposed into dominant modes of space and time through 
SVD. A model for the magnitude of the dominant modes is developed 
and the reduced model is presented, see Fig. 4. 

3.1. Assumptions 

The proposed model reduction approach is based on the following 
assumptions:  

• The flow phenomena consist of one or only a few dominant flow 
patterns.  

• The fluid is incompressible and its motion can be fully described in 
two dimensions, so a scalar stream function exists which defines the 
velocity field.  

• The flow domain varies slowly compared to the time step size. This 
assumption is justified due to the low thermal conductivity and the 
high latent heat of PCMs.  

• Convection can be neglected during solidification, see Pernsteiner 
et al. [42]. During discharging, the PCM solidifies on the heat- 
conducting structure where it acts as an insulator due to its low 
thermal conductivity. Therefore the temperature gradient in the 
remaining liquid domain is low and convection becomes negligible. 

3.2. Flow domain identification 

Representative simulations in Kasper [29] and Pernsteiner et al. [42] 
show that relevant convection phenomena only occur in a specific re-
gion within the entire domain which will be called ”primary flow 
domain” in the following. This primary flow domain 𝒟flow = 𝒟flow(t) is 
identified in the overall domain 𝒟 according to the following properties:  

• The primary flow domain 𝒟flow is comprised of liquid PCM, T(x, y,
t)⩾Tm + ∊.  

• The primary flow domain 𝒟flow is only considered during charging, 
since only then relevant convection occurs. This is the case if the 
temperature at the boundary condition on the left side of the cell 
domain is greater than the liquidus temperature of the PCM, 
Tin⩾Tm + ∊. Natural convection is neglected during discharging.  

• In case of several melting fronts, only the area directly adjacent to the 
heated wall with a high temperature gradient is treated as the pri-
mary flow domain 𝒟flow. Natural convection is seen to be only rele-
vant in this area. This is characterized by the condition that a simple 
path must exist in liquid PCM from the lower left corner in the PCM 
domain (x, y)PCMorigin to any point in the primary flow domain (x,
y) ∈ 𝒟flow. 

The primary flow domain 𝒟flow(t)⊆𝒟 is thus defined as follows: 

𝒟flow(t) = {(x, y) ∈ 𝒟 : T(x, y, t)⩾Tm + ∊ ∧ Tin(t)⩾Tm + ∊
∧∃ simple path in liquid PCM from(x, y)PCMorigin

to(x, y) ∈ 𝒟flow(t)
}
.

(11) 
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The primary flow domain is the definition area of the stream function 
and the starting point of the transformation into a unit domain. The 
proportion of the liquid PCM in the primary flow domain to the entire 
domain xliquid, with xliquid ∈ [0, 1], is introduced as primary flow liquid 
ratio: 

xliquid =
|𝒟flow|

|𝒟|
. (12)  

3.3. Stream function 

The stream function is a well-known scalar representation to 
describe a planar velocity field of an incompressible fluid and was first 
introduced by Lagrange [31]. Partial derivatives of the stream function 
yield the velocity field, which in turn is automatically divergence-free 

and thus satisfies the continuity Eq. (2), see Bestehorn [6]. Therefore, 
the stream function is chosen as a representation of the velocity field and 
is derived from snapshots of simulation data in this work. The stream 
function Ψ = Ψ(x, y, t) : 𝒟flow→R is defined through 

u =
∂Ψ
∂y

, v = −
∂Ψ
∂x

. (13)  

Therein, u and v are the spatial components of the velocity field u in the 
spatial x and y-directions. 

3.4. Transformation 

To account for the varying liquid area of the PCM, the stream func-
tion in the time-dependent primary flow domain Ψ = Ψ(x, y, t) : 𝒟flow(t)
→R is mapped to a stream function in a time-invariant unit domain Ψ * =

Ψ*(ξ, η, t) : 𝒟unit→R via the coordinate transformation Ω : 𝒟flow(t)→𝒟unit, 

𝒟unit = {(ξ, η) : 0⩽ξ⩽1, 0⩽η⩽1}, (14)  

(ξ, η) = Ω(x, y), (x, y) = Ω− 1(ξ, η), (15)  

Ψ *(ξ, η, t) = Ψ(Ω(x, y), t),Ψ(x, y, t) = Ψ *(Ω− 1(ξ, η), t), (16)  

see Fig. 5. The transformation itself depends on the shape of 𝒟flow and 
hence ultimately on the temperature field of the solution and is evalu-
ated using equally spaced nodes in x-direction and linear interpolation. 
This is done with the aim to simplify the flow patterns and ease their 
treatment as Ψ* is now defined on a domain of constant shape. 

3.5. Singular value decomposition 

Sirovich [53] introduced the method of snapshots to efficiently 
determine POD modes. Therefore, the data set is selected as time 
snapshots containing the spatial distribution and reflecting the system 
dynamics. Indicating by Ψ*

i the vector of values of Ψ* at the time ti, the 
data matrix Z, 

Z =

⎡

⎢
⎢
⎣

| | |

Ψ *
1 Ψ *

2 … Ψ *
n

| | |

⎤

⎥
⎥
⎦, (17)  

consists of n snapshots in time (columns) from the spatial distribution of 
the stream function values (rows). Dominant modes in time and space 
are identified from the snapshots. The economy-size SVD is utilized to 
decompose the snapshot matrix, 

Z = UΣVT , (18)  

by projecting it onto an orthonormal basis given by the left singular 
vectors U. The matrix U contains column-wise the spatial modes, and V 
represents the temporal behavior of each mode row-wise. The diagonal 
matrix Σ comprises the singular values which indicate the signal energy 
content of each mode. Identified by the largest singular values, typically 
only a few modes, represent the major contributions. Their dominant 
modes can be used as a reduced description of the relevant behavior of 
the system. The reduced model (Ured,Σred and Vred) is obtained by 
selecting the corresponding rows/columns from U,ΣandV, respectively. 

3.6. Temporal behavior of the spatial modes 

To establish the temporal behavior of the spatial modes, it is common 
to apply the Galerkin method to project the partial differential equation 
system onto the spatial basic functions, yielding a system of ordinary 
differential equations for the modal coordinates. As these projections 
(numeric integration over the domain) are cumbersome, a different, 
data-based approach is chosen in this work. The temporal behavior of 

Fig. 4. Flow chart of reduced model creation.  
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the dominant modes given by the matrix Vred as well as the magnitude of 
the velocity field itself seems to depend on quantities of the energy 
equation, such as the temperature distribution in the PCM or the size of 
the primary flow domain. Therefore, it is attempted to explain the 
temporal behavior of the spatial modes Vred by the primary flow liquid 
ratio xliquid, the maximum temperature in the flow domain Tmax, the 
maximum temperature difference in the domain Tspread, 

Tspread = Tmax − Tmin (19)  

with Tmin as minimum temperature in the domain, and the temperature 
near the heated wall (left side) in the horizontal symmetry plane of the 
PCM cell Tcorner, see Fig. 3. These four measurements, 

r1 = Tspread, r2 = Tcorner, r3 = Tmax , and r4 = xliquid, (20)  

form the basis of a cubic polynomial approach for a regressor matrix R. 
In order to consider a switching flow regime in the regressor R at a 
certain liquid ratio xswitch, an activation function γ, 

γ =
1

1 + exp
( (

xswitch − xliquid
)
⋅100

), (21)  

is introduced. The regressor matrix R consists of 62 regressors (columns) 
at the n snapshots in time (rows) and is defined as follows: 

R =

⎡

⎣
| | | | | | | |

rcon rlin rqu rcub γrcon γrlin γrqu γrcub
| | | | | | | |

⎤

⎦ (22)  

with
rcon = [1], (23)  

rlin = [r1 r2 r3 r4], (24)  

rqu = [r2
1 r2

2 r2
3 r2

4 r1r2 r1r3 (25)  

r1r4 r2r3 r2r4 r3r4],

rcub = [r3
1 r3

2 r3
3 r3

4 r2
1r2 r2

1r3 r2
1r4 r2

2r1 r2
2r3

(26)  

r2
2r4 r2

3r1 r2
3r2 r2

3r4 r2
4r1 r2

4r2 r2
4r3].

A matrix Θ containing the parameter vectors is identified for an ARX 
model using a least square algorithm: 

Θ = (RT R)− 1RT Vred. (27)  

The estimation of the current magnitude of the spatial modes is then 
given by 

v̂red = rΘ, (28)  

with r as regressor using the current measurement values, 

r = [ rcon rlin rqu rcub γrcon γrlin γrqu γrcub ]. (29)  

3.7. Reduced model architecture 

The reduced model described above consists of an offline pre- 
processing and an online real-time capable part. 

During pre-processing, dominant modes are identified by the SVD of 
stream function data to obtain a reduced system, Ured,Σred and Vred. An 
ARX model approximates the modal coordinates v̂red of the dominant 
spatial modes Ured based on four characteristic measurements (20). 

Fig. 6 shows the online architecture of the reduced model developed 
in the section above. It consists of the finite element code of the detailed 
model for the energy equation. The finite difference approach for the 
Navier–Stokes equations is replaced by the reduced stream function 
model, 

Ψ̂
∗
= UredΣred v̂T

red. (30)  

After back-transforming the stream function Ψ̂
* 

within the unit domain 
to the stream function Ψ̂ within the primary flow domain, the velocity 
field is obtained by numeric differentiation and inserted into the energy 
Eq. (1). 

4. Simulation studies 

As described in the previous section, our reduction method consists 
of two parts: the pre-processing/model creation and the real-time 
model. To demonstrate the novel method, a suitable geometry is first 
defined and the material parameters are determined. Then simulations 
are performed to generate training data for the creation of the reduced 
model. Two additional load profiles are defined to validate the reduced 
model against the detailed high-fidelity model. Finally it is shown that 
the reduced model can be calculated on a coarser grid and larger time 
step without significantly compromising the result. 

4.1. Simulation setup 

The simulation setup is based on Pernsteiner et al. [42]. The size and 
shape of a PCM cell has been chosen to allow load profiles on an 
industrially relevant scale. 

In order to demonstrate the capability of the model reduction 
approach, five different model instances are simulated. The high-fidelity 
model, which completely solves the Navier–Stokes and energy Eqs. (1)– 
(3), relies on the code developed by Kasper [29] and is described in 
Section 2. In addition, it is used to generate training and validation data 
for the model reduction method. The regular-reduced model fully solves 
the energy equation, but uses a reduced stream function model instead 
of the Navier–Stokes equations. The coarse-reduced model is computed 
on a coarser mesh and larger time step to demonstrate mesh and time 
step independency of the model reduction approach and is compared to 
a coarse-high-fidelity model. A conduction-only model, which 
completely neglects natural convection, acts as a reference simulation. 

Fig. 5. Transformation of the stream function inside the flow domain (yellow) to a unit domain via linear interpolation. (For interpretation of the references to colour 
in this figure legend, the reader is referred to the web version of this article.) 
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4.1.1. Geometry 
The geometry of the PCM cell is defined in Fig. 3 and Table 1. 
An insulation layer is attached to the right side of the PCM cell to 

reduce heat loss to the environment. The left side of the PCM cell has 
good heat transfer properties for charging and discharging via heat 
flows. The assumed heat transfer coefficients are listed in Table 2. 

4.1.2. Material parameters 
The PCM is an eutectic mixture of potassium nitrate and sodium 

nitrate KNO3-NaNO3 (see [59]), enclosed in an aluminum encapsula-
tion. The PCM is either liquid (L) or solid (S). The material properties of 
the aluminum encapsulation and the PCM are listed in Table 3. The 
density of solid PCM is used for both phases. A mushy region parameter 
of ε = ±0.5K was chosen. Influence of the variation of this parameter on 
the result of the high-fidelity simulation was studied in Kasper [29]. 

4.1.3. Load profiles 
The PCM cell is charged/discharged by a heat flow resulting from the 

temperature difference on its left side (7). The input temperature on the 
left side, Tin, is set as shown in Fig. 7 to generate training and validation 
data. Five different load profiles are used to train the reduced model: 
Four load profiles with a constant temperature for 4-h operation time 
and one load profile with a varying cycle for 5-h operation time. The 
performance of the reduced model is demonstrated using two 5-h vali-
dation load cycles. The right side of the PCM cell is insulated and the 
temperature responsible for the heat loss, Tout, is fixed at 20 ◦C for all 
load profiles (8). The initial temperature in the PCM cell is T0 = 218 ◦C. 

4.1.4. Mesh and time step size 
A mesh of square elements with a side length of Δx = Δy = 0.5 mm 

discretizes the geometry of the PCM cell of the high-fidelity model, the 
conduction-only model and the regular-reduced model. A time step of 
Δt = 0.1s is applied for the temporal discretization. These settings 
resulted as optimal values from an independence study of mesh size and 
time step. In order to demonstrate the capability of calculating the 
reduced model on a coarser mesh and larger time step, the side length of 
the elements and the time step is doubled for the coarse-reduced model. 
The properties of the different models are summarized in Table 4. 

4.1.5. Settings of the reduced model 
The reduced model was created as described in Section 3. The data 

from the high-fidelity simulations are used and only the charging in-
tervals for the model training are considered (since natural convection 
during discharging is neglected). The SVD of the stream function data 
results in a single dominant spatial mode, see Fig. 8a. The temporal 
behavior of this dominant mode is characterized by the ARX model (28)– 
(21) using properties of the domain, e.g. temperature spread or liquid 
ratio in the PCM cell. The parameter for a switching flow regime in (21) 
is set to xswitch = 0.5 and the excellent fit of the ARX model is shown in 
Fig. 8b. 

4.1.6. Stream function in the original/unit domain 
Fig. 9 shows the stream function of the PCM cell using the constant 

load profile for training (Tin = 235 ◦C) at two different times in the 
original domain and the unit domain. While the shape and expansion of 
the stream function in the original flow domain differs significantly 

Fig. 6. Flow chart of reduced model architecture.  

Table 1 
Geometry of the LHTES.  

Dimension Part Value 

Length Lx  Encapsulation 0.12 m 
Width Ly  Encapsulation 0.025 m 

Length of cavity ΔxPCM  PCM 0.118 m 
Width of cavity ΔyPCM  PCM 0.023 m  
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between the two time points, the two stream functions are very similar 
in the unit domain. Such a stream function results in a nearly circular 
shaped vortex. 

4.2. Results 

The results are evaluated under two aspects: accuracy and compu-
tational effort. These criteria are compared between the five different 
models listed in Table 4. 

4.2.1. Solution accuracy 
The stored enthalpy in the PCM cell is essential in order to assess the 

state of charge and to control the LHTES. Therefore, Fig. 11 compares 

the stored normalized enthalpy, 

Hnorm(t) =
H(t) − H0

Hlatent
(31)  

of the different models for the training and validation load cases, 
respectively. In (31) H0 is the initial enthalpy and Hlatent the latent heat of 
the PCM cell. The overall error is listed in Table 5. As a second criterion, 
the shape and progression of the melting fronts in the PCM are evaluated 
qualitatively, see Fig. 12. 

4.2.2. Computational effort 
The computational effort is assessed through the real-time factor, 

RTF =
tcomp

tend
, (32)  

which is listed for the different models in Table 5. Eq. (32) consists of the 
computation time tcomp required to simulate a PCM cell until the end 
time tend. The computation was performed using MATLAB® on the 
processor Intel® Core™; i7-8550U with a base frequency of 1.8 GHz. 

Table 2 
Heat transfer coefficient α.  

Heat transfer coefficent Value 

For charging/discharging heat flow (left side of PCM cavity) 
αin

Wm− 2K− 1  
700 

For heat losses through insulation (right side of PCM cavity) 
αout

Wm− 2K− 1  
0.01  

Table 3 
Material properties of the LHTES.  

Property Alu. PCM 

Density 
ρ

kgm− 3  
2700 2050 (S)   

1959 (L) 

Specific heat capacity 
c

J(kgK)
− 1  

910 1350 (S)   
1492 (L) 

Heat conductivity 
k

W(mK)
− 1  

237 0.457 (S)   
0.435 (L) 

Melting temperature 
Tm
◦C  

- 220 

Mushy region parameter 
ε
◦C  

- ±0.5  

Specific latent heat 
hlatent

kJ(kg)− 1  
- 108 

Thermal expansion coefficient 
β

(K)
− 1  

- 3.5 ⋅ 10− 4  

Dynamic viscosity 
μ

Ns(m)
− 2  

- 5.8 ⋅ 10− 4   

Fig. 7. Load profiles for training and validation of the reduced order model in the simulation studies.  

Table 4 
Model characterization, mesh and time step size.  

Type Energy 
equation 

Navier–Stokes 
equations 

Mesh 

size 
Δx
mm  

Time 

step 
Δt
s  

High-fidelity 
model 

Finite 
element 

Finite difference 0.5 0.1 

Conduction-only 
model 

Finite 
element 

Neglected 0.5 0.1 

Regular-reduced 
model 

Finite 
element 

Stream function 
reduction method 

0.5 0.1 

Coarse-reduced 
model 

Finite 
element 

Stream function 
reduction method 

1 0.2 

Coarse-high- 
fidelity model 

Finite 
element 

Finite difference 1 0.2  
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5. Discussion 

At the end, the stored enthalpy of the regular-reduced model and the 
coarse-reduced model is 7.9% and 7.1% lower for the validation load 
cycle A as well as 3.3% and 5.8% lower for the validation load cycle B 
than of the high-fidelity model, respectively. The coarse-high-fidelity 
model differs by 6.3% and 3.7% and the conduction-only model shows 
an error of 35.4% and 26.5% for the validation load cycles A and B, 
respectively, see Fig. 11 and Table 5. The coarse-reduced model is as 
good as the regular-reduced model, but more than 8 times faster and 
even 44 times faster than the high-fidelity model. Therefore, the coarse- 
reduced model requires only 0.65 h instead of 28.6 h computation time 
for 5 h simulation time. Fig. 10 shows a comparison between accuracy 
and computation time. A coarsening of the grid and an enlargement of 

the time step causes a significant decrease in accuracy in the high- 
fidelity model, but not in the reduced model. The shape and progres-
sion of the melting fronts is slightly different between the reduced and 
the high-fidelity models, but still in good agreement after multiple 
charging/discharging cycles, see Fig. 12 for the validation load cycle A. 
Therefore, the reduced models are able to accurately estimate the state 
of charge, determine the location of the melting fronts, as well as serve 
as a basis to control the LHTES in real-time. 

5.1. Mesh coarsening and time step enlargement 

Solving the Navier–Stokes equations is often sensitive with respect to 
the chosen spatial discretization Δx = Δy of the high-fidelity model. The 
spatial discretization, in turn, determines the discrete time step Δt of the 

Fig. 8. Singular values Σi of the first ten modes (a) and the first temporal mode V1 as well as its estimation by the ARX model for the training data (b).  

Fig. 9. Stream function of the PCM cell using the constant load profile (Tin = 235 ◦C) after 50 min (above) and 100 min (below) in the original domain (left) and in 
the unit domain (right). 
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simulation. The relationship between Δt,Δx and the velocity u is given 
by the Courant-Friedrich-Lewy number, 

CFL =
uΔt
Δx

, (33)  

which should be less than 1 to correctly resolve convective heat transfer, 
see Lewy [33]. The CFL number indicates the maximum number of cells 
which a considered quantity passes through per time step. In the novel 
model reduction approach, the computation of the Navier–Stokes 
equations is replaced by a stream function model. Mesh and time step 
sizes are therefore only limited by the solution of the energy equation 
through the finite element model. As a result it is seen that the mesh can 
be significantly coarsened and the time step can be enlarged. This re-
duces the computational effort enormously while maintaining high 
accuracy. 

Fig. 10. Pareto efficiency - a comparison of accuracy and computation speed 
(RTF) of the different models. 

Fig. 11. Normalized enthalpy content of the four models in the training load cycle (top) and the validation load cycles A and B (beneath).  

Table 5 
Real-time factor RTF and error of the different models according to validation 
load cycle A and B.  

Model RTF  Error in % case A Error in % case B 

High-fidelity (reference) 5.72 0 0 
Coarse-high-fidelity 2.37 6.3 3.7 

Conduction-only 0.79 35.4 26.5 
Regular-reduced 1.1 7.9 3.3 
Coarse-reduced 0.13 7.1 5.8  
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5.2. Further improvements 

As seen above, the results of the proposed model reduction method 
are highly satisfactory. In order to further improve the model reduction 
approach in future work, two aspects are highlighted below: the trans-
formation of the stream function into a unit domain and the decompo-
sition of the stream function using SVD. 

5.2.1. Transformation 
The transformation of the stream function into a unit domain utilizes 

a simple and robust linear interpolation. This distributes the arising 
distortions evenly, but also leads to a distorted mapping of the flow’s 
boundary layers. Additionally, the authors studied piecewise-linear 
mapping approaches that are designed to keep the boundary layers 
undistorted, but the similarity of the transformed stream function could 
not be further improved yet. Still, more complex transformations that 
seek to accurately represent the boundary layer structure while com-
pressing the wake interior could yield a simpler stream function repre-
sentation via the SVD method and should thus be studied deeper in the 
future. 

5.2.2. Radial basis functions 
The dominant modes are extracted from the stream function via SVD. 

The dominant modes approximate the grid values of the stream function 
optimally. For the proposed model reduction approach, however, the 
velocities, i.e., the spatial partial derivatives of the stream function are 
the actual quantities of interest. Selecting more than one mode for the 
model reduction approach improves the grid values but not necessarily 
their derivatives. In an improvement of the presented method, the SVD 
weighting could be adjusted to focus on the precision of representing the 
partial derivatives of the stream function and radial basis functions 
could be utilized to represent the stream function modes and allow to 
evaluate accurate derivatives of the stream function. 

6. Conclusions 

The model reduction method for dominant flow patterns developed 
in this work replaces the Navier–Stokes equations with a reduced stream 

function model. The stream function model is data-based and parame-
trized from simulations of a high-fidelity model. In order to consider the 
solution-dependent flow region (melting and solidification processes), 
the stream function is mapped from the original flow domain to a unit 
domain. While the shape and size of the stream function differ greatly in 
the original domain at different times, the transformed stream functions 
show similar shape. The reduction of the stream function model is SVD- 
based and the velocity field of the flow domain can be reconstructed 
solely from properties of the flow domain, e.g. the temperature distri-
bution. The reduced model can be computed on a coarser grid and 
therefore on a larger time step without significantlydecreasing its 
accuracy. 

The novel contribution of this work is the easily adaptable reduction 
technique for problems with varying domains. Its accuracy and 
computational speed is demonstrated in simulation studies. The reduced 
model can be computed up to 44 times faster than the high-fidelity 
model. In the validation cases, the reduced models yielded a 
maximum error of 7.9% instead of 35.4% error caused by a conduction- 
only model that completely neglects natural convection. Thus the 
reduced model is sufficient for the intended applications of state of 
charge estimation and model-based control of an LHTES. The model 
captures the dominant dynamics and the remaining uncertainties, which 
are in the range of the actual accuracy of the numerical model of 3%, can 
be compensated by an observer or a controller, respectively. To further 
improve the reduction efficiency, radial basis functions and an advanced 
transformation of the stream function are emphasized. 
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