
International Journal of Innovative Technology and Exploring Engineering (IJITEE) 

ISSN: 2278-3075 (Online), Volume-13 Issue-12, November 2024 

13 

Published By: 

Blue Eyes Intelligence Engineering 
and Sciences Publication (BEIESP) 

© Copyright: All rights reserved. 

Retrieval Number: 100.1/ijitee.L999613121124 

DOI: 10.35940/ijitee.L9996.13121124 

Journal Website: www.ijitee.org 

Abstract: Unit testing is a critical phase in the software 

development lifecycle, essential for ensuring the quality and 

reliability of code. However, the manual creation of unit test 

scripts and the preparation of corresponding test data can be a 

time-consuming and labor-intensive process. To address these 

challenges, several automated approaches have been explored, 

including search-based, constraint-based, random-based, and 

symbolic execution-based techniques for generating unit tests. In 

recent years, the rapid advancement of large language models 

(LLMs) has opened new avenues for automating various tasks, 

including the automatic generation of unit test scripts and test 

data. Despite their potential, using LLMs in a straightforward 

manner to generate unit tests may lead to low test coverage. This 

means that a significant portion of the source code, including 

specific statements or branches, may remain untested, which can 

reduce the effectiveness of the tests. To overcome this limitation, 

the paper presents a novel approach that not only automates the 

generation of unit test scripts and test data but also improves test 

coverage. The proposed solution begins by using an LLM tool 

(such as ChatGPT) to generate initial unit test scripts and data 

from the source code. To enhance test coverage, the specification 

document of the source code is also input into the LLM to 

generate additional test data. Following this, a coverage checking 

tool is used to evaluate the test coverage and identify untested 

statements or branches. The LLM is then applied again to 

generate new test data aimed specifically at addressing these gaps. 

The initial experimental results indicate that this method 

significantly improves test coverage, demonstrating its potential to 

enhance automated unit testing processes. 

Keywords: Branch Coverage, LLM, Python, Statement 

Coverage, Test Data Generation, Unit Test.  

I. INTRODUCTION

In the software development process, unit testing is an

important activity to ensure code quality (i.e., that the code is 

error-free). One of the key criteria in generating unit tests is 

high coverage. Unit test scripts are considered to have high 

coverage if every statement (or branch) has at least one test 

case that runs through it. High coverage ensures that each 

statement (or branch) is tested, preventing software errors 

from being missed in statements (or branches) that do not 
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have test cases. 

Generating unit tests is time-consuming and 

labor-intensive because it requires reading and understanding 

the source code, designing test data sets to ensure high 

coverage, and writing test scripts for each module with 

corresponding test data. Therefore, much research has 

focused on automating unit testing [7]. 

One of the newly developed directions is the applicationn 

of large language models (LLMs). LLMs are advancing 

rapidly, and many studies are exploring their application in 

automating tasks. In software development, LLMs have been 

used in various stages, such as code generation and unit test 

generation. For unit test generation, LLM tools support 

generating unit test scripts from source code. Additionally, 

LLMs also assist in generating unit test scripts from 

specifications. Recent research results [1, 5, 11, 12] show the 

potential of applying LLMs in unit test script generation. 

However, LLMs cannot independently evaluate the 

coverage percentage of the generated test scripts, nor 

determine how to add tests to increase coverage. 

The paper focuses on automatically generating unit test 

data and unit test scripts with high coverage by using two 

types of input: specifications and source code. By doing so, 

we can obtain two sets of test data instead of just one, 

providing more opportunities to increase coverage. 

Additionally, a coverage assessment tool will be applied to 

identify statements and branches that are not fully covered. 

Afterward, the LLM will be used again to generate additional 

test data for these uncovered points. 

II. RELATED WORKS

There are various well-established approaches for 

automating the generation of unit test problems, e.g., 

search-based, constraint-based, random-based, and symbolic 

execution- based methods [7]. 

Recently, several works have applied LLMs to test 

generation problems [1, 4, 5, 9, 11], with different purposes 

and/or in combination with other testing approaches. For 

example, [2][13][14] focuses on combining fuzz testing and 

LLMs; [3, 8] apply mutation testing with LLMs; [6, 12] focus 

on applying search-based testing with LLMs; [8] proposes a 

fine-tuned technique for the test suite generation problem; [9] 

proposed a method applying both a fine-tuned technique and 

a retrieval-augmented generation (RAG) technique for 

compiler validation. 

[2] proposed a method to apply LLMs using both source

code and specifications as inputs [2]. also applied LLMs 

multiple times using new fuzzing inputs and focused on 

mutation coverage objectives. Our work focuses on 

statement/branch objectives. 

Generate High-Coverage Unit Test Data Using 

the LLM Tool   
Ngoc Thi Bich Do, Chi Quynh Nguyen 

https://doi.org/10.35940/ijitee.L9996.13121124
https://doi.org/10.35940/ijitee.L9996.13121124
http://www.ijitee.org/
mailto:ngocdtb@ptit.edu.vn
https://orcid.org/0009-0004-3250-0154
mailto:chinq@ptit.edu.vn
https://orcid.org/0009-0007-6197-2486
https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.35940/ijitee.L9996.13121124&domain=www.ijitee.org


Generate High-Coverage Unit Test Data Using the LLM Tool  

14 

Published By: 

Blue Eyes Intelligence Engineering 
and Sciences Publication (BEIESP) 

© Copyright: All rights reserved. 

Retrieval Number: 100.1/ijitee.L999613121124 

DOI: 10.35940/ijitee.L9996.13121124 

Journal Website: www.ijitee.org 

[6] focuses on generating unit tests with high coverage

objectives. To increase coverage results, [6] also creates 

prompts to generate more test cases for low-coverage 

functions. Our work identifies uncovered 

statements/branches rather than low-coverage functions to 

create prompts. Additionally, by using specification 

documents, our method has a chance to create more test cases 

for parts of the source code that are not fully implemented. 

[10] proposed a method to apply LLMs using both source

code and documentation generated from comments. [10] 

generates unit tests for API functions with high coverage 

objectives. Our work also shares the high coverage objective. 

However, we also use both source code and documentation to 

create prompts for the LLM tool. Moreover, our work 

increases coverage results by identifying uncovered 

statements/branches in the source code and generating 

prompts focused on these statements/branches." 

III. BACKGROUND

A. Unit Test Data and Unit Test Scripts

Unit tests are typically performed automatically by writing

test scripts using unit test libraries specific to each 

programming language (e.g., JUnit for Java, CPPUNIT for 

C++). The programmer writes these scripts and runs them 

automatically. The test results then return either pass or fail 

for each test case (test data). 
When conducting unit tests, the programmer needs to 

perform two tasks: (1) create test data sets that cover all 

statements (statement coverage) and branches (branch 

coverage) for each unit (method or class) of the original 

program; (2) write test scripts based on unit test libraries for 

the original program, using the test data created in step (1). 

Then, the test scripts will be run automatically, and the results 

will indicate if any cases have failed. Figure 1 and Figure 2 

are examples of test scripts for a program that solves the 

quadratic equation ax² + bx + c = 0, corresponding to the test 

data set in Table 1. In Figure 1, each test function corresponds 

to a test case in Table 1. The assert statement checks whether 

the result of the solve_quadratic(a, b, c) function (the 

function solve quadratic equation ax² + bx + c = 0), using the 

input data a, b, and c from the input column (Table 1), 

matches the expected result in the 'expected Outputs' column 

(Table I). If the result is correct, running this test script will 

automatically return 'pass'; otherwise, it will return 'fail'. 

Another script style is represented in Figure 2, each line in 

self.test_cases represents a test case corresponding to a test 

data set (a row in Table 1). Then, only one test script will be 

applied for the test data list self.test_cases.  

Table I: Test Data of Program Solves the Quadratic 

Equation ax² + bx + c = 0 

Test Purpose Test Data 

Description 
Input 

(a,b,c) 
Expected Outputs 

Two Real Roots Discriminant > 0 (1, -3, 2) (2.0, 1.0) 

One Real Root Discriminant = 0 (1, 2, 1) (-1.0,) 

No Real Roots Discriminant < 0 (1, 0, 1) None 

import unittest 

class TestQuadraticSolver(unittest.TestCase):

def test_two_real_roots(self): 

result = solve_quadratic(1, -3, 2) 

self.assertEqual(result, (2.0, 1.0)) 

def test_one_real_root(self): 

result = solve_quadratic(1, 2, 1) 

self.assertEqual(result, (-1.0,)) 

def test_no_real_roots(self): 

result = solve_quadratic(1, 0, 1) 

self.assertIsNone(result) 

[Fig. 1: Script Test of Function  Solves the Quadratic 

Equation ax² + bx + c: Solve_Quadratic (a,b,c)]  

import unittest 

class TestQuadraticSolver(unittest.TestCase): 

def setUp(self): 

self.test_cases = [ 

# (a, b, c, expected_roots) 

(1, -3, 2, (2.0, 1.0)),  

(1, 2, 1, (-1.0, -1.0)),  

(1, 0, 1, None),

] 

def test_solve_quadratic(self): 

for a, b, c, expected in self.test_cases: 

result = solve_quadratic(a, b, c) 

self.assertEqual(result, expected) 

[Fig. 2: Script Test of Function  Solves the Quadratic 

Equation ax² + bx + c: Solve_Quadratic (a,b,c)] 

Two situations may prevent 100% coverage: 

▪ Situation 1: The test data set is not comprehensive, may

miss certain cases.

▪ Situation 2: The source code contains dead code (i.e.,

dead statements or dead logic). These are parts of the code

that are never executed with any data set.

In Situation 1, we can improve coverage by generating a

better set of test data. In Situation 2, the coverage cannot be 

improved. Instead, the source code should be reviewed to 

check for errors and determine why dead code exists. 

B. LLM and Application in Unit Test

Large Language Models (LLMs) are a type of machine

learning model designed to process and generate natural 

language. Chat tools using these LLMs are being used by 

many people and gradually being integrated into daily life, 

work, and study to help reduce the time spent searching for 

information and solutions, as well as to automate certain 

stages in the creation of digital products (e.g., images, text, 

programming code). 

In programming, LLM tools can be applied in various 

contexts: answering questions, generating source code, 

creating test cases, unit test scripts, etc. 

When generating unit test scripts, LLM tools can help 

create test scripts for the provided source code. These test 

scripts are written using the corresponding unit test library for 

each language and include descriptions for each script. 

LLMs have the advantage of being able to generate test 

data for any program or specification. However, they still 

face some common issues: 
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▪ Issue 1: They cannot independently assess the quality of

the test data set, including evaluating coverage. As a

result, there is a lack of direction in generating test data to

increase coverage percentage.

▪ Issue 2: Some test data may have the same objective and

could be redundant, requiring removal.

▪ Issue 3: Some test data may have incorrect results,

including errors in the input, output, or scripts.

Issues 1 and 2 can be addressed by integrating a coverage 

evaluation tool to identify uncovered areas. Issue 3 can be 

mitigated by running the test cases and reviewing the results 

or manually reviewing the test set. Another approach to 

minimize Issue 3 is to provide a pre-defined template for 

inputs, outputs, and test scripts. 

IV. PROPOSED METHOD OF APPLYING LLM FOR

UNIT TEST GENERATION 

A. Proposed Method

We have proposed a method to generate test scripts and

test data for unit testing with high coverage objectives. The 

required inputs for our method are specification documents 

and the corresponding unit source code. The LLM tool will 

be used several times to generate test scripts and test data 

with high coverage. Additionally, a coverage evaluation tool 

will be used to evaluate coverage results and identify uncover 

points.  

Algorithm 1 shows our proposed method. 

Algorithm 1: 

Input: 

- sourceCode: source code of a test function/class

- spec: specification document for above test

function/class

Output: testScript1, testData, unCover points, %cover 
1. p1= createPromt1(sourceCode)

2. (testData1, testScript)=ApplyLLM(p1)

3. p2=createPromt2(spec, testData1)

4. (testData2) = ApplyLLM(p2)

5. testData= merge(testData1, testData2)

6. (unCover, %cover) = findUncover(testData ,

testScript, sourceCode)

7. if %cover ==100% then

8. return (testScript, testData, unCover,

%cover)

9. p3 = createPromt3(unCover, sourceCode,

testData1)

10. (testData3) = ApplyLLM(p3)

11. testData = merge (testData, testData3)

12. (unCover, %cover) = findUncover(testData ,

testScript, sourCode)

13. return (testScript, testData, unCover,

%cover)

Line 1: Create the first prompt using the source code of the 

test function/class.  

Line 2: Use the LLM to generate the test script and 

corresponding test data list for the source code. 

Line 3: Create the second prompt using the specification 

document of source code and request that output follows the 

format of the test data list generated in Line 2. 

Line 4: Use the LLM to generate test data from the 

specifications in the correct format. 

Line 5: Combine the test data sets generated from Lines 2 and 

Line 6: Evaluate coverage and identify uncovered statements 

or branches. 

Lines 9 and 10: Create the third prompt for the uncovered 

areas and apply the LLM to generate additional test data. 

Lines 11 and 12: Merge the test data sets and evaluate 

coverage again. 

B. Proposed Unit Test Script and Test Data List

Template

There are several ways to generate test scripts:  (1) each 

test case will generate a test function that contains a test scrip 

with corresponding test data (e.g. Figure 1); (2) all test data 

will be written in a list and a test script will be applied (e.g., 

Fig. 1).  

Our method will use method (2) due to the following reasons: 

▪ Unified Test Script: In Algorithm 1, the LLM tool will be

applied several times to increase coverage results.  To

ensure the generated test script is unified, the test script

will be generated only at the first time calling LLM tool.

This test script can be applied to the test data list.

▪ Unified Test Data List Format: several times after

applying LLM tool, the corresponding test data will be

easily added to test data list using the same test data list.

Besides, this test data list will be more easily manage

(e.g., add/delete/modified) compared to using way (1).

Figure 3 shows the proposed test script and test data 

template.  
 import unittest 

class <TEST CLASS NAME>(unittest.TestCase): 

def setUp(self): 

self.test_cases = [ 

(<input data>, <expected output data>), 

… 

] 

def <test function name>(self): 

for <input>, expected in self.test_cases: 

result = <function name>(<input format>) 

self.assertEqual(result, expected) 

[Fig. 3: Proposed Test Script and Test Data List Template] 

C. Proposed Prompts

In Algorithm 1, there are three kinds of prompt will be

used: 

▪ Prompt 1: the input is the source code of a function/class;

the output is a test script and the first test data list; the

prompt must reflect the purpose: to generate a test script

and test data list using the template in Figure 3 with a high

statement coverage objective.

▪ Prompt 2: the input is the specification document of the

corresponding function/class; the output is the second test

data list; the prompt must reflect the purpose: to generate

a test data list that has the same format as the first test data

list above with a high specification coverage objective.

▪ Prompt 3: the input is uncovered statements/branches

found in Algorithm 1 (line 7); the output is the third test

data list; the prompt must reflect the purpose: to generate

the test data list that has the same format as the first test

data list above with the objective of covering uncovered

statements/branches.
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The proposed templates for the above prompt types are 

shown below:  

Prompt 1:   

You are an expert Python test-driven developer. 

For source code below:  

<source code of a test function/class> 

Create a new test function, always making sure that the 

new test is correct and indeed improves coverage. 

Respond ONLY with the Python code using the 

following template. 

Remember that test data must be written in a list that 

include: inputs and expected outputs. 

<script and test data template from Figure 3> 

Prompt 2:   

You are an expert Python test-driven developer. 

The specification below:  

<specification document corresponding to the test 

function/class>   

Create test data that ensures coverage of both true and 

false cases in every condition of the above specification. 

The test data must use a table format that includes: 

inputs and expected outputs. Respond ONLY with test 

data using the following template:  

<test data list template from Figure 3> 

Examples:  

<some lines of test data generated from Algorithm 1 

(line 2)> 

Prompt 3 

For the source code  

<source code of the test function/class> 

 still lacks coverage of the following conditions: 

<uncover branches found in Algorithm 1 (line 6) with 

corresponding true/false cases> 

Add more test data for only the above conditions. 

Writing the test data list in the following template  

<some lines of test data generated from Algorithm 1 

(line 2)> 

V. EVALUATION 

The experiment is executed using:  

▪ LLM tool: chatGPT version GPT-4o 

(https://chatgpt.com/).  

▪ Source code: the Python programming language.  

▪ Unit test framework: the unittest 

(http://docs.python.org/library/unittest.html). 

▪  Coverage tool: Coverage.py 

(https://coverage.readthedocs.io/en/latest/)  

A. Case Study:  

We demonstrate and evaluate our proposed method with the 

following case study:  

B. Specification Document: 

A positive integer is called a number increase-decrease  if 

the following conditions are satisfied: 

- Has 3 or more digits 

- Find a position in the sequence of numbers so that 

from the left to that position, the sequence 

satisfies the ascending (tightening) order and 

from that position to the end, it satisfies the 

descending (tightening) order. 

Write a program to check if a number is number increase – 

decrease. The number must be an integer with no more 

than 18 digits 

Input 

A positive integer N with no more than 18 digits 

Output 

YES or NO depending on the test results. 

Example: 

Input: 12342  

Output: YES 

Input: 23342 

Output: NO 

Input: 5678961 

Output: YES 

C. Corresponding Source Code:  

def is_increase_decrease_number(N: str) -> str: 

    # The number must have at least 3 digits 

    if len(N) < 3: 

        return "NO" 

     n = len(N) 

        # Find the "peak" point 

    peak = -1 

    for i in range(1, n): 

        if N[i] < N[i-1]:  # Find first decreasing 

point 

            peak = i - 1 

            break 

        # If no peak point is found, the number doesn't 

have both increasing and decreasing sequences 

    if peak == -1 or peak == 0 or peak == n-1: 

        return "NO" 

        # Check if the left part is strictly 

increasing 

    for i in range(1, peak+1): 

        if N[i] <= N[i-1]: 

            return "NO" 

        # Check if the right part is strictly 

decreasing 

    for i in range(peak+1, n): 

        if N[i] >= N[i-1]: 

            return "NO" 

        return "YES" 

D. The Test Script and Test Data List are Generated by 

Executing Prompt 1:  

import unittest 

class Test Is Increase Decrease Number(unittest. Test 

Case): 

    def setUp(self): 

        self.test_cases = [ 

            ("12342", "YES"), 

            ("23342", "NO"), 

            ("5678961", "YES"), 

            ("54321", "NO"), 

            ("987654", "NO"), 

            ("1456321", "YES"), 

            ("111", "NO"), # Edge case: All digits are 

the same 

            ("12345678987654321", "YES"), # Long 

number with valid increase-decrease pattern 

            ("123454321", "YES"), # Symmetrical 

number 

            ("123456789", "NO"), # Strictly 

increasing 

            ("987654321", "NO"), # Strictly 

decreasing 

            ("10234567898765432", "YES"), # Zero 

included, valid increase-decrease 

            ("1001", "NO"), # Edge case: Minimum peak 

at the start 
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("121", "YES"), # Simple 

increase-decrease case 

("1221", "NO"), # Not strictly increasing 

in the first half 

] 

   def test_is_increase_decrease_number(self): 

for num_input, expected in self.test_cases: 

result = 

is_increase_decrease_number(num_input) 

self.assert Equal(result, expected) 

E. The Test Data List is Generated by Executing Prompt

2:

self.test_cases = [ 

# Valid increase-decrease cases 

("12342", "YES"), 

("5678961", "YES"), 

("13579", "YES"), 

("12345678987654321", "YES"), 

# Invalid cases (not 3 or more digits) 

("1", "NO"), 

("12", "NO"), 

# Invalid cases (not strictly increasing then 

decreasing) 

("23342", "NO"), 

("1233345", "NO"), 

("987654321", "NO"), 

("112233445566", "NO"), 

# Edge cases (exactly 18 digits) 

("123456789012345678", "NO"), 

("12345678987654321", "YES" 

("123456789012345679", "YES"), 

("999999999999999999", "NO"), 

# Mixed cases 

("345678321", "YES"), 

("1122334455", "NO"), 

("111223344556677", "NO"), 

] 

F. The Test Data List is Generated by Executing Prompt

3:

After executing Prompt 2,  one branch is still not covered if

N[i] >= N[i-1]. Thus, Prompt 3 will be executed. 
self.test_cases = [ 

# Cases where the right part is not strictly 

decreasing (N[i] >= N[i-1] is true) 

("1234554321", "NO"),  # Right part is flat 

(repeated '5') 

("1234543321", "NO"),          # Right part has 

repeated '3', not strictly decreasing 

("123450000", "NO"),           # Flat sequence 

(repeated '0's) after the peak 

… 

]  

G. Observations

We also have executed several problems and have obtained 

the coverage results in Table II.  

Table II: Coverage Results 

No. 

Code Coverage Results Of 

the Test Data Generated by Noted 

Prompt 1 Prompt 2 Prompt 3 

Case study 88% 94% 100% 
Prompt 2 covers more 

specification cases. 

Problem 2 100% 100% No run 
Prompt 2 covers more 

specification cases 

Problem 3 90% 100% No run 

Analyzing the coverage results in Table II and the 

generated test data, we have the following observations:  

Pros: 

▪ Executing the LLM tool with Prompt 2 (i.e., to generate

test data from the specification document) can generate

test data to cover more statements/branches. For example,

in the case study, test data     ("1", "NO"), ("12",

"NO"), will cover the branch if len(N) < 3: with true

case.

▪ Executing the LLM tool with Prompt 2 (i.e., to generate

test data from specification document) can generate test

data that the source code does not process. For example,

in the case study, test data ("123456789012345678",

"NO") is within specifications (1 ≤ N ≤ 10^18).

▪ Executing the LLM tool with Prompt 3 can generate test

data to cover more statements/branches. For example, in

the case study, test data ("1234543321", "NO") will

cover the branch if N[i] >= N[i-1]: with true case.

▪ The test scripts are generated using the correct template.

▪ For every run of the LLM tool, the test data lists are

generated using the correct template.

Cons:

▪ Some generated expected results are incorrect. For

example, in case study, test data.

("10234567898765432", "YES") generated from

Prompt 1, test data ("123456789012345679", "YES")

generated by Prompt 2

▪ Cannot generate test data for some uncovered

statements/branches.

▪ Some generated test data are redundant they do not

contribute to improving coverage results.

VI. CONCLUSION

The proposed method for generating unit test scripts and test 

data aim to increase coverage using LLM. The method 

involves: 

▪ Using both source code and specification documents for

test function/class: The LLM generates test scripts by

considering both the source code and the specification

documents, ensuring more comprehensive coverage.

▪ Improving coverage results by generating additional test

data: the test data can be expanded to increase coverage

for uncovered statements/branches.

▪ Creating template prompts, test scripts, and test data:

These templates guide the LLM in generating outputs,

ensuring that the test script and test data list are

consistent, efficient, and correctly formatted.

Future Directions: 

▪ Reducing test data list size by removing test data that does

not contribute to coverage results.

▪ The current approach focuses on predefined unit tests but

has not yet been applied to the entire source code.

▪ Solving the issue of incorrect expected results.

DECLARATION STATEMENT 

After aggregating input from all authors, I must verify the 

accuracy of the following information as the article's author. 

▪ Conflicts of Interest/ Competing Interests: Based on

my understanding, this article has no conflicts of interest.

▪ Funding Support: This

article has not been funded

by any organizations or

agencies. This

https://doi.org/10.35940/ijitee.L9996.13121124
https://doi.org/10.35940/ijitee.L9996.13121124
http://www.ijitee.org/


Generate High-Coverage Unit Test Data Using the LLM Tool  

18 

Published By: 

Blue Eyes Intelligence Engineering 
and Sciences Publication (BEIESP) 

© Copyright: All rights reserved. 

Retrieval Number: 100.1/ijitee.L999613121124 

DOI: 10.35940/ijitee.L9996.13121124 

Journal Website: www.ijitee.org 

Author-1 
Photo 

Author-2 

Photo 

independence ensures that the research is conducted with 

objectivity and without any external influence. 

▪ Ethical Approval and Consent to Participate: The

content of this article does not necessitate ethical approval

or consent to participate with supporting documentation.

▪ Data Access Statement and Material Availability: The

adequate resources of this article are publicly accessible.

▪ Authors Contributions: The authorship of this article is

contributed equally to all participating individuals.

REFERENCES 

1. Y. Chen, Z. Hu, C. Zhi, J. Han, S. Deng, and . Yin. “ChatUniTest: A 

Framework for LLM-Based Test Generation”. In Companion 

Proceedings of the 32nd ACM International Conference on the 
Foundations of Software Engineering (2024), pp 572–576. doi: 

https://doi.org/10.1145/3663529.3663801

2. X. Chun, M. Paltenghi, J. L. Tian, M.l Pradel and L. Zhang. “Fuzz4ALL: 
Universal Fuzzing with Large Language Models”. In Proceedings of the 

IEEE/ACM 46th International Conference on Software Engineering 

(ICSE '24). Association for Computing Machinery, New York, NY, 
USA, Article 126, 1–13. doi: https://doi.org/10.1145/3597503.3639121

3. A. M. Dakhel, A. Nikanjam, V. Majdinasab, F. Khomh, and M. C. 

Desmarais. “Effective test generation using pre-trained Large Language 
Models and mutation testing”. Inf. Softw. Technol. (2024), 171. doi: 

https://doi.org/10.1016/j.infsof.2024.107468

4. A. Deljouyi. “Understandable Test Generation Through Capture/Replay 
and LLMs”. In Proceedings of the 2024 IEEE/ACM 46th International 

Conference on Software Engineering: Companion Proceedings 

(ICSE-Companion '24). Association for Computing Machinery, New 
York, NY, USA, 2024, pp261–263. doi: 

https://doi.org/10.1145/3639478.3639789

5. W. Junjie, Y. Huang, C. Chen, Z. Liu, S. Wang and Q. Wang. “Software 
Testing With Large Language Models: Survey, Landscape, and Vision”, 

IEEE Transactions on Software Engineering 50, (2023), pp 911-936. 

doi: https://doi.org/10.1109/TSE.2024.3368208
6. C. Lemieux, J. P. Inala, S. K. Lahiri and S. Sen, "CodaMosa: Escaping 

Coverage Plateaus in Test Generation with Pre-trained Large Language 
Models". 2023 IEEE/ACM 45th International Conference on Software 

Engineering (ICSE), Melbourne, Australia, (2023), pp. 919-931. doi: 

https://doi.org/10.1109/ICSE48619.2023.00085
7. E. Daka and G. Fraser. “A Survey on Unit Testing Practices and 

Problems”. In Proceedings of the 2014 IEEE 25th International 

Symposium on Software Reliability Engineering (ISSRE '14). IEEE 
Computer Society, USA, (2014). pp. 201–211. doi: 

https://doi.org/10.1109/ISSRE.2014.11

8. J, Liu, C. S. Xia, Y. Wang, and L. Zhang. “Is your code generated by 
ChatGPT really correct? rigorous evaluation of large language models 

for code generation”. In Proceedings of the 37th International 

Conference on Neural Information Processing Systems (NIPS '23). 
Curran Associates Inc., Red Hook, NY, USA, Article 943, (2023), pp 

21558–21572. doi:https://doi.org/10.1016/j.future.2024.05.034

9. C. Munley, A. Jarmusch, S. Chandrasekaran, “LLM4VV: Developing 
LLM-driven testsuite for compiler validation”, Future Generation 

Computer Systems, Volume 160, (2024), pp 1-13, ISSN 0167-739X. 

doi: https://doi.org/10.1109/TSE.2023.3334955
10. M. Schäfer, S. Nadi, A. Eghbali and F. Tip, "An Empirical Evaluation of 

Using Large Language Models for Automated Unit Test Generation", in 

IEEE Transactions on Software Engineering, vol. 50, no. 1, (2024), pp. 
85-105. doi: https://doi.org/10.1109/TSE.2023.3334955

11. Y. Shengcheng, C. Fang, Y. Ling, C. Wu and Z. Chen. “LLM for Test 

Script Generation and Migration: Challenges, Capabilities, and 
Opportunities”. 2023 IEEE 23rd International Conference on Software 

Quality, Reliability, and Security (QRS) (2023), pp 206-217. doi: 

https://doi.org/10.1109/QRS60937.2023.00029
12. Y. Tang, Z. Liu, Z. Zhou and X. Luo, "ChatGPT vs SBST: A 

Comparative Assessment of Unit Test Suite Generation". in IEEE

Transactions on Software Engineering, vol. 50, no. 06, (2024), pp. 
1340-1359. doi: https://doi.org/10.1109/TSE.2024.3382365

13. Pesati, N. (2024). Security Considerations for Large Language Model 

Use: Implementation Research in Securing LLM-Integrated 
Applications. In International Journal of Recent Technology and 

Engineering (IJRTE) (Vol. 13, Issue 3, pp. 19–27). 

https://doi.org/10.35940/ijrte.c8142.13030924
14. Lalaei, R. A., & Mahmoudabadi, Dr. A. (2024). Promoting Project 

Outcomes: A Development Approach to Generative AI and LLM-Based 

Software Applications’ Deployment. In International Journal of Soft 

Computing and Engineering (Vol. 14, Issue 3, pp. 6–13). 
https://doi.org/10.35940/ijsce.d3636.14030724  

AUTHORS PROFILE 

Do Thi Bich Ngoc in 2004, she successfully earned her 
Bachelor of Science degree in the field of Information 

Technology from the University of Science and 

Technology. Subsequently, she successfully earned her 
Master's degree in Computer Science from the University 

of Hanoi Education in 2007. In 2010 when she 

successfully earned Ph.D degree from the Japan Advanced Institute of 
Science and Technology, specializing in the field of Information Science. 

Since 2013, she has been an esteemed lecturer within the Faculty of 

Information Technology at the Posts and Telecommunications Institute of 
Technology. Her research interests are software testing, formal methods, 

numerical analysis, data mining, and machine learning.  

Chi Quynh Nguyen graduated Bachelor of Science in 

Computer Science at Hanoi University of Technology, 

Vietnam in 1999 with summa cum laude, then she got 
Vietnam ese Government Fellowship to earn Master of 

Science in 2004 in Computer Science at University of 

California, Davis, USA. Then she became Ph.D 
Candidate in Computer Science at the same University in 2006. Since 2008 

to now, she has been a senior lecturer in the Faculty of Information 

Technology at the Posts and Telecommunications Institute of Technology, 
Hanoi, Vietnam. Her main research focuses on datawarehousing, data 

mining and bioinformatics, Mobility prediction, self-configuration of 

MaNets and data aggregation methods in sensor network.  

Disclaimer/Publisher’s Note: The statements, opinions and 

data contained in all publications are solely those of the 

individual author(s) and contributor(s) and not of the Blue 

Eyes Intelligence Engineering and Sciences Publication 

(BEIESP)/ journal and/or the editor(s). The Blue Eyes 

Intelligence Engineering and Sciences Publication (BEIESP) 

and/or the editor(s) disclaim responsibility for any injury to 

people or property resulting from any ideas, methods, 

instructions or products referred to in the content. 

https://doi.org/10.35940/ijitee.L9996.13121124
https://doi.org/10.35940/ijitee.L9996.13121124
http://www.ijitee.org/
https://doi.org/10.1145/3663529.3663801
https://doi.org/10.1145/3597503.3639121
https://doi.org/10.1016/j.infsof.2024.107468
https://doi.org/10.1145/3639478.3639789
https://doi.org/10.1109/TSE.2024.3368208
https://doi.org/10.1109/ICSE48619.2023.00085
https://doi.org/10.1109/ISSRE.2014.11
https://doi.org/10.1016/j.future.2024.05.034
https://doi.org/10.1109/TSE.2023.3334955
https://doi.org/10.1109/TSE.2023.3334955
https://doi.org/10.1109/QRS60937.2023.00029
https://doi.org/10.1109/TSE.2024.3382365
https://doi.org/10.35940/ijrte.c8142.13030924
https://doi.org/10.35940/ijsce.d3636.14030724

