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Summary: 
 
A robust workflow for shape optimisation of internal and external flows with application to automotive 
design is demonstrated in this paper. A gradient based approach is presented, in which the surface 
sensitivity with respect to the flow variables is computed with the continuous adjoint method. For 
aerodynamic shape optimisation cases, mesh displacement algorithms are indispensable in order to 
avoid re-meshing the updated geometry in each optimisation step. Keeping the same mesh topology at 
every optimisation cycle secures gradient consistency and the possibility to use the previous solution as 
initial conditions in order to converge the CFD equations faster. Simple mesh displacement algorithms, 
such as the spring analogy, run into problems under complex surface deformations. Thus a mesh 
optimisation approach can be proved to be more robust as it copes better with complex elements 
optimising also the base mesh. In this paper the mesh displacement algorithm is based on sphericity, 
which quantifies the mesh quality. Solving an extra optimisation problem for the maximisation of the 
sphericity value, results in the new internal mesh nodes positions. The methodology is heuristic in nature 
in that it does not consider known numerical quality metrics explicitly. It has shown however to be 
exceptionally robust and effective allowing the maintenance of high cell quality even during extreme 
deformation events. The suggested method is applied to automotive test cases of internal and external 
aerodynamics. In such cases, the use of a robust morpher which preserves geometry features and 
delays mesh quality deterioration is found to be crucial. 
 
 
 
 
 
 
 

 



1 Introduction 

Optimisation methods have emerged through the years to an essential element for automotive 
aerodynamic design. Stochastic methods, such as evolutionary algorithms, are already established in 
industry due to their highly explorative character and modular ability, with the drawback however of 
many evaluations of the cost function. Gradient-based methods, on the other hand, can reduce 
significantly the computational cost and offer more control in handling constraints and preserving design 
features which should not change drastically during the optimisation.  

The adjoint method, in particular, computes the gradient of the desired objective function with 
respect to (w.r.t.) the design variables with a computational cost practically independent of the number 
of design variables and comparable to that of solving the primal equations, for aerodynamics the Navier 
Stokes equations [1]. To this end, the adjoint equations, their boundary conditions and the final 
expression of the gradient, namely the sensitivity derivative, are derived by differentiating the objective 
function augmented by the volume integrals of the primal equations multiplied by the adjoint variables. 
The adjoint equations are then discretised similarly to the primal equations and solved in order to 
compute the objective function gradient. 

In adjoint shape optimisation either a parametrised description of the shape or the surface nodes 
of the mesh are used as design variables. In the latter approach, the design space is obviously the 
richest possible for the current spatial discretisation of the shape. However, any noise introduction in 
the adjoint derivatives combined with the fact that each surface node is being perturbed independently 
from its neighbours can create oscillations and irregularities. This will reduce the smoothness of the 
deformed shape which can make the optimisation problem difficult to converge or even diverge. It is 
thus necessary to create a smooth representation of the gradient in order to cut-off any unnecessary 
oscillations. In the literature there are various methods on the proper smoothing of the sensitivity 
derivatives. The most well-established are an explicit technique which uses convolution filter kernels [2] 
and an implicit smoothing technique [3], also called Sobolev gradient.  

Furthermore, a mesh displacement algorithm is indispensable in order to deform the volume mesh 
according to the movement of the surface boundary without being necessary to re-mesh the new 
geometry. The mesh topology in this case will remain the same securing gradient consistency through 
the optimisation cycles. Many mesh displacement algorithms have been developed so far following a 
variety of approaches, like elastic medium analogy [4], spring analogy [5] and Radial Basis Functions 
[6] methods. In our study the mesh displacement algorithm is based on a mesh quality metric called 
sphericity [7]. Solving the optimisation problem for the maximisation of the sphericity value, results in 
the new positions of the points inside the mesh. 

In this paper a workflow for shape optimisation in internal and external aerodynamics is 
demonstrated. The objective function gradient is computed with the continuous adjoint method, as 
formulated in section 2. The sensitivity derivatives are afterwards smoothed using the implicit technique 
and used to move the boundary and internal mesh, which is then optimised based on its sphericity, as 
described in section 3. The method is implemented in OPENFOAM. The flow solver is the standard 
steady state incompressible solver, while the adjoint solver is provided by Engys [8]. The proposed 
workflow is applied to two industrial cases, targeting at power dissipation minimisation of an automotive 
air duct and at drag reduction of the DrivAer car model [9], developed by the Institute of Aerodynamics 
and Fluid Mechanics of Technical University Munich (TUM). 

  

2 The continuous adjoint method 

In this section a brief description of the continuous adjoint method for the incompressible Navier-
Stokes equations [10] is presented. A general objected function is defined on the boundary, so as to 
accommodate for both internal and external flow cost functions which are investigated later.  

2.1 Flow Equations 

The flow is modelled by the Navier-Stokes equations for incompressible flows that read 
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where 𝑝 is the static pressure, 𝑣𝑖 is the flow velocity, 𝜏𝑖𝑗 = (𝜈 + 𝜈𝜏) (
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stress tensor and 𝜈 and 𝜈𝜏 the kinematic and turbulent viscosity respectively. The turbulence model used 
is the Spalart-Allmaras turbulence model described by  
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where 𝜈 is the model variable [11].  
 

2.2 Objective functions 

Two different objective functions are investigated. In the internal flow test case, power dissipation 
[12] is the cost function to be minimised, while in external aerodynamics it is the drag force [13]. These 
read respectively 
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In what follows a generalised expression of an objective function defined on the boundary will 

be used, given by 
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2.3 The continuous adjoint formulation 

The objective function is firstly augmented with the field integrals of the flow equations multiplied 
with the adjoint variables. 
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Here, 𝑢𝑖 and 𝑞 are the adjoint to the flow velocity and static pressure respectively. Although the 

turbulent equation can also be included in the augmented function, by introducing an extra adjoint 
variable and raising so the “frozen turbulence” assumption, it was not deemed necessary in the scope 
of this paper. Next step is the differentiation of the augmented cost function and the application of the 
Green-Gauss theorem where necessary. Finally, by zeroing the multipliers of the partial derivatives of 
flow variables, the field adjoint equations, boundary conditions and the expression of the sensitivity 
derivatives are obtained. 
 The adjoint equations yield 
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where 𝜏𝑖𝑗
𝑎 = (𝜈 + 𝜈𝜏) (
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The expression of the sensitivity derivatives w.r.t. the design variables 𝑏𝑛 is given by 
 

𝛿𝐽

𝛿𝑏𝑛

= −∫(𝑢𝑖𝑣𝑗𝑛𝑗 + 𝜏𝑖𝑗
𝑎𝑛𝑗 − 𝑞𝑛𝑖 +

𝜕𝐹𝑗

𝜕𝑣𝑖

𝑛𝑗)
𝜕𝑣𝑖

𝜕𝑥𝑘

 

𝑆

𝑛𝑘

𝛿𝑥𝑚

𝛿𝑏𝑛

𝑛𝑚𝑑𝑆 

 



 

3 Implicit smoothing, mesh deformation and mesh optimisation 

In this section the procedure with which the computed sensitivity derivatives are smoothed and 
used to move the surface mesh and the volume mesh is described. The process comprises three steps, 
the gradient implicit smoothing, the mesh deformation and the mesh optimisation.  

3.1 Gradient Implicit Smoothing 

The computed sensitivity derivatives are smoothed with the implicit method, where the new 

smoothed sensitivities 𝐺̅  are being calculated solving the equation  
 

𝐺̅ − 𝜀  𝛻2𝐺̅ = 𝐺 
 
where 𝜖 is the smoothing intensity. The smoothing intensity 𝜖 is a case dependent parameter and 
depends mostly on the oscillations amplitude w.r.t. the surface area of the boundary faces. 
. 

3.2 Mesh Deformation and optimisation 

The computed displacement on the surface to be optimised is then propagated to the interior by 
solving the Laplacian equation to compute the new coordinates of the internal mesh nodes and the 
mesh is then optimised relative to its sphericity. 

Sphericity is an element wise geometric property which defines how spherical a geometrical 
object is and is defined as 
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where 𝑉𝑜 is the volume and 𝑆𝑜 is the surface of the object. In other words, sphericity is the ratio between 
the diameter of a sphere, that has the same volume with the object, and the diameter of a sphere that 

has the same surface area as the object (considering that for a sphere holds 𝑆 = 𝜋1∕3(6𝑉)2∕3). Given 
this the sphericity of a sphere is unity by definition and unity is the largest value that any three-
dimensional object can have.  
 There is a variety of methods in the literature using same kind of quality metrics and approaches 
for mesh optimization and quality improvement. Escobar et al.’s [14] and Kim et al.’s [15,16] are using 
similar quality metrics introducing the cell perimeter or the RMS cell surface value. The novelty of our 
method is that the quality metric suggested is appropriate for simultaneous mesh untangling and quality 
improvement, while additionally an analytical differentiation of the objective function is taking place 
making the optimization procedure highly accurate and fast. 

3.2.1 Mesh Optimisation  

Considering for instance a finite volume mesh (structured or unstructured), each cell will have a 
sphericity value calculated as a function of the cell’s surface and volume. This way sphericity will 
represent the quality level of a cell, in a sense that high sphericity values correspond to good quality 
cells (highly isotropic) and, on the other hand, low sphericity values are illustrating low quality cells (high 
skewness, non-orthogonality, etc.). 
 The goal is to simultaneously maximize each cell’s sphericity by re-positioning the vertices of 
the mesh maintaining however the same mesh topology. To do so, it is necessary to define a point-wise 
objective function and calculate its derivative w.r.t. the point position. In this way, a gradient based 
method can be used in order to solve the optimisation problem for the maximization of the point-based 
objective function.  

Assuming that a point P inside the computational mesh is surrounded by M cells we define as 
an objective function the arithmetic mean of the sphericity values from all the surrounding cells 
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Differentiating this w.r.t. the point position 𝑃⃗  we get,  
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and the derivative of sphericity w.r.t. 𝑃⃗  is  
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where 𝑆𝑐

′(𝑃) and 𝑉𝑐
′(𝑃) are the derivatives of the cell surface and cell volume w.r.t. the position of the 

point P respectively. For the analytical differentiation of those geometric values one can refer to [8] to 
see the full differentiation procedure. 

Once the derivatives of all the grid points are calculated, a new set of point positions is obtained 
by moving each point towards the direction of its derivative. Thus,  
 

𝑃 ⃗⃗  ⃗𝑛𝑒𝑤 = 𝑃⃗ 𝑜𝑙𝑑 + 𝛼 ⋅ 𝐺𝑝
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where α is the step length of the optimisation cycle. Using a constant value of α is not optimal for the 
proposed application due to large variations in cell sizes encountered in different CFD meshes. It is 
therefore necessary to have an adaptive step length. This can be achieved effectively by using second 
derivatives which also has the added benefit of speeding up the convergence. Based on Nocedal [17] a 
limited memory BFGS algorithm is constructed for building and updating the inverse Hessian matrix of 
the second derivatives. Thus, the latter equation can be written as 
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where 𝐻𝑝
−1 is the inverse Hessian matrix and 𝜆 is a step length which will guarantee that moving towards 

the direction 𝐻𝑝
−1𝐺𝑝

⃗⃗ ⃗⃗  an improvement in the objective function will be achieved (Wolfe conditions [18]). 

 

4 Application of the workflow 

4.1 Internal flow: automotive air duct 

A segment of an automotive air duct is optimised here targeting at power dissipation minimisation. 
The flow is laminar with a Reynolds number of 350 and the mesh is structured comprising 700000 cells. 
During the optimisation only the S-Bend portion of the duct is allowed to be modified. To achieve an 
even smoother transition of the sensitivities values, a sigmoid filter was used at the boundary between 
the deformable and constrained patches.  
 
 

 



Fig. 1: Sensitivity map calculated for the starting geometry of the S-Bend case targeting at minimising 
power dissipation. Red areas have to be pulled away from the fluid, while blue areas have to be pushed 
towards it, in order to minimise the objective function. 

 
 
As seen in fig. 1. the sensitivities computed at the first optimisation cycle, expectedly tend to 

‘straighten up’ the S-Bend, so that the recirculation area is supressed. After the completion of 40 
optimisation cycles the power dissipation was reduced by 17.1%. The optimised shape and mesh have 
preserved their smoothness and quality respectively (fig. 2). It is also interesting to notice, that although 
in many cycles after the boundary movement and the internal nodes displacement the mesh quality 
deteriorated, comprising many skewed and non-orthogonal elements, the mesh optimisation managed 
always to improve the quality of each and every bad element (fig.3).  
 

 
Fig. 2: Starting (left) and optimised (right) geometry of the S-Bend. The optimised geometry was 
obtained after 40 optimisation cycles leading to a 17.1% reduction in the objective function. The 
geometries are coloured with the pressure distribution. 
 
 
 

 
 
 



Fig. 3: Slice of the internal mesh before (left) and after (right) the mesh optimisation. In the area denoted 
on the red circle there are highly non-orthogonal faces as well as some collapsed cells. After the mesh 
optimisation the mesh quality is highly improved. 
 
 
 
       

4.2 External aerodynamics: DrivAer vehicle 

In this section, the optimisation workflow is applied to the DrivAer car model aiming at drag 
minimisation. The fast-back configuration with a smooth underbody, with mirrors and wheels (FS wm 
ww) is used (Fig. 4). The flow is turbulent and modelled with the Spalart-Allmaras turbulence model. 
The half car is meshed and simulated with a computational grid comprising around 7 million cells. Only 
the rear part of the car is allowed to deform, since its shape is critical to the flow in the wake of the car 
and hence to its drag. 
 In Fig. 5 the sensitivity derivatives on the DrivAer car model computed at the first optimisation 
cycle are presented. Focusing on the rear part of the car, the sensitivity map suggests the creation of a 
spoiler, by lowering the area just before the edge where the flow separates. Furthermore, on the rear 
fender an area appears which has to be pulled towards the fluid. For the smoothing procedure, the 
variable in the implicit equation was selected so that a larger area is affected. Since the rear part is 
moved in a more rigid way the creation of new “feature” lines is avoided.  

After the completion of 10 optimisation cycles the total drag of the optimised geometry is reduced 
by around 0.7%. The area with the highest deformation is located in the end of the trunk, which is pushed 
inwards and creates a spoiler (fig. 6). This total drag reduction may seem small, but is significant, 
considering that only a small portion of the rear part surface is displaced. 
 
 

    
Fig. 4: Pressure distribution on the starting geometry of the DrivAer car model, fast-back, smooth 
underbody, with mirrors, with windows (FS wm ww).  
 
 
 
 
 



     
Fig. 5: Raw (left) and smoothed (right) sensitivity map targeting at drag minimisation computed at the 
first optimisation cycle. Red areas have to be pulled away from the fluid, while blue ones towards it, in 
order to reduce drag force. Iso-lines denote zero sensitivity areas. 
 
 

         
 
Fig. 6: Comparison between the optimised (left half of the car) and starting (right half) rear part 
geometries of the DrivAer model. On the right the pressure distribution for both the optimised and 
starting geometry is presented.  
 

5 Conclusions 

In this paper a workflow for aerodynamic shape optimisation was presented and applied to several 
testcases. For the gradient-based optimisation algorithm the objective function gradient is computed 
with the continuous adjoint method. The sensitivity derivatives are smoothed with an implicit technique 
and the boundary and internal mesh nodes are moved accordingly. In the final step the mesh quality is 
improved through an optimisation routine which aims at the maximisation of element sphericity, a mesh 
quality metric. The workflow was applied to two industrial cases of internal and external aerodynamics. 
In both cases the objective function value was reduced significantly proving the presented approach to 
be robust and efficient. 
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