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ABSTRACT 
 
We give an elementary exposition of a method to obtain the infinitesimal point symmetries of Lagrangians. 

Besides, we exhibit the Lanczos approach to Noether’s theorem to construct the first integral associated 

with each symmetry. 
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1. INTRODUCTION 

 

We consider a physical system where the parameters q1, q2 ,…, qn  are its generalized 
coordinates, that is, there are  n  degrees of freedom. The action: 
 

� =  �  �(�,	

	� �� , 
) �
,              �� =  ��

�	  ,                                                        (1) 

 
is fundamental in the dynamical evolution of the system. We can change to new 
coordinates via the local transformations: 
 

̃ = 
 +  � ��(
),                    ��� =  �� +  � ��(�, 
),i = 1, 2, … ,n                (2) 
 
where  �  is an infinitesimal parameter, thus the action takes the value: 
 

�� =  � �(��	�

	�� , ���

�	� , 
̃) �
̃.                                                                               (3) 

 
If  �� = ���,  to first order in �, then we say that the action is invariant under the transformations 
(2), that is, (2) are local symmetries of the Euler-Lagrange equations of motion. 
 
The principal aim of this work is to show a technique to investigate the existence of point 
symmetries for a given action, and to realize the explicit construction of the functions  ��, � =
0, … ,  . The Sec. 2 contains the method of Emmy Noether [1-4] to achieve this aim. In Sec. 3 the 
Noether’s theorem [5-12], in the Lanczos approach [13,14], is used to deduce the first integral 
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associated with each point symmetry. We make applications to Lagrangians studied by several 
authors [4, 15-19]. 
 

2. NOETHER’S METHOD 

 

From (2) it is easy to deduce, to first order in �, that: 
 

� !��, ���
�	� , 
̃" �
̃ = � !�, ��

�	 , 
" �
 +  � #(�, �� , 
)�
,                                                                (4) 

 
with the Noether’s function [4, 19]: 
 

# =  $
$	 (���) +  $%

$�&
�� +  $%

$�� & (�� � −  ������),             �� � =  $(&
$	 + $(&

$�)
��� ,                                (5) 

 
Where the Dedekind (1868)-Einstein [20,21] summation convention is used for repeated indices. 
The condition  ��� =  ��  can be obtained if the variation of the Lagrangian is a total derivative 
[3,22], that is, if in (4): 
 

#(�, �, 
) =  �
�	

� *(�, 
) =  $+
$	 +  $+

$�,
��-  ,(6) 

 

thus in the left side of (6) the term without velocities is equal to  
$+
$	  ,  the coefficient of  ��-  

coincides with  
$+

$�,
 , and each term nonlinear in the ��.   must be zero, which leads to a set of 

partial differential equations [4] called Killing equations [2] for the functions  ��(
)  and  
��(�, 
). 
 
We can apply the Noether’s expressions to Lagrangians employed by several authors: 
 
a). Rothe [17]. 
 

� =  /
0 ��/0 +  ��/�0 +  /

0 (�/ − �0)0,                                                                   (7) 

 
then (5) and (6) imply the Killing equations: 
 
$(�
$�


= 0, /
0 (�/ − �0)0��� + �0

$(�
$	 + (�/ − �0)(�/ − �0) =  $+

$	  , 

1�/
1�/

− 1
2 ��� = 0, �0

1�/
1�0

=  1*
1�0

 , �0 +  1�/
1
 +  �0

1�/
1�/

=  1*
1�/

, 
 
 
whose general solution is: 
 
�� =  4� ,                �0 =  �/ − ��/ ,                * =  �/�/ ,                                 (8) 
 
where 4� is any constant, �/(
)  is an arbitrary function, and we could ask the conditions 
�/5
.6 = 0,       j = 1, 2. Thus (2) gives the local symmetry: 
 

̃ = 
 +  � 4� ,               ��/ =  �/ +  � �/ ,             ��0 =  �0 +  � (�/ − ��/),       (9) 
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in according with the relations (2.5) in [17]. 
b). Henneaux [15, 17]. 
 

� =  /
0 (��0 − 7��)0 +  /

0 (��8 − �0)0 ,                                                               (10) 

 
and from this Noether’s procedure we deduce the system of Killing equations: 
 
$(

$��

 = 
$(9
$��

= 0, $(

$�9

+  $(9
$�


= 0, − (� :
0 +  $(


$�

= 0, − (� :

0 +  $(9
$�9

= 0, 
 

1*
1
 =  1

2 (�00 +  70��)��� −  7�� 1�0
1
 − �0

1�8
1
 +  70���/ +  �0�0, 1*

1�/
=  −7�� 1�0

1�/
− �0

1�8
1�/

, 
 
$+

$�

=  $(


$	 −  7�� $(

$�


− �0
$(9
$�


−  7���/,
$+

$�9
=  −7�� $(


$�9
+  $(9

$	 −  �0
$(9
$�9

− �0, 
 
with the general solution: 
 
�� =  4� ,             �/ =  7;���<8 ,             �0 =  ��8 ,            * = 0,                       (11) 
 
and the corresponding point symmetry has the structure: 
 

̃ = 
 +  � 4� ,         ��/ =  �/ +  � 7;���<8 ,           ��0 =  �0 +  � ��8 ,         ��8 =  �8 +  � �8 ,      (12) 
 
where  �8(
)  is arbitrary, which are the expressions (2.7) in [17]. 
 
c). Torres del Castillo [18]. 
 

� =  /
= �� 8 +  /

0 >
�� 0 − >0�
, >is a constant,                                                       (13) 

 
therefore (5) and (6) imply the partial differential equations: 
 

− 1
3 ��� +  12

1�
1� = 0, >
 1�

1
 =  1*
1� , −>
��� +  1�

1
 +  2>
 1�
1� +  >�� = 0, >0(�
��� +  ��� +  
�)

=  − 1*
1
  

 
with the solution: 

�� =  8
0  
,              � = � − >
0,              * =  >0
0 !/

@  >
0 −  2�",                (14) 

 
in harmony with the transformation (2) in [18] for the infinitesimal case. Thus the local symmetry 
is given by: 
 


̃ = 
 +  8
0  � 
,                           �� = � +  � (� − >
0).                                      (15) 

 
d). Torres del Castillo [18]. 
 

� =  /
0 
0 !�� 0 −  /

8 �=",                                                                                     (16) 
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and this Noether’s approach permits to obtain the Killing equations: 
 


0 1�
1
 =  1*

1� , − 1
2 
0��� +  
0 1�

1� +  
�� = 0, 
 �A B1
6  
���� +  13  ��� +  
�D =  − 1*

1
  , 
 
with the following solution: 
 
�� = 2
,               � =  −�,              * = 0,                                                     (17) 
     
equivalent to infinitesimal version of the transformation (4) in [18], and the point symmetry is: 
 

̃ = 
 + 2 �
,                   �� = � −  ��.                                                            (18) 
 
e). Havelková [4] – Torres del Castillo [19]. 
 
� = (��/ −  �0)��8 +  �/�8 ,                                                                           (19) 
  
its associated Noether’s partial differential equations system is: 
 

1�/
1�0

=  1�/
1�8

=  1�8
1�/

=  1�8
1�0

= 0, 1�/
1�/

+ 1�8
1�8

− ��� = 0, 1*
1�8

=  1�/
1
 −  �0

1�8
1�8

−  �0 , 
1*
1
 =  �8(�/��� +  �/) + �/�8 − �0

1�8
1
  , 1*

1�/
=  1�8

1
 −  �0
1�8
1�/

 , 1*
1�0

=  −�0
1�8
1�0

 , 
 
and the corresponding general solution is given in [4, 19]: 
 

�� =  4�,          �/ =  −4/�/ +  407	 +  487;	 ,          �0 =  −4/�0 +  E(�8),          �8 =  4/�8 , 
* = (407	 −  487;	)�8 − � E(F)�F,�9                                                        (20) 
 
Where  E(�8) is an arbitrary function and the  4.  are constants. Thus, we have the local symmetry 
([4] p.28, and relations (30) in [19]): 
 


̃ = 
 +  � 4� , ��/ =  �/ +  � (−4/ �/ +  40 7	 + 487;	), 
��0 =  �0 +  � 5−4/ �0 +  E(�8)6, ��8 =  �8 +  � 4/�8 .                                     (21) 
 
f). Rothe [17]. 
 

� =  /
0 ��/0 +  (�0 −  �8)��/ + /

0 (�/ − �0 +  �8)0,                                            (22) 

 
with the set of Killing equations: 
 
$(�
$�


=  $(�
$�9

= 0, $(�
$��

=  /
0 ��� ,

$+
$�)

= (�0 −  �8) $(�
$�)

 ,    � = 2, 3 

1*
1
 = (�/ − �0 +  �8) G1

2 ���(�/ − �0 +  �8) +  �/ −  �0 +  �8H +  (�0 −  �8) 1�/
1
  , 

1*
1�/

= B1�/
1�/

+  ���D (�0 −  �8) +  1�/
1
 + �0 −  �8 , 

 
which implies that  * =  �/�/  with the point symmetry: 
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̃ = 
 +  � 4� ,        ��/ =  �/ +  � �/ , ��0 =  �0 +  � (�/ −  ��/ +  �8),       ��8 =  �8 +  � �8 ,        
(23) 
 
where  �/(
)  and  �8(
)  are arbitrary functions, in according with the expressions (2.36) in [17]. 
   In this Section the Noether’s technique was applied to several Lagrangians to exhibit that the 
explicit construction of local symmetries it is equivalent to solve a set of partial differential 
equations named Killing equations. Local symmetries of the action are not always easily detected; 
it is however crucial to unravel them since their knowledge is required for the quantization [17] of 
such singular systems.In Sec. 3 we use the Lanczos technique [13, 14] to deduce the conservation 
laws [8, 23] associated with point symmetries. 
 

3. LANCZOS APPROACH TO NOETHER’S THEOREM 

 

Noether [1-3, 8] proved that in a variational principle the existence of symmetries implies 
the presence of conservation laws. Lanczos [13, 14] employs this Noether’s result in the 
following manner: 
 
1). We consider a global symmetry with constant parameters. 
2). After we accept that the parameters are functions of t, that is, now the transformation 
is a local symmetry. 
3). Into Lagrangian we substitute this local mapping to first order in �, and the parameters 
are new degrees of freedom. 
4). Then the Euler-Lagrange equations for these parameters give the conservation laws. 
 
   Now we apply this Lanczos approach to Lagrangians from Sec. 2: 
 
A). Lagrangian (7): 
 

� =  /
0 ��/0 +  ��/�0 +  /

0 (�/ − �0)0,                                                              (24) 

 
First, in the transformation (9) we employ 4� = 0 with the constant �/ = I, thus we have 
the global symmetry  
̃ = 
, ��/ =  �/ +  � I,   ��0 =  �0 +  � I. Now we change the 
parameter  I  by the function  J(
),our new degree of freedom, to obtain the local 
symmetry 
̃ = 
, ��/ =  �/ +  � J(
), ��0 =  �0 +  � J(
), therefore  �K = � +
� LJ ��/ +  J�(��/ +  �0)M, and from the Euler-Lagrange equation forJ,

�
�	 !$%N

$O� " −  $%N
$O = 0, 

we deduce that: 
�
�	 (��/ + �0 −  �/) =  0,                                                                             (25) 

 
and it is the conserved quantity associated with (9) for  4� = 0. 
 
The transformation (9) for  �/ = 0  is the global symmetry  
̃ = 
 +  � 4�, ��/ =  �/,
��0 =  �0, and now we consider that 4� is the function J(
), 
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then �P  �
̃ = L� +  J�(� − ��/0 − ��/�0)M �
and the Euler-Lagrange equation for  J  implies 
the conservation of the Hamiltonian function Q =  ��/(��/ +  �0) − �, because t  is 
ignorable in (24). 
B). Lagrangian (10): 
 

� =  /
0 (��0 − 7��)0 +  /

0 (��8 − �0)0 .                                                          (26) 

 
In the transformation (12) we utilize  4� = 0  and  �8 = I = constant, to obtain the 
global symmetry  
̃ = 
, ��/ =  �/, ��0 =  �0, ��8 =  �8 +  � I. Into (25) we apply this 
symmetry whenI →  J(
): 
 

�N = � +  � J�  (��8  −  �0) ∴ �
�	 (��8 −  �0) = 0,                                                (27) 

 
on the subspace of physical paths. If it is necessary, in (12) we can use  �8 = 0  with  
4�  ≠ 0  to deduce the conservation of the corresponding Hamiltonian because (26) has 
not explicit dependence of t. 
 
C). Lagrangian (19): 
 
� = (��/ − �0)��8 +  �/�8 ,                                                                             (28) 
 
the transformations (20) permit several situations, in fact: 
 
C1). 4� =  40 =  48 = E = 0, 4/ ≠ 0,then �N = � +  � J�  (�8��/ − �8�0 − ��8�/)and the 
Lanczos procedure implies: 
 
 Constant = �/ ��8 − (��/ −  �0)�8 ,                                                                (29) 
 
whose value is zero on-shell. 
 
C2).4� = 0,   r = 0,…, 3  and  E = I,  therefore  
̃ = 
, ��/ =  �/, ��0 =  �0 +  � I, ��8 =
 �8. If  I →  J(
), from (28)  we have that  �N = � − � J ��8and the Euler-Lagrange 
equation for J leads to: 
 
��8 = 0,                                                                                                          (30) 
 
on the subspace of physical trajectories. 
 
C3).   4� =  4/ =  48 = E = 0,    40  ≠ 0,then �N = � +  � LJ���8 +  J (�8 +  ��8)M7	and the 
Lanczos approach gives 
 
�<8 − ��8 − �8 = 0.                                                                                         (31) 
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D). Lagrangian (22): 
 

� =  /
0 ��/0 +  (�0 −  �8)��/ + /

0 (�/ − �0 + �8)0.                                          (32) 

 
In (23) the first option is 4� =  �8 = 0  ∴ 
̃ = 
, ��/ =  �/ +  � I, ��0 =  �0 +  � I, ��8 =
 �8. If I →  J(
), 
 
then from (32)  �N = � +  � LJ�(��/ +  �0 −  �8) +  J ��/M, thus: 
 
�
�	 (��/ + �0 −  �8 −  �/) =  0.                                                                   (33) 

 
The second case is  4� =  �/ = 0, 
̃ = 
,   ��/ =  �/, ��0 =  �0 +  � I, ��8 =  �8 +  � I, 
and if  I →  J(
)  we 
 
obtain �N = �   ∴    the Euler-Lagrange equation for  J  gives  0 = 0. 
 
Our process show that with the Lanczos technique is easy to deduce the conservation 
laws (on the subspace on physical paths) associated with point symmetries. On this topic 
we recommend the interesting papers indicated in [24-27]. 
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