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†Email: zahraa.zaher@uclouvain.be

Abstract—TOMOPT is a software package designed to optimize
the geometric configuration and specifications of detectors in-
tended for tomography using cosmic-ray muon scattering. Differ-
entiable programming is utilized in this software to model muon
interactions with detectors and scanned volumes, infer volume
properties, and perform loss minimization in an optimization
cycle. In this paper, we introduce the implementation in TOMOPT
of a case study related to cargo scanning at border controls.

Index Terms—muon tomography, automatic differentiation,
detector design.

I. INTRODUCTION

High-performance computing and neural networks have
revolutionized the optimization of complex systems, which
can now use automatic differentiation to track the gradient
of a task-specific objective function [1]. This function, used
to quantify the performance or outcome of a system with
respect to a specific objective, maps the system’s parameters
to a quantity that represents the cost associated with this
set of parameters. The optimal system’s design is the one
corresponding to the supremum of this objective function.
This approach eliminates the need for brute-force scans, whose
computational cost is very high, especially for systems whose
parameter space is of large dimension. For such optimization
tasks, it is necessary to construct a fully-differentiable end-to-
end modelling of the flow that translates raw data to an inferred
quantity that in turn is fed to the objective function. This
allows for the backwards pass through the function’s chain
of gradients during the optimization cycle. This approach is
not currently feasible for large multipurpose particle detectors
such as the CERN LHC experiments, which involve complex
interconnected systems of tens of thousands of detection ele-
ments reading out highly interdependent physical parameters.

The complexity of this type of detection systems prevents the
construction of an end-to-end differential pipeline from raw
detector data to a measurement of a physical quantity. While
that is seen as a very ambitious future goal [1], an intermediate
but already impactful objective is pursued by the TOMOPT
software project [2, 3] (summarized in the next section) which
currently addresses, instead, particle detectors used in cosmic-
ray muon tomography applications. Detectors used in this field
are of relatively low complexity [4], such that a fully-fledged
end-to-end modelling is already possible. This is owing to the
lack of correlation between muons which makes it possible
to reconstruct only one muon at a time, unlike LHC particles
that are highly correlated.

Upon their passage through a material volume, cosmic
muons get deflected due to Coulomb scattering by nuclei of the
medium. Most of these deflections occur with small angles, but
occasionally large-angle scatterings may occur, as described by
the Rutherford experiment [5]. After multiple deflections in a
macroscopic volume, the scattering angular distribution can be
described by a Gaussian core, which represents the 98% of the
real distribution [6], following the central limit theorem. The
RMS width of this Gaussian core for a muon of momentum
p [MeV] crossing a length x [cm] is related to the radiation
length X0 [cm] of the traversed material through the following
approximation:

θRMS =
13.6MeV

βcp

√
x

X0
, (1)

where βc is the muon velocity. The value of X0 for a material
is in a direct relationship with its atomic number Z [6]. Thus,
inference of the radiation length X0 for a passive volume can
be used to identify its composition. After the first proposal
of this technique two decades ago [7], a large variety of
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Fig. 1: The TOMOPT optimisation cycle. Reproduced from
[2]. This cycle consists of a forwards pass which simulates
the muon generation, propagation and detection resulting with
a prediction of the scanned volume. This prediction enters the
calculation of the loss along with other costs related to detector
budget. Then, the backwards pass computes the gradients of
the loss with respect to detector parameters in order to arrive
at the optimal parameters through gradient descent.

applications of muon scattering tomography has been studied
in different sectors related to industry, archaeology, nuclear
waste monitoring, etc. [8, 9]. Searches for illicit and hazardous
high-Z materials in cargo containers at border controls remain
one of the main drivers for research in this field [10].

Following the first case study of industrial furnace ladle fill-
level estimation [2], this paper introduces another TOMOPT
benchmark study, addressing cargo scanning and material
classification, as part of our contribution to the SilentBorder
project [11].

II. TOMOPT

The software package used for simulation and optimization
in this study is referred to as TOMOPT, and it is available open-
source on GitHub [3]. TOMOPT is a Python-based package
that offers a full suite of tools and resources for optimizing a
scattering tomography detector. Its modular design, provided
by a set of abstract classes, allows the user to easily implement
through inheritance the desired detector, inference method,
muon source, etc. which fit best the specific task studied.
The fully-differentiable nature of the detector modelling and
inference pipeline is provided by the PYTORCH automatic
differentiation framework [12].

A. Optimization cycle

A diagram summarizing the optimization process is shown
in Fig. 1. We start with initial detectors, which are detection
panels placed above and below the volume of interest and
whose initial design parameters (e.g. position, area of detection
panels, etc.) are assigned suboptimal values. Muon generation

is performed by sampling from flux models taken from the
literature [13, 14]. Muons are propagated through a passive
volume using the scattering model proposed by the Particle
Data Group [6] to calculate the scattering angles and spatial
displacements at each step in the volume. Hits recorded in the
upper and lower detectors are fitted into linear incoming and
outgoing tracks using an analytical likelihood-maximisation
whilst considering hit uncertainties on x and y positions. These
tracks are then used for point of closest approach (PoCA)
points reconstruction. The PoCA approach [15] assumes that
the entirety of the scattering of a muon occurs at a single point,
which is called the PoCA vertex. Inference is then based on
the calculation of various physical quantities out of the PoCA
spatial and/or angular variables. An example is the inference
of the voxel-wise X0 of the passive volume, through inverting
Eq. 1, by calculating the RMS of the PoCA scattering angles
in each voxel of sidelength x.

The objective function, also referred to as loss function,
is tailored by the user to be suitable for the task at hand. It
has an inference error term that considers the performance of
the detector, represented by the difference between inferred
and true values (e.g. mean squared error, cross entropy for
classification tasks, etc.). Optionally, the loss function can
also include the detector budget, calculated as an approximate
cost in currency units depending on the surface area and cost
per m2 of its panels. Two budget modes are implemented
in TOMOPT: a fixed-budget mode where a maximum budget
is defined as a constraint for the optimization not to exceed
and budget weights per panel are learnt which are used to
compute scaling factors of panel (xy) spans; and a budget-
penalization mode where a loose target budget is set and the
cost is modelled to rapidly increase if this target is exceeded.
For the latter mode, the user defines the parameters of the cost
function, as well as a weight coefficient of the cost which is
then added to the inference error term in the loss function.
In this work, the detectors are defined with fixed dimensions
throughout the optimisation, hence no cost component or
budget constraint is imposed.

Detector optimization is then reduced to the minimization of
the loss function through gradient-descent, arriving at updated
detector parameters that guarantee optimal performance with
minimal cost.

B. Detector design implementation for cargo scanning tasks

The first step in the TOMOPT cargo scanning benchmark
study1 is to implement a suitable detector design. Under the
current default detector configuration, a single detector is a
thin detector panel, whose optimisable parameters are its area
and spatial position. Several of these panels can be placed
above and below the passive volume.

On the other hand, the SilentBorder detector prototype,
illustrated in Fig. 2a, is designed as a “portal”, i.e. the
volume of interest to be scanned is additionally surrounded
by detectors on its left and right. Trucks are supposed to be
driven through this portal to be entirely scanned; the presence
of detector modules also on the left and the right, unusual for

1https://github.com/vischia/TomOptCargo/

https://github.com/vischia/TomOptCargo/
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this type of applications, is meant to increase the statistics
accumulated per unit time, while also minimizing the blind
zones within the scanned volume. The building blocks of
this prototype are referred to as ”hodoscopes”, which are
modules consisting of three parallel detector panels, placed
within a protective case. For reasons related to hardware
and electronics limitations, an empty gap (∼ 10 cm) is
present between the panel ends and the outer protective case
for each hodoscope, which creates ”dead zones” between
adjacent hodoscopes. The presence of dead zones has a
prominent impact on reconstructed images and predictions.
For example, Fig. 3 illustrates the PoCA point density obtained
from GEANT4 simulated hits. The detectors used in this
simulation are 4 hodoscope modules (1.2 m×1.2 m×0.4 m)
of 3 thin sensitive detector panels (of active area 1 m× 1 m
and a separation distance of 10 cm) each, 2 of them placed
above and the other 2 below a centered iron block of size
1 m×0.5 m×0.5 m (Fig. 4). The hodoscopes in each pair are
placed adjacent to each other, but dead zones are nonetheless
present due to the 10 cm gap between the inner sensitive
panel and the outer protective envelope of each hodoscope.
This impacts the PoCA distribution, since the muon tracks
passing through this gap, which is at the center of the object
in this case, fail to be reconstructed into PoCA points. In
effect, this region will acquire a lower density of PoCA points.

To study and optimise this industrial scenario, it has been
necessary to implement a new detector design in TOMOPT: the
hodoscope, illustrated in Fig. 4. This hodoscope, which is in
itself made up of three detector panels, will be attributed with
the optimisable parameters, whereas the inner detector panels’
parameters are updated based on their parent hodoscopes’ pa-
rameters. The optimization of such detector design focuses on
hodoscope positioning in order to arrive at a configuration with
optimal performance which minimizes the negative effect of
the inter-hodoscope dead zones. Given the current limitation of
TOMOPT to horizontal panels in the (xy) plane, we will only
study configurations with hodoscopes placed above and below
the passive volume (Fig. 2b). The implementation of vertical
panels is planned for future work, after which a full portal-like
design will be studied. The ultimate goal after fully integrating
this new detector design and performing development tests
is to define the inferred physical quantity that signifies the
presence of a high-Z anomaly in the container, facilitating the
construction of a reliable loss function that is suitable for this
task. This is currently a work in progress.

III. METHODOLOGY

A. Hodoscope module

The TOMOPT detector is a thin panel, defined by 5 learnable
parameters an, namely its position in (x, y, z) and its span in
(x, y). The end-to-end differentiable simulation pipeline tracks
the analytical effects of these parameters on the predicted
output in order to back-propagate the loss gradient through
gradient-descent:

an+1 = an − γ · ∇L(an) , (2)

(a) A diagram of the SilentBor-
der muon portal prototype. Each
block is a hodoscope consisting of
3 active detector panels (red).

(b) An example of a hodoscope
configuration that we focus on
optimizing with TOMOPT. Simi-
lar configurations can have sev-
eral hodoscope layers (in the z
direction), and different number
of hodoscopes in each layer in
(x, y) plane.

Fig. 2

Fig. 3: XY projection of the probability density of the PoCA
points reconstructed from GEANT4 simulated data. The effect
of the dead zones is visible as a localized deficit in PoCA
points in the center of the block.

Fig. 4: The hodoscope design implemented in TOMOPT for
this study. Each hodoscope has an outer protective case (green)
encompassing 3 detector panels (red). In this diagram, a pair of
such hodoscopes are placed above and below a passive volume
(blue).
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where γ is a learning rate of the parameter and L is the loss
function.

In order to meet the needs of the novel cargo scan applica-
tion, a new detector design of the hodoscope module has been
implemented. The hodoscope is intended to be the building
block of the cargo scan detector setup, hence the learnable
parameters are assigned to the hodoscopes. These optimizable
parameters are reduced to three, i.e. the hodoscope’s position
in (x, y, z), in order to maintain a fixed detector size across
all hodoscope modules. Muon hits are still recorded in thin
detector panels fixed inside each hodoscope, so that the fitting
of panel hits into tracks is not perturbed. When a hodoscope
with given initial parameters is created, inner panels are
simultaneously initialized. The default number of panels is
three, and their separation distance is 10 cm. The horizontal
gap between panel ends and the outer hodoscope case, as well
as the vertical gap between upper/lower panels and the case,
are of 10 cm. During optimisation and following every update
to the hodoscope parameters, the inner panel parameters are
automatically adapted, keeping their relative positions with
respect to their parent hodoscopes intact.

B. Detector modeling

The differentiability of the reconstructed hits in the detector
with respect to the detector parameters is preserved through a
differentiable surrogate model of the detector, which is used
during optimisation. With this modelling, muon hits on the
detector are assigned, in both x and y directions, a resolution
(σxy ) and efficiency (ϵxy) based on a double-sigmoid model
that maps the true hit positions to the corresponding per-hit
resolution/efficiency, so that the resolution and efficiency are
maximum in the center of the detector and smoothly decrease
outward. This allows for the recording of hits outside the
detector, but at low resolution and efficiency. The reconstructed
hit position hitreco,xy is then sampled from a Gaussian distri-
bution G(µ = hittrue,xy, σ = σxy), and the per-hit efficiency
is the product of the efficiencies in x and y. Refer to [2] for
a more detailed description.

In default TOMOPT, the individual detector panel param-
eters, i.e. (x, y, z) positions and xy span, being the learn-
able parameters to be optimized, are explicitly related to
the reconstructed hit positions through the surrogate model.
Switching to the modular hodoscope detector design, the
(x, y, z) positions and a corresponding surrogate model of the
hodoscope are instead passed during recording of hits in the
panels inside a given hodoscope.

C. Detector layers

The detector setup is composed of several detector layers
in the z direction, each consisting of several hodoscopes in
(xy) plane. This configuration allows for a better detector
coverage which is diminished due to the inter-hodoscope dead
zones. Any dead zones in a layer would be conveniently
covered by hodoscopes in another layer. Another benefit of this
layer design is the prevention of overlap among hodoscopes
following parameter updates during optimization. Each layer
is given a certain range in the z direction, so this means

that hodoscopes in a layer do not overlap with hodoscopes
in a different layer in the z direction. Within the same layer
and depending on the number of hodoscopes initialized, each
hodoscope would be assigned a free region in x and y
which it cannot trespass. This eliminates any overlap among
hodoscopes in x and y directions in the same layer.

IV. OPTIMIZATION STUDY

For preliminary studies of the performance of this new
detector modelling, the figure of merit is the voxel-wise
X0 predictions of the passive volume. The MSE between
predictions and true values is used as the loss function that
measures the performance.

We study, in this development stage, two basic scenarios
of detector configuration, both detailed below. In both cases,
the volume of interest is a block of iron of radiation length
X0 = 0.01757 m. Such high-Z material is chosen in order
to obtain a better prediction of radiation length with minimal
bias compared to the one obtained with low-Z materials, which
substantially affects the performance of the mean squared error
(MSE) loss function.

A. Hodoscope centering check

In this configuration, the detector setup is composed of two
hodoscopes, each having a size of 1.5 m × 1.5 m × 0.4 m.
One of the hodoscopes is placed above the iron block
(1 m × 1 m × 0.5 m), and the other is placed below. The
bottom hodoscope is centered with respect to the passive
volume, while the top hodoscope is shifted by −0.5 m in x
and y directions. This initial configuration is shown in Fig. 5.
The aim here is to study the evolution of the positioning of
the shifted hodoscope and of the loss over several training
epochs. In each epoch, muon batches are passed through
the passive volume, the loss is evaluated and hodoscope
parameters are updated. The number of muons generated
for each training fit is 1000, which is a moderate number
for our volume dimensions. The first five epochs constitute
a warm-up cycle in which suitable learning parameters are
estimated without updating the hodoscope parameters.

Over 20 epochs, the evolution of the loss for 10 optimisation
runs is presented in Fig. 6. An average reduction of 45.37%
of the loss was noted between the fifth epoch (end of warm-
up cycle) and last epoch, but fluctuations are prominent. The
final configuration of one of the runs is shown in Fig. 7. We
notice that the off-centered hodoscope is updated towards a
slightly better centered position, and the loss tends to decrease
with epochs. One of the main causes of the fluctuations
observed in the loss throughout the optimization is the effect
of the under-biased predictions of voxel-wise X0, evidenced
in Fig. 8, which originates from our inference method based
on the PoCA reconstruction method. PoCA assumes that the
scattering occurs entirely at the point of closest approach
between the incoming and outgoing muon track, whereas
in reality, multiple small-angle scatterings occur along the
muons’ path through the material. This simplification, though
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Fig. 5: The initial configuration of detector setup for the opti-
misation test of hodoscope centering, illustrated for projections
in the (x, z) (left), (y, z) (center) and (x, y) (right) planes.

Fig. 6: The evolution of the loss over 20 epochs, repeated
for 10 hodoscope centering optimization runs with the same
initial configuration. An overall decrease in loss is noticed,
though sharp fluctuations are predominant throughout the
optimisation.

allows for an easy implementation of the algorithm, renders
the PoCA vertex an inaccurate estimation of the muon path
through the material. The inferred PoCA variables are then
used in a second line of inference to compute the voxel-
wise X0 predictions, which adds to the significance of the
uncertainties on PoCA variables.

B. Hodoscope coverage check

In this configuration, the detector setup is composed of four
hodoscopes, each having a size of 1 m×1 m×0.4 m. Two of
the hodoscopes are placed above the iron block (1 m×0.5 m×
0.5 m), and the other two are placed below. An empty gap
of 0.5 m is imposed between each hodoscope pair above and
below the volume. This initial configuration is shown in Fig. 9.

Fig. 7: The final configuration of detector setup for the opti-
misation test of hodoscope centering, shown for projections in
the (x, z) (left), (y, z) (center) and (x, y) (right) planes.

Fig. 8: Distributions of the voxel X0 predictions at the end of
the warm-up cycle (epoch 5) and at the end of optimisation
(epoch 20). Both distributions peak at values lower than the
true radiation length of iron (red), although a decrease in
LMSE is observed.

The aim here is to study the coverage of the hodoscopes in
terms of reducing any detrimental effect the dead zone between
them may have on the X0 inference. The number of muons
generated for each training fit is 1000, same as for the previous
case.

Over 20 epochs, the evolution of the loss for 10 optimisation
runs is presented in Fig. 10. An average loss reduction of
71.89% is noted between the fifth epoch (end of warm-up
cycle) and last epoch. However, as in the previous case,
fluctuations are persistent. The final configuration of one of
the runs is shown in Fig. 11. We notice that both hodoscope
pairs have shifted towards each other in order to cover the
dead zone separating them, thus visibly reducing the loss. The
fluctuation observed in the loss at the end of the optimization
are, again, mainly due to the under-biased predictions of
voxel-wise X0. Depending on the passive object material and
dimensions, detector dimensions, number of hodoscopes and
hodoscope layers, etc., it is possible that in some cases the
presence of gaps in certain configurations results in a better
performance. In such cases, this can be justified by an increase
in detector acceptance which accounts for muons incident with
large angles. In our scenario, adjacent hodoscopes still have a
good acceptance, and knowing that most of the incident muons
are vertical, we would expect that the gaps are covered during
optimization.

V. ONGOING/FUTURE DEVELOPMENT

After the implementation of a different detector design
dedicated for cargo scan applications, the differential back-
ward pass in the TOMOPT optimisation cycle has shown its
capability to improve hodoscope positions in simple scenarios.
A limitation concerns the unreliability of the PoCA algorithm
as a reconstruction method of scattering locations, which neg-
atively affects the material inference. Any subsequent anomaly
detection algorithm is based on these predictions, and is
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Fig. 9: The initial configuration of detector setup for the
optimisation test of hodoscope coverage, presented in (x, z)
(left), (y, z) (center) and (x, y) (right) views.

Fig. 10: The evolution of the loss over 20 epochs, repeated
for 10 hodoscope coverage optimization runs with the same
initial configuration.

Fig. 11: The final configuration of detector setup for the
optimisation test of hodoscope coverage, shown for projections
in the (x, z) (left), (y, z) (center) and (x, y) (right) planes.

therefore affected by their accuracy levels. A possible solution
is to replace the PoCA method with an algorithm that more
accurately estimates the muon path inside the material. One
of the algorithms [10] that we deem promising to investigate
is the Expectation Maximisation algorithm [16].

VI. CONCLUSION

After the successful demonstration of the capabilities of
TOMOPT in a previous industrial case study [2], providing
an end-to-end differentiable and inference-aware optimisation
of particle physics detectors, we introduce in this manuscript
a second benchmark study devoted to cargo scanning applica-
tions. This benchmark requires a novel modelling of the detec-
tor design, which has been recently implemented in TOMOPT.
The cargo scanning case study is an ongoing work in the
current development stage, where preliminary results indicate
the capability of the software to optimize simple configurations
of the implemented modular design of the detector. The results
of this work will be used for improvements of possible future
upgrades of the SilentBorder detector.
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