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Architectural capability analysis using 
a model-checking technique

ABSTRACT: This paper describes a mathematical approach based on a model-checking 
technique to analyze capabilities in enterprise architectures developed by using DoDAF and 
TOGAF architecture frameworks. Such approach base is the requirements’ validation related 
to the enterprise capabilities by employing operational or business artifacts associated with 
the dynamic behavior processes. We show how this approach can be used to quantitatively 
verify if the operational models in an enterprise architecture can achieve the enterprise 
capabilities by using a case study connected to a capability integration problem. 

RESUMEN: Este trabajo describe un enfoque matemático basado en una técnica de 
validación de modelos para analizar capacidades en arquitecturas empresariales construidas 
utilizando los marcos arquitecturales DoDAF y TOGAF. La base de este enfoque es la 
validación de requerimientos relacionados con las capacidades empresariales empleando 
artefactos arquitecturales operacionales o de negocio asociados con el comportamiento 
dinámico de los procesos. Se muestra cómo este enfoque puede ser utilizado para verificar, 
de forma cuantitativa, si los modelos operacionales en una arquitectura empresarial pueden 
satisfacer las capacidades empresariales. Para ello, se utiliza un estudio de caso relacionado 
con un problema de integración de capacidades. 
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associated with the stakeholders needs, but that approach 
cannot ensure that the system could achieve its behavioral 
goals. There exist other approaches to reduce the fault 
insertion by goal-oriented requirement engineering 
(GORE) [5]. Those approaches try to ensure that elicitation, 
analysis, elaboration and refinement, specification and 
modeling of requirements are related to the specified goals 
for a particular solution. As a result, this article is focused 
on fault-detection confirmation approaches by using logical 
verification of models that seek to ensure the achievement 
of their behavioral goals.

ISO/IEC/IEEE 24765 [6] (System and software engineering 
- Vocabulary) defines a requirement as “a condition or 
capability needed by a user to solve a problem or achieve 
an objective”. In an architectural environment, business 
requirements support the business capabilities designing, 
architectural models– especially in the business or 
operational views– represent those capabilities, and the 
capabilities designs seek to satisfy the requirements and 

1.	 Introduction
In systems designing, early fault detection is one of the 
biggest challenges due to software crises. In Software, fault 
detection is less than 10% in the conceptual design phase 
and around 40% of the failures are introduced in this phase. 
Thus compared with the cost to fix a fault during the design 
phase, a fault in an operational or testing phase is more 
expensive to fix [1, 2]. This is especially true during most 
of the systems development procedures; fault detection 
during the design phase usually consists of models’ logical 
verification (UML, SysML, BPMN, etc.) and the requirement 
compliance in the design models only [2-5]. However, logical 
verification of models only ensures the fault detection 
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achieve the organizational goals [7, 8]. An organizational 
capability represents skills that organizations have that can 
create value [9]. This paper shows an approach based on a 
model-checking methodology [1] to verify models in terms 
of capabilities. This approach seeks to detect faults related 
to the organizational goals.

In order to implement the capability model-checking 
approach, a Custom Implants Design System (CIDS) [10] 
is employed  with an architecture implementation that 
uses DoDAF and TOGAF architectural frameworks [11, 
12]. To describe the approach, this document is organized 
as follows: the first part describes the model-checking 
technique, the second part shows the approach for capability 
model-checking. Finally, the analysis and conclusions are 
presented. All the parts contain an application example by 
including the CIDS system. 

2.	 Model-checking as a fault 
detection technique 
The model-checking (MC) technique proposed by Clarke 
& Emerson [13] and Queille & Sifakis [14] is an automatic 
technique for finite state systems verification regarding 
some temporary logical specifications. The standard 
approach focuses on the semi-formal models: SysML 
(System modeling language), UML (Unified Modeling 
Language), BPMN (Business Process Model and Notation), 
etc. Especially those that describe the system behavior with 
behavioral models to develop formal ones (executable) aim 
at verifying dynamic aspects of the systems and detecting 
failures through a model-checking tool. See Figure 1.

Figure 1 Requirements validation general scheme 
using model-checking

Failure detection using MC follows the next steps:
1.	 Convert the system behavioral models into formal 

models (LTS-Labeled Transition Systems).

2.	 Specify the system requirements in terms of logic 
temporal specifications (LTL).

3.	 Use an MC tool to execute the LTL and determine 
compliance.

2.1 Behavioral models and Kripke 
structures

Systems architectures are developed to work as a bridge 
between requirements and design in complex systems [15] 
by using an ADM (Architecture Development Method) cycle 
[16] that describes the system organization in term of its 
components and interactions. SAs divide the analyses into 
structural component and functional component analyses, 
which are both related, but conduct different activities. See 
Figure 2.

Figure 2 A generic scheme for systems 
architecture

Architectural models are developed by using modeling 
languages such as UML, SysML, BPMN, among others, 
that display different classifications according to their 
viewpoints. However, the architectural viewpoints, in 
general, are classified in terms of behavior, requirements, 
and structure. For example, SysML [17] architectural model 
classification is particularly considered in this paper (see 
Figure 3). Regarding other architectural frameworks as 
TOGAF or DoDAF, the possible models have a different 
classification. TOGAF, for instance, categorizes them 
as business, information and systems, and technology 
views. In contrast, DoDAF categorizes the architecture as 
capability, operational, services, and systems views. 

Figure 3  Possible architectural models using 
SysML

For the purpose of this paper, two AF (Architectural 
Frameworks), TOGAF and DoDAF are mixed in order to 
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standardize a set of capability models that DoDAF includes 
combined with the implementation method that TOGAF 
provides, namely, ADM [16]. Another reason for this blend is 
that DoDAF, in comparison with other AF such as Zachman, 
4+1 Views, FEAF, among others, do not support a capability 
model design approach directly. Hence DoDAF and TOGAF 
terminology are both used to carry out this paper’s 
procedure: a capability analysis in the architecture through 
the requirement model, capability models (CV), and the 
business views represented by the operational models (OV) 
in the architecture.

The proper system behavior is connected to the requirement 
fulfillment stipulated by the stakeholders. The MC techniques 
seek to verify the requirement fulfillment using the behavior 
models (see Figure 4). For this purpose, it uses state machine 
(SM) diagrams. SM is a useful graphical tool to describe the 
dynamic system behavior from an architectural point of view. 
The OV models represent the system behavior; OV-6b (State 
Transition Description) is an example. 

Figure 4 Structure, behavior, and design requirements

2.2 Case study

A Custom Implants Design System (CIDS) [9] is presented 
here. It uses some software packages: BioCAD, CAD, and 
CAE to model digital volumes and verify by simulation, 
as well as a 3D printer through rapid prototyping (RP) of 
Osteosynthesis implants. See Figure 5.

Figure 5  General perspective to the custom 
implants design system (CIDS)

From the system architectural point of view, the OV-6b 
model is taken as a sample to analyze the system behavior, 
see Figure 6.

Figure 6 LTS fragment, CAD tool states in the 
CIDS system

OV-6b is a Statechart (SC) diagram used to describe the 
detailed sequencing of activities or work flow in the business 
process. It is useful for describing critical sequencing of 
behaviors and timing of operational activities that cannot 
be adequately described in the OV-5b Operational Activity 
Model. It could be defined as a tuple: SC={S,Var,G,E,Edges}, 
where S is the states set, E is the set of events, Var is the 
state variables set, G is the guards set, and Edges is the 
transitions set.
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Although UML Statechart diagrams count on their own 
semantics and syntax, a system behavior graphic is 
represented here. The SC diagrams need to be transformed 
into an executable model with a mathematical formality.

Transition Systems (TS) are used here. They consist of 
a set of states and transitions such as labels denoted by 
actions and one initial state, to represent the behavior 
and communication between components in a concurrent 
system (see Figure 7). TS is a tuple (S,Act,→,I,AP,L): 

1)  S is a set of states,
2)  Act is a set of actions 
3)  →⊆S×Act×S  is a transition relation,
4)  I ⊆ S is a set of initial states,
5)  AP is a set of atomic propositions, and
6)  L: S→2AP is a labeling function.

Statechart diagrams and transition systems models have 
common elements: set of states S, events E, guards G, 
transition Edges represented in TS as the actions Act, and 
the transition relations → In contrast, The SC diagram does 
not contain the atomic propositions AP nor the labeling 
function L. The AP are defined as hidden actions in the 
system related to the requirements. See Table 1. 

Figure 7  OV-6b model fragment, Statechart 
diagram fragment for CAD tool in the CIDS system

Table 1 Requirements list for the CAD tool obtained from the requirements model and atomic 
propositions obtained from OV-6a model

Code Requirement Atomic proposition

RCd1 CAD process must design orthopedic custom devices proposed by the specialist in each 
case study.

RCd1.1 CAD should allow to import 3D bone models in IGES, STEP, or STL formats obtained from a 
BioCAD tool.

importSTL
importSTEP
importIGES
alternatives

RCd1.2 CAD should allow to export 3D volumes in IGES, STEP, or STL format.

exportSTL
exportSTEP
exportIGES

accuracyDesing

RCd1.3 CAD should save a historical record of 3D models reconstruction operations, allowing 
regression.

rebuildVolume
importSTL

importSTEP
importIGES

RCd1.4 CAD should allow parameters edition in model construction operations.
modelDesign
regectDesign

rebuildVolume

RCd1.5 CAD should develop technical blueprints by using standard rules. modelDesign
rebuildVolume
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Figure 8 Intuitive view for a LTL

The labeling function L creates a relation between a state si 
∈ S and a proposition pj ∈ AP (see Table 2). The AP and L are 
used to create a relation between system requirements and 
behavior models.  Then, before transforming the SC diagram 
into a TS, the system requirements need to be represented 
in labels. In turn, they represent specific actions obtained 
from the OV – 6a model (Operational rules model), which 
is an activity diagram that contains the detailed set of 
operations, activities, and guards that specify each state 
and satisfy each requirement. In summary, labeled function 
L allows to execute the TS in system requirements terms.

Table 2 L function deployment
State L(State)

Import V. Osseous {importSTL, importSTEP, importIGES}

Rebuild Volume {rebuildVolume}

Design { modelDesign, regectDesign}

Volume Adjustment {volumeAjustment}

Assessment {accuracyDesing}

Export CAD {exportSTL, exportSTEP, exportIGES}

2.3. Linear Temporal Logic 
Specifications (LTLs) 

A TS execution is a sequence of actions (2AP) that can be 
executed starting with an initial state I. A TS=(S,Act,→, 
I,AP,L) transits TS’=(S,Act,→ ,I’,AP,L)  by an action a denoted as 
TSa

⟶ TS’↔ (I,a,I’) ∈ →. The L function in the LTS ts=(S,Act,→,I) 

takes a set of AP that come from activities related to system 
requirements and transform the Labeled Transition System 
LTS in TS=(S,Act,→, I,AP,L). Here the system behavior is 
labeled with a set of actions that are directly related to 
requirements. Such system behavior can be evaluated with 
the TS execution, specifically, L function.

An LTL formula is a mathematical language for describing 
linear-time properties; it is a widely used logic for 
expressing properties of programs viewed as sets of 
executions, and it is inductively defined by using Boolean 
and temporal operators × (next) and ∪ (until), given an AP:

1)  pi ∈ AP is a formula

2)  If φ and ψ are formulas, then ¬φ,φ⋁ψ,φ⋀ψ,Xφ,φUψ are also.

An LTL formula interpretation is an infinite word  
w = x0 x1 x2⋯ over the set 2AP. Then for each time instant in 
the system execution, there is a subset of AP that is active. 
Being wi the word w starting with xi that comes from the 
TS execution, the LTL semantics is defined as follow. See 
Figure 8.

1)   w ⊨ p if p ∈ x0 , To  p ∈ AP

2)   w ⊨ φ⋁ψ if (w ⊨ φ)⋁(w ⊨ ψ)

3)   w ⊨ ¬φ if  ¬(w ⊨ φ)  

4)   w ⊨ φ∧ψ if (w ⊨ φ)∧(w⊨ψ)

5)   w ⊨ Xφ if wi ⊨ φ

6)   w ⊨ φUψ if ∃ i ≥ 0 | (wi ⊨ ψ)∧∀ 0 ≤ j ≤ i, (wi ⊨ φ)

There are additional operators proposed by Giannakopoulou 
in [15]: “true ≡ φ∨¬φ”, “false ≡¬true”, the Boolean operator 
⟹ that is defined as φ ⟹ ψ ≡ ¬φ∨ψ, and the temporal 
operators < > (Eventually), [ ] (Always), W (Weak until) 
defined in terms of the main temporal operators: <> φ ≡ 
true Uφ, [ ]φ ≡ ¬F¬φ, y φW ψ ≡ ((φUψ)∨Gφ) .

2.4. Use of transition systems to verify 
LTLs formulas

The LTL verification basic scheme is based on the use of 
Büchi automatons (BA) [18, 19]. A BA is a 5-tuple B = <Q, Σ, 

δ, q0, F>, where Q is a finite set of states, Σ is a finite set of 
labels, δ ⊆ Q × Σ × Q is a labeled transition relation, q0 ∈ Q 
is the initial state, and F ⊆ Q is the set of accepted states.

A B execution in a finite word <a0 a1 a2⋯> over Σ is an infinite 
word <s0 s1 s2⋯> over Q, so that s0 = q0 and ∀ i ∈ N, (si, ai , si+1) 
∈ δ. If any elements in F occur infinitely, an execution is 
accepted and an infinite word w over Σ is accepted by the 
automaton B if there are any executions from B in w.

For an LTL formula over a set of AP, we formulated a BA 
to accept words over 2AP that satisfyφ. A finite state system 
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is verified by an LTL specification φ by calculating the 
intersection between the system and the BA (¬φ). The TS 
satisfy φ if the intersection does not accept words.

LTL functions in AP terms is designed here to try to verify 
the requirements in the systems behavior models. The set 
of operators used are shown in Table 3.

Table 3 Operators to formulate LTL formulas
Unitary operators Binary operators

[] Always (G) U Until

< > Eventually (F) W Weak until

X Next && Logic operator  AND

! Logic negation || Logic operator OR

 Implicación

 Equivalencia

An LTL formula F is designed for each requirement. A 
model-checking tool is used to verify φ (see Table 4). An 
LTSA analyzer is employed here. When a requirement 
is validated by using an LTL formula, one of these three 
different results is obtained: 

1) The property (requirement) is fulfilled. 

2) The property (requirement) is not fulfilled and a counter 
example is shown.

3) The test generates an inconclusive result.

Table 4 LTL formulas for the CAD requirements
Requirement LTL formula

RCd1.1 assert Rcd11= <>(( alternatives)-
>(importSTL || importIGES || importSTEP))

RCd1.2
<>(( accuracyDesing)->((exportSTL || 

exportSTEP || exportGES) W (importSTL || 
importIGES || importSTEP)))

RCd1.3 <>((importSTL || importIGES || 
importSTEP) -> (rebuildVolume))

RCd1.4 (<>(rebuildVolume ->(({ modelDesign W 
regectDesign)))-> modelDesign)

RCd1.5 <>(rebuildVolume ->(modelDesign))

2.5. The problem of requirement 
verification

Requirement elicitation is the most effective phase of 
systems development processes. Such elicitation aims to 
correctly meet the stakeholders’ requirements [20] so that 

the systems models design is allowed. However, as we can 
see in the Figure 9, a simple requirement verification in 
the systems models can only ensure that the stakeholders’ 
needs are fulfilled, but it cannot ensure that the stakeholders’ 
intentions are achieved with designed models.

Figure 9 Relationship between requirements and 
capabilities [21]

3.	 Capability analysis 
by using a model-checking 
scheme
A system capability represents the ability to perform 
certain actions or outcomes through a set of controllable 
and measurable faculties, features, functions, processes, 
or services. From an architectural point of view, we 
model capabilities to meet the stakeholder requirements 
and organizational goals. In order to meet a set of 
requirements: R={r1, r2,⋯, rm}, a set of capabilities C={c1, 
c2, …, cn} is designed. In the architecture, capabilities C are 
represented as a set of behavioral models that deploy them 
in terms of operational activities.

In this article, a capability verification approach is proposed 
by using a model-checking scheme. Such approach is 
based on the next assumptions:
1) A designed capability tries to meet one or many 
requirements.
2) A requirement is a condition or capability needed by a 
user to solve a problem or achieve an objective.
3) Capabilities provide an environment to meet the 
organizational goals. 

In short, these are the general steps to carry out the 
capability analysis (see Figure 10):
1)  Relate capabilities and requirements.
2)  Validate the requirements by using a model-checking 
approach.
3)  Analyze and categorize results in capabilities terms.
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Figure 10 Methodological scheme for capability analysis by using a model-checking technique

3.1. Capabilities and requirements 

The first assumption previously mentioned states that a 
capability is designed to meet one or many requirements. 
Nevertheless, a capability is a formal system component 
and a requirement is an informal stakeholder need (see 
Table 1 and Table 5).

An efficient and organized technique to translate the 
“Stakeholder voice” into the “Engineering voice” or 
designers is the process of quality function deploy (QFD) 
[22]. It is a useful tool to associate qualitative and ambiguous 
requirements with systems attributes.  For the purpose of 
this article, an adaptation of QFD and the house of quality 
HOQ have been employed to relate the requirements to 
specific properties in the system.  

Table 5 Capabilities list obtained from the CV-2 model

Code Capability

C1 Planning design
C2 Share information
C3 Knowledge acquisition
C4 Knowledge Transfer
C5 Product evaluation
C6 Technology appropriation
C7 Digital reconstruction
C8 Implant modeling
C9 Structural simulation

C10 Surgical simulation
C11 Interoperability
C12 Prototyping

The properties of interest are the system capabilities.  
The HOQ methodology denotes the relations between 
requirements and capabilities as strong ⓪ (9), average 
○ (3), and weak ∆ (1). The relation between capabilities is 
defined as positive + and negative – correlations. As the 
name implies, a positive correlation means that a positive 
capability achievement has a positive impact over the 
capability related. A negative correlation, on the other 
hand, means that a capability positive achievement has a 
negative impact over the capability related (see Figure 11).

Figure 11 Capability and requirements 
relationship for the CAD tool 

A weight factor vector Cw for capabilities and Rw for the 
requirements can be obtained from the relations. The vector CR,i 
to i=1,2,⋯n, where n is the number of capabilities in the system, 
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is obtained from Table 5 CR,i contains all the requirements 
(strong, average, and weak) related to the capability Ci. See 
an example in Table 6. Additionally, the correlation matrix Cc 
that contains the correlation between capabilities can also be 
obtained. (See the HOQ roof in Figure 11).

Table 6  Requirements related with the capability 
C8 (Implant modeling)

CR,8

RCd1 Strong
RCd1.1 Weak
RCd1.2 Weak
RCd1.3 Strong
RCd1.4 Strong
RCd1.5 Strong

3.2. Capability analysis 

To carry out the capability analysis, it is necessary to 
observe the models in Figure 6, since it represents the 
designed capabilities to meet the requirements that need 
the LTL formulas, as shown in Table 4.

From the CR,i vector that contains the requirements for the 
capability Ci, three additional vectors are denoted: Rs,i , Ra,i , 
Rl,i ∈ R, where Rs,i ∩ Ra,i ∩ Rl,i =∅. That represents the strong, 
average, and low requirements related to the capability Ci. 

In addition to the LTL formulas related to the requirements 
Rs,i, Ra,i, Rl,i, the φs,i, φa,i, φl,i vectors are formulated and they 
contain the respective set of requirements (strong, average, 
and low). Being ξ the behavioral model used, the LTSA tool 
proceed to verify if the LTL formulas φs,i ⊩ ξ, φa,i ⊩ ξ, φl,i ⊩ ξ   
satisfy the behavior model.

When the set of properties φs,i , φa,i , and φl,i are tested, the 
vectors Os,i ,Oa,i , and Ol,i contain the respective testing results, 
see Table 7.

In order to determine if a capability is achieved, the next 
variables are defined: Ni: the number of properties to verify 
the capability Ci in ξ, Ki , Li , Ti ∈ ℕ: the number of properties 
evaluated in Os,i , Oa,i  and Ol,i . αs,i , βs,i and γs,i: the positive, 
negative, and inconclusive results obtained for the strongly 
related properties φs,i . 

In the same way,  αa,i , βa,i and γa,i  are defined as the average 
related properties, and αl,i , βl,i  and γl,i as the weakly related 
properties. The capability analysis also needs the Eqs (1-
3) since they indicate the number of properties verified for 
the strong, average, and low requirements related to the 
capability Ci, and the Eq. (4) represents the total number of 
requirements related to a particular capability.

Table 7 Capability testing report for capability
Subset Result

Os,8

Property (φs,8) Output
assert RCd1.3= <>((importSTL || importIGES 

|| importSTEP) -> (rebuildVolume)) 

assert RCd1.4= (<>(rebuildVolume 
->(({ modelDesign W regectDesign)))-> 

modelDesign)


assert RCd1.5= <>(rebuildVolume -> 
(modelDesign)) 

Oa,8

Property (φs,8) Output

Ol,8

Property (φs,8) Output
assert Rcd1.1= <>(( alternatives)-

>(importSTL || importIGES || importSTEP)) 

assert RCd1.2= <>(( accuracyDesing)-
>((exportSTL || exportSTEP || exportGES) W 
(importSTL || importIGES || importSTEP)))



	 αs,i + βs,i + γs,i  = Ki	 (1)

	 αa,i + βa,i + γa,i  = Li	 (2)

	 αl,i + βl,i + γl,i  = Ti	 (3)

	 Ki + Li + Ti  = Ni	 (4)

For a particular set Os,i , Oa,i , or Ol,i , there are six possible 
results when the model-checking process is carried out:

1)	 All the properties are achieved to the capability Ci.
2)	 Some properties are not achieved and the counter 

examples are shown.
3)	 None of the properties are fulfilled nor are the counter 

examples shown.
4)	 Some results are not conclusive. 
5)	 The entire set of properties does not have conclusive 

results.
6)	 Some properties are achieved.

In a capability model checking verification, it is possible 
to obtain a combination of results when the three sets of 
properties Os,i ,Oa,i , and Ol,i are being taken into account. To 
summarize, the combined results are presented in Table 8.

Table 8 Result analysis for the capability 
Rule Οfj Οmj Οdj

i ∑αf = k ∑αm = l ∑αd = t

ii∧iv ∑βf + γf = k ∑βm + γm = l ∑βd + γd = t

iii ∑βf  = k ∑βm  = l ∑βd  = t

v ∑γf = k ∑γm = l ∑γd = t

ii∧iv∧vi ∑αf + βf  +γf = k ∑αm + βm  +γm = l ∑αd + βd  +γd = k 

iv∧vi ∑αf + γf = k ∑αm + γm =l ∑αd + γd = t
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According to Table 8, only one from the six options is 
selected as an output for the Os,i

 , Oa,i , and Ol,i sets. It is 
proposed to assign a possible value for each possible 
result, see Table 9.

Table 9 Value assignment proposal for the 
results in Os,i, Oa,i, and Ol,i  

Οfj Οmj Οdj

i 3 3 3
ii∧iv -2 -2 -1

iii -3 -3 -3
v 0 0 0

ii∧iv∧vi -1 0 1
iv∧vi 1 2 2

When the requirements associated with a particular 
capability are verified, a general value that summarizes 
the capability fulfillment is needed, see Eq. (5). χ ∈ {–3,3}.  
It represents a certainty value associated with the 
requirements fulfillment in the capability Ci (see Table 10).

x=celling ( Οfj + Οmj + Οdj ) (5)
3

Table 10 Capability compliance certainty levels

Certainty value Result interpretation

-3 There is a high certainty of  
non-compliance.

-2 There is an average certainty of  
non-compliance.

-1 There is a low certainty of  
non-compliance.

0 There is no certainty of compliance or 
noncompliance.

1 There is a low certainty of compliance.

2 There is an average certainty of 
compliance.

3 There is a high certainty of compliance.

3.3. Result analysis

For this particular case study –analysis of the capability 
associated with the CAD tool–, it is possible to obtain a 
compliance analysis and indicator. See Table 11.

χt,i = Cw,i × χi denotes the compliance indicator for a 
particular capability, Ti = ∑Cw,i the weight for the entire 
capabilities, Tc = ∑χt,i the compliance indicator for the entire 
capabilities, and Kf = Ti × 3 the domain in which χt,i exists.  

χt,i ∈ {-3×Cw,i , – 3 × Cw,i} defines the compliance value for each 
capability; negative values mean low expectations, positive 
values mean high expectations, and null values mean that 
nothing can be said about the capability achievement. The 
capability integration Tc ∈ {–Kf , Kf } shows a measurement 
of the entire capabilities achievement. The values that 
are closer to Kf indicate that the capabilities are well 
incorporated, but the values closer to –Kf indicate that the 
capabilities incorporation by the system is poor. Finally, the 
values that are closer to zero (0) indicate that no capability 
analysis could correctly be performed. 

Table 11 Compliance analysis and indicator
Capability Cw, i

Impact Measurement
Xt,i-3 -2 -1 0 1 2 3

C8 38 × 114
Ti 38 Tc: 114

Kf = Ti × 3 114

Figure 12 represents the compliance indicator to analyze 
the implications of the capability analysis. 

                                                                                    *Tc

     –Kf                                            0                                         Kf

Figure 12  Graphical representation of the 
compliance indicator

Besides, the capabilities affected by an analysis can be 
obtained from the correlation matrix Cc. Particularly, if the 
capabilities  C1, C9, C11, and C12 could be affected. 

4.	 Analysis and conclusions
With each capability compliance indicator, a notion on how 
the system general goal are met can be obtained at an early 
phase, as well as whether those goals could be achieved 
with the corresponding designed capabilities.

Particularly, the χt,i indicator measures three important 
aspects. Firstly, the capability weight  Cw,i indicates how 
important the capability is in relation to the stakeholder 
requirements. Secondly, the capability compliance certainty 
indicates how well designed a capability is. Thirdly, the 
compliance indicator domain [–Kf , Kf ] indicates the interval 
in which χt,i exists.

A χt,i value less than zero is an indicator of a wrong 
capability design. In contrast, a χt,i value greater than zero is 
an indicator of a good capability design. A χt,i value close to 
zero indicates that the capability design must be thoroughly 
checked. Finally, a χt,i value close to Kf or –Kf indicates that 
capability designed is well conceived or an entire design 
change is needed, with a high certainty.
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When the analysis includes more than one capability, the 
same analysis is carried out by using the Tc values that 
indicate how well integrated and designed the capabilities 
are. It is also important to take into account that Tc is more 
related to system goals than χt,i values.

Using the capability as an evaluation item of a fault detection 
model instead of directly using requirements allowing to 
detect problems at systems design early stages. This type 
of analysis is associated with the systems’ goals rather 
than stakeholder needs. So it is useful for fault insertions 
reduction at early stages and correct systems goals design. 
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