
92

Architectural capability analysis using
a model-checking technique

ABSTRACT: This paper describes a mathematical approach based on a model-checking
technique to analyze capabilities in enterprise architectures developed by using DoDAF and
TOGAF architecture frameworks. Such approach base is the requirements’ validation related
to the enterprise capabilities by employing operational or business artifacts associated with
the dynamic behavior processes. We show how this approach can be used to quantitatively
verify if the operational models in an enterprise architecture can achieve the enterprise
capabilities by using a case study connected to a capability integration problem.

RESUMEN: Este trabajo describe un enfoque matemático basado en una técnica de
validación de modelos para analizar capacidades en arquitecturas empresariales construidas
utilizando los marcos arquitecturales DoDAF y TOGAF. La base de este enfoque es la
validación de requerimientos relacionados con las capacidades empresariales empleando
artefactos arquitecturales operacionales o de negocio asociados con el comportamiento
dinámico de los procesos. Se muestra cómo este enfoque puede ser utilizado para verificar,
de forma cuantitativa, si los modelos operacionales en una arquitectura empresarial pueden
satisfacer las capacidades empresariales. Para ello, se utiliza un estudio de caso relacionado
con un problema de integración de capacidades.

* Corresponding author: Darío José Delgado Quintero
e-mail: dario.delgado@correo.uis.edu.co
ISSN 0120-6230
e-ISSN 2422-2844

ARTICLE INFO

KEYWORDS
Capability analysis, enterprise
architectures, DoDAF, model-
checking, requirements, TOGAF

Análisis de capacidades,
arquitecturas empresariales,
DoDAF, evaluación de modelos,
requerimientos, TOGAF

Received October 11, 2016
Accepted April 04, 2017

Revista Facultad de Ingeniería, Universidad de Antioquia, No. 83, pp. 92-101, 2017

DOI: 10.17533/udea.redin.n83a12

Análisis de Capacidades en arquitecturas utilizando técnicas de evaluación de modelos
Darío José Delgado-Quintero1*, Jormary Noguera-Muños2, Gerson Alonso Flores-Rojas2, Clara Isabel López-Gualdron3,
Ricardo Llamosa-Villalba3

1 Escuela de Ingeniería Eléctrica, Electrónica y de Telecomunicaciones, Facultad de Ingenierías Físicomecánicas, Universidad Industrial
de Santander. Carrera 27, Calle 9. C. P. 680002. Bucaramanga, Colombia.
2 Escuela de Ingeniería de Sistemas, Facultad de Ingenierías Físicomecánicas, Universidad Industrial de Santander. Carrera 27, Calle 9.
C. P. 680002. Bucaramanga, Colombia.
3 Escuela de Diseño Industrial, Facultad de Ingenierías Físicomecánicas, Universidad Industrial de Santander. Carrera 27, Calle 9. C. P.
680002. Bucaramanga, Colombia.

associated with the stakeholders needs, but that approach
cannot ensure that the system could achieve its behavioral
goals. There exist other approaches to reduce the fault
insertion by goal-oriented requirement engineering
(GORE) [5]. Those approaches try to ensure that elicitation,
analysis, elaboration and refinement, specification and
modeling of requirements are related to the specified goals
for a particular solution. As a result, this article is focused
on fault-detection confirmation approaches by using logical
verification of models that seek to ensure the achievement
of their behavioral goals.

ISO/IEC/IEEE 24765 [6] (System and software engineering
- Vocabulary) defines a requirement as “a condition or
capability needed by a user to solve a problem or achieve
an objective”. In an architectural environment, business
requirements support the business capabilities designing,
architectural models– especially in the business or
operational views– represent those capabilities, and the
capabilities designs seek to satisfy the requirements and

1.	 Introduction
In systems designing, early fault detection is one of the
biggest challenges due to software crises. In Software, fault
detection is less than 10% in the conceptual design phase
and around 40% of the failures are introduced in this phase.
Thus compared with the cost to fix a fault during the design
phase, a fault in an operational or testing phase is more
expensive to fix [1, 2]. This is especially true during most
of the systems development procedures; fault detection
during the design phase usually consists of models’ logical
verification (UML, SysML, BPMN, etc.) and the requirement
compliance in the design models only [2-5]. However, logical
verification of models only ensures the fault detection

93

D. J. Delgado-Quintero et al.; Revista Facultad de Ingeniería, No. 83, pp. 92-101, 2017

achieve the organizational goals [7, 8]. An organizational
capability represents skills that organizations have that can
create value [9]. This paper shows an approach based on a
model-checking methodology [1] to verify models in terms
of capabilities. This approach seeks to detect faults related
to the organizational goals.

In order to implement the capability model-checking
approach, a Custom Implants Design System (CIDS) [10]
is employed with an architecture implementation that
uses DoDAF and TOGAF architectural frameworks [11,
12]. To describe the approach, this document is organized
as follows: the first part describes the model-checking
technique, the second part shows the approach for capability
model-checking. Finally, the analysis and conclusions are
presented. All the parts contain an application example by
including the CIDS system.

2.	 Model-checking as a fault
detection technique
The model-checking (MC) technique proposed by Clarke
& Emerson [13] and Queille & Sifakis [14] is an automatic
technique for finite state systems verification regarding
some temporary logical specifications. The standard
approach focuses on the semi-formal models: SysML
(System modeling language), UML (Unified Modeling
Language), BPMN (Business Process Model and Notation),
etc. Especially those that describe the system behavior with
behavioral models to develop formal ones (executable) aim
at verifying dynamic aspects of the systems and detecting
failures through a model-checking tool. See Figure 1.

Figure 1 Requirements validation general scheme
using model-checking

Failure detection using MC follows the next steps:
1.	 Convert the system behavioral models into formal

models (LTS-Labeled Transition Systems).

2.	 Specify the system requirements in terms of logic
temporal specifications (LTL).

3.	 Use an MC tool to execute the LTL and determine
compliance.

2.1 Behavioral models and Kripke
structures

Systems architectures are developed to work as a bridge
between requirements and design in complex systems [15]
by using an ADM (Architecture Development Method) cycle
[16] that describes the system organization in term of its
components and interactions. SAs divide the analyses into
structural component and functional component analyses,
which are both related, but conduct different activities. See
Figure 2.

Figure 2 A generic scheme for systems
architecture

Architectural models are developed by using modeling
languages such as UML, SysML, BPMN, among others,
that display different classifications according to their
viewpoints. However, the architectural viewpoints, in
general, are classified in terms of behavior, requirements,
and structure. For example, SysML [17] architectural model
classification is particularly considered in this paper (see
Figure 3). Regarding other architectural frameworks as
TOGAF or DoDAF, the possible models have a different
classification. TOGAF, for instance, categorizes them
as business, information and systems, and technology
views. In contrast, DoDAF categorizes the architecture as
capability, operational, services, and systems views.

Figure 3 Possible architectural models using
SysML

For the purpose of this paper, two AF (Architectural
Frameworks), TOGAF and DoDAF are mixed in order to

94

D. J. Delgado-Quintero et al.; Revista Facultad de Ingeniería, No. 83, pp. 92-101, 2017

standardize a set of capability models that DoDAF includes
combined with the implementation method that TOGAF
provides, namely, ADM [16]. Another reason for this blend is
that DoDAF, in comparison with other AF such as Zachman,
4+1 Views, FEAF, among others, do not support a capability
model design approach directly. Hence DoDAF and TOGAF
terminology are both used to carry out this paper’s
procedure: a capability analysis in the architecture through
the requirement model, capability models (CV), and the
business views represented by the operational models (OV)
in the architecture.

The proper system behavior is connected to the requirement
fulfillment stipulated by the stakeholders. The MC techniques
seek to verify the requirement fulfillment using the behavior
models (see Figure 4). For this purpose, it uses state machine
(SM) diagrams. SM is a useful graphical tool to describe the
dynamic system behavior from an architectural point of view.
The OV models represent the system behavior; OV-6b (State
Transition Description) is an example.

Figure 4 Structure, behavior, and design requirements

2.2 Case study

A Custom Implants Design System (CIDS) [9] is presented
here. It uses some software packages: BioCAD, CAD, and
CAE to model digital volumes and verify by simulation,
as well as a 3D printer through rapid prototyping (RP) of
Osteosynthesis implants. See Figure 5.

Figure 5 General perspective to the custom
implants design system (CIDS)

From the system architectural point of view, the OV-6b
model is taken as a sample to analyze the system behavior,
see Figure 6.

Figure 6 LTS fragment, CAD tool states in the
CIDS system

OV-6b is a Statechart (SC) diagram used to describe the
detailed sequencing of activities or work flow in the business
process. It is useful for describing critical sequencing of
behaviors and timing of operational activities that cannot
be adequately described in the OV-5b Operational Activity
Model. It could be defined as a tuple: SC={S,Var,G,E,Edges},
where S is the states set, E is the set of events, Var is the
state variables set, G is the guards set, and Edges is the
transitions set.

95

D. J. Delgado-Quintero et al.; Revista Facultad de Ingeniería, No. 83, pp. 92-101, 2017

Although UML Statechart diagrams count on their own
semantics and syntax, a system behavior graphic is
represented here. The SC diagrams need to be transformed
into an executable model with a mathematical formality.

Transition Systems (TS) are used here. They consist of
a set of states and transitions such as labels denoted by
actions and one initial state, to represent the behavior
and communication between components in a concurrent
system (see Figure 7). TS is a tuple (S,Act,→,I,AP,L):

1) S is a set of states,
2) Act is a set of actions
3) →⊆S×Act×S is a transition relation,
4) I ⊆ S is a set of initial states,
5) AP is a set of atomic propositions, and
6) L: S→2AP is a labeling function.

Statechart diagrams and transition systems models have
common elements: set of states S, events E, guards G,
transition Edges represented in TS as the actions Act, and
the transition relations → In contrast, The SC diagram does
not contain the atomic propositions AP nor the labeling
function L. The AP are defined as hidden actions in the
system related to the requirements. See Table 1.

Figure 7 OV-6b model fragment, Statechart
diagram fragment for CAD tool in the CIDS system

Table 1 Requirements list for the CAD tool obtained from the requirements model and atomic
propositions obtained from OV-6a model

Code Requirement Atomic proposition

RCd1 CAD process must design orthopedic custom devices proposed by the specialist in each
case study.

RCd1.1 CAD should allow to import 3D bone models in IGES, STEP, or STL formats obtained from a
BioCAD tool.

importSTL
importSTEP
importIGES
alternatives

RCd1.2 CAD should allow to export 3D volumes in IGES, STEP, or STL format.

exportSTL
exportSTEP
exportIGES

accuracyDesing

RCd1.3 CAD should save a historical record of 3D models reconstruction operations, allowing
regression.

rebuildVolume
importSTL

importSTEP
importIGES

RCd1.4 CAD should allow parameters edition in model construction operations.
modelDesign
regectDesign

rebuildVolume

RCd1.5 CAD should develop technical blueprints by using standard rules. modelDesign
rebuildVolume

96

D. J. Delgado-Quintero et al.; Revista Facultad de Ingeniería, No. 83, pp. 92-101, 2017

Figure 8 Intuitive view for a LTL

The labeling function L creates a relation between a state si
∈ S and a proposition pj ∈ AP (see Table 2). The AP and L are
used to create a relation between system requirements and
behavior models. Then, before transforming the SC diagram
into a TS, the system requirements need to be represented
in labels. In turn, they represent specific actions obtained
from the OV – 6a model (Operational rules model), which
is an activity diagram that contains the detailed set of
operations, activities, and guards that specify each state
and satisfy each requirement. In summary, labeled function
L allows to execute the TS in system requirements terms.

Table 2 L function deployment
State L(State)

Import V. Osseous {importSTL, importSTEP, importIGES}

Rebuild Volume {rebuildVolume}

Design { modelDesign, regectDesign}

Volume Adjustment {volumeAjustment}

Assessment {accuracyDesing}

Export CAD {exportSTL, exportSTEP, exportIGES}

2.3. Linear Temporal Logic
Specifications (LTLs)

A TS execution is a sequence of actions (2AP) that can be
executed starting with an initial state I. A TS=(S,Act,→,
I,AP,L) transits TS’=(S,Act,→ ,I’,AP,L) by an action a denoted as
TSa

⟶ TS’↔ (I,a,I’) ∈ →. The L function in the LTS ts=(S,Act,→,I)

takes a set of AP that come from activities related to system
requirements and transform the Labeled Transition System
LTS in TS=(S,Act,→, I,AP,L). Here the system behavior is
labeled with a set of actions that are directly related to
requirements. Such system behavior can be evaluated with
the TS execution, specifically, L function.

An LTL formula is a mathematical language for describing
linear-time properties; it is a widely used logic for
expressing properties of programs viewed as sets of
executions, and it is inductively defined by using Boolean
and temporal operators × (next) and ∪ (until), given an AP:

1) pi ∈ AP is a formula

2) If φ and ψ are formulas, then ¬φ,φ⋁ψ,φ⋀ψ,Xφ,φUψ are also.

An LTL formula interpretation is an infinite word
w = x0 x1 x2⋯ over the set 2AP. Then for each time instant in
the system execution, there is a subset of AP that is active.
Being wi the word w starting with xi that comes from the
TS execution, the LTL semantics is defined as follow. See
Figure 8.

1) w ⊨ p if p ∈ x0 , To p ∈ AP

2) w ⊨ φ⋁ψ if (w ⊨ φ)⋁(w ⊨ ψ)

3) w ⊨ ¬φ if ¬(w ⊨ φ)

4) w ⊨ φ∧ψ if (w ⊨ φ)∧(w⊨ψ)

5) w ⊨ Xφ if wi ⊨ φ

6) w ⊨ φUψ if ∃ i ≥ 0 | (wi ⊨ ψ)∧∀ 0 ≤ j ≤ i, (wi ⊨ φ)

There are additional operators proposed by Giannakopoulou
in [15]: “true ≡ φ∨¬φ”, “false ≡¬true”, the Boolean operator
⟹ that is defined as φ ⟹ ψ ≡ ¬φ∨ψ, and the temporal
operators < > (Eventually), [] (Always), W (Weak until)
defined in terms of the main temporal operators: <> φ ≡
true Uφ, []φ ≡ ¬F¬φ, y φW ψ ≡ ((φUψ)∨Gφ) .

2.4. Use of transition systems to verify
LTLs formulas

The LTL verification basic scheme is based on the use of
Büchi automatons (BA) [18, 19]. A BA is a 5-tuple B = <Q, Σ,

δ, q0, F>, where Q is a finite set of states, Σ is a finite set of
labels, δ ⊆ Q × Σ × Q is a labeled transition relation, q0 ∈ Q
is the initial state, and F ⊆ Q is the set of accepted states.

A B execution in a finite word <a0 a1 a2⋯> over Σ is an infinite
word <s0 s1 s2⋯> over Q, so that s0 = q0 and ∀ i ∈ N, (si, ai , si+1)
∈ δ. If any elements in F occur infinitely, an execution is
accepted and an infinite word w over Σ is accepted by the
automaton B if there are any executions from B in w.

For an LTL formula over a set of AP, we formulated a BA
to accept words over 2AP that satisfyφ. A finite state system

97

D. J. Delgado-Quintero et al.; Revista Facultad de Ingeniería, No. 83, pp. 92-101, 2017

is verified by an LTL specification φ by calculating the
intersection between the system and the BA (¬φ). The TS
satisfy φ if the intersection does not accept words.

LTL functions in AP terms is designed here to try to verify
the requirements in the systems behavior models. The set
of operators used are shown in Table 3.

Table 3 Operators to formulate LTL formulas
Unitary operators Binary operators

[] Always (G) U Until

< > Eventually (F) W Weak until

X Next && Logic operator AND

! Logic negation || Logic operator OR

 Implicación

 Equivalencia

An LTL formula F is designed for each requirement. A
model-checking tool is used to verify φ (see Table 4). An
LTSA analyzer is employed here. When a requirement
is validated by using an LTL formula, one of these three
different results is obtained:

1) The property (requirement) is fulfilled.

2) The property (requirement) is not fulfilled and a counter
example is shown.

3) The test generates an inconclusive result.

Table 4 LTL formulas for the CAD requirements
Requirement LTL formula

RCd1.1 assert Rcd11= <>((alternatives)-
>(importSTL || importIGES || importSTEP))

RCd1.2
<>((accuracyDesing)->((exportSTL ||

exportSTEP || exportGES) W (importSTL ||
importIGES || importSTEP)))

RCd1.3 <>((importSTL || importIGES ||
importSTEP) -> (rebuildVolume))

RCd1.4 (<>(rebuildVolume ->(({ modelDesign W
regectDesign)))-> modelDesign)

RCd1.5 <>(rebuildVolume ->(modelDesign))

2.5. The problem of requirement
verification

Requirement elicitation is the most effective phase of
systems development processes. Such elicitation aims to
correctly meet the stakeholders’ requirements [20] so that

the systems models design is allowed. However, as we can
see in the Figure 9, a simple requirement verification in
the systems models can only ensure that the stakeholders’
needs are fulfilled, but it cannot ensure that the stakeholders’
intentions are achieved with designed models.

Figure 9 Relationship between requirements and
capabilities [21]

3.	 Capability analysis
by using a model-checking
scheme
A system capability represents the ability to perform
certain actions or outcomes through a set of controllable
and measurable faculties, features, functions, processes,
or services. From an architectural point of view, we
model capabilities to meet the stakeholder requirements
and organizational goals. In order to meet a set of
requirements: R={r1, r2,⋯, rm}, a set of capabilities C={c1,
c2, …, cn} is designed. In the architecture, capabilities C are
represented as a set of behavioral models that deploy them
in terms of operational activities.

In this article, a capability verification approach is proposed
by using a model-checking scheme. Such approach is
based on the next assumptions:
1) A designed capability tries to meet one or many
requirements.
2) A requirement is a condition or capability needed by a
user to solve a problem or achieve an objective.
3) Capabilities provide an environment to meet the
organizational goals.

In short, these are the general steps to carry out the
capability analysis (see Figure 10):
1) Relate capabilities and requirements.
2) Validate the requirements by using a model-checking
approach.
3) Analyze and categorize results in capabilities terms.

98

D. J. Delgado-Quintero et al.; Revista Facultad de Ingeniería, No. 83, pp. 92-101, 2017

Figure 10 Methodological scheme for capability analysis by using a model-checking technique

3.1. Capabilities and requirements

The first assumption previously mentioned states that a
capability is designed to meet one or many requirements.
Nevertheless, a capability is a formal system component
and a requirement is an informal stakeholder need (see
Table 1 and Table 5).

An efficient and organized technique to translate the
“Stakeholder voice” into the “Engineering voice” or
designers is the process of quality function deploy (QFD)
[22]. It is a useful tool to associate qualitative and ambiguous
requirements with systems attributes. For the purpose of
this article, an adaptation of QFD and the house of quality
HOQ have been employed to relate the requirements to
specific properties in the system.

Table 5 Capabilities list obtained from the CV-2 model

Code Capability

C1 Planning design
C2 Share information
C3 Knowledge acquisition
C4 Knowledge Transfer
C5 Product evaluation
C6 Technology appropriation
C7 Digital reconstruction
C8 Implant modeling
C9 Structural simulation

C10 Surgical simulation
C11 Interoperability
C12 Prototyping

The properties of interest are the system capabilities.
The HOQ methodology denotes the relations between
requirements and capabilities as strong ⓪ (9), average
○ (3), and weak ∆ (1). The relation between capabilities is
defined as positive + and negative – correlations. As the
name implies, a positive correlation means that a positive
capability achievement has a positive impact over the
capability related. A negative correlation, on the other
hand, means that a capability positive achievement has a
negative impact over the capability related (see Figure 11).

Figure 11 Capability and requirements
relationship for the CAD tool

A weight factor vector Cw for capabilities and Rw for the
requirements can be obtained from the relations. The vector CR,i
to i=1,2,⋯n, where n is the number of capabilities in the system,

99

D. J. Delgado-Quintero et al.; Revista Facultad de Ingeniería, No. 83, pp. 92-101, 2017

is obtained from Table 5 CR,i contains all the requirements
(strong, average, and weak) related to the capability Ci. See
an example in Table 6. Additionally, the correlation matrix Cc
that contains the correlation between capabilities can also be
obtained. (See the HOQ roof in Figure 11).

Table 6 Requirements related with the capability
C8 (Implant modeling)

CR,8

RCd1 Strong
RCd1.1 Weak
RCd1.2 Weak
RCd1.3 Strong
RCd1.4 Strong
RCd1.5 Strong

3.2. Capability analysis

To carry out the capability analysis, it is necessary to
observe the models in Figure 6, since it represents the
designed capabilities to meet the requirements that need
the LTL formulas, as shown in Table 4.

From the CR,i vector that contains the requirements for the
capability Ci, three additional vectors are denoted: Rs,i , Ra,i ,
Rl,i ∈ R, where Rs,i ∩ Ra,i ∩ Rl,i =∅. That represents the strong,
average, and low requirements related to the capability Ci.

In addition to the LTL formulas related to the requirements
Rs,i, Ra,i, Rl,i, the φs,i, φa,i, φl,i vectors are formulated and they
contain the respective set of requirements (strong, average,
and low). Being ξ the behavioral model used, the LTSA tool
proceed to verify if the LTL formulas φs,i ⊩ ξ, φa,i ⊩ ξ, φl,i ⊩ ξ
satisfy the behavior model.

When the set of properties φs,i , φa,i , and φl,i are tested, the
vectors Os,i ,Oa,i , and Ol,i contain the respective testing results,
see Table 7.

In order to determine if a capability is achieved, the next
variables are defined: Ni: the number of properties to verify
the capability Ci in ξ, Ki , Li , Ti ∈ ℕ: the number of properties
evaluated in Os,i , Oa,i and Ol,i . αs,i , βs,i and γs,i: the positive,
negative, and inconclusive results obtained for the strongly
related properties φs,i .

In the same way, αa,i , βa,i and γa,i are defined as the average
related properties, and αl,i , βl,i and γl,i as the weakly related
properties. The capability analysis also needs the Eqs (1-
3) since they indicate the number of properties verified for
the strong, average, and low requirements related to the
capability Ci, and the Eq. (4) represents the total number of
requirements related to a particular capability.

Table 7 Capability testing report for capability
Subset Result

Os,8

Property (φs,8) Output
assert RCd1.3= <>((importSTL || importIGES

|| importSTEP) -> (rebuildVolume)) 

assert RCd1.4= (<>(rebuildVolume
->(({ modelDesign W regectDesign)))->

modelDesign)


assert RCd1.5= <>(rebuildVolume ->
(modelDesign)) 

Oa,8

Property (φs,8) Output

Ol,8

Property (φs,8) Output
assert Rcd1.1= <>((alternatives)-

>(importSTL || importIGES || importSTEP)) 

assert RCd1.2= <>((accuracyDesing)-
>((exportSTL || exportSTEP || exportGES) W
(importSTL || importIGES || importSTEP)))



	 αs,i + βs,i + γs,i = Ki	 (1)

	 αa,i + βa,i + γa,i = Li	 (2)

	 αl,i + βl,i + γl,i = Ti	 (3)

	 Ki + Li + Ti = Ni	 (4)

For a particular set Os,i , Oa,i , or Ol,i , there are six possible
results when the model-checking process is carried out:

1)	 All the properties are achieved to the capability Ci.
2)	 Some properties are not achieved and the counter

examples are shown.
3)	 None of the properties are fulfilled nor are the counter

examples shown.
4)	 Some results are not conclusive.
5)	 The entire set of properties does not have conclusive

results.
6)	 Some properties are achieved.

In a capability model checking verification, it is possible
to obtain a combination of results when the three sets of
properties Os,i ,Oa,i , and Ol,i are being taken into account. To
summarize, the combined results are presented in Table 8.

Table 8 Result analysis for the capability
Rule Οfj Οmj Οdj

i ∑αf = k ∑αm = l ∑αd = t

ii∧iv ∑βf + γf = k ∑βm + γm = l ∑βd + γd = t

iii ∑βf = k ∑βm = l ∑βd = t

v ∑γf = k ∑γm = l ∑γd = t

ii∧iv∧vi ∑αf + βf +γf = k ∑αm + βm +γm = l ∑αd + βd +γd = k

iv∧vi ∑αf + γf = k ∑αm + γm =l ∑αd + γd = t

100

D. J. Delgado-Quintero et al.; Revista Facultad de Ingeniería, No. 83, pp. 92-101, 2017

According to Table 8, only one from the six options is
selected as an output for the Os,i

 , Oa,i , and Ol,i sets. It is
proposed to assign a possible value for each possible
result, see Table 9.

Table 9 Value assignment proposal for the
results in Os,i, Oa,i, and Ol,i

Οfj Οmj Οdj

i 3 3 3
ii∧iv -2 -2 -1

iii -3 -3 -3
v 0 0 0

ii∧iv∧vi -1 0 1
iv∧vi 1 2 2

When the requirements associated with a particular
capability are verified, a general value that summarizes
the capability fulfillment is needed, see Eq. (5). χ ∈ {–3,3}.
It represents a certainty value associated with the
requirements fulfillment in the capability Ci (see Table 10).

x=celling (Οfj + Οmj + Οdj) (5)
3

Table 10 Capability compliance certainty levels

Certainty value Result interpretation

-3 There is a high certainty of
non-compliance.

-2 There is an average certainty of
non-compliance.

-1 There is a low certainty of
non-compliance.

0 There is no certainty of compliance or
noncompliance.

1 There is a low certainty of compliance.

2 There is an average certainty of
compliance.

3 There is a high certainty of compliance.

3.3. Result analysis

For this particular case study –analysis of the capability
associated with the CAD tool–, it is possible to obtain a
compliance analysis and indicator. See Table 11.

χt,i = Cw,i × χi denotes the compliance indicator for a
particular capability, Ti = ∑Cw,i the weight for the entire
capabilities, Tc = ∑χt,i the compliance indicator for the entire
capabilities, and Kf = Ti × 3 the domain in which χt,i exists.

χt,i ∈ {-3×Cw,i , – 3 × Cw,i} defines the compliance value for each
capability; negative values mean low expectations, positive
values mean high expectations, and null values mean that
nothing can be said about the capability achievement. The
capability integration Tc ∈ {–Kf , Kf } shows a measurement
of the entire capabilities achievement. The values that
are closer to Kf indicate that the capabilities are well
incorporated, but the values closer to –Kf indicate that the
capabilities incorporation by the system is poor. Finally, the
values that are closer to zero (0) indicate that no capability
analysis could correctly be performed.

Table 11 Compliance analysis and indicator
Capability Cw, i

Impact Measurement
Xt,i-3 -2 -1 0 1 2 3

C8 38 × 114
Ti 38 Tc: 114

Kf = Ti × 3 114

Figure 12 represents the compliance indicator to analyze
the implications of the capability analysis.

 *Tc

 –Kf 0 Kf

Figure 12 Graphical representation of the
compliance indicator

Besides, the capabilities affected by an analysis can be
obtained from the correlation matrix Cc. Particularly, if the
capabilities C1, C9, C11, and C12 could be affected.

4.	 Analysis and conclusions
With each capability compliance indicator, a notion on how
the system general goal are met can be obtained at an early
phase, as well as whether those goals could be achieved
with the corresponding designed capabilities.

Particularly, the χt,i indicator measures three important
aspects. Firstly, the capability weight Cw,i indicates how
important the capability is in relation to the stakeholder
requirements. Secondly, the capability compliance certainty
indicates how well designed a capability is. Thirdly, the
compliance indicator domain [–Kf , Kf] indicates the interval
in which χt,i exists.

A χt,i value less than zero is an indicator of a wrong
capability design. In contrast, a χt,i value greater than zero is
an indicator of a good capability design. A χt,i value close to
zero indicates that the capability design must be thoroughly
checked. Finally, a χt,i value close to Kf or –Kf indicates that
capability designed is well conceived or an entire design
change is needed, with a high certainty.

101

D. J. Delgado-Quintero et al.; Revista Facultad de Ingeniería, No. 83, pp. 92-101, 2017

When the analysis includes more than one capability, the
same analysis is carried out by using the Tc values that
indicate how well integrated and designed the capabilities
are. It is also important to take into account that Tc is more
related to system goals than χt,i values.

Using the capability as an evaluation item of a fault detection
model instead of directly using requirements allowing to
detect problems at systems design early stages. This type
of analysis is associated with the systems’ goals rather
than stakeholder needs. So it is useful for fault insertions
reduction at early stages and correct systems goals design.

5.	 Acknowledgment
This research was supported by the Administrative
Department of Science, Technology and Innovation
(COLCIENCIAS); it has been funded by Francisco José de
Caldas Doctoral Program Scholarship # 511. We thank
Anna Shchiptsova who greatly assisted the research and
the International Institute for Applied Systems Analysis
(IIASA) that provided insight and expertise in the Advanced
Systems Analysis area.

6.	 References
1.	 C. Baier and J. P. Katoen, Principles of model checking.

Cambridge, USA: MIT Press, 2008.
2.	 E. Karch, The Software Crisis: A Brief Look at How Rework

Shaped the Evolution of Software Methodologies, 2011.
[Online]. Available: https://blogs.msdn.microsoft.com/
karchworld_identity/2011/04/04/the-software-crisis-
a-brief-look-at-how-rework-shaped-the-evolution-of-
software-methodolgies. Accessed on: May 25, 2017.

3.	 V. Lima et al., “Formal verification and validation of UML
2.0 sequence diagrams using source and destination
of messages,” Electron. Notes Theor. Comput. Sci., vol.
254, pp. 143–160, 2009.

4.	 M. E. Beato, M. Barrio, C. E. Cuesta, and P. de la
Fuente, “UML automatic verification tool with formal
methods,” Electron. Notes Theor. Comput. Sci., vol. 127,
no. 4, pp. 3–16, 2005.

5.	 S. Anwer and N. Ikram, “Goal oriented requirement
engineering: A critical study of techniques,” in 13th

Asia Pacific. Software Engineering Conference (APSEC),
Bangalore, India, 2006, pp. 121–130.

6.	 IEEE, Systems and software engineering - Vocabulary,
IEEE Standard 24765, 2010.

7.	 F. Dandashi, R. Siegers, J. Jones, and T. Blevins, The
Open Group Architecture Framework (TOGAF) and the
US Department of Defense Architecture Framework
(DoDAF), 2006. [Online]. Available: https://www.mitre.
org/sites/default/files/pdf/06_0987.pdf. Accessed on:
May 25, 2017.

8.	 K. Griendling and D. N. Mavris, “Development of a
dodaf-based executable architecting approach to

analyze system-of-systems alternatives,” in IEEE
Aerospace Conference, Big Sky, MT, USA, 2011, pp. 1-15.

9.	 S. Sharma, J. Conduit, and S. R. Hill, “Organisational
capabilities for customer participation in health care
service innovation,” Australas. Mark. J., vol. 22, no. 3,
pp. 179–188, 2014.

10.	 G. P. Castro, “Evaluación de un modelo de integración
de herramientas software dirigido al sector biomédico-
ortopédico,” Undergraduate thesis, Univ. Industrial de
Santander, Bucaramanga Colombia, 2014.

11.	 A. Josey et al., TOGAF Version 9.1 - A Pocket Guide. 1st ed.
Van Haren Publishing, 2011.

12.	 Z. G. Tao, Y. F. Luo, C. X. Chen, and M. Z. Wang, and F.
Ni, “Enterprise application architecture development
based on DoDAF and TOGAF,” Enterprise Information
Systems, vol. 11, no. 5, pp. 627-651, 2017.

13.	 E. A. Emerson and E. M. Clarke, “Using branching
time temporal logic to synthesize synchronization
skeletons,” Science of Computer Programming, vol. 2,
no. 3, pp. 241-266, 1982.

14.	 J. P. Queille and J. Sifakis, “Specification and
verification of concurrent systems in CESAR,” in
International Symposium on Programming, Turin, Italy,
1982, pp. 337–351.

15.	 D. Giannakopoulou, “Model checking for concurrent
software architectures,” Ph.D. dissertation, Imperial
College of Science, London, UK, 1999.

16.	 T. J. Blevins, J. Spencer, and F. Waskiewicz, TOGAF
ADM and MDA® The Power of Synergy, The Open Group,
2004. [Online]. Available: http://www.opengroup.org/
cio/MDA-ADM/. Accessed on: May 25, 2017.

17.	 S. Friedenthal, A. Moore, and R. Steiner, “OMG Systems
Modeling Language (OMG SysMLTM) Tutorial,” INCOSE
International Symposium, vol. 18, no. 1, pp. 1731–1862,
2008.

18.	 M. Y. Vardi and P. Wolper, “An automata-theoretic
approach to automatic program verification,” in
1st Symposium on Logic in Computer Science (LICS),
Cambridge, MA, USA, 1986, pp. 322–331.

19.	 J. Magee, J. Kramer, R. Chatley, S. Uchitel, and H.
Foster, LTSA - Labelled Transition System. [Online].
Available: http://www.doc.ic.ac.uk/ltsa. Accessed on:
Jan. 1, 2017.

20.	 D. Pandey, U. Suman, and A. K. Ramani, “An effective
requirement engineering process model for software
development and requirements management,” in
2nd International Conference on Advances in Recent
Technologies in Communication and Computing
(ARTCom), Kottayam, India, 2010, pp. 287–291.

21.	 G. A. Ricardo and J. Borbinha, Blog Post: Requirements
and Capabilities, 2013. [Online]. Available: http://www.
timbusproject.net/portal/blogs-news-items-etc/
timbus-blogs/196-requirements-and-capabilities/.
Accessed on: May 16, 2017.

22.	 K. A. Griendling, “Architect: the architecture-based
technology evaluation and capability tradeoff method,”
Ph.D. dissertation, Georgia Institute of Technology,
Atlanta, USA, 2011.

https://blogs.msdn.microsoft.com/karchworld_identity/2011/04/04/the-software-crisis-a-brief-look-at-how-rework-shaped-the-evolution-of-software-methodolgies/
https://blogs.msdn.microsoft.com/karchworld_identity/2011/04/04/the-software-crisis-a-brief-look-at-how-rework-shaped-the-evolution-of-software-methodolgies/
https://blogs.msdn.microsoft.com/karchworld_identity/2011/04/04/the-software-crisis-a-brief-look-at-how-rework-shaped-the-evolution-of-software-methodolgies/
https://blogs.msdn.microsoft.com/karchworld_identity/2011/04/04/the-software-crisis-a-brief-look-at-how-rework-shaped-the-evolution-of-software-methodolgies/
http://www.opengroup.org/cio/MDA-ADM/
http://www.opengroup.org/cio/MDA-ADM/
http://www.doc.ic.ac.uk/ltsa
http://www.timbusproject.net/portal/blogs-news-items-etc/timbus-blogs/196-requirements-and-capabilities/
http://www.timbusproject.net/portal/blogs-news-items-etc/timbus-blogs/196-requirements-and-capabilities/
http://www.timbusproject.net/portal/blogs-news-items-etc/timbus-blogs/196-requirements-and-capabilities/

	_GoBack
	_GoBack
	OLE_LINK3
	OLE_LINK4
	_Hlk461831086
	_Hlk461831035
	_GoBack
	OLE_LINK14
	OLE_LINK15
	OLE_LINK16
	OLE_LINK5
	OLE_LINK6
	OLE_LINK20
	OLE_LINK21
	OLE_LINK22
	OLE_LINK23
	OLE_LINK24
	OLE_LINK25
	OLE_LINK34
	OLE_LINK35
	OLE_LINK36
	OLE_LINK37
	OLE_LINK31
	OLE_LINK32
	OLE_LINK33
	OLE_LINK45
	OLE_LINK46
	OLE_LINK43
	OLE_LINK44
	OLE_LINK9
	OLE_LINK12
	OLE_LINK13
	OLE_LINK30
	OLE_LINK38
	OLE_LINK39
	OLE_LINK40
	OLE_LINK48
	OLE_LINK49
	OLE_LINK2
	OLE_LINK5
	_Ref454894554
	_Ref456346578
	_Ref456353016
	_Ref456354514
	_Hlk481858326
	_GoBack
	RANGE!B58%3AF80
	EDITORIAL
	EIS, Mott Schottky and EFM analysis of the electrochemical stability and dielectric properties of Ca-P-Ag and Ca-P-Si-Ag coatings obtained by plasma electrolytic oxidation in Ti6A14V
	Sara María Leal-Marin, Hugo Armando Estupiñán-Duran

	Study of the visible light activity of Pt and Au-TiO2 photocatalysts in organic pollutants degradation
	Jairo Antonio Cubillos-Lobo1*, Julie Joseane Murcia-Mesa1, Jhonatan Ricardo Guarín-Romero1,
Hugo Alfonso Rojas-Sarmiento1, María del Carmen Hidalgo-López2, José Antonio Navío-Santos2

	Iron based coatings deposited by arc thermal spray
	Maritza Patiño-Infante1*, Álvaro Mariño-Camargo2

	Effect of aeration on Tafelian behavior of the carbon steel corrosion in acid sulfate medium
	José Adrián Tamayo-Sepúlveda, Ferley Alejandro Vásquez-Arroyave, Jorge Andrés Calderón-Gutiérrez*

	Structural and vibrational studies on composites polymer electrolytes (PEO)10CF3COONa + x wt.% Al2O3
	Nori Magali Jurado-Meneses1, Miguel Iban Delgado-Rosero1*, Miguel Angel Meléndez-Lira2

	Recycling rotating electrical machines
	Rafael Hernández-Millán1, 2, Jesús Rafael Pacheco-Pimentel3*

	Experimental study of flat plate cooling using draft induced by a submerged radial jet
	Argemiro Palencia-Diaz1, Cesar Barraza-Botet2, Antonio José Bula-Silvera3*

	A simple geomagnetic field compensation system for uniform magnetic field applications
	Andrés Fernando Restrepo-Álvarez1, Edinson Franco-Mejía1, Héctor Cadavid-Ramírez2, Carlos Rafael Pinedo-Jaramillo3

	An algorithm for learning sparsifying transforms of multidimensional signals
	Oscar Enrique Hurtado-Camacho1, Hoover Fabián Rueda-Chacon2, Henry Arguello-Fuentes1*

	New methodology for calibration of hydrodynamic models in curved open-channel flow
	Hernán Javier Gómez-Zambrano1*, Víctor Ignacio López-Ríos2, Francisco Mauricio Toro-Botero3

	Architectural capability analysis using a model-checking technique
	Darío José Delgado-Quintero1*, Jormary Noguera-Muños2, Gerson Alonso Flores-Rojas2, Clara Isabel López-Gualdron3,
Ricardo Llamosa-Villalba3

	_GoBack

