

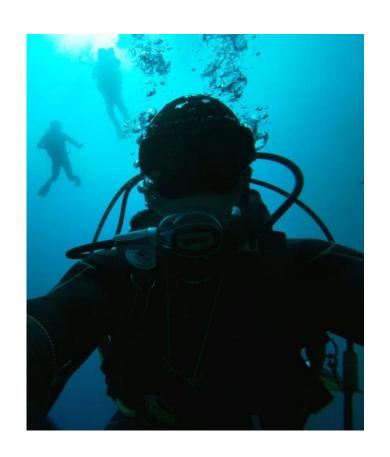
Το μέλλον του ΑΙ: Τι αναμένουμε να γίνει καλύτερο, φθηνότερο, πιο αποδοτικό ενεργειακά

Χάρης Γεωργίου (MSc, PhD)

Ένωση Πληροφορικών Ελλάδας

Στόχοι:

- Πρώτος "καθολικός" φορέας εκπροσώπησης πτυχιούχων Πληροφορικής.
- Αρμόδιος φορέας εκπροσώπησης επαγγελματιών Πληροφορικής.
- Αρμόδιος επιστημονικός "συμβουλευτικός" φορέας για το Δημόσιο.
- Αρωγός της Εθνικής Ψηφιακής Στρατηγικής & Παιδείας της χώρας.


https://www.epe.org.gr

Τομείς παρέμβασης

Ποιοι είναι οι κύριοι τομείς παρεμβάσεων της ΕΠΕ;

- Εθνική Ψηφιακή Στρατηγική & Οικονομία
- Εργασιακά (ΤΠΕ), Δημόσιος & ιδιωτικός τομέας
- Θ Παιδεία (Α΄, Β΄, Γ΄)
- Φ Έρευνα & Τεχνολογία
- ⑤ Έργα & υπηρεσίες ΤΠΕ
- Ασφάλεια συστημάτων & δεδομένων
- Ο Ανοικτά συστήματα & πρότυπα
- Χρήση ΕΛ/ΛΑΚ
- Πνευματικά δικαιώματα
- 🚇 Κώδικας Δεοντολογίας (ΤΠΕ)
- Φ Κοινωνική μέριμνα (ICT4D)

Harris Georgiou (MSc, PhD) – https://github.com/xgeorgio/info

- R&D: Associate post-doc researcher and lecturer with the University Athens (NKUA) and University of Piraeus (UniPi)
- Consultant in Medical Imaging, Machine Learning, Data Analytics, Signal Processing, Process Optimization, Dynamic Systems, Complexity & Emergent A.I., Game Theory
- HRTA member since 2009, LEAR / scientific advisor
- HRTA field operator (USAR, scuba diver)
- Wilderness first aid, paediatric (child/infant)
- Humanitarian aid & disaster relief in Ghana, Lesvos, Piraeus
- Support of unaccomp. minors, teacher in community schools
- Streetwork training, psychological first aid & victim support
- 2+4 books, 200+ scientific papers/articles (and 6 marathons)

Επισκόπηση

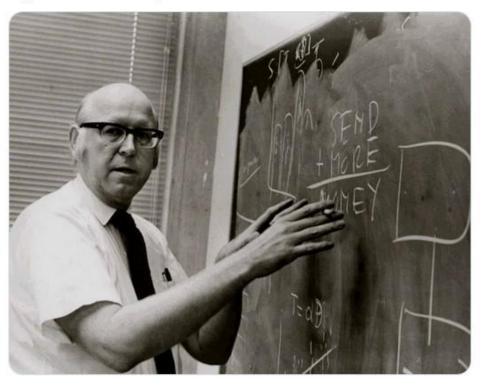
• Περιεχόμενα:

- Μέρος Ι: Τεχνητή Νοημοσύνη Βασικές Έννοιες
- Μέρος ΙΙ: Μελλοντικές Προοπτικές

• Σχετικό υλικό:

- «Turing machines explained visually» https://www.youtube.com/watch?v=-ZS zFg4w5k
- «Game of life: computer with display» https://www.youtube.com/watch?v=WfuhbI8HE7s
- Computer History Museum (CHM) https://www.youtube.com/@ComputerHistory
- «Artificial Intelligence | 60 Minutes Full Episodes» –
 https://www.youtube.com/watch?v=aZ5EsdnpLMI
- "Queens puzzle solver in LISP", @ApneaCoding https://youtu.be/ 1CRCyklUto
- «BAM neural network in Arduino», @ApneaCoding https://youtu.be/RkM-rpSVD4I

Μέρος Ι: Τεχνητή Νοημοσύνη – Βασικές Έννοιες


- 1. Τι είναι;
- 2. Γιατί μας ενδιαφέρει;
- 3. Ποιος τη σχεδιάζει-δημιουργεί;
- 4. Νοημοσύνη στη Φύση

MIT CSAIL • @MIT_CSAIL • 13h

Born #otd in 1927: Allen Newell, who in 1955 — before the term "Al" even existed — co-wrote what's widely considered the world's first Al program, Logic Theorist. This work proved 38 out of 52 classic math theorems.

MEMORANDUM RM-3739-RC JUNE 1963

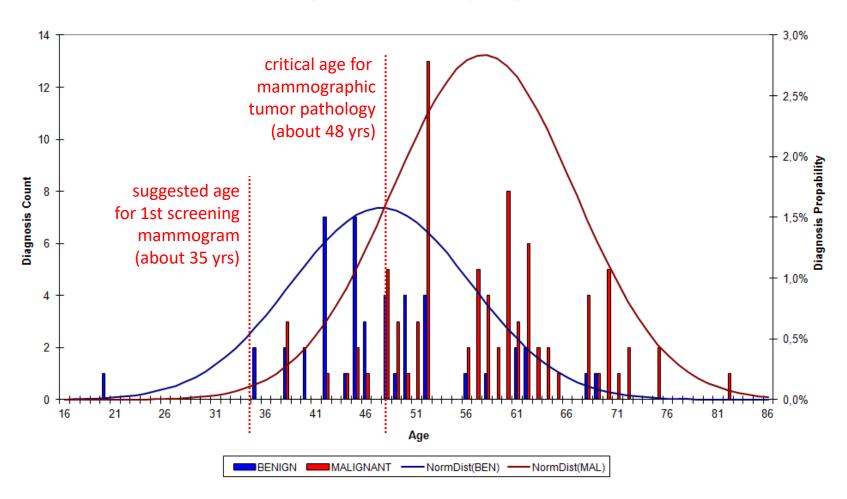
IPL-V PROGRAMMERS' REFERENCE MANUAL

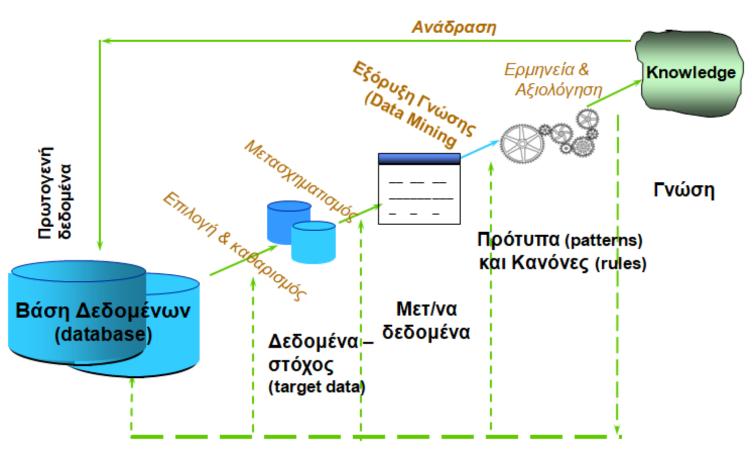
Edited by Allen Newell

1769 MAIN \$1 + SANES HOMES + CAS

Δεδομένα παντού ...

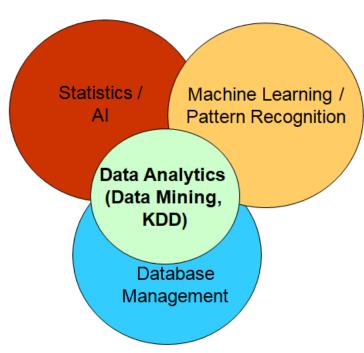
- Παράγονται όλο και περισσότερα δεδομένα:
 - Τραπεζικά, τηλεπικοινωνιακά, ...
 - Επιστημονικά δεδομένα:αστρονομικά, βιολογικά κλπ.
 - Κείμενα στο web κ.α.
- Αποθηκεύονται όλο και περισσότερα δεδομένα:
 - Γρήγορη / φθηνή τεχνολογία αποθήκευσης
 - Ικανά ΣΔΒΔ για μεγάλες ΒΔ





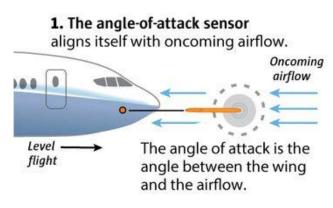
Age Distributions vs Benign/Malignant

Η "σκάλα" της διαδικασίας KDD

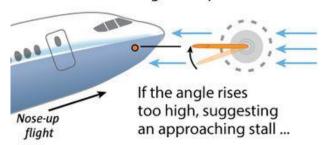

Σχετικά επιστημονικά πεδία

Στατιστική / *«Τεχνητή Νοημοσύνη»,* Μηχανική Μάθηση / Αναγνώριση Προτύπων,

Διαχείριση Βάσεων Δεδομένων


 Οι παραδοσιακές τεχνικές επεξεργασίας δεδομένων που μας προσφέρουν αυτές οι επιστημονικές περιοχές μπορεί να είναι ανεφάρμοστες λόγω:

- του μεγάλου όγκου,
- των πολλών διαστάσεων,
- της ετερογένειας των δεδομένων,
- των απαιτήσεων επεξεργασίας,
- **–** ...



Worst Software Failures: Boeing 737 MAX

How the MCAS (Maneuvering Characteristics Augmentation System) works on the 737 MAX

2. Data from the **sensor** is sent to the flight computer.

... the MCAS activates.

3. MCAS automatically swivels the horizontal tail to lift the plane's tail while moving the nose down.

Nose down

Horizontal tail

Sources: Boeing, FAA, Indonesia National Transportation Safety Committee, Leeham.net, and The Air Current

> Reporting by DOMINIC GATES, Graphic by MARK NOWLIN / THE SEATTLE TIMES

Worst Software Failures: Tesla car crash

PRELIMINARY REPORT

HIGHWAY

The information in this preliminary report is It will be supplemented or corrected di

On Friday, March 23, 2018, about 9:27 a.m., Paci electric-powered passenger vehicle, occupied by US Highway 101 (US-101) in Mountain View, S approached the US-101/State Highway (SH-85) i from the left, which was a high-occupancy-vehicle

According to performance data downloaded from driver assistance features traffic-aware cruise conto Tesla refers to as "autopilot." As the Tesla approact lanes of US-101 from the SH-85 exit ramp, it most Tesla continued traveling through the gore area and at a speed of about 71 mph.² The crash attenuate barrier. The speed limit on this area of roadway is the traffic-aware cruise control speed was set to rotated the Tesla counterclockwise and caused a set Tesla was involved in subsequent collisions with Audi A4 (see figure 1).

A preliminary review of the recorded performance data showed the following:

- The Autopilot system was engaged on four separate occasions during the 32-minute trip, including a continuous operation for the last 18 minutes 55 seconds prior to the crash.
- During the 18-minute 55-second segment, the vehicle provided two visual alerts and one auditory alert for the driver to place his hands on the steering wheel. These alerts were made more than 15 minutes prior to the crash.
- During the 60 seconds prior to the crash, the driver's hands were detected on the steering wheel on three separate occasions, for a total of 34 seconds; for the last 6 seconds prior to the crash, the vehicle did not detect the driver's hands on the steering wheel.
- At 8 seconds prior to the crash, the Tesla was following a lead vehicle and was traveling about 65 mph.
- At 7 seconds prior to the crash, the Tesla began a left steering movement while following a lead vehicle.
- At 4 seconds prior to the crash, the Tesla was no longer following a lead vehicle.
- At 3 seconds prior to the crash and up to the time of impact with the crash attenuator, the Tesla's speed increased from 62 to 70.8 mph, with no precrash braking or evasive steering movement detected.

The New Caledonian crow uses twigs and branches to extricate grubs and insects from inside trees (Credit: Alamy)

Source: BBC

Dolphin social intelligence: complex alliance relationships in bottlenose dolphins and a consideration of selective environments for extreme brain size evolution in mammals

Richard C Connor 1,*

▶ Author information ▶ Article notes ▶ Copyright and License information

PMCID: PMC2346519 PMID: 17296597

Abstract

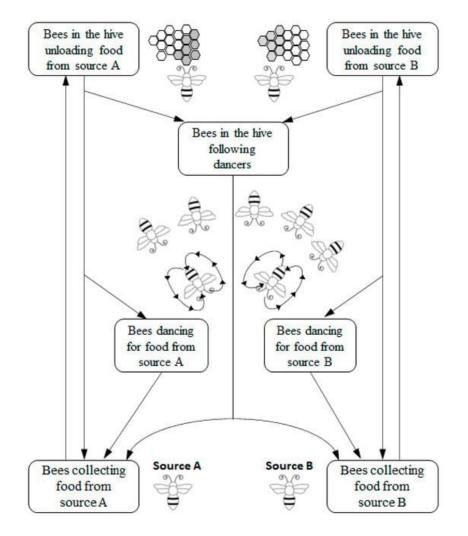
Bottlenose dolphins in Shark Bay, Australia, live in a large, unbounded society with a fission–fusion grouping pattern. Potential cognitive demands include the need to develop social strategies involving the recognition of a large number of individuals and their relationships with others. Patterns of alliance affiliation among males may be more complex than are currently known for any non-human, with individuals participating in 2–3 levels of shifting alliances. Males mediate alliance relationships with gentle contact behaviours such as petting, but synchrony also plays an important role in affiliative interactions. In general, selection for social intelligence in the context of shifting alliances will depend on the extent to which there are strategic options and risk. Extreme brain size evolution may have occurred more than once in the toothed whales, reaching peaks in the

Octopuses Capable of Hand-Eye Coordination

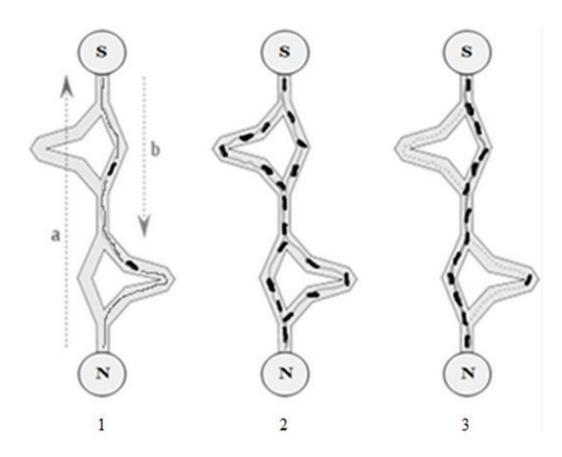
By Helen Albert, CosmosMagazine.com May 30, 2011

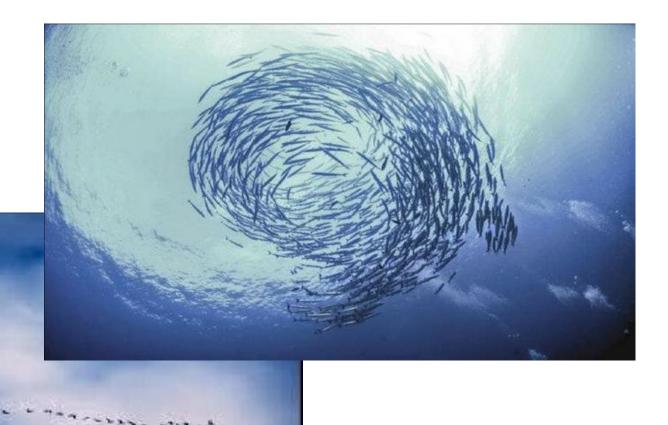
LONDON: Octopuses are able to use visual cues to guide a single arm to a location, a complex movement that was not thought possible due to their lack of a rigid body structure, say researchers.

The octopus' arm is made up primarily of muscle with no skeletal support, so octopuses were previously believed to have a low level of body awareness and only limited control over their limbs. However, this study has shown for the first time that they can direct a single arm in a complex movement to a target location.


"Octopuses have a central nervous system that is advanced for an invertebrate, but simple compared to a vertebrate, yet it is capable of controlling a much more 'difficult' arm," said lead study author Tamar Gutnick, a researcher at the Hebrew University of Jerusalem in Israel.

"Because of the unique body plan of the octopus its ability to control a single arm in a complex movement is quite amazing."


Bee Colony Optimization (ACO)



Ant Colony Optimization (ACO)

Swarm Intelligence (SI)

International Journal of Information Management Data Insights

Volume 2, Issue 2, November 2022, 100086

Particle swarm optimization and RBF neural networks for public transport arrival time prediction using GTFS data

Eva Chondrodima ^a A Marris Georgiou ^a, Nikos Pelekis ^b, Yannis Theodoridis ^a

Show more 🗸

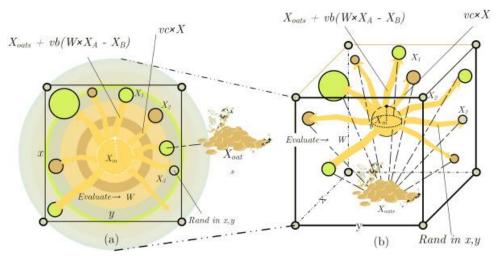
+ Add to Mendeley 🗠 Share 🗦 Cite

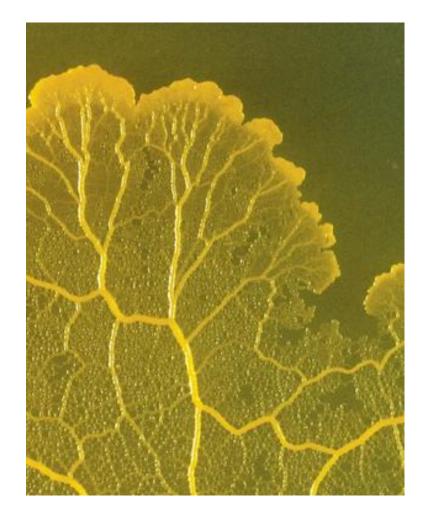
https://doi.org/10.1016/j.jjimei.2022.100086 7

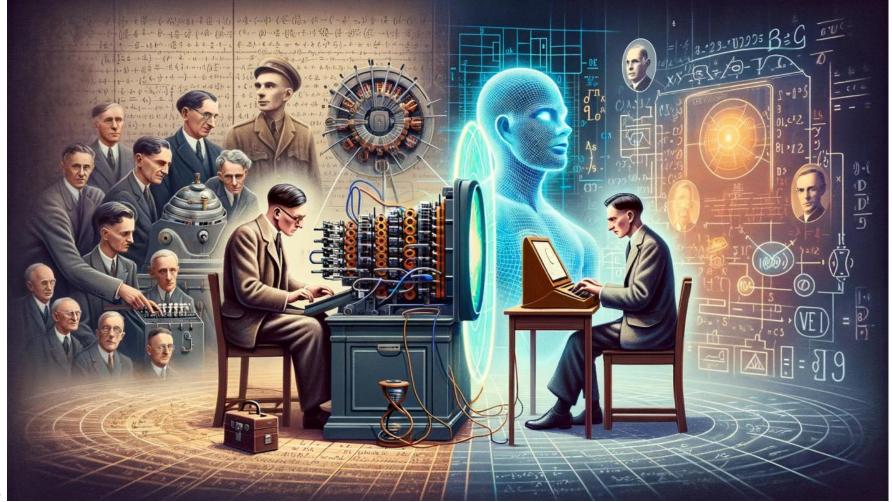
Get rights and content 7

Under a Creative Commons license

open access


Future Generation Computer Systems


Volume 111, October 2020, Pages 300-323



Slime mould algorithm: A new method for stochastic optimization

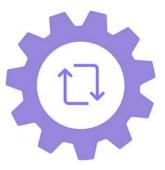
 $\frac{\text{Shimin Li} \circ \boxtimes, \text{Huiling Chen} \circ \triangle \boxtimes, \text{Mingjing Wang} \circ \boxtimes, \text{Ali Asghar Heidari} \circ \boxtimes, \text{Seyedali Mirjalili} \circ \boxtimes$

Μέρος ΙΙ: Μελλοντικές προοπτικές

- 1. Turing Completeness
- 2. Προσομοιώνοντας τη Φύση
- 3. Τι έρχεται στο μέλλον;
- 4. Πως θα τα καταφέρουμε;

What Does Turing Complete Mean?

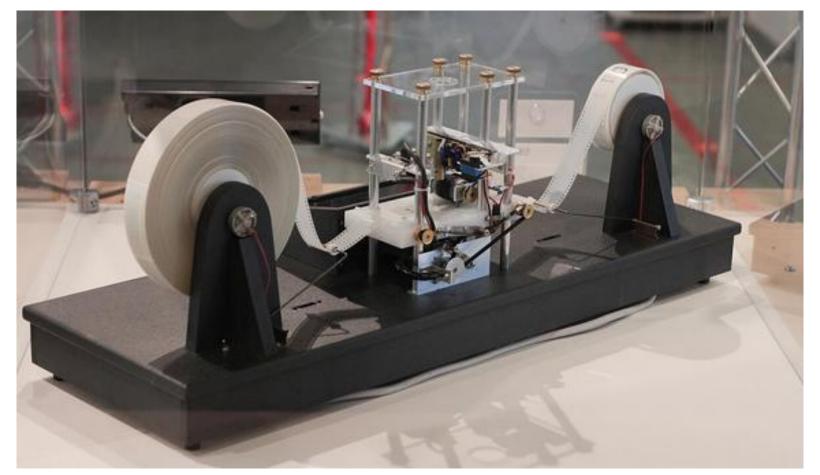
Key characteristics that define a Turing complete system


Sequence

Execute a series of computational steps in the order they are provided.

Conditionals

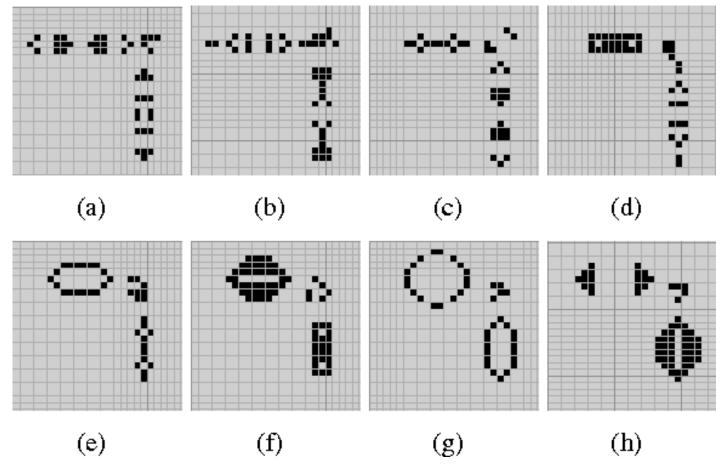
Execute different computational paths conditionally based on certain criteria.


Iteration

Repeat computational sub-processes over and over.

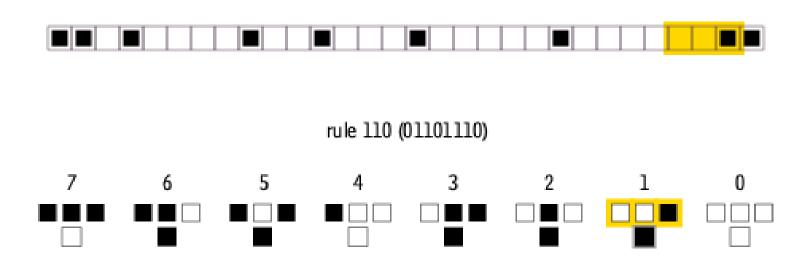
Store Data

Store intermediate results for later use in memory.



Details: https://en.wikipedia.org/wiki/Turing machine

Counter machines


- Can be thought in one of two ways.
- Same structure as multistack machine.
- Each stack in the machine is replaced by a counter.
- Counter hold any nonnegative integer.
- The move of a machine depends on the
 - 1.current state
 - 2.current input symbol
 - 3.if one of the value of the counter is zero

Details: https://en.wikipedia.org/wiki/Conway%27s Game of Life

current automaton contents

the next generation of the automaton

SUBLEQ - A One Instruction Set Computer (OISC)

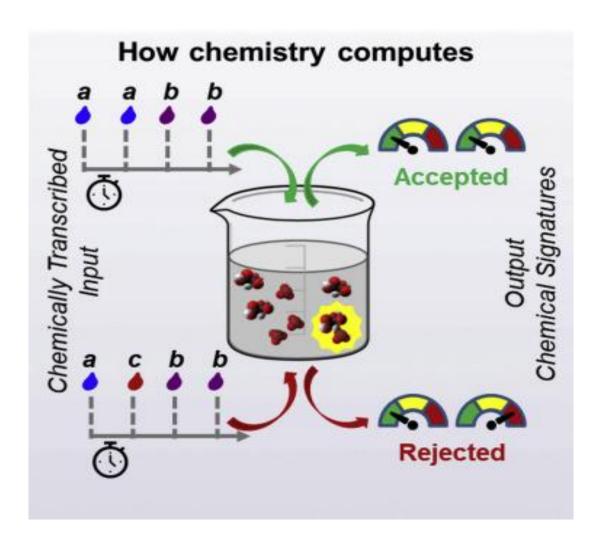
29 May 2020 Lawrence Woodman

#Programming #SUBLEQ

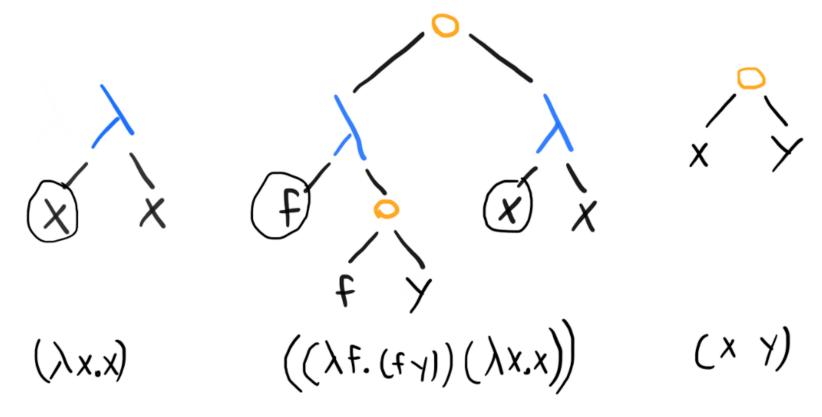
SUBLEQ has to be one of the easiest architectures to implement in either software or hardware and this is the main reason for its design as a teaching aid. It has only one instruction, hence why it is called a One Instruction Set Computer (OISC), which isn't the best name considering that most processors have one instruction set. URISC is good, but perhaps

One Instruction Computer (OIC) would be more accurate.

SUBLEQ (SUbtract and Branch if Less than or EQual


The SUBLEQ instruction stands for SUbtract and Branch if Le EQual to zero. Because there is only one instruction, only are specified, which consist of 3 memory addresses that are

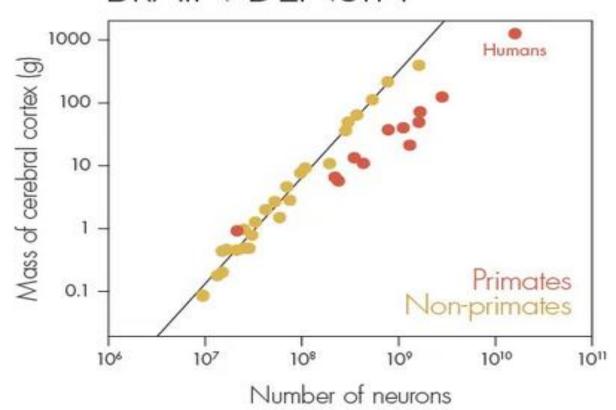
```
; Outputs "HELLO, WORLD!\n"
           OUT -1
.equ
.equ
           HALT -1
           sble hello OUT
loop:
                                 : 0u
           sble #-1 loop
                                 ; In
           sble #-1 checkEnd+1
                                   Ιn
checkEnd:
           sble z hello HALT
                                   Ha
           sble zzloop
                                   Ju
hello:
           .asciiz "HELLO, WORLD!\n"
           .word
                   0
z:
```

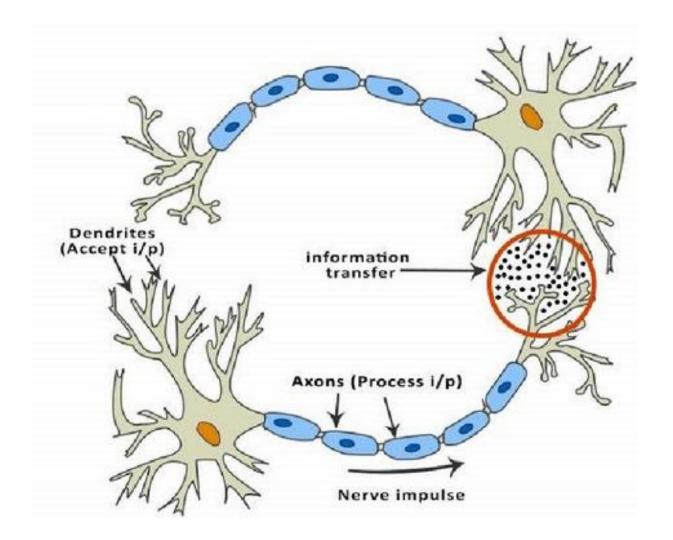

Brainfuck Programming Language

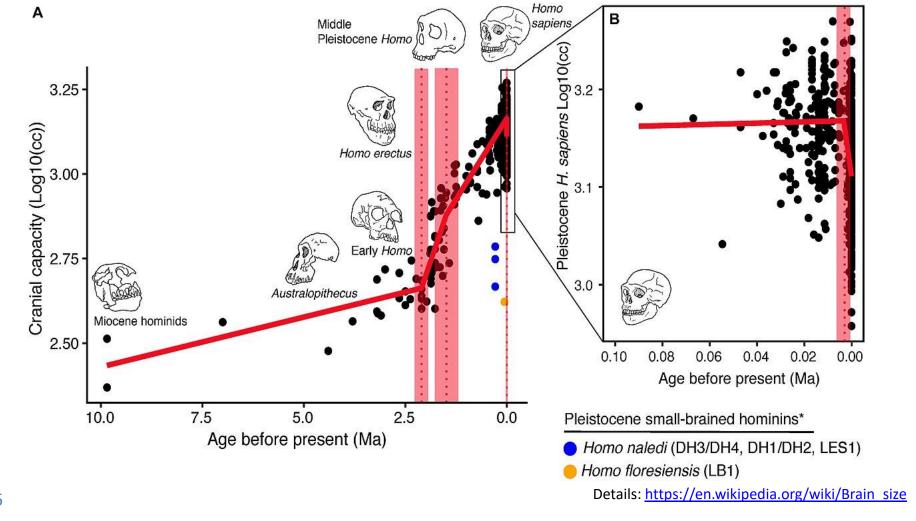
- created in 1993 by Urban Müller
- Only 8 instructions
 - Müller's Amiga compiler was 240 bytes in size
 - x86/Linux by Brian Raiter had 171 Bytes!

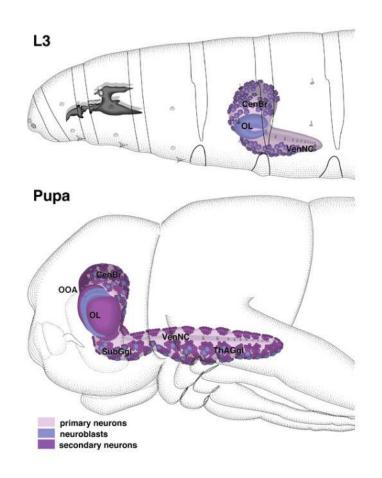
```
+++[>++++[>+++++>++++>++
++>+<<<<-]>++++>+++>+<<<<<
-]>>.>.>+.>.>-----.
```

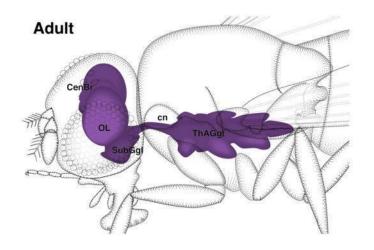

λ-Calculus (A. Church, 1936)

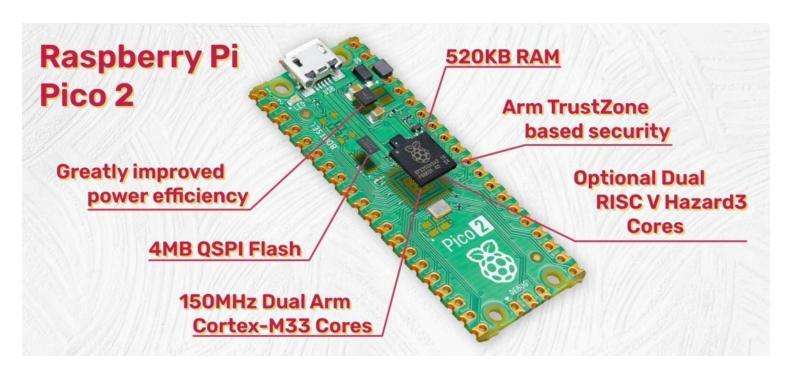


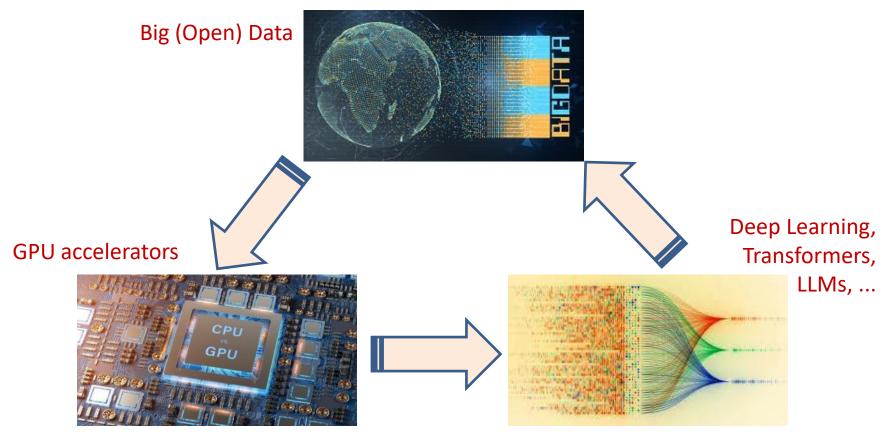

BRAIN SIZE AND NEURON COUNT

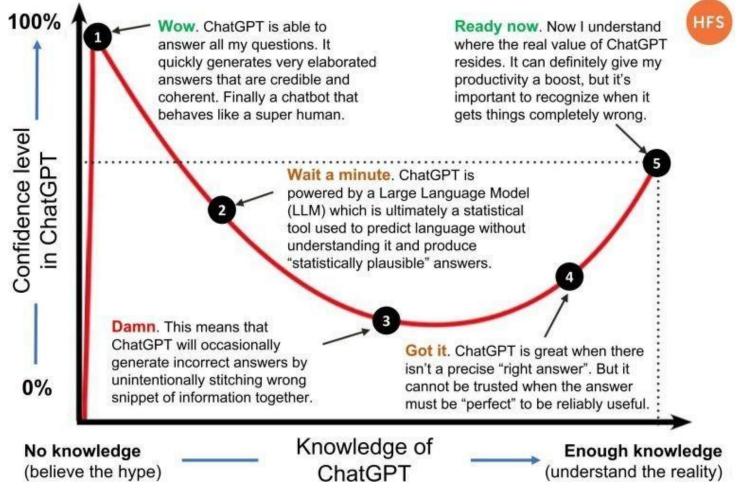

Cerebral cortex mass and neuron count for various mammals.


5 cm				
Capybara	Rhesus Macaque	Western Gorilla	Human	African Bush Elephant
non-primate	primate	primate	primate	non-primate
48.2 g	69.8 g	377 g	1232 g	2848 g
0.3 billion neurons	1.71 billion neurons	9.1 billion neurons	16.3 billion neurons	5.59 billion neurons


BRAIN DENSITY



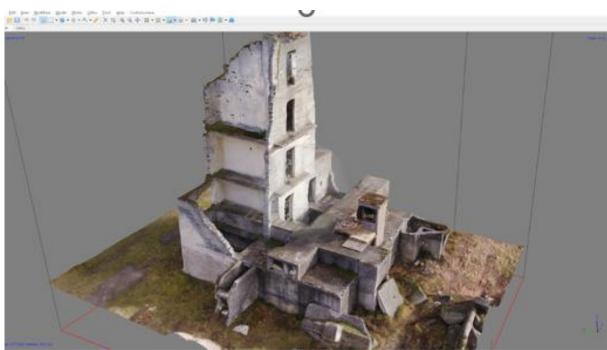



- Earthworm: n=302 (s=7,500)
- Sea slug: n=18,000
- Fruit fly: n=150,000
- Ant: n=250,000
- Honey bee: n=960,000 (s=10⁹)
- Cockroach: n=10⁶
- Brown rat: n=31x10⁶ (s=3x10⁶)

- 520KB RAM ≈ 133,120 "synapse" weights (32-bit FP variables)
- FP arithmetic (FxMadds) ≈ 300 per sample @ 44100 khz
- FP benchmark \approx 1.5 MFLOPS @ 133 MHz (\approx 11 Hz "brain")
- RPi 5 (SBC): 4 cores / x16 memory / x37 speed

Τι έχει αλλάξει τα τελευταία 10-15 χρόνια;

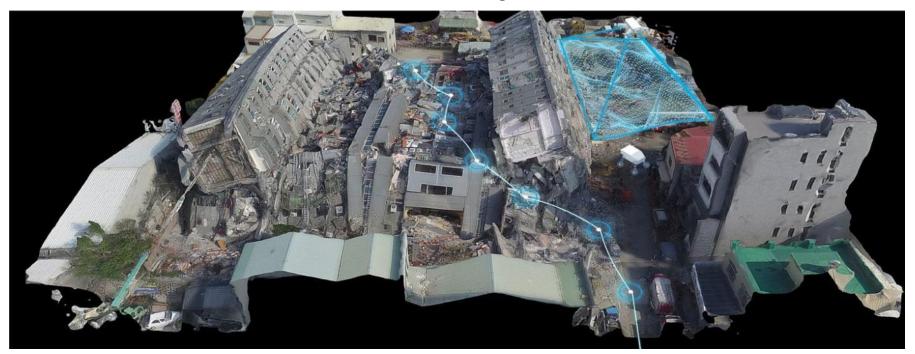




Source: A. AlQuraini, "ChatGPT as seen through the Dunning-Kruger Curve" (26/2/2023)

Modelling Swarm Drones:

Creation of orthophoto and 3-D model of disaster area with 5 pre-programmed drones


Credits: CURSOR project (EU H2020)

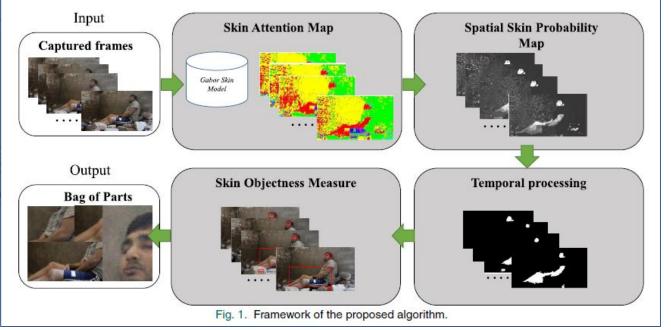
Earthquake in Turkiye

Live 3-D optimal route planning:

Risk assessment and FR team navigation inside the hotzone

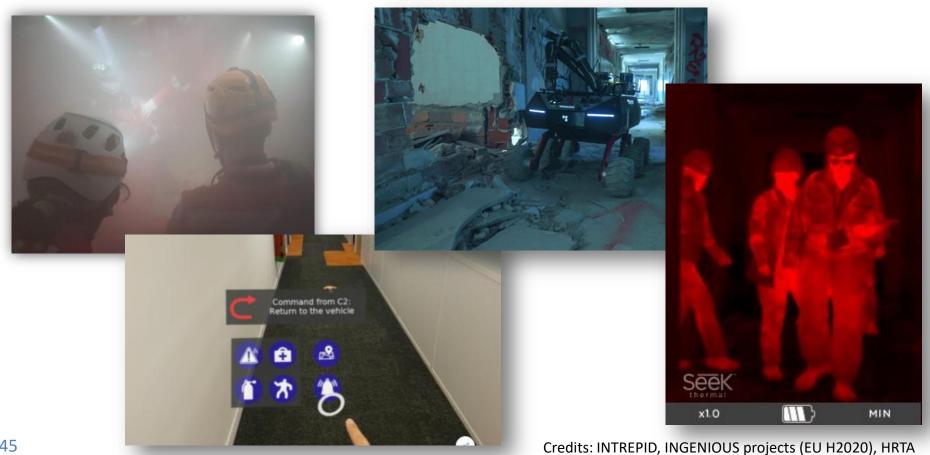
Credits: INTREPID project (EU H2020)

Future trends: **Body part detection & assessment**


3697

Data-Driven Skin Detection in Cluttered Search and Rescue Environments

Yogeshwar Singh Dadwhal[®], Student Member, IEEE, Satish Kumar, Member, IEEE, and H. K. Sardana[®], Member, IEEE


Abstract—Locating human victims in cluttered urban search and rescue (USAR) environments is still a challenge. In this paper, we present an approach to generate skin objectness windows to assist human rescuers. We introduce the term skin objectness to denote the task of extracting windows in the scene with a high probability of skin presence for locating victims. Unlike naïve skin segmentation approaches. the presented algorithm accounts for both color and spatial information to extract regions of interest and at the same time. rejects the background clutter. We use temporal information of the video sequence to make the skin objectness windows more reliable. To selectively boost skin regions, the RGB skin pixels are transformed to Gabor space to generate a transformation matrix. The matrix is used to generate skin Further, the Bayesian inference and temporal cues from previous It has real-time applications in image retrieval, action class demonstrates quantitative and qualitative results on a disast proposed method in cluttered environments.

Index Terms—Distinctiveness, Gabor filters, color image a

FR safety and remote sensing:

Mapping and navigation inside the hotzone with sensors, AR and UxVs

Τροφή για σκέψη...

- A.I. = «πολλαπλασιαστής»
- Generative A.I.
- Large Language Models (LLM)
- Transformers
- Big (Open) Data
- Cloud \rightarrow Edge \rightarrow IoT
- EU A.I. Act, USA Exec. Order

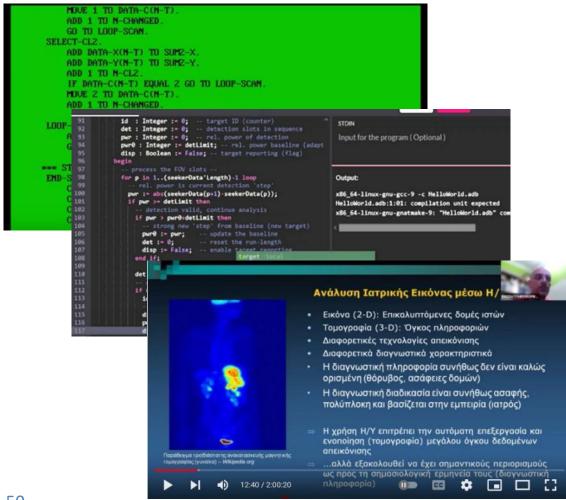
- Η ελληνική πραγματικότητα
- Brain drain
- «Έλλειψη ταλέντων»...
- «Πληροφορικάριοι»...
- Ψηφιακός αναλφαβητισμός
- «Φορολόγηση των ρομπότ»
- «Dark Internet forest»

Είμαστε έτοιμοι? -> Φυσικά όχι (όπως πάντα άλλωστε)

Τι χρειάζεται για να πετύχει;

- 1. Αφοσίωση και όρεξη + Επιστημονική επάρκεια
- 2. Απαραίτητοι πόροι, κυρίως δημόσιοι στο ξεκίνημα
- 3. Κυρίως <u>όραμα</u> για το που πάμε και με τι στόχο

Source: "13 minutes to the Moon" (podcast) – https://www.bbc.co.uk/programmes/w13xttx2


Σύνοψη

• Περιεχόμενα:

- Μέρος Ι: Τεχνητή Νοημοσύνη Βασικές Έννοιες
- Μέρος ΙΙ: Μελλοντικές Προοπτικές

• Σχετικό υλικό:

- «Turing machines explained visually» https://www.youtube.com/watch?v=-ZS zFg4w5k
- «Game of life: computer with display» https://www.youtube.com/watch?v=WfuhbI8HE7s
- Computer History Museum (CHM) https://www.youtube.com/@ComputerHistory
- «Artificial Intelligence | 60 Minutes Full Episodes» –
 https://www.youtube.com/watch?v=aZ5EsdnpLMI
- "Queens puzzle solver in LISP", @ApneaCoding https://youtu.be/ 1CRCyklUto
- «BAM neural network in Arduino», @ApneaCoding https://youtu.be/RkM-rpSVD4I

- Hamming (7,4) error correction codes in R
- Kmeans clustering in COBOL
- Bi-directional Associative Memory (BAM) in Arduino/C
- Linear Regression in SQL, Matlab
- ...

YouTube:

https://www.youtube.com/@apneacoding https://www.facebook.com/apneacoding

Github:

@xgeorgio

https://github.com/xgeorgio

http://apneacoding.blogspot.com

Ένας ψηφιακός κόσμος γεμάτος γνώση για όλους

Σύμφωνα με το Καταστατικό της Ένωσης Πληροφορικών Ελλάδας, ένας από τους βασικούς σκοπούς της λειτουργίας της είναι η προώθηση της γνώσης και χρήσης των πληροφορικών αγαθών από το κοινωνικό σύνολο και η εξάλειψη της τεχνοφοβίας και του "αναλφαβητισμού" στην Πληροφορική.

https://courses.epe.org.gr

Σχετικά με τα ανοικτά μαθήματα της Ένωσης Πληροφορικών Ελλάδας:

- √ Τα μαθήματα πραγματοποιούνται εξ ολοκλήρου
 διαδικτυακά, ζωντανά μέσω της πλατφόρμας Zoom.
- Η συμμετοχή σε όλα τα μαθήματα είναι ελεύθερη για οποιονδήποτε από οπουδήποτε στην Ελλάδα ή στο εξωτερικό.
- ✓ Δεν υπάρχει οικονομικό κόστος ή άλλες προϋποθέσεις συμμετοχής.
- ✓ Οι Εισηγητές είναι μέλη της Ένωσης Πληροφορικών Ελλάδας και πραγματοποιούν τα μαθήματα εθελοντικά.
- √ Τα μαθήματα μαγνητοσκοπούνται και παραμένουν διαθέσιμα για σύγχρονη παρακολούθηση στο Αρχείο Μαθημάτων.
- ✓ Η εκπαίδευση που παρέχεται μέσω των ανοικτών διαδικτυακών μαθημάτων είναι άτυπη και δεν παρέχονται βεβαιώσεις παρακολούθησης στους συμμετέχοντες.

Ερωτήσεις

Xάρης Γεωργίου (MSc,PhD)

https://www.linkedin.com/in/xgeorgio

https://methodd.substack.com