
Sparse complete sets for coNP: Solution of the P versus NP
problem

Frank Vega

Joysonic, Uzun Mirkova 5, Belgrade, 11000, Serbia

Abstract

P versus NP is considered as one of the most important open problems in computer science.
This consists in knowing the answer of the following question: Is P equal to NP? A precise
statement of the P versus NP problem was introduced independently in 1971 by Stephen Cook
and Leonid Levin. Since that date, all efforts to find a proof for this problem have failed. Another
major complexity class is coNP. Whether NP = coNP is another fundamental question that it is
as important as it is unresolved. In 1979, Fortune showed that if any sparse language is coNP-
complete, then P = NP. We prove there is a possible sparse language in coNP-complete. In this
way, we demonstrate the complexity class P is equal to NP.

Keywords: Complexity Classes, Sparse, Complement Language, Completeness, Polynomial
Time
2000 MSC: 68Q15, 68Q17

Introduction

In computational complexity theory, a sparse language is a formal language (a set of strings)
such that the complexity function, counting the number of strings of length n in the language, is
bounded by a polynomial function of n. The complexity class of all sparse languages is called
S PARS E. S PARS E contains T ALLY , the class of unary languages, since these have at most
one string of any one length.

Fortune showed in 1979 that if any sparse language is coNP–complete, then P = NP (this
is Fortune’s theorem) [1]. Mahaney used this to show in 1982 that if any sparse language is
NP–complete, then P = NP [2]. A simpler proof of this based on left-sets was given by Ogihara
and Watanabe in 1991 [3]. Mahaney’s argument does not actually require the sparse language to
be in NP, so there is a sparse NP–hard set if and only if P = NP [2].

We create a class with the opposite definition, that is a class of languages that are dense
instead of sparse. We show there is a sequence of languages that are in NP–complete, but their
density grows as much as we go forward into the iteration of the sequence. The first element of
the sequence is a variation of the NP–complete problem known as HAM–CYCLE [4]. The next
element in the sequence is constructed from this new version of HAM–CYCLE. Indeed, each
language is created from its previous language in the sequence.

Email address: vega.frank@gmail.com (Frank Vega)
Preprint submitted to Information Processing Letters September 17, 2018

Since the density grows according we move forward into the sequence, then there must be a
language so much dense such that its complement is sparse. Fortunately, we find this property
from a language of this sequence when the bit length n of the binary strings tends to infinity.
However, this incredible dense language is still NP–complete. Thus, the complement of this
language remains in coNP–complete, because the complement of every NP–complete language
is complete for coNP [5].

In this way, we find a possible sparse language in coNP–complete. As a consequence of
Fortune’s theorem, we demonstrate that P is equal to NP. To sum up, we proved there is a sparse
complete set for coNP and therefore, we just solved the P versus NP problem.

1. Basic Definitions

Let Σ be a finite alphabet with at least two elements, and let Σ∗ be the set of finite strings over
Σ [6]. A Turing machine M has an associated input alphabet Σ [6]. For each string w in Σ∗ there
is a computation associated with M on input w [6]. We say that M accepts w if this computation
terminates in the accepting state, that is M(w) = “yes” [6]. Note that M fails to accept w either
if this computation ends in the rejecting state, that is M(w) = “no”, or if the computation fails to
terminate [6].

The language accepted by a Turing machine M, denoted L(M), has an associated alphabet Σ

and is defined by
L(M) = {w ∈ Σ∗ : M(w) = “yes”}.

We denote by tM(w) the number of steps in the computation of M on input w [6]. For n ∈ N we
denote by TM(n) the worst case run time of M; that is

TM(n) = max{tM(w) : w ∈ Σn}

where Σn is the set of all strings over Σ of length n [6]. We say that M runs in polynomial time
if there is a constant k such that for all n, TM(n) ≤ nk + k [6]. In other words, this means the
language L(M) can be accepted by the Turing machine M in polynomial time. Therefore, P is the
complexity class of languages that can be accepted in polynomial time by deterministic Turing
machines [7]. A verifier for a language L is a deterministic Turing machine M, where

L = {w : M(w, c) = “yes” for some string c}.

We measure the time of a verifier only in terms of the length of w, so a polynomial time verifier
runs in polynomial time in the length of w [6]. A verifier uses additional information, represented
by the symbol c, to verify that a string w is a member of L. This information is called certificate.
NP is the complexity class of languages defined by polynomial time verifiers [8]. If NP is the
class of problems that have succinct certificates, then the complexity class coNP must contain
those problems that have succinct disqualifications [8]. That is, a “no” instance of a problem in
coNP possesses a short proof of its being a “no” instance [8].

A function f : Σ∗ → Σ∗ is a polynomial time computable function if some deterministic
Turing machine M, on every input w, halts in polynomial time with just f (w) on its tape [9]. Let
{0, 1}∗ be the infinite set of binary strings, we say that a language L1 ⊆ {0, 1}∗ is polynomial time
reducible to a language L2 ⊆ {0, 1}∗, written L1 ≤p L2, if there is a polynomial time computable
function f : {0, 1}∗ → {0, 1}∗ such that for all x ∈ {0, 1}∗,

x ∈ L1 if and only if f (x) ∈ L2.
2

An important complexity class is NP–complete [5]. A language L ⊆ {0, 1}∗ is NP–complete if

• L ∈ NP, and

• L′ ≤p L for every L′ ∈ NP.

If L is a language such that L′ ≤p L for some L′ ∈ NP–complete, then L is NP–hard
[5]. Moreover, if L ∈ NP, then L ∈ NP–complete [5]. A principal NP–complete problem is
HAM–CYCLE [7].

An instance of the language HAM–CYCLE is a simple graph G = (V, E) where V is the set
of vertices and E is the set of edges, each edge being an unordered pair of vertices [7]. We say
(u, v) ∈ E is an edge in a simple graph G = (V, E) where u and v are vertices. A simple graph
is an undirected graph without multiple edges or loops [7]. For a simple graph G = (V, E) a
simple cycle in G is a sequence of distinct vertices 〈v0, v1, v2, ..., vk〉 such that (vk, v0) ∈ E and
(vi−1, vi) ∈ E for i = 1, 2, ..., k [7]. A Hamiltonian cycle is a simple cycle of the simple graph
which contains all the vertices of the graph. A simple graph that contains a hamiltonian cycle
is said to be hamiltonian; otherwise, it is nonhamiltonian [7]. The problem HAM–CYCLE asks
whether a simple graph is hamiltonian [7].

2. Results

Definition 2.1. A dense language on m is a formal language (a set of binary strings) such that
for a positive integer n0, the counting of the number of strings of length n ≥ n0 in the language
is greater than or equal to 2n−m where m is a real number and 0 ≤ m ≤ 1. The complexity class
of all dense languages on m is called DENS E(m).

In this work, we are going to represent the simple graphs with an adjacency-matrix [7]. For
the adjacency-matrix representation of a simple graph G = (V, E), we assume that the vertices
are numbered 1, 2, . . . , |V | in some arbitrary manner. The adjacency-matrix representation of a
simple graph G consists of a |V | × |V | matrix A = (ai, j) such that ai, j = 1 when (i, j) ∈ E and
ai, j = 0 otherwise [7]. In this way, every simple graph of k vertices is represented by k2 bits.

Observe the symmetry along the main diagonal of the adjacency matrix in this kind of graph
that is called simple. We define the transpose of a matrix A = (ai, j) to be the matrix AT = (aT

i, j)
given by aT

i, j = a j,i. Hence the adjacency matrix A of a simple graph is its own transpose A = AT .

Definition 2.2. The language NON–SIMPLE contains all the graph that are represented by an
adjacency-matrix A such that A , AT

Lemma 2.3. NON–SIMPLE ∈ P.

Proof. Given a binary string x, we can check whether x is an adjacency-matrix which is not equal
to its own transpose in time O(|x|2) just iterating each bit ai, j in x and checking whether ai, j , a j,i

or not where | . . . | represents the bit-length function [7].

Definition 2.4. The language HAM–CYCLE’ contains all the binary strings z such that z = xy,
the bit-length of x is equal to (b

√
|z|c)2 and x ∈ HAM–CYCLE or x ∈ NON–SIMPLE where | . . . |

represents the bit-length function and y could be the empty string.

Lemma 2.5. HAM–CYCLE’ ∈ NP–complete.

3

Proof. Given a binary string x we can decide in polynomial time whether x < NON–SIMPLE just
verifying when x = xT . In this way, we can reduce in polynomial time a simple graph G = (V, E)
of k vertices encoded as the binary string x such that when x has k2 bits and x < NON–SIMPLE
then

x ∈ HAM–CYCLE if and only if x ∈ HAM–CYCLE’.

Then, we can reduce in polynomial time each element of HAM–CYCLE to HAM–CYCLE’.
Therefore, HAM–CYCLE’ is in NP–hard. Moreover, we can check in polynomial time whether a
binary string z such that z = xy where the bit-length of x is equal to (b

√
|z|c)2 and complies with

x ∈ HAM–CYCLE or x ∈ NON–SIMPLE since HAM–CYCLE ∈ NP, NON–SIMPLE ∈ P and P ⊆
NP [8]. Consequently, HAM–CYCLE’ is in NP. Hence, HAM–CYCLE’ ∈ NP–complete.

Lemma 2.6. HAM–CYCLE’ ∈ DENS E(1).

Proof. OEIS A000088 gives the total number of graphs on n unlabeled points [10]. For 8
points there are 12346 so just over half the graphs on 8 points are Hamiltonian [10]. For 12
points, the highest in the Hamiltonian list, there are 152522187830 Hamiltonian graphs out of
165091172592 which would claim that over 92% of the 12 point graphs are Hamiltonian [10].
For n = 2 there are two graphs, neither of which is Hamiltonian [10]. For n < 8 over half the
graphs are not Hamiltonian [10]. It does not seem surprising that once n gets large most graphs
are Hamiltonian [10].

Choosing a graph on n vertices at random is the same as including each edge in the graph with
probability 1

2 , independently of the other edges [11]. You get a more general model of random
graphs if you choose each edge with probability p [11]. This model is known as Gn,p [11]. It
turns out that for any constant p > 0, the probability that G contains a Hamiltonian cycle tends
to 1 when n tends to infinity [11]. In fact, this is true whenever p > c×log n

n for some constant c.
In particular this is true for p = 1

2 , which is our case [11].
For all the binary strings z such that z = xy where the bit-length of x is equal to (b

√
|z|c)2,

the amount of elements of size |z| in HAM–CYCLE’ is equal to the number of binary strings
x ∈ HAM–CYCLE or x ∈ NON–SIMPLE multiplied by 2|z|−(b

√
|z|c)2

. Since the number of Hamil-
tonian graphs increases as much as we go further on n, it does not seem surprising either
that once n gets large most binary strings belong to HAM–CYCLE’. Certainly, we can affirm
for a sufficiently large positive integer n′0, all the binary strings of length n ≥ n′0 which be-
long to HAM–CYCLE’ are indeed more than or equal to 2n−1 elements. In this way, we prove
HAM–CYCLE’ ∈ DENS E(1).

Definition 2.7. We will define a sequence of languages HAM–CYCLE’k for every possible integer
1 ≤ k. We state HAM–CYCLE’1 as the language HAM–CYCLE’. Recursively, from a language
HAM–CYCLE’k, we define HAM–CYCLE’k+1 as follows: A binary string xy complies with xy ∈
HAM–CYCLE’k+1 if and only if x ∈ HAM–CYCLE’k or y ∈ HAM–CYCLE’k such that |x| = |y|
when |xy| is even and |x| + 1 = |y| when |xy| is odd where | . . . | represents the bit-length function.
When |y| = 1, then x is equal to the empty string.

Lemma 2.8. For every integer 1 ≤ k, HAM–CYCLE’k ∈ NP.

Proof. This is true for k = 1. Every string xy which belongs to HAM–CYCLE’2 complies with
x ∈ HAM–CYCLE’1 or y ∈ HAM–CYCLE’1 such that |x| = |y| when |xy| is even and |x| + 1 = |y|
when |xy| is odd. Moreover, every string xyvw which belongs to HAM–CYCLE’3 complies with
x ∈ HAM–CYCLE’1 or y ∈ HAM–CYCLE’1 or v ∈ HAM–CYCLE’1 or w ∈ HAM–CYCLE’1 such

4

that |xy| = |vw|when |xyvw| is even and |xy|+1 = |vw|when |xyvw| is odd, |x| = |y|when |xy| is even
and |x|+ 1 = |y| when |xy| is odd and |v| = |w| when |vw| is even and |v|+ 1 = |w| when |vw| is odd.
Furthermore, we can extend this property for every positive integer k > 3 in HAM–CYCLE’k.
Indeed, HAM–CYCLE’k is in NP for every integer 1 ≤ k, because the verification of whether
the whole string or substrings are indeed elements of HAM–CYCLE’1 can be done in polynomial
time with the appropriated certificates.

Theorem 2.9. For every integer 1 ≤ k, HAM–CYCLE’k ∈ NP–complete.

Proof. This is true for k = 1 by Lemma 2.5. Let’s assume is valid for some positive integer
1 ≤ k′. Let’s prove this for k′+1. We already know the adjacency-matrix of n2 zeros represents a
simple graph of n vertices which does not contain any edge. This kind of a simple graph does not
belong to HAM–CYCLE’1. Suppose, we have an instance y of HAM–CYCLE’k′ . We can reduce
y in HAM–CYCLE’k′ to zy in HAM–CYCLE’k′+1 such that

y ∈ HAM–CYCLE’k′ if and only if zy ∈ HAM–CYCLE’k′+1

where the binary string z is exactly a sequence of |y| zeros. Due to this reduction remains in poly-
nomial time for every positive integer 1 ≤ k′, then we show HAM–CYCLE’k′+1 is in NP–hard.
Moreover, HAM–CYCLE’k′+1 is also in NP–complete, because of Lemma 2.8.

Theorem 2.10. For every integer 1 ≤ k, if the language HAM–CYCLE’k is in DENS E(k′)
for every natural number n′ ≥ n0, then HAM–CYCLE’k+1 is in DENS E(k′

2) for every integer
n′ ≥ 2 × n0 + 1.

Proof. If the language HAM–CYCLE’k is in DENS E(k′) for every natural number n′ ≥ n0, then
for every integer n ≥ n0 + 1 the amount of elements of size n + i in HAM–CYCLE’k+1 (where
i = n or i = n − 1) is greater than or equal to

2i−k′ × 2n + 2n−k′ × (2i − 2i−k′).

This is because there must be more than or equal to 2i−k′ elements of size i in HAM–CYCLE’k

which are prefixes of the binary strings of size n+ i in the language HAM–CYCLE’k+1. Moreover,
there must be more than or equal to 2n−k′ elements of size n in HAM–CYCLE’k which are suffixes
of the binary strings of size n + i in HAM–CYCLE’k+1. If we join both properties, we obtain the
sum described by the formula above.

Indeed, this formula can be simplified to

2n+i−k′ + 2n+i−k′ × (20 − 2−k′)

and extracting a common factor we obtain

2n+i−k′ × (1 + (1 − 2−k′)

which is equal to

2n+i−k′ × (2 −
1

2k′).

Nevertheless, for every real number 0 ≤ k′ ≤ 1

(2 −
1

2k′) ≥ 2
k′
2 .

5

Certainly, if we multiply both member of the inequality by 2k′ , we obtain

(2k′+1 − 1) ≥ 2k′+ k′
2

which is equivalent to
2k′ × (2 − 2

k′
2) ≥ 1

that it is true for every real number 0 ≤ k′ ≤ 1. Thus

2n+i−k′ × (2 −
1

2k′) ≥ 2n+i−k′ × 2
k′
2

where
2n+i−k′ × 2

k′
2 = 2n+i−(k′− k′

2) = 2n+i− k′
2 .

Since every binary string of size n′ has also the bit-length n + i for some natural number n (where
i = n or i = n − 1), then there are more than or equal to 2n′−(k′

2) elements of the language
HAM–CYCLE’k+1 with length n′ ≥ 2 × n0 + 1. In this way, we show HAM–CYCLE’k+1 is in
DENS E(k′

2) for every integer n′ ≥ 2 × n0 + 1.

Lemma 2.11. HAM–CYCLE’k ∈ DENS E(1
2k−1) for every natural number n ≥ 2k−1 × n′0 + 2k−1 −

1 where the constant n′0 is the positive integer used in the Definition 2.1 and Lemma 2.6 for
HAM–CYCLE’.

Proof. According to Lemma 2.6, HAM–CYCLE’1 is in DENS E(1) for every natural number n ≥
n′0 = 21−1 × n′0 + 21−1 − 1. Consequently, due to Theorem 2.10, HAM–CYCLE’2 is in DENS E(1

2)
for every natural number n ≥ 2 × n′0 + 1 = 22−1 × n′0 + 22−1 − 1. Moreover, HAM–CYCLE’3 is in
DENS E(1

4) for every natural number n ≥ 4 × n′0 + 3 = 23−1 × n′0 + 23−1 − 1 and so forth . . . and
thus, for every language HAM–CYCLE’k, we have HAM–CYCLE’k ∈ DENS E(1

2k−1) for every
natural number n ≥ 2k−1 × n′0 + 2k−1 − 1.

Corollary 2.12. There is a language HAM–CYCLE’k such that HAM–CYCLE’k ∈ DENS E(0)
when the bit length n of the binary strings tends to infinity.

Proof. When k tends to infinity, then 1
2k−1 tends to 0. In this way, when k tends to infinity,

then HAM–CYCLE’k ∈ DENS E(0) as a consequence of Lemma 2.11. However, when k tends
to infinity, then the constant n0 becomes exponentially larger in relation to k where n0 is the
positive integer used in the Definition 2.1 for HAM–CYCLE’k. In this way, the density is total
for some language HAM–CYCLE’k when the bit length n of the binary strings tends to infinity.
Consequently, this language HAM–CYCLE’k may actually exist.

Theorem 2.13. There is a sparse language in coNP–complete.

Proof. As a consequence of Corollary 2.12, the complement of a language HAMILTON–PATH’k

is sparse when the bit length n of the binary strings tends to infinity. Thus, the complexity of
counting the number of strings with length n in the complement of this language is bounded
by a polynomial function on n. Indeed, a language is sparse if and only if its complement
is in DENS E(0) when the bit length n of the binary strings tends to infinity [2]. Indeed, the
sparse languages are called sparse because there are a total of 2n strings of length n, and if a
language only contains polynomially many of these, then the proportion of strings of length

6

n that it contains rapidly goes to zero as n grows (which means its complement should be in
DENS E(0) when n tends to infinity) [2]. However, according to Theorem 2.9, the complement
of this language HAMILTON–PATH’k must be in coNP-complete, because the complements of
the NP-complete problems are complete for coNP.

Lemma 2.14. P = NP.

Proof. By the Fortune’s theorem, if any sparse language is coNP–complete, then P = NP [1].
As result of Theorem 2.13, there is a possible sparse language in coNP–complete. In conclusion,
we demonstrate that P is equal to NP.

Conclusion

No one has been able to find a polynomial time algorithm for any of more than 300 important
known NP–complete problems [4]. A proof of P = NP will have stunning practical conse-
quences, because it leads to efficient methods for solving some of the important problems in NP
[12]. The consequences, both positive and negative, arise since various NP–complete problems
are fundamental in many fields [12]. This result explicitly concludes supporting the existence of
a practical solution for the NP–complete problems because P = NP.

Cryptography, for example, relies on certain problems being difficult. A constructive and effi-
cient solution to an NP–complete problem such as 3S AT will break most existing cryptosystems
including: Public-key cryptography [13], symmetric ciphers [14] and one-way functions used
in cryptographic hashing [15]. These would need to be modified or replaced by information-
theoretically secure solutions not inherently based on P–NP equivalence.

There are enormous positive consequences that will follow from rendering tractable many
currently mathematically intractable problems. For instance, many problems in operations re-
search are NP–complete, such as some types of integer programming and the traveling salesman
problem [4]. Efficient solutions to these problems have enormous implications for logistics [12].
Many other important problems, such as some problems in protein structure prediction, are also
NP–complete, so this will spur considerable advances in biology [16].

But such changes may pale in significance compared to the revolution an efficient method for
solving NP–complete problems will cause in mathematics itself. Research mathematicians spend
their careers trying to prove theorems, and some proofs have taken decades or even centuries
to find after problems have been stated. For instance, Fermat’s Last Theorem took over three
centuries to prove. A method that is guaranteed to find proofs to theorems, should one exist of a
“reasonable” size, would essentially end this struggle.

Indeed, with a polynomial algorithm for an NP–complete problem, we could solve not merely
one Millennium Problem but all seven of them [17]. This observation is based on once we fix a
formal system such as the first-order logic plus the axioms of ZF set theory, then we can find a
demonstration in time polynomial in n when a given statement has a proof with at most n symbols
long in that system [17]. This is assuming that the other six Clay conjectures have ZF proofs
that are not too large such as it was the Perelman’s case [17].

Besides, a P = NP proof reveals the existence of an interesting relationship between humans
and machines [17]. For example, suppose we want to program a computer to create new Mozart-
quality symphonies and Shakespeare-quality plays. When P = NP, this could be reduced to the
easier problem of writing a computer program to recognize great works of art [17].

7

References

[1] S. Fortune, A note on sparse complete sets, SIAM Journal on Computing 8 (3) (1979) 431–433.
[2] S. R. Mahaney, Sparse complete sets for NP: Solution of a conjecture by Berman and Hartmanis, Journal of Com-

puter and System Sciences 25 (1982) 130–143.
[3] M. Ogiwara, O. Watanabe, On polynomial time bounded truth-table reducibility of NP sets to sparse sets, SIAM

Journal on Computing 20 (1991) 471–483.
[4] M. R. Garey, D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, 1st Edition,

San Francisco: W. H. Freeman and Company, 1979.
[5] O. Goldreich, P, NP, and NP-Completeness: The basics of computational complexity, Cambridge University Press,

2010.
[6] S. Arora, B. Barak, Computational complexity: a modern approach, Cambridge University Press, 2009.
[7] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Introduction to Algorithms, 3rd Edition, The MIT Press,

2009.
[8] C. H. Papadimitriou, Computational complexity, Addison-Wesley, 1994.
[9] M. Sipser, Introduction to the Theory of Computation, Vol. 2, Thomson Course Technology Boston, 2006.

[10] The On-Line Encyclopedia of Integer Sequences, Number of graphs on n unlabeled nodes, at http://oeis.org/

A000088 (August 2018).
[11] B. Bollobás, Random Graphs, 2nd Edition, Cambridge Studies in Advanced Mathematics, Cambridge University

Press, 2001. doi:10.1017/CBO9780511814068.
[12] S. A. Cook, The P versus NP Problem, at http://www.claymath.org/sites/default/files/pvsnp.pdf (April 2000).
[13] S. Horie, O. Watanabe, Hard instance generation for SAT, Algorithms and Computation (1997) 22–31.
[14] F. Massacci, L. Marraro, Logical cryptanalysis as a SAT problem, Journal of Automated Reasoning 24 (1) (2000)

165–203.
[15] D. De, A. Kumarasubramanian, R. Venkatesan, Inversion attacks on secure hash functions using SAT solvers, in:

International Conference on Theory and Applications of Satisfiability Testing, Springer, 2007, pp. 377–382.
[16] B. Berger, T. Leighton, Protein folding in the hydrophobic-hydrophilic (HP) model is NP-complete, Journal of

Computational Biology 5 (1) (1998) 27–40.
[17] S. Aaronson, P ? NP, Electronic Colloquium on Computational Complexity, Report No. 4.

8

