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1 INTRODUCTION
Inductive definitions and proofs are a cornerstone of mathematics and theoretical computer science,

and therefore solid and flexible foundations for induction are crucial in the development of these

subjects—especially when it comes to the rigorous formulations and proofs of the results, using tools

such as proof assistants. This paper is concerned with the formal foundations of induction for rule-

based systems. Consider the basic example predicate describing whether a natural number is even:

even 0 (Base)

even 𝑛
even (𝑛 + 2) (Ind)

The definition is inductive: a base case states that 0 is even, and an inductive case states that 𝑛 + 2

is even if 𝑛 is even. The intention is that all even numbers, and only those, are obtained by repeated

application of the two rules; or equivalently, even is the smallest predicate closed under these rules.

One can take a syntactic-format approach to making sense of this and similar definitions, by prov-

ing a theorem such as: “For any specification consisting of rules where the conclusion and the hy-

potheses say that the to-be-defined inductive predicate applied to some arguments holds true, there

exists the smallest predicate that satisfies the specification.” Various relaxations and enhancements

of such a format are possible, e.g., allowing non-recursive assumptions, side-conditions, and specify-

ing a grammar for the arguments to which the to-be-defined predicate is applied. But no matter how

far we go with format enhancements, we are likely to encounter situations where they are still not

enough. Particularly difficult aspects to capture via formats are nested quantifiers and higher-order

operators. For example, consider the set Tree of finite trees whose leaves Leaf are labelled by natural
numbers and such that every tree 𝑡 ∈ Tree has a finite (possible empty) set Desc 𝑡 ∈ Pfin (Tree) of im-

mediate descendants. We can define inductively the following parity simulation relation ⪯ on trees:

𝑡 = Leaf 𝑛 𝑡 ′ = Leaf (2 ∗ 𝑛)
𝑡 ⪯ 𝑡 ′ (Base)

isDesc 𝑡 isDesc 𝑡 ′ RelSet (⪯) (Desc 𝑡) (Desc 𝑡 ′)
𝑡 ⪯ 𝑡 ′ (Ind)
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where isDesc 𝑡 states that 𝑡 is not a leaf and, for any binary relation 𝑅 on a set𝐴, RelSet 𝑅 denotes its

Hoare-style extension to a relation on Pfin (𝐴) defined by RelSet 𝑅 𝐵 𝐵′ = (∀𝑎 ∈ 𝐵. ∃𝑎′ ∈ 𝐵′ . 𝑅 𝑎 𝑎′).
For making sense of rule-based inductive definitions, an approach that is more general and

principled (and conceptually simpler!) than the syntactic-format approach is possible, by noticing

that the existence of a smallest predicate satisfying a specification is guaranteed regardless of its
format, provided it can be expressed using a monotonic operator on predicates. The operators

underlying the definitions of even and ⪯ are 𝐺even and 𝐺⪯ are defined as follows:

𝐺even 𝑃 𝑚 = (𝑚 = 0 ∨ ∃𝑛. 𝑚 = 𝑛 + 2 ∧ 𝑃 𝑛)
𝐺⪯ 𝑅 𝑡 𝑡 ′ = ((∃𝑛. 𝑡 = Leaf 𝑛∧𝑡 ′ = Leaf (2∗𝑛))∨(isDesc 𝑡∧isDesc 𝑡 ′∧RelSet 𝑅 (Desc 𝑡) (Desc 𝑡 ′)))
For any monotonic operator on a complete lattice (such as the lattice of predicates), as is easily seen

to be the case with𝐺even and𝐺⪯ , the Knaster–Tarski theorem [Tarski 1955] guarantees the existence

of a least fixed point. So even and ⪯ both exist as the least fixed points of 𝐺even and 𝐺⪯ , and have

the desired properties, including induction principles for reasoning about them, merely by virtue of

these operators being monotonic. The precise format of the predicate does not matter. In particular,

for ⪯ the definition of RelSet is irrelevant, other than it is monotonic. This monotonicity-based

approach was a major breakthrough, since it covers both existing and future syntactic formats that

one would be interested in. It was implemented as part of the induction facilities of several proof

assistants, notably the ones based on higher-order logic including HOL4 [Gordon and Melham

1993], HOL Light [Harrison 2024] and Isabelle/HOL [Nipkow et al. 2002].

Here we will be concerned with inductive definitions involving syntax with bindings—pervasive

in the theory of logics and programming languages, where variables are being bound in terms and

formulas via quantifiers, 𝜆-abstractions, etc. When working with these systems, researchers want

to avoid the overlap between bound and free variables, lest their proofs become significantly harder

or fail altogether. This means applying Barendregt’s famous variable convention [Barendregt 1985,

p. 26]: “If [the terms]𝑀1, . . . , 𝑀𝑛 occur in a certain mathematical context (e.g. definition, proof),

then in these terms all bound variables are chosen to be different from the free variables.”

This informal principle has been made rigorous by subsequent research, notably in the context

of Nominal Logic [Gabbay and Pitts 1999, 2002] and related formalisms (e.g., [Aydemir et al. 2008]).

Specifically for inductive rule-based systems involving binders, Urban et al. [2007] identified a rule

format and some assumptions that are sufficient for allowing Barendregt’s variable convention

to be soundly used in proofs, leading to a strong induction principle criterion guaranteeing the

disjointness between bound and free variables. Subsequently, this criterion has been implemented

as part of the Nominal Isabelle package [Urban 2008; Urban and Kaliszyk 2012].

A natural question to ask is whether (1) a more general, monotonicity-based approach (that does

not require a syntactic format) can be pursued here. Besides the limitations stemming from the

syntactic format, another limitation of the state of the art is that (2) it fails to directly capture ex-

isting mainstream systems such as the 𝜆-calculus reduction and 𝜋-calculus transition relations, but

requires the modification of these systems’ standard presentations by adding more side-conditions.

In other words, there is a gap between the standard definitions of these systems from textbooks and

the formal requirements for enabling the variable convention. Finally, the state of the art, deeply

rooted in Nominal Logic and its finite support and equivariance conditions (the latter expressing a

form of uniform behavior of functions and predicates) [Gabbay and Pitts 2002; Pitts 2006], (3) does
not cover infinitary syntax with bindings such as infinitary extensions of the 𝜆-calculus [Barendregt

and Klop 2009; Mazza 2012] and first-order logic [Hanf 1964; Makkai 1969].
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Ap (Lm 𝑥 𝑡1) 𝑡2 ⇒ 𝑡1 [𝑡2/𝑥] (Beta)
𝑡 ⇒ 𝑡 ′

Lm 𝑥 𝑡 ⇒ Lm 𝑥 𝑡 ′
(Xi)

𝑡1 ⇒ 𝑡 ′
1

Ap 𝑡1 𝑡2 ⇒ Ap 𝑡 ′
1
𝑡2

(ApL)

𝑡2 ⇒ 𝑡 ′
2

Ap 𝑡1 𝑡2 ⇒ Ap 𝑡1 𝑡 ′
2

(ApR)

Fig. 1. 𝜆-calculus 𝛽-reduction

This paper makes contributions along all the above three axes. It introduces general criteria for

when inductive systems are variable-convention observing, leveraging monotonicity and Knaster–

Tarski. Our criteria also fill the aforementioned formality gap as they apply to the systems without

modifications, and moreover cope with infinitary syntax and the lack of equivariance.

Overview.We start with revisiting standard examples coming from the 𝜆-calculus (§2), highlighting

the limitations of the state of the art. Then, after recalling the necessary background concepts

pertaining to nominal sets and induction (§3), we prove the initial version of our main result, a

format-free general criterion for strong rule induction (§4). This initial version will be further

improved and generalized throughout the rest of the paper by challenging it with inductive systems

whose syntactic structures or binding dynamics are increasingly sophisticated. We first deploy

our criterion to tackle the motivating examples (§5), which leads us to a deployment heuristic (§6).

We compare our criterion with the state of the art criterion of Urban et al. [2007] with respect to

the addition of side-conditions (§7). More examples are discussed (§8), including the 𝜋-calculus

and subtyping for System F<:, the latter suggesting a strengthening of our criterion with inductive

information. Further examples take us into the realm of infinitary structures with bindings (§9),

such as extensions of first-order logic that allow infinitary cardinal-bounded conjunctions and

quantifications in formulas (§9.1). To extend our criterion for coping with predicates defined over

infinitary structures, we introduce what we call loosely-supported nominal sets (§9.2), a variation
of nominal sets equipped with a “loose” (not necessarily minimal) supporting set operator that

relax the finite-support assumption to a small-support one, where “small” is understood with

respect to a given infinite cardinal. The last example we consider involves the meta-theory of an

affine infinitary 𝜆-calculus (§9.3), and leads to a further generalization of our criterion to handle

non-equivariant predicates (§9.4). We describe a tool that we have implemented in Isabelle to

support our formalization of the general theory and the examples, as well as case studies based on

these examples (§10), and conclude with more related work (§11). An appendix gives more details

about this paper’s constructions and results, and our Isabelle mechanization.

2 MOTIVATING EXAMPLE: 𝜆-CALCULUS
In this section, Var , the set of variables, will be a countably infinite set. We consider the syntax of

the (untyped) 𝜆-calculus, defining the set LTerm of 𝜆-terms, ranged over by 𝑡, 𝑠 etc., via the grammar:

𝑡 ::= Vr 𝑥 | Ap 𝑡1 𝑡2 | Lm 𝑥 𝑡

Thus, a 𝜆-term is either (the injection of) a variable, or an application, or a 𝜆-abstraction of a variable

in a term. We also assume that, in a term of the form Lm 𝑥 𝑡 , the variable 𝑥 is bound in 𝑡 ; and terms

are equated modulo the induced notion of alpha-equivalence, e.g., Lm 𝑥 (Vr 𝑥) = Lm 𝑦 (Vr 𝑦). For
any 𝜆-term 𝑡 , we write FV 𝑡 for its set of free variables. A variable 𝑥 is fresh for 𝑡 when 𝑥 ∉ FV 𝑡 .

We write 𝑡 [𝑠/𝑥] for the (capture-avoiding) substitution of the term 𝑠 for the variable 𝑥 in the term 𝑡 .

A fundamental relation on this syntax is 𝛽-reduction, the binary relation ⇒ between 𝜆-terms

defined in Fig. 1. If we ignore binding information, the standard proof principle associated to this

definition is the following rule induction principle:

Prop 1. Let 𝜑 : LTerm → LTerm → Bool and assume that:
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- LBetaM: ∀𝑥, 𝑡1, 𝑡2 . 𝜑 (Ap (Lm 𝑥 𝑡1) 𝑡2) (𝑡1 [𝑡2/𝑥])
- LXiM: ∀𝑥, 𝑡, 𝑡 ′ . ((𝑡 ⇒ 𝑡 ′) ∧ 𝜑 𝑡 𝑡 ′) −→ 𝜑 (Lm 𝑥 𝑡) (Lm 𝑥 𝑡 ′)
- LApLM: ∀𝑡1, 𝑡 ′1, 𝑡2 .

(
(𝑡1 ⇒ 𝑡 ′

1
) ∧ 𝜑 𝑡1 𝑡 ′1

)
−→ 𝜑 (Ap 𝑡1 𝑡2) (Ap 𝑡 ′1 𝑡2)

- LApRM: ∀𝑡1, 𝑡2, 𝑡 ′2.
(
(𝑡2 ⇒ 𝑡 ′

2
) ∧ 𝜑 𝑡2 𝑡 ′2

)
−→ 𝜑 (Ap 𝑡1 𝑡2) (Ap 𝑡1 𝑡 ′2)

Then ∀𝑡, 𝑡 ′ . (𝑡 ⇒ 𝑡 ′) −→ 𝜑 𝑡 𝑡 ′.

Thus, standard induction allows us to infer that⇒ is included in a relation 𝜑 provided 𝜑 is closed

under the rules defining ⇒, i.e., uses that ⇒ is the smallest relation closed under these rules.

However, due to the presence of bindings, it is desirable to have a stronger induction proof

principle—featuring an enhancement that formalizes Barendregt’s variable convention. For example,

say we want to prove that 𝛽-reduction is closed under substitution, i.e, (𝑡 ⇒ 𝑡 ′) −→ (𝑡 [𝑠/𝑦] ⇒
𝑡 ′ [𝑠/𝑦]). The proof would go by rule induction, taking 𝜑 𝑡 𝑡 ′ to be ∀𝑠,𝑦. 𝑡 [𝑠/𝑦] ⇒ 𝑡 ′ [𝑠/𝑦]. In the

LBetaM case we must prove 𝜑 (Ap (Lm 𝑥 𝑡1) 𝑡2) (𝑡1 [𝑡2/𝑥]), i.e., for all 𝑠,𝑦,
(i) (Ap (Lm 𝑥 𝑡1) 𝑡2) [𝑠/𝑦] ⇒ 𝑡1 [𝑡2/𝑥] [𝑠/𝑦]

To continue, we wish to move the _[𝑠/𝑦] substitution inside the constructors Ap and Lm on the

left, and also inside the 𝑡1 [𝑡2/𝑥] substitution on the right, thus reducing the above to

(ii) Ap (Lm𝑥 (𝑡1 [𝑠/𝑦])) (𝑡2 [𝑠/𝑦]) ⇒ (𝑡1 [𝑠/𝑦]) [(𝑡2 [𝑠/𝑦])/𝑥]
the last being provable as an instance of the (Beta) rule, taking 𝑡1 and 𝑡2 from the rule to be 𝑡1 [𝑠/𝑦]
and 𝑡2 [𝑠/𝑦]. (Without being able to perform the above “moves”, the proof would become quite

complicated, as the goal would need to be generalized to work inductively.)

However, while substitution can soundly be moved inside applications (since by definition it

commutes with applications), it is not always sound tomove it inside 𝜆-abstractions or other substitu-

tions, unless certain side-conditions hold. In this case, we would need that 𝑥 is fresh for the parameters,
i.e., 𝑥 is fresh for 𝑠 and is different from 𝑦, which would ensure (Lm 𝑥 𝑡1) [𝑠/𝑦] = Lm 𝑥 (𝑡1 [𝑠/𝑦])
and 𝑡1 [𝑡2/𝑥] [𝑠/𝑦] = (𝑡1 [𝑠/𝑦]) [(𝑡2 [𝑠/𝑦])/𝑥], making (i) reducible to (ii) as desired for finishing the

proof in the LBetaM case. Barendregt’s insight, expressed in his variable convention and deployed

systematically in proofs all throughout his 𝜆-calculus monograph [Barendregt 1985], was that such

freshness assumptions are usually safe, in that they do not lose generality (hence do not lead to

incorrect reasoning).

Yet, Barendregt did not indicate exactly when, or why, such assumptions are safe. A rigorous

answer to these questions was provided by Urban et al. [2007] (having prior roots in McKinna and

Pollack [1999]; Pitts [2003]) who formalized the variable convention used in proof contexts like

the above as a strong rule induction that allows assuming the rules’ bound variables (e.g., 𝑥 in (Beta)

and (Xi)) to be fresh for given parameters (e.g., 𝑠 and 𝑦). Here is the desired strong rule induction

for 𝛽-reduction, where Pfin (Var) is the set of finite sets of variables:

Prop 2. Let P be a set of items called parameters and Psupp : P → Pfin (Var). Let 𝜑 : P → LTerm →
LTerm → Bool and assume that:

- LBetaM: ∀𝑝, 𝑥, 𝑡1, 𝑡2. 𝑥 ∉ Psupp 𝑝 −→ 𝜑 𝑝 (Ap (Lm 𝑥 𝑡1) 𝑡2) (𝑡1 [𝑡2/𝑥])
- LXiM: ∀𝑝, 𝑥, 𝑡, 𝑡 ′ . 𝑥 ∉ Psupp 𝑝 ∧ (𝑡 ⇒ 𝑡 ′) ∧ (∀𝑞. 𝜑 𝑞 𝑡 𝑡 ′) −→ 𝜑 𝑝 (Lm 𝑥 𝑡) (Lm 𝑥 𝑡 ′)
- LApLM: ∀𝑝, 𝑡1, 𝑡 ′1, 𝑡2. (𝑡1 ⇒ 𝑡 ′

1
) ∧ (∀𝑞. 𝜑 𝑞 𝑡1 𝑡 ′1) −→ 𝜑 𝑝 (Ap 𝑡1 𝑡2) (Ap 𝑡 ′1 𝑡2)

- LApRM: ∀𝑝, 𝑡1, 𝑡2, 𝑡 ′2. (𝑡2 ⇒ 𝑡 ′
2
) ∧ (∀𝑞. 𝜑 𝑞 𝑡2 𝑡 ′2) −→ 𝜑 𝑝 (Ap 𝑡1 𝑡2) (Ap 𝑡1 𝑡 ′2)

Then ∀𝑝, 𝑡, 𝑡 ′ . (𝑡 ⇒ 𝑡 ′) −→ 𝜑 𝑝 𝑡 𝑡 ′.

The predicate to be proved is now quantified universally over parameters, whose role is to provide

the variables that one would like to avoid within inductive proofs—what Barendregt’s convention,

cited in the introduction, calls “the free variables” in a “certain mathematical context”. To use this

principle in the proof discussed above, we take P to be LTerm×Var and Psupp(𝑠,𝑦) to be FV 𝑠 ∪ {𝑦}.
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(Note that a weaker form of this principle would fix a parameters 𝑝 rather than quantifying uni-

versally over parameters, so that 𝜑 would not have a parameter argument and, for example, the

hypothesis LXiM would become ∀𝑥, 𝑡, 𝑡 ′ . 𝑥 ∉ Psupp 𝑝 ∧ (𝑡 ⇒ 𝑡 ′) ∧ 𝜑 𝑡 𝑡 ′ −→ 𝜑 (Lm 𝑥 𝑡) (Lm 𝑥 𝑡 ′)
and LApLM and LApLMwould become the usual inductive conditions from the standard rule induction

expressed by Prop. 1. While often the fixed-parameter version is good enough, as is the case with the

proof discussed above which works for fixed 𝑠 and 𝑦, sometimes the extra flexibility of quantifying

universally over parameters is important—Lemma 107 from App. F (reflexivity of the System F<:

typing from POPLmark 1A [Aydemir et al. 2005]) gives an example for structural induction which

is a particular case of rule induction.)

Importantly, Urban et al. [2007] have also noted that Barendregt’s variable convention is not

sound for all inductively defined relations on 𝜆-terms, and have provided a syntactic criterion

for when it is sound. Unfortunately, their criterion does not cover the above (standard) definition

of 𝛽-reduction (shown in Fig. 1) but only a modification of it obtained by adding a freshness

side-condition to the (Beta) rule:

Ap (Lm 𝑥 𝑡1) 𝑡2 ⇒ 𝑡1 [𝑡2/𝑥]
(Beta’)

[𝑥 ∉ FV 𝑡2]
With this modification, strong induction for 𝛽-reduction, i.e., Prop. 2, becomes an instance of

their syntactic criterion. This variant of 𝛽-reduction, with (Beta’) instead of (Beta), can be proved

equivalent to the standard one, but this is far from immediate.

The need for adding side-conditions arises quite pervasively when instantiating Urban et al.’s

result to examples. In fact, the authors themselves show such an example in their paper: a parallel

𝛽-reduction [Lévy 1975; Takahashi 1995], where they must change the “Parallel Beta” rule

𝑡1 =⇒ 𝑡 ′
1

𝑡2 =⇒ 𝑡 ′
2

Ap (Lm 𝑥 𝑡1) 𝑡2 =⇒ 𝑡 ′
1
[𝑡 ′

2
/𝑥] (ParBeta)

into the weaker rule

𝑡1 =⇒ 𝑡 ′
1

𝑡2 =⇒ 𝑡 ′
2

Ap (Lm 𝑥 𝑡1) 𝑡2 =⇒ 𝑡 ′
1
[𝑡 ′

2
/𝑥]

(ParBeta’)

[𝑥 ∉ FV 𝑡2 ∪ FV 𝑡 ′
2
]

Quoting from Urban et al.: “This is annoying because both versions can be shown to define the

same relation, but we have no general, and automatable, method for determining this.”

Another limitation of their criterion (again acknowledged by the authors themselves) is its

syntactic-format nature, requiring rules the form

𝜑 𝑝1 ®𝑠1 . . . 𝜑 𝑝𝑛 ®𝑠𝑛
𝜑 𝑝 ®𝑡

[side-conditions]

which is quite rigid. In particular this forbids, in the rules’ assumptions, the occurrence of the

defined relation under universal or existential quantifiers, or under other higher-order operators.

Our results will lift both of the above limitations.

3 PRELIMINARIES ON NOMINAL SETS AND KNASTER–TARSKI FIXPOINTS
Next we recall some background on nominal sets [Gabbay and Pitts 2002; Pitts 2013] and induction

based on Knaster–Tarski fixpoints [Knaster 1928; Tarski 1955].

Nominal sets. Let Var be a fixed countable sets of items called variables, or atoms. Given any

function 𝑓 : Var → Var , the core of 𝑓 is defined as the set of all variables that are changed by 𝑓 :

Core 𝑓 = {𝑥 | 𝑓 𝑥 ≠ 𝑥}. (What we call “core” is usually called the “support” of 𝑓 , which is consistent

with the more general notion of support we discuss next. But we prefer to name it differently

because of its bootstrapping role towards the general notion.) Let Perm, ranged over by 𝜎 , denote

the set of (finite) permutations, i.e., bijections on Var of finite core.
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Note that (Perm, ◦, 1Var ) forms a group, where 1Var is the identity permutation and ◦ is compo-

sition. A pre-nominal set is a set equipped with a Perm-action, i.e., a pair A = (𝐴, _[_]A) where
𝐴 is a set and _[_]A : 𝐴 → Perm → 𝐴 is an action of the monoid Perm on 𝐴, in that it is idle for

identity (𝑎[1Var ]A = 𝑎 for all 𝑎 ∈ 𝐴) and compositional (𝑎[𝜎 ◦ 𝜏]A = 𝑎[𝜏]A [𝜎]A ). Given 𝜎 ∈ Perm,

we sometimes write _[𝜎] for the function in 𝐴 → 𝐴 (which is actually a bijection) that applies this

fixed permutation. We let Im 𝜎 be the operator in P(Var) → P(Var) that takes any 𝑋 ⊆ Var to the
image of 𝑋 through 𝜎 , namely Im 𝜎 𝑋 = {𝜎 𝑥 | 𝑥 ∈ 𝑋 }. We write 𝑥↔𝑦 for the permutation that

takes 𝑥 to 𝑦, 𝑦 to 𝑥 and all other variables to themselves; applying these permutations (to elements

of a nominal set) will be called swapping.
Given a pre-nominal set A = (𝐴, _[_]A), an 𝑎 ∈ 𝐴 and a set 𝑋 ⊆ Var , we say that 𝑎 is supported

by 𝑋 , or 𝑋 supports 𝑎, if 𝑎[𝑥↔𝑦]A = 𝑎 holds for all 𝑥,𝑦 ∈ Var ∖ 𝑋 , or equivalently, if 𝑎[𝜎]A = 𝑎

holds for all 𝜎 ∈ Perm such that ∀𝑥 ∈ 𝑋 . 𝜎 𝑥 = 𝑥 . An element 𝑎 ∈ 𝐴 is called finitely supported if

there exists a finite set 𝑋 that supports 𝑎. A nominal set is a pre-nominal set where every element is

finitely supported. IfA = (𝐴, _[_]A) is a nominal set and 𝑎 ∈ 𝐴, then the smallest set that supports

𝑎 can be shown to exist—it is denoted by SuppA 𝑎 and called the support of 𝑎.
Given two pre-nominal sets A = (𝐴, _[_]A) and B = (𝐵, _[_]B), the set 𝐹 = (𝐴 → 𝐵) of

functions from 𝐴 to 𝐵 naturally forms a pre-nominal set F = (𝐹, _[_]F) by defining 𝑓 [𝜎] to be the

function that sends each 𝑎 ∈ 𝐴 to 𝑓 (𝑎[𝜎−1]) [𝜎]. (So in particular we can talk about the notion of a

set of variables supporting such a function.) F is not a nominal set, because not all functions are

finitely supported, but we obtain a nominal set if we restrict it to the finitely supported functions.

In addition to the above function-space construction, nominal set structures can also be naturally

defined on the products, sums, container-type extensions (such as lists or trees) and quotients of

the carrier sets, overall enjoying good category-theoretic properties, in particular forming a topos

equivalent to the Schanuel topos [Pitts 2013].

The set of 𝜆-terms with their standard Perm-action, (LTerm, _[_]), forms a nominal set, where the

support of a term 𝑡 consists of its free variables. Note that set FV 𝑡 of free variables of a 𝜆-term 𝑡 is tra-

ditionally defined recursively on the structure of 𝑡 and not from permutation like the support is. How-

ever, writing Supp for the support operator of the nominal set (LTerm, _[_]), it can be checked that (1)
𝑡 is supported by FV 𝑡 in that 𝑡 [𝑥↔𝑦] = 𝑡 holds whenever 𝑥,𝑦 ∉ FV 𝑡 , by an easy induction on 𝑡 ; and

that (2) for any𝑥 , assuming𝑥 ∈ FV 𝑡∖Supp 𝑡 yields a contradiction by taking some𝑦 ∉ FV 𝑡 ∪ Supp 𝑡
and noting that 𝑡 [𝑥↔𝑦] ≠ 𝑡 (which again follows by easy induction from 𝑥 ∈ FV 𝑡 and 𝑦 ∉ FV 𝑡 )

contradicts the fact that 𝑥,𝑦 ∉ Supp 𝑡 . Points (1) and (2) make FV 𝑡 coincide with Supp 𝑡 . It is known
(and can be established by an argument similar to the one sketched above) that this coincidence

between the free-variable operator and support holds for all syntaxes with statically scoped bindings

[Pitts 2006], so any such syntax forms a nominal set where the support is given by the free variables.

Although the concept of nominal set abstracts away from, and goes beyond syntactic objects

(covering for example restricted spaces of functions, of semantic entities etc. [Pitts 2013]), it is often

useful to think of the elements 𝑎 of a nominal set as “term-like” entities; in this spirit, we will refer

to the elements of SuppA 𝑎 as the free-variables of 𝑎.
Nominal sets underpin the semantics of nominal logic [Gabbay and Pitts 1999, 2002], a successful

foundation tailored for reasoning about syntax with bindings. But nominal sets and nominal logic

techniques can also be used from within general-purpose foundations such as higher-order logic

[Pitts 2006; Urban and Tasson 2005]—in this paper we subscribe to this approach.

Central in nominal logic, and in our own developments as well, is the notion of equivariance,

which for a function, predicate or assertion means commutation with permutation actions. With

roots in classical algebra [Pitts 2013, §1.1], equivariance has the following intuition in the context

of syntax with bindings, as explained in the seminal nominal logic paper [Gabbay and Pitts 1999,
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§2]: “Properties of syntax should be sensitive only to distinctions between variable names, rather

than to the particular names themselves." Here is the formal definition:

Def 3. Given two pre-nominal sets A = (𝐴, _[_]A) and B = (𝐵, _[_]B), a function 𝐹 : 𝐴 → 𝐵

between their carrier sets is called equivariant when it commutes with the permutation actions:

𝐹 (𝑎[𝜎]A) = (𝐹 𝑎) [𝜎]B for all 𝑎 ∈ 𝐴 and 𝜎 ∈ Perm.

Since the two-element set of Booleans (like any set) can be trivially equipped with identity

permutation action to become a (pre-)nominal set, we can speak of the equivariance of predicates,

𝜑 : 𝐴 → Bool where A = (𝐴, _[_]A) is a pre-nominal set. Here, equivariance can be equivalently

expressed using implication: 𝜑 𝑎 −→ 𝜑 (𝑎[𝜎]A) for all 𝑎 ∈ 𝐴 and 𝜎 ∈ Perm.

The Knaster–Tarski Fixpoint Theorem. This celebrated result offers a simple yet powerful foun-

dation for induction, with applications in areas such as semantics, verification and static analysis.

Thm 4. [Tarski 1955] Let (𝐿, ≤) be a complete lattice and 𝐺 : 𝐿 → 𝐿 a monotonic operator. Then

there exists a (unique) least fixpoint 𝐼𝐺 for 𝐺 , in that: 𝐺 𝐼𝐺 = 𝐼𝐺 and ∀𝑘 ∈ 𝐺. 𝐺 𝑘 = 𝑘 −→ 𝐼𝐺 ≤ 𝑘 .
And 𝐼𝐺 is the least pre-fixpoint as well, in that ∀𝑘 ∈ 𝐿. 𝐺 𝑘 ≤ 𝑘 −→ 𝐼𝐺 ≤ 𝑘 ; finally, a practically use-
ful variation of this also holds, where ∧ is binary infimum in 𝐿: ∀𝑘 ∈ 𝐿. 𝐺 (𝐼𝐺 ∧ 𝑘) ≤ 𝑘 −→ 𝐼𝐺 ≤ 𝑘 .

It is the “pre-fixpoint” part of this theorem that enables inductive reasoning: To prove that 𝐼𝐺 ≤ 𝑘 ,
it suffices to prove that 𝐺 (𝐼𝐺 ∧ 𝑘) ≤ 𝑘 . While the theorem works in general for complete lattices,

we will only use it for the particular lattices of predicates (equivalently, lattices of subsets), as

initially formulated by Knaster [1928]. Given a set 𝐴 and two predicates 𝜑,𝜓 : 𝐴 → Bool on it, we

define 𝜑 ≤ 𝜓 to be component-wise implication, namely ∀𝑎 ∈ 𝐴. 𝜑 𝑎 −→ 𝜓 𝑎. And indeed, ≤ is a

complete-lattice order on the set 𝐴 → Bool of predicates. This applies to 𝑛-ary predicates as well if

we take𝐴 to be a product𝐴1 × . . .×𝐴𝑛 . Often the operator𝐺 on predicates is given by a set of rules,

and for this reason the emerging induction principle associated to 𝐼𝐺 is referred to as rule induction.

4 STRONG RULE INDUCTION CRITERION
Our main result, which we present next (Thm. 7 below), is an extension of Knaster–Tarski based rule

induction to strong (variable-convention observing) induction, leveraging nominal-set structure.

We start with a monotonic operator 𝐺 : (T → Bool) → (Pfin (Var) → T → Bool), where
monotonicity again refers to the standard predicate orderings (component-wise implication). We

iterate 𝐺 to define the predicate 𝐼𝐺 : T → Bool inductively as follows:

𝐺 𝐼𝐺 𝐵 𝑡

𝐼𝐺 𝑡
We think of the above as the inductive specification of a rule-based system 𝐼𝐺 . But differently from

the usual Knaster–Tarski setting for such specifications, here we have made explicit an additional

“bound variable set” argument 𝐵 ∈ Pfin (Var) for the predicate returned by 𝐺 . Our strong rule

induction criterion will make assumptions on, and draw conclusions from, how 𝐺 operates 𝐵.

But first let us make sense of the above specification of 𝐼𝐺 without treating 𝐵 specially. That

𝐼𝐺 was obtained by “iterating” 𝐺 means that 𝐼𝐺 is the least (pre-)fixpoint of the operator 𝜆 𝜑. 𝜆 𝑡 ∈
T . ∃𝐵 ∈ Pfin (Var). 𝐺 𝜑 𝐵 𝑡 . Its existence is guaranteed by Thm. 4, taking 𝐼𝐺 to be the least fixpoint

of the operator on (T → Bool) → (T → Bool) that acts like𝐺 but applies existential quantification

over 𝐵, i.e., sends any predicate 𝜑 : T → Bool to 𝜆𝑡 . ∃𝐵 ∈ Pfin (Var). 𝐺 𝜑 𝐵 𝑡 . The standard rule

induction principle stemming from 𝐼𝐺 ’s definition (via Thm. 4) is the following:

Thm 5. Assume 𝐺 is monotonic. If 𝜑 : T → Bool is such that ∀𝑡 ∈ T . (∃𝐵 ∈ Pfin (Var).
𝐺 (𝜆𝑡 ′ . 𝐼𝐺 𝑡 ′ ∧ 𝜑 𝑡 ′) 𝐵 𝑡) −→ 𝜑 𝑡 , then 𝐼𝐺 ≤ 𝜑 , i.e., ∀𝑡 ∈ T . 𝐼𝐺 𝑡 −→ 𝜑 𝑡 .

(The assumption of Thm. 5 is equivalent to ∀𝑡 ∈ T ,∀𝐵 ∈ Pfin (Var). 𝐺 (𝜆𝑡 ′ . 𝐼𝐺 𝑡 ′∧𝜑 𝑡 ′) 𝐵 𝑡 −→ 𝜑 𝑡 .)
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Now let us make our move towards strong rule induction. To formulate such a principle without

knowing how𝐺 looks like, we think of𝐺 as the rules defining our predicate 𝐼𝐺 ; and of its argument

𝐵 as the bound variables appearing in the conclusions of these rules—for this interpretation to

make sense, we assume that 𝐼𝐺 operates on “term-like” entities, i.e., elements of a nominal set T.
Our key observation is that Barendregt’s variable convention rests on the bound variables being

“refreshable” in the rules, in that (roughly speaking) we can always rename them to become fresh

for a rule’s entire conclusion (and not just the location where they are bound) without invalidating
its hypotheses. To model this, we introduce the concept of T-refreshability; and also introduce

T-freshness, which goes further to say that the bound variables are already fresh.

Def 6. Given a nominal set T = (T , _[_]T), an operator 𝐺 : (T → Bool) → (Pfin (Var) → T →
Bool) is said to be:

- T-refreshable when, for all 𝜑 : T → Bool, 𝐵 ∈ Pfin (Var) and 𝑡 ∈ T , if 𝜑 is equivariant and𝐺 𝜑 𝐵 𝑡

then there exists 𝐵′ ∈ Pfin (Var) such that 𝐵′ ∩ SuppT𝑡 = ∅ and 𝐺 𝜑 𝐵′ 𝑡 ;

- T-fresh when, for all 𝜑 : T → Bool, 𝐵 ∈ Pfin (Var) and 𝑡 ∈ T , if 𝐺 𝜑 𝐵 𝑡 then 𝐵 ∩ SuppT𝑡 = ∅.

(Note that T-freshness implies T-refreshability, taking 𝐵′ = 𝐵.)
And indeed, we can prove that T-refreshability in conjunction with equivariance (which essen-

tially ensures robustness of the rules in the refreshing process) is sufficient for enabling strong rule

induction. In what follows, a pair (P, Psupp) where P is a set and Psupp : P → Pfin (Var) will be
called parameter structure. (These are not required to be nominal sets.)

Thm 7. Let T= (T , _[_]T) be a nominal set and 𝐺 : (T → Bool) → (Pfin (Var) → T → Bool) a
monotonic, equivariant and T-refreshable operator. Let (P, Psupp) be a parameter structure and

𝜑 : P → T → Bool a predicate. Assume that:

∀𝑝 ∈ P, 𝑡 ∈ T , 𝐵 ∈ Pfin (Var).
(

𝐵 ∩ (Psupp 𝑝 ∪ SuppT𝑡) = ∅ ∧
𝐺 (𝜆𝑡 ′ . 𝐼𝐺 𝑡 ′ ∧ ∀𝑝′ ∈ P . 𝜑 𝑝′ 𝑡 ′) 𝐵 𝑡

)
−→ 𝜑 𝑝 𝑡

Then ∀𝑝 ∈ P . 𝐼𝐺 ≤ 𝜑 𝑝 , i.e., ∀𝑝 ∈ P, 𝑡 ∈ 𝑇 . 𝐼𝐺 𝑡 −→ 𝜑 𝑝 𝑡 .

Highlighted above is the “strength” of the stated strong induction principle for 𝐼𝐺 : When per-

forming induction, we are allowed to assume the variables of the parameter 𝑝 , and also the free

variables of the nominal-set (i.e., the term-like entity) argument 𝑡 , to be distinct from the variables

in 𝐵 (the bound variables). In short, the bound variables can be avoided.

We show a detailed proof of this result, partly becausewewill later do a bit of proof mining for gen-

eralizing it. Themain idea is that, usingT-refreshability, we are able to “clean up” the inductive defini-
tion of 𝐼𝐺 to assume freshness of the bound-variables 𝐵 for the rules’ conclusions 𝑡 (i.e., 𝐵∩SuppT𝑡 =
∅), and then use 𝐺 ’s equivariance to prove that freshness for the parameters can also be assumed.

Proof. We will write _[_] instead of _[_]Tand Supp instead of SuppT.
We first define an inductive predicate 𝐼 ′

𝐺
which is a variation of 𝐼𝐺 that factors in “half” of the

intended freshness assumption, namely 𝐵 ∩ Supp 𝑡 = ∅:
𝐺 𝐼 ′

𝐺
𝐵 𝑡 𝐵 ∩ Supp 𝑡 = ∅

𝐼 ′
𝐺
𝑡

Since the defining rule for 𝐼 ′
𝐺
is weaker (has more hypotheses), 𝐼 ′

𝐺
is stronger than 𝐼𝐺 , we have:

(1) ∀𝑡 . 𝐼 ′
𝐺
𝑡 −→ 𝐼𝐺 𝑡 . Crucially, we will be able to also prove the converse of (1). But first we need:

(2) 𝐼 ′
𝐺
is equivariant, i.e., ∀𝜎 ∈ Perm, 𝑡 ∈ T . 𝐼 ′

𝐺
𝑡 −→ 𝐼 ′

𝐺
(𝑡 [𝜎]).

The proof of (2) goes by rule induction on the definition of 𝐼 ′
𝐺
, for an (arbitrary but) fixed 𝜎 ∈ Perm:

We fix 𝐵 ∈ Pfin (Var) and 𝑡 ∈ T and assume (i)𝐺 (𝐼 ′
𝐺
◦ (_[𝜎])) 𝐵 𝑡 and (ii) 𝐵 ∩ Supp 𝑡 = ∅. We must

show that 𝐼 ′
𝐺
(𝑡 [𝜎]). Using the introduction rule associated to the definition of 𝐼 ′

𝐺
, it suffices to show

(i’)𝐺 𝐼 ′
𝐺
(Im 𝜎 𝐵) (𝑡 [𝜎]) and (ii’) Im 𝜎 𝐵 ∩ Supp (𝑡 [𝜎]) = ∅. From (i) and the equivariance of𝐺 , we
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𝐺 𝜑 𝐵 (𝑠, 𝑠′) ⇐⇒

(1) (∃𝑥, 𝑡1, 𝑡2 . 𝐵 = {𝑥} ∧ 𝑠 = Lm 𝑥 𝑡1 ∧ 𝑠′ = 𝑡1 [𝑡2/𝑥]) ∨
(2) (∃𝑥, 𝑡, 𝑡 ′ . 𝜑 (𝑡, 𝑡 ′) ∧ 𝐵 = {𝑥} ∧ 𝑠 = Lm 𝑥 𝑡 ∧ 𝑠′ = Lm 𝑥 𝑡 ′) ∨
(3) (∃𝑡1, 𝑡2, 𝑡 ′

1
. 𝜑 (𝑡1, 𝑡 ′

1
) ∧ 𝐵 = ∅ ∧ 𝑠 = Ap 𝑡1 𝑡2 ∧ 𝑠′ = Ap 𝑡 ′

1
𝑡2) ∨

(4) (∃𝑡1, 𝑡2, 𝑡 ′
2
. 𝜑 (𝑡2, 𝑡 ′

2
) ∧ 𝐵 = ∅ ∧ 𝑠 = Ap 𝑡1 𝑡2 ∧ 𝑠′ = Ap 𝑡1 𝑡 ′

2
)

Fig. 2. The operator associated to 𝜆-calculus 𝛽-reduction

obtain𝐺 (𝐼 ′
𝐺
◦ (_[𝜎]) ◦ (_[𝜎−1]) (Im 𝜎 𝐵) (𝑡 [𝜎]), hence, by the fact that 𝜎 ◦𝜎−1 = 1Var and the func-

toriality of _[_], we obtain (i’), as desired. Moreover, (ii’) follows from (ii) and the properties of Supp.
(Note that so far we used 𝐺 ’s equivariance and monotonicity, but not yet its T-refreshability.)

Now we prove (3) ∀𝑡 . 𝐼𝐺 𝑡 −→ 𝐼 ′
𝐺
𝑡 , by rule induction on the definition of 𝐼𝐺 : We fix 𝐵 ∈ Pfin (Var)

and 𝑡 ∈ T and assume (iii)𝐺 𝐼 ′
𝐺
𝐵 𝑡 . We must show 𝐼 ′

𝐺
𝑡 . From (2), (iii) and T-refreshability, we obtain

𝐵′ ∈ Pfin (Var) such that 𝐵′∩Supp 𝑡 = ∅ and𝐺 𝐼 ′
𝐺
𝐵′ 𝑡 . Hence, 𝐼 ′

𝐺
𝑡 follows by 𝐼 ′

𝐺
’s introduction rule.

From (1) and (3), we have (4) 𝐼𝐺 = 𝐼 ′
𝐺
. Now we are ready to tackle the theorem’s statement, in

which, using (4), we will freely replace 𝐼𝐺 with 𝐼 ′
𝐺
. Thus, we assume

(5) ∀𝑝 ∈ P, 𝑡 ∈ T , 𝐵 ∈ Pfin (Var).
(

𝐵 ∩ (Psupp 𝑝 ∪ Supp 𝑡) = ∅ ∧
𝐺 (𝜆𝑡 ′ . 𝐼 ′

𝐺
𝑡 ′ ∧ ∀𝑝′ ∈ P . 𝜑 𝑝′ 𝑡 ′) 𝐵 𝑡

)
−→ 𝜑 𝑝 𝑡

We must prove ∀𝑝 ∈ P, 𝑡 ∈ 𝑇 . 𝐼 ′
𝐺
𝑡 −→ 𝜑 𝑝 𝑡 , i.e., ∀𝑡 ∈ 𝑇 . 𝐼 ′

𝐺
𝑡 −→ (∀𝑝 ∈ P . 𝜑 𝑝 𝑡).

We will prove something more general, namely that 𝐼 ′
𝐺
implies the equivariant envelope of 𝜑 :

∀𝑡 ∈ 𝑇 . 𝐼 ′
𝐺
𝑡 −→ (∀𝜎 ∈ Perm. ∀𝑝 ∈ P . 𝜑 𝑝 (𝑡 [𝜎])).

We again proceed by rule induction on the definition of 𝐼 ′
𝐺
: We fix 𝐵 ∈ Pfin (Var), 𝑡 ∈ T , 𝜎 ∈ Perm

and 𝑝 ∈ P and assume (iv) 𝐺 (𝜆𝑡 ′ . 𝐼 ′
𝐺
𝑡 ′ ∧ (∀𝜎 ′ ∈ Perm, 𝑝′ ∈ P . 𝜑 𝑝′ (𝑡 ′ [𝜎 ′]))) 𝐵 𝑡 and

(v) 𝐵 ∩ Supp 𝑡 = ∅. We must show 𝜑 𝑝 (𝑡 [𝜎]).
Let 𝐵′ = Im 𝜎 𝐵. Note that 𝐵′ is finite because 𝐵 is. From (v) and the properties of Supp, we have

(v’) 𝐵′ ∩ Supp (𝑡 [𝜎]) = ∅.
Note that Psupp 𝑝 ∪ Supp (𝑡 [𝜎]) is finite because both Psupp 𝑝 and Supp (𝑡 [𝜎]) are finite. With

the finiteness of 𝐵′ and (v’), we obtain the existence of 𝜏 ∈ Perm such that

(vi) Im 𝜏 𝐵′ ∩ (Psupp 𝑝 ∪ Supp (𝑡 [𝜎])) = ∅ and (vii) ∀𝑥 ∈ Supp (𝑡 [𝜎]). 𝜏 𝑥 = 𝑥 .

Let 𝛿 = 𝜏 ◦ 𝜎 . By the functoriality of _[_], we have 𝑡 [𝛿] = 𝑡 [𝜎] [𝜏]. Also, from (vii) and the

properties of Supp, we have 𝑡 [𝜎] [𝜏] = 𝑡 [𝜎]. Hence (viii) 𝑡 [𝛿] = 𝑡 [𝜎]. Note also that, by the defi-

nitions of 𝛿 and 𝐵′ we have (ix) Im 𝛿 𝐵 = Im 𝜏 𝐵′.
From (iv) and the monotonicity of 𝐺 , we have 𝐺 (𝜆𝑡 ′ . 𝐼 ′

𝐺
𝑡 ′ ∧ (∀𝑝′ ∈ P . 𝜑 𝑝′ (𝑡 ′ [𝛿]))) 𝐵 𝑡 .

Hence, by𝐺 ’s monotonicity and 𝐼 ′
𝐺
’s equivariance,𝐺 (𝜆𝑡 ′ . 𝐼 ′

𝐺
(𝑡 ′ [𝛿]) ∧ (∀𝑝′ ∈ P . 𝜑 𝑝′ (𝑡 ′ [𝛿]))) 𝐵 𝑡 .

Hence, by𝐺 ’s equivariance,𝐺 (𝜆𝑡 ′ . 𝐼 ′
𝐺
(𝑡 ′ [𝛿−1] [𝛿])∧(∀𝑝′ ∈ P . 𝜑 𝑝′ (𝑡 ′ [𝛿−1] [𝛿]))) (Im 𝛿 𝐵) (𝑡 [𝛿]).

Hence, by _[_]’s functoriality and 𝛿 ◦𝛿−1 = 1Var ,𝐺 (𝜆𝑡 ′ . 𝐼 ′
𝐺
𝑡 ′∧ (∀𝑝′ ∈ P . 𝜑 𝑝′ 𝑡 ′)) (Im 𝛿 𝐵) (𝑡 [𝛿]) .

Hence, using (viii) and (ix), 𝐺 (𝜆𝑡 ′ . 𝐼 ′
𝐺
𝑡 ′ ∧ (∀𝑝′ ∈ P . 𝜑 𝑝′ 𝑡 ′)) (Im 𝜏 𝐵′) (𝑡 [𝜎]) .

From this, (vi) and (5), we get 𝜑 𝑝 (𝑡 [𝜎]), as desired. □

5 THE MOTIVATING EXAMPLE REVISITED
Thm. 7 generalizes Prop. 2, and is in relation to Thm. 5 what Prop. 2 is in relation to Prop. 1, where

𝛽-reduction is generalized to an arbitrary inductively defined predicate 𝐼𝐺 on a nominal set. Indeed,

we obtain Prop. 2 by instantiating, in Thm. 7, T to the canonical nominal-set structure on LTerm2

and 𝐺 : (LTerm2 → Bool) → (Pfin (Var) → LTerm2 → Bool) to the operator described in Fig. 2.

Remark 8. In fact, instantiating Thm. 7 to the 𝛽-reduction relation does not give exactly Prop. 2

but a slight improvement of it, which in the LBetaM case also assumes 𝑥 ∉ FV 𝑡2. Indeed, the

assumption 𝐵 ∩ (Psupp 𝑝 ∪ SuppT𝑡) = ∅ from Thm. 7 gives in the LBetaM case the assumption

𝑥 ∉ Psupp 𝑝 ∪ FV (Ap (Lm 𝑥 𝑡1) 𝑡2)) ∪ FV (𝑡1 [𝑡2/𝑥]), i.e., 𝑥 ∉ Psupp 𝑝 and 𝑥 ∉ FV 𝑡2. Thus,

we obtain as an extra hypothesis in the induction proof rule (making induction easier) exactly
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what Urban et al. must add as an extra hypothesis in the underlying introduction rule (making

introduction harder).

Note that, for any inductive predicate (regardless of bindings) there is a“tension” between

the introduction rules and the induction principle, namely by strengthening or weakening the

hypotheses in the defining rules one becomes harder and the other easier to apply. From an abstract

standpoint, what a strong induction principle achieves by taking advantage of the binding structure

is to have the cake and eat it to, i.e., make induction easier to apply without affecting the introduction

rules. This seems connected with the some/any principle from Nominal Logic [Gabbay and Pitts

2002, Prop. 3.4] [Pitts 2003, Prop. 4], which states that existential and universal quantification over

fresh variables are equivalent (and forms the basis for the freshness quantifier [Gabbay and Pitts

2002]). Indeed, pushing this principle through the inductive definition while turning any (implicitly)

existentially quantified fresh variables into universally quantified ones, under suitable assumptions

about the definition could lead to an alternative proof of strong rule induction.

While the choice ofT is straightforward, the choice of𝐺 requires some explanation. First note that,

in Fig. 2’s definition of𝐺 , everything but the treatment of the 𝐵 ∈ Pfin (Var) argument is completely

determined by the original definition of the 𝛽-reduction predicate ⇒ : LTerm → LTerm → Bool
from Fig. 1. Indeed, if we ignore the treatment of 𝐵 (the highlighted bits), we obtain the definition

of a monotonic operator from (LTerm2 → Bool) → (LTerm2 → Bool) that, modulo currying, is

exactly the operator underlying the definition of⇒ (as its least fixpoint, via Knaster–Tarski), where

the four disjuncts from Fig. 2 correspond to the four rules from Fig. 1.

As for the 𝐵 argument, its value is also completely determined by virtue of its role: to store the
bound variables that might occur in the conclusions of the rules. In this case, we have at most one

variable, so 𝐵 will be either a singleton or the empty set. In general, variables may be bound within

complex binding structures, e.g., nested record patterns as in the POPLmark Challenge 2B [Aydemir

et al. 2005]. We are not interested in the exact form of these structures, but (at least for now) only

in the set of variables that they contain.

Remark 9. Above, we argued that 𝐵 is uniquely determined when we think of it as storing all

the bound variables from a rule’s conclusion. However, as one of the anonymous reviewers noted,

an arbitrary 𝐵 ∈ Pfin (Var) above that minimal value would also work. In other words, we can

loosen 𝐵 upwards, i.e., in the definition of 𝐺 from Fig. 2 replace the condition 𝐵 = {𝑥} with 𝑥 ∈ 𝐵
in disjuncts (1) and (2) and remove the condition 𝐵 = ∅ form disjuncts (3) and (4) (since ∅ ⊆ 𝐵

would be vacuous). All the needed checks, including T-refreshability and equivariance, would also

succeed for this looser definition of 𝐺 .

Let us check that these choices of T and 𝐺 satisfy the hypotheses of Thm. 7. 𝐺 is obviously

monotonic (as all logical connectives appearing in it are in the positive fragment of first-order

logic). And 𝐺 is equivariant because all operators appearing in it are equivariant.

It remains to check that 𝐺 is T-refreshable. To this end, let 𝜑 : T → Bool be an equivariant

predicate, let 𝐵 ∈ Pfin (Var) and (𝑠, 𝑠′) ∈ T = LTerm2
, and assume 𝐺 𝜑 𝐵 (𝑠, 𝑠′). We must find

𝐵′ ∈ Pfin (Var) such that 𝐵′ ∩ SuppT(𝑠, 𝑠′) = ∅, i.e., (i) 𝐵′ ∩ (FV 𝑠 ∪ FV 𝑠′) = ∅, and (ii)𝐺 𝜑 𝐵′ (𝑠, 𝑠′).
We distinguish four cases, depending on which disjunct from 𝐺 ’s definition applies to (ii):

(1) Assume 𝐵 = {𝑥}, 𝑠 = Lm 𝑥 𝑡1 and 𝑠
′ = 𝑡1 [𝑡2/𝑥] for some 𝑥, 𝑡1, 𝑡2. We choose 𝑥 ′ to be completely

fresh (i.e., fresh for 𝑥 , 𝑡1 and 𝑡2) and take 𝐵′ = {𝑥 ′}. Now, (i) holds by the choice of 𝑥 ′. Moreover, (ii)

holds by virtue of the same disjunct (the first one) in the definition of𝐺 holding, with the existential

witnesses 𝑥 ′, 𝑡1 [𝑥 ′↔𝑥], 𝑡2. Indeed:
- 𝐵′ = {𝑥 ′} holds by definition;

- 𝑠 = Lm 𝑥 𝑡1 = Lm 𝑥 ′ (𝑡1 [𝑥 ′↔𝑥]) from properties of abstraction;
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- 𝑠′ = 𝑡1 [𝑡2/𝑥] = 𝑡1 [𝑥 ′↔𝑥] [𝑡2/𝑥 ′] from properties of substitution.

(2) Assume 𝜑 (𝑡, 𝑡 ′), 𝐵 = {𝑥}, 𝑠 = Lm 𝑥 𝑡 and 𝑠′ = Lm 𝑥 𝑡 ′ for some 𝑥, 𝑡, 𝑡 ′. Like before, we choose
𝑥 ′ to be completely fresh and take 𝐵′ = {𝑥 ′}. Again, (i) holds by the choice of 𝑥 ′, and (ii) holds by

virtue of the same disjunct (the second one) in the definition of 𝐺 , with the existential witnesses

𝑥 ′, 𝑡 [𝑥 ′↔𝑥], 𝑡 ′ [𝑥 ′↔𝑥]:
- 𝜑 (𝑡 [𝑥 ′↔𝑥], 𝑡 ′ [𝑥 ′↔𝑥]) because 𝜑 (𝑡, 𝑡 ′) and 𝜑 is equivariant;

- 𝐵′ = {𝑥 ′} holds by definition;

- 𝑠 = Lm 𝑥 𝑡 = Lm 𝑥 ′ (𝑡 [𝑥 ′↔𝑥]) from properties of abstraction;

- 𝑠′ = Lm 𝑥 𝑡 ′ = Lm 𝑥 ′ (𝑡 ′ [𝑥 ′↔𝑥]) from properties of abstraction.

(3) Assume 𝜑 (𝑡1, 𝑡 ′1), 𝐵 = ∅, 𝑠 = Ap 𝑡1 𝑡2 and 𝑠′ = Ap 𝑡 ′
1
𝑡2 for some 𝑡1, 𝑡2, 𝑡

′
1
. Then (i) and (ii) hold

trivially, taking 𝐵′ = ∅ and, in (ii), using the same disjunct (the third one) with 𝑡1, 𝑡2, 𝑡
′
1
as witnesses.

(4) Similar to (3).

6 ON INSTANTIATING OUR THEOREM
As our examples suggest, our criterion is widely applicable. But in addition to the scope question,

we are also interested in the formal engineering question on how difficult it is to instantiate this

criterion. Fortunately, the instantiation follows well-understood patterns, facilitating automation.

Next, we will extrapolate from our §5 discussion about 𝛽-reduction, emphasizing the wider

generality of the ideas presented there. The hypothetical scenario we consider is starting with a

predicate over syntax with bindings specified inductively via rules, and wishing to deploy our Thm. 7

to obtain a strong rule induction principle for it—which in the case of 𝛽-reduction would be Prop. 2.

The operator𝐺 associated to our given predicate can be determined from its rules:𝐺 is a disjunc-

tion consisting of one disjunct for each rule; and each disjunct is an existential, quantifying over all

component items (variables, terms, etc.) in the corresponding rule. This process, of extracting from a

rule-based specification the underlying operator that ends up capturing the specified predicate as its

least fixed point, is well-understood, and has been automated in several theorem provers, including

the HOL-based provers HOL4 [HOL 2024; Gordon and Melham 1993], HOL Light [Harrison 2024]

and Isabelle/HOL [Nipkow et al. 2002]. In addition, here we need to plug in the value of the set-of-

bound-variables argument 𝐵, which in each disjunct of𝐺 is the set of variables bound (or substituted)

in the conclusion of the corresponding rule. This requires knowing the involved binding structures,

and can be facilitated by tools that track bindings at datatype-definition time—which include

Nominal Isabelle [Urban 2008; Urban and Kaliszyk 2012] (and our own tool we describe in App. G).

Checking𝐺 ’s monotonicity and equivariance tends to be routine. Most HOL-based provers track

monotonicity as part of their inductive definition facilities. Nominal Isabelle tracks equivariance

based on its compositionality [Pitts 2013], and Isabelle’s Lifting&Transfer tool [Huffman and Kunčar

2013] tracks the related notion of parametricity [Reynolds 1983; Wadler 1989].

The only check that could be non-trivial is that of the T-refreshability of𝐺 , which means: We start

with an equivariant 𝜑 : T → Bool, a 𝐵 and a 𝑡 ∈ T such that 𝐺 𝜑 𝐵 𝑡 holds; and must produce a 𝐵′

such that 𝐵′∩SuppT𝑡 = ∅ and𝐺 𝜑 𝐵′ 𝑡 . As hinted in §5, this can proceed via the following heuristic:

Step 1: Because 𝐺 𝜑 𝐵 𝑡 holds and is expressed as a disjunction of existentials, we obtain some

items, usually terms or variables, that satisfy one of the disjuncts, which we will refer to as the

“original” items (e.g., 𝑥, 𝑡, 𝑡 ′ in the second disjunct of 𝐺 𝜑 𝐵 𝑡 in Fig. 2).

Step 2: We pick some completely fresh variables to replace the variables in 𝐵, i.e., for each variable

𝑥 in 𝐵 we pick a fresh variable 𝑥 ′, and take 𝐵′ to be the corresponding disjoint copy of 𝐵 (consisting

of the “primed” variables). This ensures that 𝐵′ ∩ SuppT𝑡 = ∅ holds.
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Step 3: To prove𝐺 𝜑 𝐵′ 𝑡 , which again is a disjunction of existentials, we prove the same disjunct

as the one known to hold for 𝐺 𝜑 𝐵 𝑡 (e.g., the second disjunct of 𝐺 𝜑 𝐵′ 𝑡 if it is the second
disjunct of 𝐺 𝜑 𝐵 𝑡 that happened to hold), and as witnesses for this disjunct’s existentials we plug

in the original items (that witnessed the corresponding disjunct of 𝐺 𝜑 𝐵 𝑡 ) in which we swap the
original variables 𝑥 with their fresh counterparts 𝑥 ′ as appropriate. Here, “as appropriate” means that

swapping only takes place if the variable 𝑥 is either equal to the considered original item, or that

item is in the scope of its binding. Thus, for example, for Fig. 2’s first disjunct we replace 𝑥 with 𝑥 ′

and 𝑡1 with 𝑡1 [𝑥↔𝑥 ′], but 𝑡2 stays as it is (because the latter is not in the scope of the bound variable
𝑥). It remains to verify the disjunct of 𝐺 𝜑 𝐵′ 𝑡 whose existentials have been instantiated with

these witnesses. For example, in the case of Fig. 2’s second disjunct, knowing that 𝜑 (𝑡, 𝑡 ′), 𝐵 = {𝑥},
𝑠 = Lm 𝑥 𝑡 and 𝑠 = Lm 𝑥 ′ 𝑡 ′ hold, we want to verify that 𝜑 (𝑡 [𝑥 ↔ 𝑥 ′], 𝑡 ′ [𝑥 ↔ 𝑥 ′]), 𝐵′ = {𝑥 ′},
𝑠 = Lm 𝑥 ′ (𝑡 [𝑥↔𝑥 ′]) and 𝑠 = Lm 𝑥 ′ (𝑡 ′ [𝑥↔𝑥 ′]) also hold. Among these goals to be proved:

- those involving 𝐵′ follow from the prior knowledge about 𝐵 and the construction of 𝐵′ (e.g.,
𝐵′ = {𝑥 ′} follows from 𝐵 = {𝑥});

- those involving the occurrences of the predicate, e.g., 𝜑 (𝑡 [𝑥↔𝑥 ′], 𝑡 ′ [𝑥↔𝑥 ′]), follow from the

corresponding fact in the original disjunct, e.g., 𝜑 (𝑡, 𝑡 ′), and the assumed equivariance of 𝜑 .

As for the other goals, such as 𝑠 = Lm 𝑥 𝑡 implying 𝑠 = Lm 𝑥 ′ (𝑡 [𝑥↔𝑥 ′]), which amounts to

Lm 𝑥 𝑡 = Lm 𝑥 ′ (𝑡 [𝑥↔𝑥 ′]), they say that the original items can be replaced in certain contexts by

the “refreshed” (swapped) items. For these, we have no general recipe but an empirical observation

validated on many examples: These goals tend to be reducible to standard properties of the syntactic

operators (constructors, swapping, substitution, etc.).

Remark 10. A crucial part of the above heuristic for checking T-refreshability is assuming that the

predicate argument 𝜑 of𝐺 is equivariant and holds for some “original” items, and wanting to prove

that it holds formodifications of these itemswhere the variables from𝐵 are swapped “as appropriate”,

i.e., swapped or not depending on their being in the scope of bindings in the rules’ conclusions. (Note

that 𝜑 intuitively stands for the inductively defined predicate during iteration through𝐺 .) Favorable

situations that work out of the box arewhen, in the hypotheses of each defining rule, each occurrence

of the inductively defined predicate is: (A) either applied to items that are all not in the scope of bound
variables in the conclusion, yielding trivial goals such as “𝜑 (𝑡, 𝑡 ′) implies 𝜑 (𝑡, 𝑡 ′)”, or (B) applied to

items that are all in the scope of bound variables in the conclusion, yielding goals such as “𝜑 (𝑡, 𝑡 ′)
implies 𝜑 (𝑡 [𝑥↔𝑥 ′], 𝑡 ′ [𝑥↔𝑥 ′])” which follow from 𝜑’s equivariance. Otherwise, we encounter

a hybrid situation, i.e., an in-hypotheses occurrence of the inductively defined predicate that is

(C) applied to some items in, and to some items not in the scope of bound variables in the conclusion.

Then, we end up with hybrid goals such as “𝜑 (𝑡, 𝑡 ′) implies 𝜑 (𝑡 [𝑥↔𝑥 ′], 𝑡 ′)”. In these cases, the only

way forward is if the given rule guarantees, perhaps via a side-condition, the freshness of the original

variables for the offending original terms (i.e., those subjected to swapping), e.g., the freshness of 𝑥

for 𝑡—because, 𝑥 ′ being fresh as well, we would have 𝑡 [𝑥↔𝑥 ′] = 𝑡 so we could fall back on case (A).

Remark 11. Let us see what problems we would incur with our 𝛽-reduction example if we tried

to check that 𝐺 satisfies not T-refreshability but the stronger condition that we called T-freshness
(in Def. 6). The latter requires that𝐺 𝜑 𝐵 𝑡 implies 𝐵 ∩ SuppT𝑡 = ∅, i.e., that 𝐵 ∩ SuppT𝑡 = ∅ follows

from each disjunct in the definition of𝐺 𝜑 𝐵 𝑡 , corresponding to a rule in the inductive definition of

𝛽-reduction. So we want all the variables in 𝐵, i.e., those appearing bound in the rule’s conclusion,

to be prevented from (also) appearing free in the rule’s conclusion. This works for all the rules

except the first one in Fig. 1 (corresponding to the first disjunct in Fig. 2), where 𝑥 which appears

bound in the conclusion is not prevented from also appearing free in the conclusion, e.g., within 𝑡2.

Thus, a fix to get T-freshness would be adding the side-condition that 𝑥 be fresh for 𝑡2, as seen in the

rule (Beta’) from §2; and a similar situation occurs with the “Parallel Beta” rule (ParBeta) from §2,
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which to validate T-freshness must become (ParBeta’). In fact, as detailed in App. A, our T-freshness
generalizes Urban et al. [2007]’s criterion. The next section further explores the difference between

the two criteria.

7 MORE ON THE COMPARISONWITH THE URBAN ET AL. CRITERION
As stated at the end §2, our Thm. 7 improves on Urban et al. [2007]’s result in two ways: (1) not

necessitating the addition of side-conditions to capture concrete systems and (2) going beyond

syntactic format for the rules. In this section, taking advantage of the availability of more concepts

and notation, we will further illustrate what improvement (1) amounts to by going into finer details.

We consider again the standard 𝛽-reduction relation described in Fig. 1. So our theorem applies

to this relations’ definition as is, whereas in order to apply Urban et al.’s criterion (Theorem 1

from [Urban et al. 2007]) one requires a modification of the definition, namely the addition of the

side-condition 𝑥 ∉ FV 𝑡2 to the (Beta) rule, i.e., the replacement of (Beta) with the rule (Beta’)

shown below:

Ap (Lm 𝑥 𝑡1) 𝑡2 ⇒ 𝑡1 [𝑡2/𝑥]
(Beta’)

[𝑥 ∉ FV 𝑡2]
It turns out that the modified system can be proved equivalent with (equal to) the original one—and

Urban et al. noted that this tends to be the case in concrete examples, but they left open the problem

of proving that in a general setting (such as the setting, based on a format for schematic rules).

Let us see how to prove that the above two concrete systems, the original one and the one

modified by having (Beta’) replacing (Beta), are equivalent. Clearly the original one is at least as

strong as the modified one. Conversely, to prove that the modified one is at least as strong as the

original one, we essentially need to prove that (Beta) can be “simulated” by (Beta’). And indeed, this

intuitively seems to be the case because the bound variable 𝑥 in (Beta) can in principle be renamed

to something fresh for 𝑡2, and this renaming should be immaterial (since terms are quotiented to

𝛼-equivalence). However, we cannot simply invoke such a renaming without further argumentation.

This is because, in (Beta) and (Beta’), the term 𝑡1 appears not only inside the scope of a 𝜆-bound 𝑥

(within Lm 𝑥 𝑡1) by also outside this scope (within 𝑡1 [22/𝑥])—so while the first occurrence of 𝑡1 has
𝑥 bound, the second occurrence "exposes" the name 𝑥 . We must take this into account when doing

the inference of (Beta) from (Beta’), which goes as follows: We assume (Beta’) holds. To prove (Beta),

let 𝑥 be a variable and 𝑡1, 𝑡2 be terms; we need to show Ap (Lm 𝑥 𝑡1) 𝑡2 ⇒ 𝑡1 [𝑡2/𝑥]. To this end, we

pick a completely fresh variable, say 𝑥 ′, and define 𝑡 ′
1
by swapping (or alternatively substituting)

𝑥 with 𝑥 ′ in 𝑡1, namely 𝑡 ′
1
= 𝑡1 [𝑥↔𝑥 ′]. Then using the properties of swapping and substitution

and the fact that 𝑥 ′ is fresh for 𝑡1, we obtain that 𝑡 ′
1
[𝑡2/𝑥 ′] = 𝑡1 [𝑡2/𝑥]; and using the properties of

𝜆-abstraction (stemming from 𝛼-equivalence), we obtain that Lm 𝑥 ′ 𝑡 ′
1
= Lm 𝑥 𝑡1. This allows us to

infer the desired instance of (Beta), namely (Lm 𝑥 𝑡1) 𝑡2 ⇒ 𝑡1 [𝑡2/𝑥], from an instance of (Beta’),

namely (Lm 𝑥 ′ 𝑡 ′
1
) 𝑡2 ⇒ 𝑡 ′

1
[𝑡2/𝑥 ′]; the latter is indeed an instance of (Beta’) since 𝑥 ′ is fresh for 𝑡2.

In the case of (Beta) versus (Beta’), the technicalities were relatively simple thanks to dealing

with an axiom (i.e., a rule with no hypotheses), but when dealing with proper rules (as is more

often the case) inference is more difficult. We illustrate this with the parallel 𝛽-reduction relation

briefly mentioned in §2, which was Urban et al.’s initial motivating example. Its definition is shown

in Fig. 3. Again, our theorem applies to this definition as is, whereas Urban et al.’s theorem requires

the addition of the side-condition 𝑥 ∉ FV 𝑡2 ∪ FV 𝑡 ′
2
] to the (ParBeta) rule, i.e., the replacement of

(ParBeta) with the rule (ParBeta’) shown below:

𝑡1 =⇒ 𝑡 ′
1

𝑡2 =⇒ 𝑡 ′
2

Ap (Lm 𝑥 𝑡1) 𝑡2 =⇒ 𝑡 ′
1
[𝑡 ′

2
/𝑥]

(ParBeta’)

[𝑥 ∉ FV 𝑡2 ∪ FV 𝑡 ′
2
]
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𝑡 =⇒ 𝑡 (Refl)
𝑡 =⇒ 𝑡 ′

Lm 𝑥 𝑡 =⇒ Lm 𝑥 𝑡 ′
(Xi)

𝑡1 =⇒ 𝑡 ′
1

𝑡2 =⇒ 𝑡 ′
2

Ap 𝑡1 𝑡2 =⇒ Ap 𝑡 ′
1
𝑡 ′
2

(Ap)

𝑡1 =⇒ 𝑡 ′
1

𝑡2 =⇒ 𝑡 ′
2

Ap (Lm 𝑥 𝑡1) 𝑡2 =⇒ 𝑡 ′
1
[𝑡 ′

2
/𝑥] (ParBeta)

Fig. 3. 𝜆-calculus parallel 𝛽-reduction

Now, it is not even true that, in isolation (that is, regardless of what the other rules of the system

are) the rule (ParBeta) is inferable from the rule (ParBeta’). What is inferable from (ParBeta’),

applying an argument similar to the one sketched above for (Beta) versus (Beta’) (that is, picking a

fresh 𝑥 ′ and using properties of substitution, swapping and constructors), is only a modification

of (ParBeta) that replaces the hypotheses 𝑡1 =⇒ 𝑡 ′
1
and 𝑡2 =⇒ 𝑡 ′

2
with 𝑡1 [𝑥↔𝑥 ′] =⇒ 𝑡 ′

1
[𝑥↔𝑥 ′]

and 𝑡2 [𝑥↔𝑥 ′] =⇒ 𝑡 ′
2
[𝑥↔𝑥 ′] for some fresh 𝑥 ′. Then, after we prove equivariance for the entire

system featuring (ParBeta’) and the other rules (so depending on the well-behavedness of the other

rules as well), we can replace the modified hypotheses with the original hypotheses of (ParBeta)—

concluding the proof that the two versions are equivalent (since the opposite direction, i.e., moving

from (ParBeta) to (ParBeta’), is again trivial).

Note that the above arguments for getting rid of certain side-conditions involved an equivariance

proof, and also some specific properties of the operators participating in the rules, such as substitu-

tion. Our strong rule induction criterion, Thm. 7, can be regarded as providing a generalization of

such arguments baked into the argument for the soundness of strong rule induction.

A final note about the above rule (ParBeta’): The 𝑥 ∉ FV 𝑡 ′
2
part of the added side-condition is

seen to be redundant also because parallel 𝛽-reduction can be proved to not any new free variables

(when moving from left to right), so 𝑥 ∉ FV 𝑡 ′
2
follows from 𝑥 ∉ FV 𝑡2. But general-purpose criteria

such as Urban et al.’s and ours are not addressing such specific semantic properties though (nor

do they assume, of course, that the defined predicate takes the form of a transition relation). In

particular, while our criterion does not require the addition of side-conditions, it does not provide

a mechanism for detecting redundant side-conditions when already part of the original rules.

Overview of the Next Two Sections. In what follows, we validate, challenge and refine the meta-

theory through examples that exhibit more complexity than the 𝜆-calculus along several directions:

scope extrusion and complex side-conditions (𝜋-calculus, §8.1), environments (System F<:, §8.2), and

terms with infinitely many variables (infinitary FOL §9.1 and 𝜆-calculus §9.3). While the 𝜋-calculus

example showcases the improvements of our criterion over the state of the art, we chose to present

the other examples because they have challenged this criterion, inspiring further improvements and

generalizations: making inductive information available for refreshability (§8.3), allowing infinitary

structures (§9.2), and considering binders explicitly while loosening equivariance (§9.4).

8 MORE EXAMPLES AND REFINEMENTS
For the syntaxes in this section, we will implicitly use standard notions such as permutation and

free variables. They all form nominal sets similarly to how the 𝜆-calculus syntax does.

8.1 Example: the 𝜋-calculus
In this subsection, variables will sometimes be called “names” or “channels”. We also let 𝑎, 𝑏 (in

addition to 𝑥,𝑦, 𝑧) range over variables. The set Proc, of 𝜋-calculus processes [Milner 1999; Milner

et al. 1992], ranged over by 𝑃,𝑄, 𝑅 etc., is described by a grammar of the following form (where we

omit the constructors that will play no role in our discussion):

𝑃 ::= . . . | 𝑃 || 𝑄 | !𝑃 | 𝑎 𝑥. 𝑃 | 𝑎(𝑥). 𝑃 | 𝜈 (𝑥). 𝑃
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𝑎(𝑥) . 𝑃
𝑎 𝑦
−→ 𝑃 [𝑦/𝑥] (InpE) 𝑃

𝑎 𝑥−→ 𝑃 ′ 𝑄
𝑎 𝑥−→ 𝑄 ′

𝑃 || 𝑄 𝜏−→ 𝑃 ′ || 𝑄 ′
(ComLeftE)

𝑃
𝑎 𝑥−→ 𝑃 ′ 𝑄

𝑎 (𝑥 )
−→ 𝑄 ′

𝑃 || 𝑄 𝜏−→ 𝜈 (𝑥) . (𝑃 ′ || 𝑄 ′)
(CloseLeftE)

[𝑥 ∉ {𝑎}∪FV 𝑃]

Rules specific to the early-instantiation semantics

𝑎(𝑥) . 𝑃
𝑎 (𝑥 )
−→ 𝑃 (InpL)

𝑃
𝑎 (𝑥 )
−→ 𝑃 ′ 𝑄

𝑎 𝑦
−→ 𝑄 ′

𝑃 || 𝑄 𝜏−→ 𝑃 ′ [𝑦/𝑥] || 𝑄 ′
(ComLeftL)

𝑃
𝑎 (𝑥 )
−→ 𝑃 ′ 𝑄

𝑎 (𝑥 )
−→ 𝑄 ′

𝑃 || 𝑄 𝜏−→ 𝜈 (𝑥). (𝑃 ′ || 𝑄 ′)
(CloseLeftL)

Rules specific to the late-instantiation semantics

𝑃
𝑎 𝑥−→ 𝑃 ′

𝜈 (𝑥). 𝑃
𝑎 (𝑥 )
−→ 𝑃 ′

(Open)

[𝑎 ≠ 𝑥]
𝑃

𝛼−→ 𝑃 ′

𝜈 (𝑥) . 𝑃 𝛼−→ 𝜈 (𝑥) . 𝑃 ′
(ScopeFree)

[fra 𝛼, 𝑥 ∉ ns 𝛼]

𝑃
𝑎 (𝑥 )
−→ 𝑃 ′

𝜈 (𝑦) . 𝑃
𝑎 (𝑥 )
−→ 𝜈 (𝑦). 𝑃 ′

(ScopeBound)

[𝑦 ∉ {𝑎, 𝑥}, 𝑥 ∉ FV 𝑃 ∪ {𝑎}]
𝑃

𝛼−→ 𝑃 ′

𝑃 || 𝑄 𝛼−→ 𝑃 ′ || 𝑄
(ParLeft)

[bns 𝛼 ∩ FV (𝑃,𝑄) = ∅]

Rules common to both styles of semantics

Fig. 4. 𝜋-calculus transition relation

We assume that 𝑥 is bound in 𝑃 within processes of the form 𝑎(𝑥). 𝑃 and 𝜈 (𝑥). 𝑃 ; and processes

are equated modulo the induced alpha-equivalence. The shown constructors are, in order: parallel

composition, replication, output (of name 𝑥 on the channel 𝑎), input (of a generic name 𝑥 on channel

𝑎), and restriction/hiding (of the name 𝑥 ).

The set Act of actions, ranged over by 𝛼 , is given by the grammar:

𝛼 ::= 𝜏 | 𝑎 𝑥 | 𝑎 𝑥 | 𝑎(𝑥) | 𝑎(𝑥)
The above are, in order: the silent action, the input of a (free) name 𝑥 on channel 𝑎, the output

of a (free) name 𝑥 on channel 𝑎, the symbolic input of a (bound) name 𝑥 on channel 𝑎, and the

output of a bound name 𝑥 on channel 𝑎. The first three types will be called free actions; we let fra 𝛼
express the fact that 𝛼 is a free action.

We let ns 𝛼 , the set of names of an action 𝛼 , consist of all the names appearing in that action

(so ns 𝛼 is empty if 𝛼 = 𝜏 and otherwise it has at most two elements). We also let bns 𝛼 , the set
of bound names of 𝛼 , be {𝑥} if 𝛼 has the form 𝑎(𝑥) or 𝑎(𝑥), and ∅ otherwise. And fns 𝛼 , the set of
free names of 𝛼 , be {𝑎} if 𝛼 has the form 𝑎(𝑥) or 𝑎(𝑥), and ns 𝛼 otherwise. In particular, we have

ns 𝛼 = bns 𝛼 ∪ fns 𝛼 , though bns 𝛼 and fns 𝛼 may not be disjoint.

A process can take an action by consuming one of its communicating prefixes (𝑎 𝑥. or 𝑎(𝑥).) and
transitioning to a remainder process. This is described by an inductively defined transition relation,

using rules including ones shown in Fig. 4.

There are two main variants of operational semantics for the 𝜋-calculus—early-instantiation and

late-instantiation—depending onwhether input instantiation is exhibited “early” for single processes

or “late” during communication. Fig. 4 shows the binding-interesting rules for both variants. (For

conciseness, we used a notion of action that is broad enough to accommodate both variants.)

A binding behavior characteristic to the 𝜋-calculus is scope extrusion: Via the rule (Open), a pro-
cess, say 𝜈 (𝑥). 𝑄 , “opens” the scope of a previously bound variable 𝑥 ; then, via the rule (CloseLeftE)

or (CloseLeftL) (or their symmetrics), the scope is “closed” after another process 𝑃 receives this

bound name. At the end of this scope opening and closing session, a name 𝑥 that was previously
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𝑎(𝑥) . 𝑃
𝑎 𝑦
−→ 𝑃 [𝑦/𝑥] (InpE’)[𝑥 ∉ {𝑎,𝑦}]

𝑃
𝑎 𝑥−→ 𝑃 ′ 𝑄

𝑎 (𝑥 )
−→ 𝑄 ′

𝑃 || 𝑄 𝜏−→ 𝜈 (𝑥).(𝑃 ′ || 𝑄 ′)
(CloseLeftE’)

[𝑥 ∉ {𝑎}∪FV (𝑃,𝑄)

𝑃
𝑎 (𝑥 )
−→ 𝑃 ′ 𝑄

𝑎 𝑦
−→ 𝑄 ′

𝑃 || 𝑄 𝜏−→ 𝑃 ′ [𝑦/𝑥] || 𝑄 ′
(ComLeftL’)

[𝑥 ∉FV (𝑃,𝑄,𝑄 ′)]

𝑃
𝑎 (𝑥 )
−→ 𝑃 ′ 𝑄

𝑎 (𝑥 )
−→ 𝑄 ′

𝑃 || 𝑄 𝜏−→ 𝜈 (𝑥) . (𝑃 ′ || 𝑄 ′)
(CloseLeftL’)

[𝑥 ∉ FV (𝑃,𝑄)]
𝑃

𝛼−→ 𝑃 ′

𝑃 || 𝑄 𝛼−→ 𝑃 ′ || 𝑄
(ParLeft’)

[bns 𝛼 ∩ FV (𝑃,𝑄) = ∅, bns 𝛼 ∩ fns 𝛼 = ∅]

Fig. 5. 𝜋-calculus transitions augmented to accommodate prior state-of-the-art strong rule induction

known to the process 𝑄 alone has now been shared with 𝑃—becoming a shared secret between

the remainder processes 𝑃 ′ and 𝑄 ′
.

Remark 12. In a naive formalization of the transition relation, namely as a ternary relation, a rule

such as (Open) is known to be problematic for formal reasoning, essentially because it is resistant to

strong induction [Bengtson 2010]. In fact, we can explain this problem in terms of our §6 heuristic

for proving T-refreshability. We would get stuck along the lines sketched in Remark 10: attempting

to prove, for an equivariant predicate 𝜑 : Proc ×Act × Proc → Bool and a fresh 𝑥 ′, the hopeless goal
“𝜑 (𝑃, 𝑎 𝑥, 𝑃 ′) implies 𝜑 (𝑃 [𝑥↔𝑥 ′], 𝑎 𝑥 ′, 𝑃 ′)” while knowing that 𝑎 ≠ 𝑥 but not that 𝑥 is fresh for 𝑃 .

(And while the “fix” of adding to (Open) the side-condition that 𝑥 be fresh for 𝑃 would indeed enable

strong induction, it would also destroy the intended semantics by preventing 𝑃 from sending any of

its known (i.e., free) names.) This is not a problem with our criterion, but a situation where applying

Barendregt’s convention would be unsound; a similar example is given Urban et al. [2007, p.38].

An elegant solution to the above problem comes from noting the following about the intended

semantics: that any name which is bound in the action labeling the transition, e.g., a name 𝑥

sent via an 𝑎(𝑥) action, has its identity “hidden”; in particular, until further extruding actions, is

unavailable to any other process besides the one that sends it and the one that receives it. This

is best modeled syntactically by assuming that such a name 𝑥 gets bound from within the action into

the remainder process. Thus, in the conclusion 𝜈 (𝑥). 𝑃
𝑎 (𝑥 )
−→ 𝑃 ′ of (Open), we think of the occurrence

of 𝑥 in 𝑎(𝑥) as binding any (free) occurrence of 𝑥 in 𝑃 ′. This solution was pursued in his thesis by

Bengtson [Bengtson 2010], who (crediting Milner et al. for the idea [Milner 1993; Milner et al. 1992])

formalizes the 𝜋-calculus transition relation not as a ternary relation between a source process, an

action and a target process, but as a binary relation between a source process and a commitment,

the latter being a pair (action, remainder process) up to alpha-equivalence.

Following Bengtson, we thus define the set Com of commitments to consist of pairs 𝐶 = (𝛼, 𝑃)
up to alpha-equivalence. That is, commitments are generated by the (nonrecursive) grammar

𝐶 ::= (𝜏, 𝑃) | (𝑎 𝑥, 𝑃) | (𝑎 𝑥, 𝑃) | (𝑎(𝑥), 𝑃) | (𝑎(𝑥), 𝑃)
(having one production for each action type) with the assumption that, in a commitment of the form

(𝑎(𝑥), 𝑃) or (𝑎(𝑥), 𝑃), 𝑥 is bound in 𝑃 ; and commitments are identified modulo alpha-equivalence.

Under this commitment-based view, Fig. 4 stays the same, but now we read 𝑃
𝛼−→ 𝑃 ′ as notation

for tran 𝑃 (𝛼, 𝑃 ′), where tran : Proc → Com → Bool is a (binary) relation between Proc and Com.

Thus, the rules in Fig. 4 give an inductive definition of tran. In this setting, the problem with (Open)

from Remark 12 vanishes, because now both occurrences of 𝑥 from its conclusion are bound: one

binding in 𝑃 and one in 𝑃 ′. Hence our heuristic for T-refreshability succeeds, as it just needs to

check “𝜑 𝑃 (𝑎 𝑥) 𝑃 ′ implies 𝜑 (𝑃 [𝑥↔𝑥 ′]) (𝑎 𝑥 ′) (𝑃 ′ [𝑥↔𝑥 ′])”, an instance of 𝜑 ’s equivariance.
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And indeed, applying Thm. 7 to the inductive rules from Fig. 4, we obtain the desired strong rule

induction, where in the inductive hypotheses we can assume that all the bound variables referenced

in these rules are fresh for the parameters. For example, here is the strong rule induction we obtain

if we consider that the transition relation is defined by a particular selection of the Fig. 4 rules,

namely (InpE), (CloseLeftE) and (ComLeftL), (CloseLeftL) and (ParLeft):

Prop 13. Let (P, Psupp : P → Pfin (Var)) be a parameter structure. Let 𝜑 : P → Proc → Com →
Bool and assume the following hold:

- LInpE): ∀𝑝, 𝑎, 𝑥,𝑦, 𝑃,𝑄. 𝑥 ∉ Psupp 𝑝 ∧ 𝑥 ∉ {𝑎,𝑦} −→ 𝜑 𝑝 (𝑎(𝑥). 𝑃) (𝑎𝑦, 𝑃 [𝑦/𝑥])
- LCloseLeftEM: ∀𝑝, 𝑎, 𝑥, 𝑃, 𝑃 ′, 𝑄,𝑄 ′ . 𝑥 ∉ Psupp 𝑝 ∧ 𝑥 ∉ FV 𝑄 ∧ 𝑥 ≠ 𝑎 ∧ 𝑥 ∉ FV 𝑃 ∧

(𝑃 𝑎 𝑥−→ 𝑃 ′) ∧ (∀𝑞. 𝜑 𝑞 𝑃 (𝑎 𝑥, 𝑃 ′)) ∧ (𝑄
𝑎 (𝑥 )
−→ 𝑄 ′) ∧ (∀𝑞. 𝜑 𝑞 𝑄 (𝑎(𝑥), 𝑄 ′)) −→

𝜑 𝑝 (𝑃 || 𝑄) (𝜏, 𝑃 ′ || 𝑄 ′)
- LComLeftLM: ∀𝑝, 𝑎, 𝑥,𝑦, 𝑃, 𝑃 ′, 𝑄,𝑄 ′ . 𝑥 ∉ Psupp 𝑝 ∧ 𝑥 ∉ FV (𝑃,𝑄,𝑄 ′) ∧

(𝑃
𝑎 (𝑥 )
−→ 𝑃 ′) ∧ (∀𝑞. 𝜑 𝑞 𝑃 (𝑎(𝑥), 𝑃 ′)) ∧ (𝑄

𝑎 𝑦
−→ 𝑄 ′) ∧ (∀𝑞. 𝜑 𝑞 𝑄 (𝑎𝑦,𝑄 ′)) −→

𝜑 𝑝 (𝑃 || 𝑄) (𝜏, 𝑃 ′ [𝑦/𝑥] || 𝑄 ′)
- LCloseLeftLM: ∀𝑝, 𝑎, 𝑥, 𝑃, 𝑃 ′, 𝑄,𝑄 ′ . 𝑥 ∉ Psupp 𝑝 ∧ 𝑥 ∉ FV (𝑃,𝑄) ∧

(𝑃
𝑎 (𝑥 )
−→ 𝑃 ′) ∧ (∀𝑞. 𝜑 𝑞 𝑃 (𝑎(𝑥), 𝑃 ′)) ∧ (𝑄

𝑎 (𝑥 )
−→ 𝑄 ′) ∧ (∀𝑞. 𝜑 𝑞 𝑄 (𝑎(𝑥), 𝑄 ′)) −→

𝜑 𝑝 (𝑃 || 𝑄) (𝜏, 𝑃 ′ || 𝑄 ′)
- LParLeftM: ∀𝑝, 𝛼, 𝑃, 𝑃 ′, 𝑄. bns 𝛼 ∩ Psupp 𝑝 = ∅ ∧ bns 𝛼 ∩ fns 𝛼 = ∅ ∧ bns 𝛼 ∩ FV (𝑃,𝑄) = ∅ ∧

(𝑃 𝛼−→ 𝑃 ′) ∧ (∀𝑞. 𝜑 𝑞 𝑃 (𝛼, 𝑃 ′)) −→ 𝜑 𝑝 (𝑃 || 𝑄) (𝛼, 𝑃 ′ || 𝑄)

Then ∀𝑝, 𝑃, 𝛼, 𝑃 ′ . (𝑃 𝛼−→ 𝑃 ′) −→ 𝜑 𝑝 𝑃 (𝛼, 𝑃 ′).

On the other hand, using the state of the art [Urban et al. 2007] as implemented in Nominal

Isabelle (which Bengtson used in his formalization [Bengtson 2012]), to get the same result one

needs to augment the rules with side-conditions as highlighted in Fig. 5. These would ensure that the

system satisfies not only T-refreshability, but also T-freshness. Indeed, as we discussed in Remark 11,

T-freshness in concrete examples amounts to the variables appearing bound in the conclusion of

a rule being prevented from also appearing free in that conclusion. For example, T-freshness does
not hold for the rule (CloseLeftL) from Fig. 4 because 𝑥 , which appears bound in the conclusion,

can also appear free there, namely within 𝑃 and 𝑄—so to make T-freshness hold one must add the

side-condition highlighted in (CloseLeftL’) from Fig. 5. Unlike in the situation from Remark 12, and

like in those from Remark 11, here these fixes (required for T-freshness but not for T-refreshability)
do not destroy the intended meaning of the definitions, but introduce unnecessary clutter.

Some versions of 𝜋-calculus [Sangiorgi and Walker 2001] distinguish between structural and

operational rules—they too admit strong rule induction (as we illustrate on an example in App. B).

8.2 Example: System F<: subtyping
Next we look at the subtyping relation for System F<: [Aydemir et al. 2005; Cardelli et al. 1994;

Curien and Ghelli 1992], an example combining type bindings with environment bindings.

In this subsection, the variables in Var will stand for type variables, and 𝑋,𝑌, 𝑍 etc. will range

over them. The set Type of types, ranged over by 𝑆,𝑇 etc., is generated by the following grammar:

𝑇 ::= TVr 𝑋 | Top | 𝑇 → 𝑆 | ∀𝑋 <:𝑇 . 𝑆

So a type is either a (type) variable, or the maximum type Top, or a function type, or a universal

type. We assume that, in a universal type ∀𝑋 <:𝑇 . 𝑆 , the variable 𝑋 is bound in 𝑆 (but not in 𝑇 );

and types are equated modulo the induced notion of alpha-equivalence.
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wf Γ FV 𝑆 ⊆ dom Γ

Γ ⊢ 𝑆 <:Top
(Top)

wf Γ 𝑋 ∈ dom Γ

Γ ⊢ (TVr 𝑋 )<: (TVr 𝑋 ) (Refl-TV)
𝑋 <:𝑆 ∈ Γ Γ ⊢ 𝑆 <:𝑇

Γ ⊢ 𝑆 <:𝑇
(Trans-TV)

Γ ⊢ 𝑇1 <:𝑆1 Γ ⊢ 𝑆2 <:𝑇2

Γ ⊢ (𝑆1 → 𝑆2) <: (𝑇1 → 𝑇2)
(Arrow)

Γ ⊢ 𝑇1 <:𝑆1 Γ, 𝑋 <:𝑇1 ⊢ 𝑆2 <:𝑇2

Γ ⊢ (∀𝑋 <:𝑆1 . 𝑆2) <: (∀𝑋 <:𝑇1 .𝑇2)
(All)

Fig. 6. System F<: subtyping

𝐺 𝜑 𝐵 (Γ, 𝑆′,𝑇 ′) ⇐⇒
(∃𝑆. 𝐵 = ∅ ∧ 𝑆 ′ = 𝑆 ∧𝑇 ′ = Top) ∨ (∃𝑋 . 𝐵 = ∅ ∧ 𝑆 ′ = TVr 𝑋 ∧𝑇 ′ = TVr 𝑋 ) ∨
(∃𝑋,𝑌,𝑇 . 𝑋 <:𝑌 ∈ Γ ∧ 𝜑 (Γ, TVr 𝑌,𝑇 ) ∧ 𝐵 = ∅ ∧ 𝑆 ′ = TVr 𝑋 ∧𝑇 ′ = 𝑇 ) ∨
(∃𝑆1, 𝑆2,𝑇1,𝑇2 . 𝜑 (Γ,𝑇1, 𝑆1) ∧ 𝜑 (Γ,𝑇2, 𝑆2) ∧ 𝐵 = ∅ ∧ 𝑆 ′ = (𝑆1 → 𝑆2) ∧𝑇 ′ = (𝑇1 → 𝑇2)) ∨
(∃𝑋, 𝑆1, 𝑆2,𝑇1,𝑇2 . 𝜑 (Γ,𝑇1, 𝑆1) ∧ 𝜑 ((Γ, 𝑋 <:𝑇1), 𝑆2,𝑇2) ∧ 𝐵 = {𝑋 } ∧ 𝑆 ′ = (∀𝑋 <:𝑆1 . 𝑆2) ∧𝑇 ′ = (∀𝑋 <:𝑇1 .𝑇2))

Fig. 7. The operator associated to System F<: subtyping

A (typing) environment Γ is a list of pairs variable-type, (𝑋,𝑇 ), written 𝑋 <:𝑇 . Env denotes the

set of environments. The domain dom Γ of an environment consists of all the variables 𝑋 for which

some 𝑋 <:𝑇 is in Γ. An environment is said to be well-formed, written wf Γ, if whenever Γ has the

form Γ′, 𝑋 <:𝑇, Γ′′, we have that 𝑋 ∉ dom Γ′ and FV 𝑇 ⊆ dom Γ′—i.e., thinking of the environment

as growing left-to-right with pairs, any new pair 𝑋 <:𝑇 must be such that 𝑋 is fresh and 𝑇 does

not bring new (free) variables. Subtyping is a ternary relation between environments, types and

types, written Γ ⊢ 𝑆 <:𝑇 , defined inductively in Fig. 6. On the way to instantiating Thm. 7 to this

system, we obtain the operator𝐺 shown in Fig. 7. Thm. 7’s conclusion would give us the following

induction principle, avoiding parameter variables in the LAllM case:

Prop 14. Let (P, Psupp : P → Pfin (Var)) be a parameter structure. Let 𝜑 : P → Env → Type →
Type → Bool and assume that:

- [cases different from LAllM omitted, as they don’t involve binders]

- LAllM: ∀𝑝,𝑋, 𝑆1, 𝑆2,𝑇1,𝑇2. 𝑋 ∉ Psupp 𝑝 ∧ 𝑋 ∉ FV (Γ, 𝑆1,𝑇1) ∧
Γ ⊢ 𝑇1 <:𝑆1 ∧ (∀𝑞. 𝜑 𝑞 Γ 𝑇1 𝑆1) ∧ Γ, 𝑋 <:𝑇1 ⊢ 𝑆2 <:𝑇2 ∧ (∀𝑞. 𝜑 𝑞 (Γ, 𝑋 <:𝑇1) 𝑆2 𝑇2) −→
𝜑 𝑝 Γ (∀𝑋 <:𝑆1. 𝑆2) (∀𝑋 <:𝑇1 .𝑇2)

Then ∀𝑝, Γ, 𝑆,𝑇 . Γ ⊢ 𝑆 <:𝑇 −→ 𝜑 𝑝 Γ 𝑆 𝑇 .

However, when attempting to check Thm. 7’s hypotheses, we get stuck at T-refreshability.
Namely, when deploying the heuristic sketched in §6, we encounter a problem with Fig. 6’s (All)

rule, i.e., with the fifth disjunct in Fig. 7’s definition of 𝐺 . While focusing on the second hypothesis

of the (All) rule, for an equivariant 𝜑 : Env × Type × Type → Bool, we know that (i) 𝑋 ′
is fresh and

(ii) 𝜑 ((Γ, 𝑋 <:𝑇1), 𝑆2, 𝑇2), and want to prove (iii) 𝜑 ((Γ, 𝑋 ′<:𝑇1), 𝑆2 [𝑋↔𝑋 ′], 𝑇2 [𝑋↔𝑋 ′]). (Note
that, in (iii), Γ and 𝑇1 are not subject to swapping, because in (All)’s conclusion they are not in the

scope of 𝑋 ’s binding.) However, 𝜑 ’s equivariance and (ii) only ensure

(iii’) 𝜑 ((Γ [𝑋↔𝑋 ′], 𝑋 ′<:𝑇1 [𝑋↔𝑋 ′]), 𝑆2 [𝑋↔𝑋 ′],𝑇2 [𝑋↔𝑋 ′]),
i.e., the variation of (iii) where swapping is applied to Γ and 𝑇1. In short, we fall under one of

those “hybrid” situations (case (C)) discussed in Remark 10. Since 𝑋 ′
is fresh, we would have

Γ [𝑋↔𝑋 ′] = Γ and 𝑇1 [𝑋↔𝑋 ′] = 𝑇1, hence (iii) would follow from (iii’) and the problem would

be solved, but only provided that: (iv) 𝑋 is also fresh for Γ and 𝑇1.

But currently there is no way to prove (iv)—which is a shame, because we can prove that Γ, 𝑋 <:

𝑇1 ⊢ 𝑆2 <:𝑇2 implies (iv), namely as follows: First, we prove by standard induction that, for all Γ′, 𝑆,𝑇 ,
Γ′ ⊢ 𝑆 <:𝑇 implies wf Γ′. So Γ, 𝑋 <:𝑇1 ⊢ 𝑆2 <:𝑇2 implies wf (Γ, 𝑋 <:𝑇1), which by the definition of

wf implies that 𝑋 is fresh for Γ and FV 𝑇 ⊆ FV Γ, ultimately implying that 𝑋 is fresh for 𝑇 as well.
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8.3 An inductively strengthened criterion
Thus, we would solve the problem if we could take advantage of properties of the inductively

defined predicate when checking the conclusion of the T-refreshability condition. Stepping back

into §4’s general setting, we are led to a weakening of T-refreshability (highlighting the difference

from our original definition, part of Def. 6):

Def 15. Given a nominal set T= (𝑇, _[]T) and an operator 𝐺 : (𝑇 → Bool) → (Pfin (Var) → 𝑇 →
Bool), we say that𝐺 isweaklyT-refreshablewhen, for all𝜑 : 𝑇 → Bool such that ∀𝑡 ∈ 𝑇 . 𝜑 𝑡 −→ 𝐼𝐺 𝑡 ,

for all 𝐵 ∈ Pfin (Var) and 𝑡 ∈ 𝑇 , if 𝜑 is equivariant and 𝐺 𝜑 𝐵 𝑡 then there exists 𝐵′ ∈ Pfin (Var)
such that 𝐵′ ∩ SuppT𝑡 = ∅ and 𝐺 𝜑 𝐵′ 𝑡 .

Since in the statement of T-refreshability, 𝜑 morally stands for the inductively defined predicate

𝐼𝐺 , adding the hypothesis that 𝜑 actually implies 𝐼𝐺 makes sense. And indeed, with a bit of proof

mining we can strengthen Thm. 7 to use this weaker notion:

Thm 7 strengthened. Let T= (𝑇, _[]T) be a nominal set and 𝐺 : (T → Bool) → (Pfin (Var) →
𝑇 → Bool) be monotonic, T-equivariant and weakly T-refreshable. Then Thm. 7’s conclusion holds.

Proof. The only place in the proof of Thm. 7 where we use T-refreshability is when proving

(3) ∀𝑡 . 𝐼𝐺 𝑡 −→ 𝐼 ′
𝐺
𝑡 , at a time when we have already proved the converse (1) ∀𝑡 . 𝐼 ′

𝐺
𝑡 −→ 𝐼𝐺 𝑡 , and

have also proved that (2) 𝐼 ′
𝐺
is equivariant. As part of the inductive proof of (3), fixing 𝐵 and 𝑡 and as-

suming (iii)𝐺 𝐼 ′
𝐺
𝐵 𝑡 , we appliedT-refreshability to (2) and (iii) to obtain𝐵′ such that𝐵′∩SuppT𝑡 = ∅

and𝐺 𝜑 𝐵′ 𝑡 . But we can instead apply weakT-refreshability to (2), (iii) and (1) to the same effect. □

In conclusion, the strengthened version of Thm. 7 assumes weak T-refreshability instead of

T-refreshability, which allows one to take advantage of inductive information when instantiating

the theorem. And indeed, the System F<: typing example is now covered, in that Prop. 14 is a conse-

quence of the strengthened Thm. 7: Going back to the discussion at the end of §8.2, there the extra hy-

pothesis ∀𝑡 ∈ 𝑇 . 𝜑 𝑡 −→ 𝐼𝐺 𝑡 means that (ii) implies Γ, 𝑋 <:𝑇1 ⊢ 𝑆2 <:𝑇2, which fills the pointed gap.

9 STRONG RULE INDUCTION FOR INFINITARY STRUCTURES WITH BINDINGS
While our strong induction criterion discussed so far covers the vast majority of the cases of interest,

it is restricted to finitary structuresmodeled as nominal sets. However, infinitary structures featuring

bindings have also been studied, and they too are subjected to inductive definitions and proofs

that must cope with these bindings. Examples include infinitary extensions of first-order logic

(FOL) [Dickmann 1985; Keisler 1971; Marker 2016] (§9.1), a standard variant of Milner’s Calculus of

Communicating Systems (CCS) [Milner 1989] featuring infinitary choice (sum) and bindings of input

variables, versions of Hennessy-Milner logic featuring infinitary conjunctions and bindings for

recursion and/or quantification [Hennessy and Stirling 1985], and infinitary higher-order rewriting

and proof theory [Joachimski 2001]. Considering such infinitary logics and systems will lead to an

extension of our result that employs an an infinitary variation of nominal sets (§9.2). Finally, we will

also look at situations that violate equivariance (§9.3), and show that such situations can still benefit

from strong induction with the price of being explicit about the involved binding structures (§9.4).

9.1 Example: infinitary first-order logic
Given two infinite cardinals 𝜅1 and 𝜅2, the (𝜅1, 𝜅2)-infinitary FOL logic L𝜅1,𝜅2

[Dickmann 1985;

Keisler 1971; Marker 2016] is an extension of FOL which allows conjunctions / disjunctions of sets

of formulas of any cardinality < 𝜅1, and quantifications over sets of variables of any cardinality < 𝜅2.

(Lℵ1,ℵ0
is the best known version due to its importance for categorical logic [Makkai and Paré 1989].)
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𝑓 ∈ Δ

Δ ⊢ 𝑓 (Hyp)

∀𝑓 ∈ 𝐹 . Δ ⊢ 𝑓
Δ ⊢ Conj 𝐹 (Conj-I)

Δ ⊢ Conj 𝐹 𝑓 ∈ 𝐹
Δ ⊢ 𝑓 (Conj-E)

Δ, 𝑓 ⊢ ⊥
Δ ⊢ Neg 𝑓 (Neg-I)

Δ ⊢ Neg 𝑓 Δ ⊢ 𝑓
Δ ⊢ ⊥ (Neg-E)

Δ ⊢ 𝑓
Δ ⊢ All 𝑉 𝑓

(All-I)

[𝑉 ∩⋃(Im FV Δ) = ∅]
Δ ⊢ All 𝑉 𝑓

Δ ⊢ 𝑓 [[𝜌]]
(All-E)

[Core 𝜌 ⊆ 𝑉 ]

Fig. 8. Natural deduction system for L𝜅1,𝜅2
. Equality rules omitted—they are the same as for standard FOL.

We let Var be an infinite set of cardinality 𝜅 = max (𝜅1, 𝜅2). The set Fmla = Fmla𝜅1,𝜅2
of L𝜅1,𝜅2

-
formulas, ranged over by 𝑓 , is given by the grammar 𝑓 ::= Eq 𝑥 𝑦 | Neg 𝑓 | Conj 𝐹 | All 𝑉 𝑓

where 𝐹 ranges (recursively) over P<𝜅1
(Fmla) (i.e., over sets of formulas of cardinality < 𝜅1) and 𝑉

over P<𝜅2
(Var). Thus, a formula is either an equality, or a negation, or a conjunction over a set of

formulas 𝐹 , or a (simultaneous) quantification over a set of variables𝑉 . Again, formulas are identified

modulo alpha-equivalence, e.g., All {𝑥,𝑦} (Eq 𝑥 𝑦) and All {𝑥,𝑦} (Eq 𝑦 𝑥) are the same formula.

Fig. 8 shows a straightforward generalization to L𝜅1,𝜅2
of the standard natural deduction rules for

FOL, where Δ ranges over sets of formulas of cardinality < 𝜅 and 𝜌 over functions in Var → Var . ⊥
denotes the “false” formula, defined as Neg (Conj ∅). Recall that Core 𝜌 denotes the core (support) of
𝜌 , i.e., the set {𝑥 ∈ Var | 𝜌 𝑥 ≠ 𝑥}. Moreover, FV 𝑓 denotes the set of free variables of 𝑓 , and 𝑓 [[𝜌]]
denotes the (capture-free) parallel substitution of all free variables 𝑥 in 𝑓 with their 𝜌-image 𝜌 𝑥 . The

rules are standard except for accounting for the universal quantification of an entire set of variables

𝑉 . Thus, the introduction rule (All-I) assumes freshness of all the variables in 𝑉 for the hypotheses

in Δ, and the elimination rule (All-E) makes sure that only variables in 𝑉 are being instantiated.

By analogy with the finitary situations, we can hope to infer the following strong rule induction

principle, which allows “avoiding” the bound variables 𝑉 :

Prop 16. Let (P, Psupp : P → P<𝜅 (Var)) be a parameter structure. Let 𝜑 : P → P<𝜅 Fmla →
Fmla → Bool and assume that:

- [cases different from LAll-IM and LAll-EM omitted, as they don’t involve binders]

- LAll-IM: ∀𝑝,Δ, 𝑓 .
𝑉 ∩ Psupp 𝑝 = ∅ ∧ 𝑉 ∩⋃(Im FV Δ) = ∅ ∧ Δ ⊢ 𝑓 ∧ (∀𝑞. 𝜑 𝑞 Δ 𝑓 ) −→ 𝜑 𝑝 Δ (All 𝑉 𝑓 )

- LAll-EM: ∀𝑝,Δ, 𝑓 .
𝑉 ∩ Psupp 𝑝 = ∅ ∧ Core 𝜌 ⊆ 𝑉 ∧ Δ ⊢ (All 𝑉 𝑓 ) ∧ (∀𝑞. 𝜑 𝑞 Δ (All 𝑉 𝑓 )) −→ 𝜑 𝑝 Δ 𝑓

Then ∀𝑝,Δ, 𝑓 . Δ ⊢ 𝑓 −→ 𝜑 𝑝 Δ 𝑓 .

9.2 An infinitary generalization of the criterion
So how do we go about obtaining Prop. 16 from the inductive definition of deduction in Fig. 8?

Everything seems to follow our usual pattern, except that Fmla is no longer a nominal set but only

a “nominal-set-like” structure, where sets are not finite but bounded by a cardinal 𝜅 . We say that a

set is 𝜅-small if its cardinality is < 𝜅; so P<𝜅 (𝑋 ) is the set of its 𝜅-small subsets of a set 𝑋 . Let us call

𝜅-permutation a bijection 𝜎 : Var → Var whose core is 𝜅-small, and let Perm𝜅 denote the set of 𝜅-

permutations. For formulas, the 𝜅-permutation operator is here an action _[_] : Fmla → Perm𝜅 →
Fmla of Perm𝜅 on Fmla; and the set of free variables FV 𝜑 is no longer finite but only 𝜅-small.

We therefore seek structures generalizing nominal sets in order to reach the following goals:

(G1) Infinitary syntaxes with static bindings and their permutation and free-variable operators,

such as (Fmla, _[_] : Fmla → Perm𝜅 → Perm𝜅 , FV : Fmla → P<𝜅 (Var)) above, should
form such structures—i.e., the support operator should give exactly the free variables.

(G2) Our strong rule induction criterion should carry over to these structures.

(G3) Ideally, these structures should be closed under relevant constructions (such as sums,

products, container type extensions)—similarly to standard nominal sets.
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However, the naive generalization of nominal sets to higher cardinalities 𝜅 , replacing “finite” with

“𝜅-smallness”, does not work. We sketch it below, in preparation for something that will actually

work. Let us call 𝜅-pre-nominal set any pair A = (𝐴, _[_]A) where _[_]A : 𝐴 → Perm𝜅 → 𝐴 is an

action on𝐴 of the monoid (Perm𝜅 , 1Var , ◦). Given a 𝜅-pre-nominal setA = (𝐴, _[_]A), an 𝑎 ∈ 𝐴 and

a set𝑋 ⊆ Var , we define the notion of𝑋 supports 𝑎 by adapting that from nominal sets: as 𝑎[𝜎]A = 𝑎

holding for all 𝜎 ∈ Perm𝜅 such that∀𝑎 ∈ 𝑋 . 𝜎 𝑥 = 𝑥 (i.e.,𝑋 ⊆ Core 𝜎). Finally, we define a𝜅-nominal
set to be a 𝜅-pre-nominal set where every element has a 𝜅-small supporting set. Now, the problem is

that a fundamental property of nominal sets does not carry over to 𝜅-nominal sets A = (𝐴, _[_]A)
thus defined: Given 𝑎 ∈ 𝐴, the least supporting set of 𝑎, which for nominal sets gave us the support

SuppA 𝑎, is no longer guaranteed to exist. Here is a counterexample, which works for any 𝜅 > ℵ0:

Counterexample 17. Let Var∞ be the set of streams of variables. Given xs ∈ Var∞ and 𝑖 ∈ N, we
write xs𝑖 for the 𝑖’th variable in the stream. We say that two streams and ys are equivalent, written
xs ≡ ys, if they are equal almost everywhere, i.e., there exists 𝑛 ∈ N such that xs𝑖 = ys𝑖 for all 𝑖 ≥ 𝑛.
We let 𝐸 be Var∞/≡, the set of ≡-equivalence classes. Given xs ∈ Var∞, we let xs/≡ ∈ 𝐸 denote its

equivalence class. Since the standard permutation action on streams given by stream-map (so that

(xs[𝜎])𝑖 = 𝜎 xs𝑖 for each 𝑖) preserves≡, we can lift it to an operator on equivalence classes. This gives
the 𝜅-nominal set E = (𝐸, _[_]E) with _[_]E : 𝐸 → Perm → 𝐸 defined as (xs/≡) [𝜎]E = (xs[𝜎])/≡.
Now let xs ∈ Var∞ be any nonrepetitive stream. Each of the sets {𝑥𝑖 | 𝑖 ≥ 𝑛} supports xs/≡, but their
intersection

⋂
𝑖∈N{𝑥𝑖 | 𝑖 ≥ 𝑛}, which is empty, does not. So there is no least supporting set for xs/≡.

Thus, if we switch from finite-core to 𝜅-small-core permutations, we can no longer define the

support as the least supporting set. But with goal (G2) in mind, we can ask whether our Thm. 7

really needs these least supporting sets or it can work with any supporting sets subject to weaker

requirements. We discover these requirements looking back at Thm. 7’s proof—where we have

underlined the invocations of properties of the support operator Supp = SuppTfor the considered
nominal set T= (𝑇, _[_]T). Fortunately, the minimality of Supp is not needed in any of these. Rather:
• the last invocation of “properties of Supp” refers to the fact that Supp returns supporting sets;

• the other invocations only require the property of the support being semi-natural w.r.t. permu-

tation, in that Supp (𝑡 [𝜎]) ⊆ Im 𝜎 (Supp 𝑡) for all 𝑡 ∈ 𝑇 and 𝜎 ∈ Perm.

Thus, in the proof, we can replace the support operator with any operator satisfying the above two

properties, which we will still call “support” (and denote by Supp). These more flexible assumptions

allow a graceful transition from finiteness to 𝜅-smallness. Indeed, our proof of Thm. 7 is resilient

to this generalization as well: It only uses that finiteness is closed under permutation images and

finite unions, which is also true about 𝜅-smallness. This achieves goal (G2).

Remark 18. On the cardinality synchronization between support and permutations: For lifting the

proof of Thm. 7 from finiteness to𝜅-smallness, it is essential that, in our generalization, permutations

are allowed to “keep up” in cardinality with the support, in that the permutations now have 𝜅-small

cores (rather than just finite cores), matching the𝜅-smallness of the support. Indeed, the permutation

𝜏 that we use in the proof to “refresh” the set 𝐵′ for avoiding Psupp 𝑝 and Supp (𝑡 [𝜎]) (fact (vi)) must

have its core’s cardinality equal to that of 𝐵′, which in the generalized version can be anything < 𝜅 .

Concerning goal (G1), it is easy to see that for the syntax of L𝜅1,𝜅2
(and any infinitary syntax for

that matter), the free-variable operator FV satisfies the above desirable properties, in that FV 𝑡 is a

supporting set for 𝑡 and FV (𝑡 [𝜎]) ⊆ Im 𝜎 (Supp 𝑡). We are therefore led to the following definition,

in the context of a fixed infinite cardinal 𝜅 and a fixed set of variables Var such that |Var | = 𝜅.

Def 19. A 𝜅-loosely-supported-nominal set (𝜅-LS-nominal set for short) is a triple A = (𝐴, _[_]A ,
SuppA) where _[_]A : 𝐴 → Perm𝜅 → 𝐴 and SuppA : 𝐴 → P<𝜅 (Var) are such that:
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- (𝐴, _[_]A) is a 𝜅-pre-nominal set i.e., _[_]A is an action of the monoid (Perm𝜅 , ◦, 1𝐴) on 𝐴;
- SuppA returns supporting sets, i.e., (∀𝑥 ∈ SuppA . 𝜎 𝑥 = 𝑥) implies 𝑎[𝜎]A for all 𝑎 and 𝜎 ;

- SuppA is semi-natural, i.e., SuppA (𝑎[𝜎]) ⊆ Im 𝜎 (SuppA 𝑎) for all 𝑎 and 𝜎 .

The “loosely” qualifier refers to the support operator SuppA no longer being “tied” to give a

specific supporting set (the least one). Note that, thanks to the 𝜅-pre-nominal set axioms, semi-

naturality is actually equivalent to naturality: SuppA (𝑎[𝜎]) = Im 𝜎 (SuppA 𝑎) for all 𝑎 and 𝜎 .
So Thm. 7 generalizes to𝜅-LS-nominal sets.Weworkwith𝜅-LS-nominal setsT= (T , _[_]T, SuppT)

instead of nominal sets T= (T , _[_]T), and the bound-variable argument 𝐵 of the operator 𝐺 is

now in P<𝜅 (Var) rather than Pfin (Var). All the relevant notions, including equivariance and T-
refreshability, are defined like for nominal sets but replacing finiteness with 𝜅-smallness.

Thm 20. Thm. 7 (also in its §8.3 strengthened form) still holds true if in its statement we replace:

- the nominal setT= (T , _[_]T) and its support SuppTwith a𝜅-LS-nominal setT= (T , _[_]T, SuppT);
- 𝐺 : (T → Bool) → (Pfin (Var) → T → Bool) with 𝐺 : (T → Bool) → (P<𝜅 (Var) → T → Bool);
- the parameter structure (P, Psupp : P → Pfin (Var)) with (P, Psupp : P → P<𝜅 (Var)).

So Thm. 20 (re)becomes Thm. 7 when 𝜅 = ℵ0, and the 𝜅-LS-nominal set T= (T , _[_]T, SuppT)
is a nominal set T= (T , _[_]T) with its defined support operator. Moreover, when instantiating

Thm. 20’s operator𝐺 to that underlying the deduction system ofL𝜅1,𝜅2
, we obtain Prop. 16, as desired.

Verifying the necessary hypotheses proceeds similarly to the finitary cases, via the §6 heuristic.

We have not yet addressed (G3), which bears upon the criterion’s smooth instantiation, as it

would allow constructing the required LS-nominal sets compositionally. It turns out that LS-nominal

sets enjoy many of the closure properties of nominal sets [Pitts 2006; Urban 2008]. They are closed

under the usual covariant set-theoretic (type-theoretic) constructions such as sums, products, and

lifting via container types: both finitary ones such as lists, finite sets and bags, and infinitary ones

such as streams, infinite trees, etc. (App. C gives details.)

In conclusion, we have extended our strong rule induction criterion to handle rule-based systems

over infinitary structures with bindings, employing a mild extension of the nominal set axiomatiza-

tion that still caters for concepts such as equivariance and refreshability. This should cover most of

the infinitary situations of interest (including the ones cited at the beginning of §9). Our final stop

in this paper is a case study where equivariance itself fails.

9.3 Example: an infinitary affine 𝜆-calculus
In this subsection, Var will have cardinality ℵ1, the first uncountable cardinal (so 𝜅 = ℵ1). Recall

that,𝐴∞
denotes the set of streams of elements in a set𝐴, i.e. functions fromN to𝐴; we also let𝐴∞,≠

denote the subset of 𝐴∞
consisting of the nonrepetitive streams, i.e., injective functions. Given as ∈

𝐴∞
, we write as𝑖 for the 𝑖’th item in the stream, and set as for the set of its elements {as𝑖 | 𝑖 ∈ N} (its

image as a function). We let xs, ys etc. range over the set Var∞,≠
of nonrepetitive streams of variables.

Following Mazza [2012], we define the syntax of infinitary 𝜆-calculus by the following grammar,

where 𝑡 ranges over infinitary 𝜆-terms (𝜆-iterms), i.e., elements of the syntax that is being introduced,

and ts over streams of 𝜆-iterms: 𝑡 ::= iVr 𝑥 | iAp 𝑡 ts | iLm xs 𝑡 . We assume that, in iLm xs 𝑡 ,
the variables from the stream xs are bound in 𝑡 ; and 𝜆-iterms are equated modulo the induced

notion of alpha-equivalence. ILTerm denotes the set of 𝜆-iterms. Given 𝑡 ∈ ILTerm, xs ∈ Var∞,≠
and

ts ∈ ILTerm∞
, we write 𝑡 [ts/xs] for the 𝜆-iterm obtained by the simultaneous (capture-avoiding)

substitution of the free occurrences in 𝑡 of the variables xs𝑖 with the corresponding 𝜆-iterms ts𝑖 .
Central in Mazza’s development is the notion of a 𝜆-iterm being affine, i.e., having no repeated

occurrences of any free variable in it, or in any of its subterms (including subterms located under

binders). This is expressed by the inductive predicate affine : ILTerm → Bool from Fig. 9, to which
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affine (iVr 𝑥) (iVr) affine 𝑡
affine (iLm 𝑥𝑠 𝑡) (iLm)

affine 𝑡
lift (𝜆𝑡 ′ . affine 𝑡 ′ ∧ FV 𝑡 ′ ∩ FV 𝑡 = ∅) ts
∀𝑖, 𝑗 . 𝑖 ≠ 𝑗 −→ FV ts𝑖 ∩ FV ts 𝑗 = ∅

affine (iAp 𝑡 ts) (iAp)

Fig. 9. The affine predicate

our Thm. 20 instantiates seamlessly, yielding the following strong induction principle. (Since 𝜅 = ℵ1,

P<𝜅 (Var) is Pcountable (Var), the set of countable subsets of Var .)

Prop 21. Let (P, Psupp : P → Pcountable (Var)) and 𝜑 : P → ILTerm → Bool, and assume that:

- [cases different from LiLmM omitted, as they don’t involve binders]

- LiLmM: ∀𝑝, xs, 𝑡 . set 𝑥𝑠 ∩ Psupp 𝑝 = ∅ ∧ affine 𝑡 ∧ (∀𝑞. 𝜑 𝑞 𝑡) −→ 𝜑 𝑝 (iLm xs 𝑡)
Then ∀𝑝, 𝑡 . affine 𝑡 −→ 𝜑 𝑝 𝑡 .

Since in our criterion the rules’ hypotheses are not required to fit any syntactic format, higher-

order operators and quantifiers such as Fig. 9’s lift (which lifts a predicate from elements to streams,

i.e., is defined by lift 𝜑 as = (∀𝑖 ∈ N. 𝜑 as𝑖 )) can be used freely.

Mazza [2012]’s goal is to establish an isomorphic translation between (finitary) 𝜆-calculus and

a suitably uniform version of affine infinitary 𝜆-calculus. This maps an application 𝜆-term Ap 𝑠 𝑡 to
an application 𝜆-iterm iAp 𝑠′ ts′, where 𝑠′ is (recursively) an infinitary counterpart of 𝑠 and ts′ is a
stream of copies of infinitary counterparts of 𝑡 , with the copies having disjoint variables but other-

wise having the same structure; and maps an abstraction 𝜆-term Lm 𝑥 𝑡 to an abstraction 𝜆-iterm

Lm xs′ 𝑡 ′, where 𝑡 ′ is an infinitary counterpart of 𝑡 and xs′ is a nonrepetitive stream of copies of 𝑥 .

To describe the image of this translation, Mazza fixes a countable subset Super ⊆ Var∞,≠
of

nonrepetitive streams of variables called supervariables, having the property that any two are

mutually disjoint: ∀xs, ys ∈ Super . set xs ∩ set ys = ∅. The intention is restricting the 𝜆-iterms

to only use these as bindings. Namely, supervariables induce the notion of renaming equivalence
expressed as the relation ≈ : ILTerm → ILTerm → Bool which relates two 𝜆-iterms 𝑡 and 𝑡 ′ just
in case they (1) have the same (iVr, iLm, iAp)-structure (as trees), (2) only use supervariables in

binders, (3) at the leaves have variables appearing in the same supervariable, and (4) for both 𝑡 and
𝑡 ′ all the subterms that form the righthand side of an application are mutually renaming equivalent.

The ≈ relation is defined inductively in Fig. 10, via rules having a logical relation flavor. (Then

uniformity of an 𝜆-iterm, which together with affineness characterizes the translation’s image, is

defined as that 𝜆-iterm being renaming-equivalent to itself. App. E gives details.)

Note that the set Super is not guaranteed to be closed under permutation. Even worse, it actually

cannot be chosen so that it is closed, due to the disjointness assumption: If we permute some

variables in a supervariable xs we obtain a stream of variables that is distinct but not disjoint from

xs, which therefore cannot be a supervariable. For this reason, the monotonic operator underlying

the definition of ≈, and the relation ≈ itself, are hopelessly non-equivariant, which renders strong

induction impossible via current nominal criteria, including our own LS-nominal one. However,

intuition tells us that when inducting over ≈ we should still be able to avoid the bound variables

xs, similarly to how we did for affine, provided the parameters do not stretch too wide w.r.t.

supervariables. And a reasonable notion of not stretching too wide is touching only finitely many
supervariables. Thus, we can hope for the following strong induction principle for ≈, where the
first highlighted part formalizes this condition regarding supervariables:

Prop 22. Let (P, Psupp : P → Pcountable (Var)) be such that, for any 𝑝 ∈ P , {xs ∈ Super | set xs ∩
Psupp 𝑝 ≠ ∅} is finite. Let 𝜑 : P → ILTerm → ILTerm → Bool and assume the following:

- [cases different from LiLmM omitted, as they don’t involve binders]
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xs ∈ Super {𝑥, 𝑥 ′} ⊆ set xs
iVr 𝑥 ≈ iVr 𝑥 ′

(iVr)

xs ∈ Super 𝑡 ≈ 𝑡 ′
iLm 𝑥𝑠 𝑡 ≈ iLm 𝑥𝑠 𝑡 ′

(iLm)

𝑡 ≈ 𝑡 ′
∀𝑡1, 𝑡2 . {𝑡1, 𝑡2} ⊆ set ts ∪ set ts′

−→ 𝑡1 ≈ 𝑡2
iAp 𝑡 ts ≈ iAp 𝑡 ′ ts′

(iAp)

Fig. 10. Mazza’s renaming equivalence relation

𝐺 𝜑 𝑏 (𝑠, 𝑠′) ⇐⇒

(1) (∃xs, 𝑥, 𝑥 ′ . 𝑏 = ⊥ ∧ 𝑠 = iVr 𝑥 ∧ 𝑠′ = iVr 𝑥 ′ ∧ xs ∈ Super ∧ {𝑥, 𝑥 ′} ⊆ set xs) ∨
(2) (∃xs, 𝑡, 𝑡 ′ . 𝜑 (𝑡, 𝑡 ′) ∧ 𝑏 = xs ∧ 𝑠 = iLm xs 𝑡 ∧ 𝑠′ = iLm xs 𝑡 ′ ∧ xs ∈ Super) ∨
(3) (∃𝑡, ts, 𝑡 ′, ts′ . 𝜑 (𝑡, 𝑡 ′) ∧ (∀𝑡1, 𝑡2 . {𝑡1, 𝑡2} ⊆ set ts ∪ set ts′

−→ 𝜑 (𝑡1, 𝑡2)) ∧ 𝑏 = ⊥ ∧ 𝑠 = iAp 𝑡 ts ∧ 𝑠′ = iAp 𝑡 ′ ts′)

Fig. 11. The operator associated to renaming equivalence

- LiLmM: ∀𝑝, xs, 𝑡, 𝑡 ′ . set xs ∩ Psupp 𝑝 = ∅ ∧ xs ∈ Super ∧ 𝑡 ≈ 𝑡 ′ ∧ (∀𝑞. 𝜑 𝑞 𝑡 𝑡 ′) −→
𝜑 𝑝 (iLm xs 𝑡) (iLm xs 𝑡 ′)

Then ∀𝑝, 𝑡, 𝑡 ′ . 𝑡 ≈ 𝑡 ′ −→ 𝜑 𝑝 𝑡 𝑡 ′.

9.4 A criterion with explicit binders
The more general question we are led to is: Can we still obtain strong induction in situations where
equivariance fails, namely in the presence of non-equivariant restrictions on binders (such as the above
supervariable restriction)? To answer this, our Thm. 20’s (and Thm. 7’s) blurred view of binders

needs to be sharpened. Indeed, the theorem refers to an inductive predicate’s underlying operator𝐺

that acts not on binders directly, but on sets 𝐵 of variables that are typically obtained by collecting

the variables bound in the rules’ conclusions; e.g., for the (iLm) rule for affine in Fig. 9, 𝐵 is set xs.
However, the set of variables in a binder can be oblivious to restrictions on binders, as is the case

with supervariables in the ≈ example: two streams, one in and one not in Super , can have the same

set of variables. Thus, when dealing with non-equivariant restrictions on binders, we must consider

binders as first-class citizens. And LS-nominal sets again come handy for modeling this.

In addition to the 𝜅-LS-nominal set of term-like items T = (T , _[_]T, SuppT) (as before), we
consider another 𝜅-LS-nominal set B = (B, _[_]B, SuppB) of items that we will call “binders”, and

an operator 𝐺 : (T → Bool) → (B → T → Bool). Provided 𝐺 is monotonic, we again iterate it

to define the predicate 𝐼𝐺 : T → Bool inductively by the rule
𝐺 𝐼𝐺 𝑏 𝑡

𝐼𝐺 𝑡
. To tackle the problem with

non-equivariance, the key is to identify a suitable notion of relative equivariance, subject to sanity

conditions w.r.t. freshness. We fix a predicate bnd : B → Bool that singles out certain binders that

are well-formed w.r.t. our considered inductive definition, and define Perm𝜅,bnd to be the set of

𝜅-permutations 𝜎 : Var → Var that, applied via _[_]B , preserve well-formedness of binders, in

that ∀𝑏 ∈ B. bnd 𝑏 −→ bnd (𝑏 [𝜎]B). And we define bnd-equivariance by restricting equivariance

to the bijections in Perm𝜅,bnd . For example, a predicate 𝜑 : T → Bool is bnd-equivariant when 𝜑 𝑡
implies 𝜑 (𝑡 [𝜎]T) for all 𝑡 ∈ T and 𝜎 ∈ Perm𝜅,bnd .

We correspondingly generalize weak T-refreshability:𝐺 is called is weakly (T,B, bnd)-refreshable
when, for all 𝜑 : T → Bool, 𝑏 ∈ B and 𝑡 ∈ T , if ∀𝑡 ∈ 𝑇 . 𝜑 𝑡 −→ 𝐼𝐺 𝑡 , 𝜑 is bnd-equivariant and𝐺 𝜑 𝑏 𝑡 ,

then there exists 𝑏′ ∈ B with SuppB 𝑏 ∩ SuppT𝑡 = ∅ and 𝐺 𝜑 𝑏′ 𝑡 . Moreover, 𝐺 is said to be bnd-
compatible if it only holds for items satisfying the bnd restriction:𝐺 𝑅 𝑏 𝑡 implies bnd 𝑏 for all 𝑅,𝑏, 𝑡 .

Finally, we want to be able express notions of size for our explicit binders that go beyond mere

cardinality, such as “touching only finitely many supervariables”. Rather than attempting to get too

specific here, we employ an abstract predicate bsmall : P(Var) → Bool (read “binder-small”) subject

to some sanity assumptions: bsmall is said to be closed under union if bsmall 𝑋 and bsmall 𝑌 implies

bsmall (𝑋 ∪ 𝑌 ) for all 𝑋,𝑌 ⊆ Var . Moreover, 𝐼𝐺 and bnd are said to be bsmall-compatible if 𝐼𝐺 𝑡
implies bsmall (SuppT𝑡) for all 𝑡 ∈ T , and bnd 𝑏 implies bsmall (SuppB 𝑏) for all 𝑏 ∈ B, respectively.
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The above generalizes our previous setting for strong rule induction, which can be obtained by

taking B to be the 𝜅-LS-nominal set having B = P<𝜅 (Var), and _[_]B and SuppB as the image and

identity operators, respectively; and taking bnd and bsmall to be vacuously true.

All the above assumptions should be expected to hold for most reasonable choices of the bsmall
predicate, and indeed they hold for the ≈ example if we take bsmall to mean “touches only finitely

many supervariables”. So we can hope for a strong induction theorem that works when further

restricting the parameters with a bsmall-ness assumption. And indeed, the proof of Thm. 20 (which

was in turn adapted from that of Thm. 7) almost works, save for the step where we proved the

existence of a permutation 𝜏 such that the facts labelled (vi) and (vii) hold. We want something

similar to the cardinality reasoning invoked there, which applies to 𝜅-smallness, to also apply to

binder-smallness. We call the predicate bnd bsmall-liftable when the following condition holds: For

all 𝐴,𝐴′ ∈ P<𝜅 (Var) and 𝑏 ∈ B such that bsmall 𝐴 and bsmall 𝐴′
, if 𝐴′ ⊆ 𝐴 and SuppB 𝑏 ∩𝐴′ = ∅,

then there exists 𝜏 ∈ Perm𝜅,bnd such that Im 𝜏 (SuppB 𝑏) ∩𝐴 = ∅ and ∀𝑥 ∈ 𝐴′ . 𝜏 𝑥 = 𝑥 .

With these ingredients, we can prove a binder-explicit strong rule induction criterion. A parameter

structure P = (P, Psupp : P → P<𝜅 (Var)) is called bsmall-compatible if bsmall (Psupp 𝑝) for all 𝑝 .
Thm 23. Let T= (T , _[_]T, SuppT) and B = (B, _[_]B, SuppB) be 𝜅-LS-nominal sets, bnd : B →
Bool and bsmall : P(Var) → Bool predicates, and 𝐺 : (T → Bool) → (B → T → Bool) an oper-

ator, such that: (1) 𝐺 is monotonic, bnd-compatible, bnd-equivariant and (T,B, bnd)-refreshable;
(2) bsmall is closed under union; (3) 𝐼𝐺 and bnd are bsmall-compatible; (4) bnd is bsmall-liftable.

Let (P, Psupp) be a bsmall-compatible parameter structure and 𝜑 : P → T → Bool such that:

∀𝑝 ∈ P, 𝑡 ∈ T , 𝑏 ∈ B.
(
SuppB 𝑏 ∩ (Psupp 𝑝 ∪ SuppT𝑡) = ∅ ∧
𝐺 (𝜆𝑡 ′ . 𝐼𝐺 𝑡 ′ ∧ ∀𝑝′ ∈ P . 𝜑 𝑝′ 𝑡 ′) 𝑏 𝑡

)
−→ 𝜑 𝑝 𝑡 .

Then ∀𝑝 ∈ P, 𝑡 ∈ 𝑇 . 𝐼𝐺 𝑡 −→ 𝜑 𝑝 𝑡 .

Thm. 23 is, by design, a generalization of Thm. 20. Also, it can be instantiated to obtain the

desired strong induction for renaming equivalence, namely Prop. 21 (taking 𝜅 = ℵ1):

- T= (T , _[_]T, SuppT) taken as the ℵ1-LS-nominal set structure on T = ILTerm2
;

- B = (B, _[_]B, SuppB) defined by taking B = Var∞,≠
⊥ = Var∞,≠ ∪ {⊥}, where the elements of

Var∞,≠
are the proper binders and ⊥ means “no binder”; and taking _[_]B and SuppB as the

liftings to Var∞,≠
⊥ of the map and set operators from Var∞,≠

;

- bnd defined to hold for ⊥ and for any xs ∈ Super ;
- bsmall 𝐴 defined as “{xs ∈ Super | set xs ∩ 𝐴 ≠ ∅} finite”;
- 𝐺 as shown in Fig. 11, making 𝐼𝐺 (the uncurried version of) ≈.
The verification of Thm. 23’s T-refreshability assumption goes by a straightforward variation of

our previous heuristic, workingwith permutations applied directly to binders (via _[_]B) rather than
to sets of bound variables (via Im). Moreover, the bnd-compatibility of 𝐺 , the closedness of bsmall
under union, and the bsmall-compatibility of bnd are immediate; and the bsmall-compatibility of

𝐼𝐺 follows by routine standard induction on 𝐼𝐺 . The only non-routine check is that of the bsmall-
liftability of bnd, which amounts to the following property: For all xs ∈ Super and countable

sets of variables 𝐴,𝐴′
that touch only finitely many supervariables and such that 𝐴′ ⊆ 𝐴 and 𝐴′

does not touch xs, there exists a supervariable-preserving permutation 𝜎 on variables such that

{𝜎 𝑥 | 𝑥 ∈ set xs} ∩𝐴 = ∅ and Core 𝜎 ∩𝐴′ = ∅. This is proved by choosing a supervariable ys that
is distinct (hence disjoint) from xs and is not touched by 𝐴, and defining 𝜏 to swap the elements

of xs and ys componentwise and to be identity everywhere else (hence on 𝐴′
too).

10 TOOL SUPPORT AND CASE STUDIES IN ISABELLE/HOL
We mechanized this paper’s general theorems, instances and (counter) examples in Isabelle/HOL

[Nipkow et al. 2002]. We further validated our induction principles in two proof developments:
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transitivity of the System F<: subtyping (part of POPLmark [Aydemir et al. 2005]) and the isomor-

phism between the affine uniform infinitary 𝜆-calculus and the standard 𝜆-calculus [Mazza 2012].

(Apps. E, F, and G.3 give details.) We also pursued an abstract case study: proving the rule-format

based criterion of Urban et al. [2007] as an instance of our theorem. (App. A gives details.)

To support the use of the general theorems in concrete instances, we implemented a defini-

tional extension of Isabelle’s inductive specification and proof facilities, exported to users as new

commands binder_datatype, binder_inductive, and make_binder_inductive, and the proof method

binder_induction. The implementation and mechanization are available [van Brügge et al. 2025].

From a user specification of the syntax and its binders, the command binder_datatype defines
the type of terms for that syntax quotiented to alpha-equivalence along the foundations sketched

by Blanchette et al. [2019]. It also defines the constructors, renaming and free variable operators,

proves their basic properties, and infers structural induction and recursion principles. We deployed

it to obtain all this paper’s datatypes: 𝜆-terms, 𝜋-calculus processes and commitments, System F<:

types, L𝜅1,𝜅2
-formulas, and 𝜆-iterms. (Apps. G.1 and D give details.)

Our general rule induction criteria, Thms. 7, 20 and 23, were formalized using Isabelle’s locales

[Ballarin 2014; Kammüller et al. 1999], a module system allowing to fix parameters, make assump-

tions about them, and infer consequences from these assumptions. For example, with Thm. 20 the

parameters are the tuple T= (T , _[_]T, SuppT) and the operator 𝐺 : (T → Bool) → (P<𝜅 (Var) →
T → Bool), the assumptions are that T is a 𝜅-LS-nominal set and 𝐺 is monotonic, equivariant

and (weakly) T-refreshable; and the culmination of what is being inferred in that locale is the

conclusion of Thm. 20, i.e., that the indicated strong rule induction holds for the predicate 𝐼𝐺
defined inductively from𝐺 . Similarly for Thm. 7 and Thm. 23. Since Thm. 23 is more general than

Thm. 20 which in turn is more general than Thm. 7, we only proved Thm. 23 directly and inferred

Thm. 20 by showing how the former’s parameters and assumptions can be instantiated to the

latter’s parameters and assumptions via a sublocale relationship (and similarly for inferring Thm. 7

from Thm. 20). Results stated in a locale can be obtained by interpretation, Isabelle’s mechanism

for instantiating a locale’s parameters with concrete values and discharging the assumptions.

The commands binder_inductive and make_binder_inductive provide a high-level language for
the user to endow an inductive predicates with a strong (binding-aware) rule induction principle

(as an instance of our general result). binder_inductive behaves like the Isabelle/HOL inductive
command for specifying standard inductive predicates by instantiating the Knaster-Tarski theorem

(a command available in most HOL-based provers), but it additionally attempts to formulate and

prove a strong rule induction principle. Namely, from a user specification of such a predicate using

syntax identical to that required by the inductive command, our tool derives the relevant nominal

set (or 𝜅-LS-nominal set) infrastructure and the low-level operator 𝐺 (as shown in this paper’s

examples), proves an instance of Thm. 20 for𝐺 , and outputs the strong induction theorem and other

useful results such as the inductive predicate’s equivariance. Currently, the tool automates the proofs

of the (𝜅-LS-)nominal set axioms and equivariance, but requires the user to prove T-refreshability—
typically following the heuristic described in Section 6, which we have supported via some Isabelle

tactics. The command make_binder_inductive is an incremental alternative to binder_inductive,
allowing to decouple the standard inductive definition of a predicate (via “inductive”) from its

registration to produce a strong rule induction principle for it. Thus, issuing binder_inductive is
equivalent to issuing an “inductive” followed by make_binder_inductive. The advantage of this
decoupled approach is that in between the “inductive” and make_binder_inductive commands one

can state and prove any inductive properties of the predicate needed in the proof of the assumptions

for strong rule induction (as illustrated at the end of §8.2). The concrete strong rule induction

priniciples for most examples (Props. 2, 13, 14, 16, 21, and all others mentioned in Apps. B and F) were



Barendregt Convenes with Knaster and Tarski: Strong Rule Induction for Syntax with Bindings 0:27

obtained using binder_inductive. The strong rule induction principles requiring explicit binders

(Thm. 23) such as Prop. 22 and others from App. E were obtained by manual locale interpretation.

Finally, our proof method binder_induction makes strong induction convenient to deploy in

proofs. It allows the users to start induction while indicating the parameters to be avoided, as

opposed to building the parameter structure explicitly.

We conclude with an example of our toolbox for the working syntax-with-bindings formalizer

in action: the declaration of the datatype of System F<: types, the subtyping relation, and an

example proof outline (of weakening of subtyping) with essential elements particular to our tools

highlighted, namely the binding information for the datatype’s constructors—here, the fact that the

Forall constructor (denoted by ∀ in §8.2) binds the first (variable) argument into the third argument,

and the parameters to be avoided when applying strong rule induction to prove weakening.

binder_datatype ’tvar sftypeP = TVr ’tvar | Top | Fun (’var sftypeP) (’var sftypeP)
| Forall (𝑥 ::’tvar) (’tvar typ) (t::’tvar typ) binds 𝑥 in t

type_synonym sftype = tvar sftypeP

inductive ty :: (tvar × sftype) list→ tvar sftype → tvar sftype → bool (_ ⊢ _ <: _) where
SA_Top: wf Γ =⇒ closed_in S Γ =⇒ Γ ⊢ S <: Top
| SA_Refl_TVar: wf Γ =⇒ closed_in (TyVar x) Γ =⇒ Γ ⊢ TyVar x <: TyVar x
| SA_Trans_TVar: (x, U) ∈ set Γ =⇒ Γ ⊢ U <: T =⇒ Γ ⊢ TyVar x <: T
| SA_Arrow: Γ ⊢ T1 <: S1 =⇒ Γ ⊢ S2 <: T2 =⇒ Γ ⊢ Fun S1 S2 <: Fun T1 T2

| SA_All: Γ ⊢ T1 <: S1 =⇒ Γ;(x,T1) ⊢ S2 <: T2 =⇒ Γ ⊢ Forall x S1 S2 <: Forall x T1 T2

... 2 immediate lemmas about typing (mentioned at the end of §8.2) proved by rule induction

make_binder_inductive ty
... 30 lines proof of weak T-refreshability using the heuristic (§6)

lemma ty_weakening: JΓ ⊢ 𝑆 <: 𝑇 ; ⊢ wf (Γ;Δ)K =⇒ Γ;Δ ⊢ 𝑆 <: 𝑇

proof (binder_induction Γ 𝑆 𝑇 avoiding: dom Δ rule: ty_strong_induct)
... 12 lines routine proof using the strong induction principle’s Barendregt convention

Note that our datatype ’var sftypeP for System F<: types is polymorphic in the type ’tvar of
(type) variables—and this is the case with all our datatypes for this paper’s examples. This is to

achieve slightly higher generality. Namely, instead of working with a fixed set of variables of suitable

cardinality (which in the finitary case is just ℵ0), that set is kept as a parameter—and in Isabelle/HOL,

taking advantage of polymorphism, this is a type variable ’tvar of type class that specifies the
cardinality constraint. (The binder_datatype command automatically assigns ’tvar to have the

suitable type class.) This allows more flexibility in case we want to nest the given datatype inside

another datatype that perhaps requires larger sets of variables. But once the exact datatypes needed

for a case study have been decided, to cut down the unnecessary polymorphism we instantiate

the type variables with fixed types; here, we instantiate ’tvar with a fixed type tvar of suitable
cardinality (here, countable), and sftype is introduced as an Isabelle type synonym for tvar sftypeP,
i.e., for the instance of the polymorphic type ’tvar sftypeP with the fixed type tvar. The subsequent
inductive and make_binder_inductive commands shown above use this monomorphic type.

11 FURTHER RELATEDWORK
The proximal related work is Urban et al. [2007], which we have extensively discussed throughout

this paper. It is the literature’s most general account of rule induction obeying Barendregt’s variable

convention. Its syntactic format criterion generalizes previous others, which operate on particular

syntaxes [Bengtson 2010; McKinna and Pollack 1999; Norrish 2006; Urban and Norrish 2005].
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Complementary to ourwork on binding-aware rule induction is work on binding-aware datatypes.

This includes general mechanisms for building alpha-quotiented datatypes for binding signatures

[Blanchette et al. 2019; Pitts 2006; Urban and Kaliszyk 2012], and also Barendregt-convention ob-

serving (strong) structural induction and recursion [Blanchette et al. 2019; Norrish 2004; Pitts 2006].

Since structural induction can be regarded as a particular case of rule induction (for the monotonic

operator that applies the datatype’s constructors), our work can be seen as generalizing the strong in-

duction components of those works—although the main difficulty there lies with the construction of

the datatypes and the inference of the recursion principles, which are orthogonal to our contribution.

Our tool described in §10 provides support for both binding-aware rule induction and binding-

aware datatypes in Isabelle. It is more expressive than Nominal Isabelle [Urban and Tasson 2005]

(including the Nominal 2 variant [Urban and Kaliszyk 2012]) in both the allowed datatypes and

inductive predicates—reflecting the higher generality and flexibility of our criterion compared to

Urban et al. [2007]. But it is currently in a prototype stage, lacking Nominal Isabelle’s high degree

of automation which has been finetuned based on feedback from its many users over the years. We

are contemplating a future integration of these two tools, combining the best of both worlds.

We are not the first to relax the finite support assumption of nominal sets—Pitts [2013, §2.10]

summarizes existing approaches. On the way to his completeness theorem for nominal logic,

Cheney [2006] generalizes the support operator by noticing that the finite subsets of atoms (in

our terminology, variables) Pfin (Var) form an ideal of P(Var) that contains all singleton sets {𝑥},
and replacing Pfin (Var) with an arbitrary such ideal I, thus introducing I-nominal sets—defined

as pre-nominal sets such that every element has a supporting set of atoms from I. The role of
I-nominal sets is that nominal logic deduction becomes complete w.r.t. these looser, ideal-supported

models. Since P<𝜅 (Var) is also such an ideal, Cheney’sI -nominal sets cover structures with infinite

support. However, regardless of the ideal I (be it Pfin (Var), or P<𝜅 (Var), etc.), Cheney still defines

the notion of supporting set using swapping, which is equivalent to using finite-core permutations,

whereas we allow larger permutations whose cores have cardinality < 𝜅. While staying with

finite-core permutations was suitable for Cheney’s goal of proving completeness, as we discuss in

Remark 18 strong induction coping with 𝜅-small support requires 𝜅-small-core permutations. Since

I-nominal sets are (semi-)natural w.r.t. finite-core permutations only, a variation of our Thm. 20

would apply to I-nominal sets if we restricted the parameters to be finitely supported (i.e., Psupp
to return finite sets). But being able to avoid only finitely many variables when proving facts about

structures having infinitely many (free) variables would not be very useful.

Dowek and Gabbay [2012] introduce permissive nominal sets, a generalization of nominal sets

based on separating atoms (variables) in two categories, along the distinction between free and

bound variables. The elements in permissive nominal sets have supporting permission sets, which
contain finitely many atoms of one category and co-finitely many of the other; this ensures the

existence of least supporting sets. Like with Cheney’s I-nominal sets and differently from our

𝜅-LS-nominal sets, the notion of supporting set is defined there using finite-core permutations.

Permissive nominal sets are the semantic underpinning of permissive nominal logic [Dowek and

Gabbay 2012, 2023; Dowek et al. 2010], an elaborate extension of nominal logic with enhanced

support for contextual and higher-order reasoning. Another difference between both I-nominal sets

and permissive nominal sets and our LS-nominal sets is that, the former retain the minimality of the

support whereas in the latter we replaced minimality with the weaker axiom of (semi-)naturality.

Gabbay [2007] develops a nominal-style axiomatic set theory, FMG (Fraenkel-Mostowski Gener-

alized), which generalizes the Fraenkel-Mostowski set theory previously introduced by Gabbay and

Pitts [2002] as a foundation for nominal logic. In FMG, “smallness” of a set (such as the support of an

item) no longer means “finiteness”, but the possibility to internally well-order that set. This covers

in particular cardinality bounds like the ones we use in LS-nominal sets. When developing his
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theory, Gabbay also constructs datatypes and develops mechanisms for extending functions from

representatives to equivalence classes (via his Barendregt abstractive functions). Our preliminary

investigations suggest that our criterion for strong rule induction could be adapted to Gabbay’s

FMG, complementing his results about datatypes and recursive-function definition principles.

Like the above works, we operate within (a transfinite generalization of) the nominal paradigm,

where the names of the variables are visible, but ultimately irrelevant in that their choice does not

matter. Barendregt’s convention only makes sense in this paradigm. The other two major paradigms

on representing and reasoning about syntax with bindings are based on nameless / De Bruijn repre-

sentations [de Bruijn 1972] (and its type-safe and scope-safe generalizations, e.g., [Allais et al. 2018;

Fiore et al. 1999; Schäfer et al. 2015]) and higher-order abstract syntax (HOAS) [Baelde et al. 2014;

Harper et al. 1987; Pfenning and Elliott 1988; Pfenning and Schürmann 1999; Pientka 2010]. (Cross-

paradigm hybrids have also been proposed, e.g., [Aydemir et al. 2008; Charguéraud 2012; Felty and

Momigliano 2012; McKinna and Pollack 1999; Pollack et al. 2012].) There are relative pros and cons

between these paradigms [Abel et al. 2017; Berghofer and Urban 2006; Felty and Momigliano 2012;

Gheri and Popescu 2020; Kaiser et al. 2017; Norrish and Vestergaard 2007]. An advantage of the nom-

inal paradigm is faithfulness to the informal, textbook descriptions of the systems. Our contribution

is also in this direction, by lowering the informal-formal gap in nominal-style strong rule induction.

While our LS-nominal sets accommodate both infinitely branching and infinitely deep (non-

well-founded) syntax, our infinitary examples (in §9.1, §9.3, and App. E) only involve the former.

The latter also has a rich literature—centered around concepts such as Böhm, Lévy-Longo and

Berarducci trees [Barendregt and Klop 2009; Berarducci and Dezani-Ciancaglini 1999], used in

the 𝜆-calculus semantics. While inductively defined predicates on non-well-founded trees will

fall under our strong induction criterion, such structures are often best explored not inductively,

but coinductively, i.e., via predicates defined not as least but as greatest fixed points. We leave as

future work the study of Barendregt’s variable convention for rule-based coinduction. This would

complement existing results on nominal-syle codatypes and corecursion [Blanchette et al. 2019;

Kurz et al. 2012, 2013; Milius and Wißmann 2015; Popescu 2024].
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APPENDIX

This appendix provides more details, extensions and case studies pertaining to the concepts and

results presented in the main paper. Specifically, it provides:

• a formal account of Urban et al.’s strong rule induction criterion (§A) including a proof that

it is subsumed by our criterion;

• the application of our criterion to an alternative variant of 𝜋-calculus that distinguishes

between structural and operational rules §B

• more details on 𝜅-LS-nominal sets, including a statement and proof sketch of their closure

properties (§C);

• details on the datatypes of terms with bindings used in our examples, namely finitary and

infinitary 𝜆-calculus terms, and 𝜋-calculus processes (§D);

• a formal proof development, taking advantage of our strong rule induction infrastrucrure

(as well as of some datatype-specific infrastructure), leading to the isomorphism between

affine uniform infinitary 𝜆-calculus and finitary 𝜆-calculus established by Mazza [2012]

(§E);

• a formal proof of the transitivity of the subtyping relation for System F<:, a smaller case

study (§F);

• a description of our Isabelle implementation and formalization of the case studies (§G).

A THE URBAN ET AL. PRINCIPLE
In this section we present a formalization of Urban et al. [2007]’s strong rule induction criterion

and show that it follows as an instance of our criterion. For the whole section, we assume that Var
is countable.

Urban et al. describe their criterion using schematic rules. To formalize these, we fix two infinitely

countable sets:

• VMVar , ranged over by 𝑢, 𝑣 , of variable metavariables
• TMVar , ranged over by𝑈 ,𝑉 , of term metavariables

A signature is a pair Σ = (Sym, arOf : Sym → N) where Sym, ranged over by 𝜎 , is a set of

items called operation symbols and arOf associates numeric arities to them. The schematic terms
(sterms) over Σ, forming the set SchTerm(Σ), ranged over by 𝑠, 𝑠′ etc., are generated by the following
grammar:

𝑠 ::= VVr 𝑢 | TVr 𝑈 | SAbs 𝑢 𝑠 | SOp 𝜎 (𝑠1, . . . , 𝑠arOf 𝜎 )
Thus, an sterm is either a variable metavariable, or a termmetavariable, or recursively a schematic

abstraction of a variable metavariable in an sterm, or recursively an operation symbol applied

(symbolically) to a tuple of sterms of length matching the symbol’s arity.

Example 24. Assume Σ = {ap, sub}, and assume arOf ap = 2 and arOf sub = 3. Given variable

metavariables 𝑢 and term metavariables𝑈 ,𝑈 ′
, we have that

SOp ap (SAbs 𝑢 (TVr 𝑈 ), TVr 𝑈 ′)
is an sterm, which can be thought of as a schematic representation of a 𝜆-term of the form

Ap (Lm 𝑥 𝑡) 𝑡 ′ for unspecified variable 𝑥 and terms 𝑡, 𝑡 ′. Moreover,

SOp sub (TVr 𝑈 ′) (TVr 𝑈 ) (VVr 𝑢)
is an sterm, which can represent a term of the form 𝑡 ′ [𝑡/𝑥], again for unspecified variable 𝑥 and

terms 𝑡, 𝑡 ′. (Such intuitive readings will be made precise below using enriched nominal sets and

interpretations.) □
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In their criterion, Urban et al. implicitly refer to interpretations of the schematic terms as concrete

term-like entities (inhabitants of nominal sets, such as the set of 𝜆-terms). In order to formalize

their criterion and compare it to ours, we will need to make these interpretations explicit.

Def 25. Given a signature Σ = (Sym, arOf ), a Σ-enriched nominal set is a tuple T = (T , _[_]T,
Vr,Abs,Op) where (T , _[_]T) is a nominal set, and Vr : Var → T , Abs : Var → T → T and

Op :

∑
𝜎∈Sym (T arOf 𝜎 → T ) are some operators. We will write _[_] instead of _[_]T.

Schematic terms are naturally interpreted in Σ-enriched nominal sets T= (T , _[_],Vr,Abs,Op),
in the context of:

• valuations 𝜌 : VMVar → Var of the variable metavariables as variables and

• valuations 𝛿 : TMVar → T of the term metavariables as “term-like entities” provided by the

nominal set, i.e., elements of T .

Namely, the interpretation function

intT : (VMVar → Var) → (TMVar → T ) → SchTerm(Σ) → T

has the expected recursive definition, where 𝜌 is applied to variable metavariables leaves and

abstractions, 𝛿 is applied to term metavariable leaves, and SVr , SAbs and SOp are interpeted as Vr ,
Abs and Op:

• intT 𝜌 𝛿 (VVr 𝑢) = Vr (𝜌 𝑢)
• intT 𝜌 𝛿 (TVr 𝑈 ) = 𝛿 𝑈
• intT 𝜌 𝛿 (SAbs 𝑢 𝑠) = Abs (𝜌 𝑢) (intT 𝜌 𝛿 𝑠)
• intT 𝜌 𝛿 (SOp 𝜎 (𝑠1, . . . , 𝑠arOf 𝜎 )) = Op 𝜎 (intT 𝜌 𝛿 𝑠1, . . . , intT 𝜌 𝛿 𝑠arOf 𝜎 )

The interpretation is extended from sterms to tuples of sterms componentwise:

intT 𝜌 𝛿 (𝑠1, . . . , 𝑠𝑘 ) = (intT 𝜌 𝛿 𝑠1, . . . , intT 𝜌 𝛿 𝑠𝑘 )

Example 26. In the context of Example 24, taking Tto be the nominal set of 𝜆-terms, in particular

taking 𝑇 = LTerm, and taking:

• Vr to be the injection of variables into 𝜆-terms (also denoted by Vr),
• Abs 𝑥 𝑡 to be Lm 𝑥 𝑡 ,

• Op ap (𝑡1, 𝑡2) = Ap 𝑡1 𝑡2, and Op sub (𝑡1, 𝑡2,Vr 𝑥) = 𝑡1 [𝑡2/𝑥].
and assuming 𝜌 𝑢 = 𝑥 , 𝛿 𝑈 = 𝑡 and 𝛿 𝑈 ′ = 𝑡 ′, then we have

intT (SOp ap (SAbs 𝑢 (TVr 𝑈 ), TVr 𝑈 ′)) = Ap (Lm 𝑥 . 𝑡) 𝑡 ′

and intT (SOp sub (TVr 𝑈 ′) (TVr 𝑈 ) (VVr 𝑢)) = 𝑡 ′ [𝑡/𝑡 ′]. □

Def 27. A schematic rule over Σ and 𝑛 is a triple of the form (hyps, conc, side) where
• hyps = (hyps

1
, . . . , hyps𝑘 ), the hypotheses, is a sequence of 𝑛-tuples of sterms, hyps𝑖 =

(𝑠𝑖,1, . . . , 𝑠𝑖,𝑛);
• conc, the conclusion, is an 𝑛-tuple of sterms, conc = (𝑠′

1
, . . . , 𝑠′𝑛);

• side = (side1, . . . , side𝑙 ), the side-condition, is triple of pairs side𝑖 = (sideT 𝑖 , sideV 𝑖 , sideP𝑖 )
where:

– sideT 𝑖 ∈ SchTerm(Σ)𝑟𝑖 is a tuple of schematic terms (say, if size 𝑟𝑖 );

– sideV 𝑖 ∈ VMVar𝑞𝑖 is a tuple of variable metavariables (say, if size 𝑞𝑖 );

– sideP𝑖 : T𝑟𝑖 → Var𝑞𝑖 → Bool is a predicate on tuples of terms and tuples of variables

of arities matching the sizes of the above tuples;
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((hyps
1
, . . . , hyps𝑘 ), conc, (side1, . . . , side𝑙 )) ∈ Rls

𝐽Rls,T (intT 𝜌 𝛿 hyps
1
) . . . 𝐽Rls,T (intT 𝜌 𝛿 hyps𝑘 )

𝐽Rls,T (intT 𝜌 𝛿 conc) [∧𝑙
𝑖=1

sideP𝑖 (intT 𝜌 𝛿 sideT 𝑖 ) (𝜌 sideV 𝑖 )]

Fig. 12. The inductive predicate 𝐽Rls,T induced by Rls over T

A schematic rule (hyps, conc, side) is meant to be visualized as follows:

hyps
1
. . . hyps𝑘
conc

[side]

We think of it as allowing one to infer the conclusion from the hypotheses in the presence of the

side-conditions. This intuition is made precise below, where we define the inductive predicate

induced by applying concrete interpretations of the schematic rules.

Given 𝜌 : VMVar → Var and any number 𝑞, we write 𝜌 for the componentwise extension of 𝜌

to VMVar𝑞 → Var𝑞 .

Def 28. Let Rls be a set of schematic rules over Σ and 𝑛, and let T = (T , _[_],Vr,Abs,Op) be a
Σ-enriched nominal set. We define 𝐽Rls,T : T𝑛 → Bool, the inductive predicate induced by Rls over T,
to be the least (pre)fixpoint obtained by applying the schematic rules interpreted in all possible

ways, as shown in Fig. 12.

Example 29. We place ourselves in the context of Example 26. The rule (ParBeta’) from §8, namely

𝑡1 ⇒ 𝑡 ′
1

𝑡2 ⇒ 𝑡 ′
2

Ap (Lm 𝑥 𝑡1) 𝑡2 ⇒ 𝑡 ′
1
[𝑡 ′

2
/𝑥]

(ParBeta’)

[𝑥 ∉ FV 𝑡2 ∪ FV 𝑡 ′
2
]

can be expressed as the schematic rule SParBeta’ = (hyps, conc, side) where:
• hyps = (hyps

1
, hyps

2
) (so, in the notations of Def. 27,𝑘 = 2), where hyps

1
= (TVr 𝑈1, TVr 𝑈 ′

1
)

and hyps
2
= (TVr 𝑈2, TVr 𝑈 ′

2
) for some fixed distinct term metavariables𝑈1,𝑈

′
1
,𝑈2,𝑈

′
2
;

• conc = (𝑠1, 𝑠2) where 𝑠1 and 𝑠2 are the following schematic terms:

– 𝑠1 = SOp ap (SAbs 𝑢 TVr 𝑈1, TVr 𝑈2);
– 𝑠2 = SOp sub (TVr 𝑈 ′

1
, TVr 𝑈 ′

2
, SVr 𝑢)) for a fixed variable metavariable 𝑢;

• side = (side1) (so 𝑙 = 1) and side1 = (sideT 1, sideV 1, sideP1), where sideT 1 = (TVr𝑈2, TVr𝑈 ′
2
)

(a 2-ary tuple, so 𝑟1 = 2), sideV 1 = (𝑢) (a singleton tuple, so 𝑞1 = 1), and sideP1 : T 2 →
Var → VarT is defined by sideT 1 (𝑡, 𝑡 ′) 𝑥 = (𝑥 ∉ FV 𝑡 ∪ FV 𝑡 ′).

So if we write this schematic rule in the form

hyps
1
. . . hyps𝑘
conc

[side]

more precisely, in the form

hyps
1

hyps
2

conc

[(sideT 1,

sideV 1,

sideP1)]
we get obtain what is shown in Fig. 13.

One can check that, when applying Def. 28 to the above schematic rule SParBeta’ (say, taking Rls
to consist of only SParBeta’), i.e., interpreting the variable metavariables and term metavariables of

SParBeta’ in arbitrary ways, i.e., essentially interpreting 𝑢 and 𝑈1,𝑈2,𝑈
′
1
,𝑈 ′

2
as arbitrary variable 𝑥

and terms 𝑡1, 𝑡2, 𝑡
′
1
, 𝑡 ′

2
, and evaluating the side-condition accordingly, we obtain exactly (ParBeta’). □

Before stating Urban et al.’s strong induction criterion, let us recall the baseline induction principle

associated to Fig. 12’s definition of 𝐽Rls,T (and following directly from that definition):
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(TVr 𝑈1, TVr 𝑈 ′
1
) (TVr 𝑈2, TVr 𝑈 ′

2
)

(SOp ap (SAbs 𝑢 (TVr 𝑈1), TVr 𝑈2),
SOp sub (TVr 𝑈 ′

1
, TVr 𝑈 ′

2
, SVr 𝑢))

[((TVr 𝑈2, TVr 𝑈 ′
2
),

(𝑢),
𝜆(𝑡, 𝑡 ′), 𝑥 . (𝑥 ∉ FV 𝑡 ∪ FV 𝑡 ′))]

Fig. 13. Schematic rule corresponding to (ParBeta’). Note that the side-condition’s predicate, 𝜆(𝑡, 𝑡 ′), 𝑥 . (𝑥 ∉

FV 𝑡 ∪ FV 𝑡 ′), is aimed to be evaluated on term interpretations of the tuple (pair) of sterms (TVr 𝑈2, TVr 𝑈 ′
2
)

and varriable interpretations of the variable metavariable 𝑢.

Thm 30. Assume Rls is a set of schematic rules over Σ and 𝑛, and T= (T , _[_],Vr,Abs,Op) is a
Σ-enriched nominal set. Let and 𝜑 : T𝑛 → Bool and assume the following holds:

For all ((hyps
1
, . . . , hyps𝑘 ), conc, (side1, . . . , side𝑙 )) ∈ Rls, 𝜌 : VMVar → Var and 𝛿 : TMVar → T ,

we have that

(1)

∧𝑘
𝑖=1

𝐽Rls,T (intT 𝜌 𝛿 hyps𝑖 ) ∧ 𝜑 (intT 𝜌 𝛿 hyps𝑖 ) and
(2)

∧𝑙
𝑖=1

sideP𝑖 (intT 𝜌 𝛿 sideT 𝑖 ) (𝜌 sideV 𝑖 )
imply

(3) 𝜑 (intT 𝜌 𝛿 conc).
Then ∀𝑡 ∈ T . 𝐽Rls,T 𝑡 −→ 𝜑 𝑡 .

Urban et al.’s criterion, which we will describe next, is an improvement of the above that allows

the variables appearing bound in the rules’ conclusions to be assumed disjoint from given finite

sets of variables (produced via finitely supported parameters).

We define the set of bound variable metavariables BVMs 𝑠 of an sterm 𝑠 to consist of those variable

metavariables appearing in abstraction subterms SAbs 𝑢 𝑠 , namely:

• BVMs (VVr 𝑢) = ∅
• BVMs (TVr 𝑈 ) = ∅
• BVMs (SAbs 𝑢 𝑠) = {𝑢} ∪ BVMs 𝑠
• BVMs (SOp 𝜎 (𝑠1, . . . , 𝑠arOf 𝜎 ) =

⋃arOf 𝜎
𝑖=1

BVMs 𝑠𝑖
This is extended as expected to tuples of terms

BVMs (𝑠1, . . . , 𝑠𝑘 ) =
𝑘⋃
𝑖=1

BVMs 𝑠𝑖

and then to entire rules: If rl = (hyps, conc, side) where hyps = (hyps
1
, . . . , hyps𝑘 ) and side =

(side1, . . . , side𝑙 ) with each side𝑖 having the form (sideT 𝑖 , sideV 𝑖 , sideP𝑖 ), then

BVMs rl = (⋃𝑘
𝑖=1

BVMs hyps𝑖 ) ∪ (⋃𝑙
𝑖=1

BVMs sideT 𝑖 ) ∪ BVMs conc

In short, the bound variable metavariables of a rule are those variable metavariables occurring in

an abstraction inside of an sterm in that rule’s hypotheses, side conditions or conclusion.

Now we are almost ready to state the Urban et al. criterion, which is based on two requirements.

First, it requires that, for each rule rl ∈ Rls, equivariance holds for all the involved operators and

predicates. Second, it requires, for each rule rl ∈ Rls, the following condition, formulated quite

informally [Urban et al. 2007, Def. 5]: “the side-conditions 𝑆1 ss1 ∧ . . . ∧ 𝑆𝑚 ss𝑚 imply that the

variables in as are fresh for ts and they are distinct”, where:

• ts is the tuple of term-like items from rl’s conclusion, i.e., conc in our notation;

• 𝑆𝑖 are the side-condition predicates, in our notation, sideP𝑖 .
As for the ss𝑖 ’s mentioned above, the only way to make sense of them is as the interpretations of the
tuples of variable metavariables and sterms appearing in the side-conditions—so, in our notation,



Barendregt Convenes with Knaster and Tarski: Strong Rule Induction for Syntax with Bindings 0:37

(TVr 𝑈1, TVr 𝑈 ′
1
) (TVr 𝑈2, TVr 𝑈 ′

2
)

(SOp ap (SAbs 𝑢 (TVr 𝑈1), TVr 𝑈2), SOp sub (TVr 𝑈 ′
1
, TVr 𝑈 ′

2
, SVr 𝑢))

[((),
(),
𝜆 _ _. True]

Fig. 14. Schematic rule corresponding to (ParBeta). The side-condition is vacuous (trivially true).

the interpretations of the tuples sideT 𝑖 and sideV 𝑖 (and not the tuples themselves).
1
Just to have a

name for it,we will call this second Urban et al. condition vc-amenability. Our above discussion
leads to the following definition:

Def 31. A rule rl = (hyps, conc, side), where conc = (conc1, . . . , conc𝑛) and side = (side1, . . . , side𝑙 ),
is said to be variable-convention- (vc-) amenable if, for all 𝑢 ∈ BVMs rl, 𝜌 : VMVar → Var and
𝛿 : TMVar → T , we have that

∧𝑙
𝑖=1

sideP𝑖 (intT 𝜌 𝛿 sideT 𝑖 ) (𝜌 sideV 𝑖 ) implies that 𝜌 𝑢 is fresh for

all items in the tuple intT 𝜌 𝛿 conc, i.e.,
∧𝑛

𝑗=1
𝜌 𝑢 ∉ Tvars (intT 𝜌 𝛿 conc 𝑗 ).

(As it turns out, we do not actually need any condition corresponding to the Urban et al. afore-

mentioned distinctness requirement.)

Example 32. We can check that the schematic rule SParBeta’ from Example 29 is vc-amenable.

Indeed, BVMs (SParBeta’) = {𝑢}, so, also expanding the definitions of the particular components of

this rule and the recursive definition of intT, we see that vc-amenability amounts to the following

property:

For all 𝜌 : VMVar → Var and 𝛿 : TMVar → LTerm,

𝜌 𝑢 ∉ Tvars (𝛿 𝑈2) ∪ Tvars (𝛿 𝑈 ′
2
)

implies

𝜌 𝑢 ∉ Tvars (Op ap (Abs (𝜌 𝑢) (𝛿 𝑈1), 𝛿 𝑈2)) and 𝜌 𝑢 ∉ Tvars (Op sub (𝛿 𝑈 ′
1
, 𝛿 𝑈 ′

2
, 𝜌 𝑢)).

Writing 𝑥 for 𝜌 𝑢, 𝑡𝑖 for 𝛿 𝑈𝑖 and 𝑡
′
𝑖 for 𝛿 𝑈

′
𝑖 (where 𝑖 ∈ {1, 2}), this is equivalent to:

For all 𝑥 ∈ Var and 𝑡1, 𝑡 ′1, 𝑡2, 𝑡
′
2
∈ LTerm,

𝑥 ∉ Tvars 𝑡2 ∪ Tvars 𝑡 ′
2

implies

𝑥 ∉ Tvars (Op ap (Abs 𝑥 𝑡1), 𝑡2)) and 𝑥 ∉ Tvars (Op sub (𝑡 ′
1
, 𝑡 ′

2
, 𝑥)).

Furthermore, applying the definitions of Tvars, Op and Abs for this particular Σ-enriched nominal

set, this is equivalent to:

For all 𝑥 ∈ Var and 𝑡1, 𝑡 ′1, 𝑡2, 𝑡
′
2
∈ LTerm,

𝑥 ∉ FV 𝑡2 ∪ FV 𝑡 ′
2

implies

𝑥 ∉ FV (Ap (Lm 𝑥 𝑡1) 𝑡2) and 𝑥 ∉ FV (𝑡 ′
1
[𝑡 ′

2
/𝑥]).

The last is true by the properties of free variables and substitution on 𝜆-terms, since

FV (Ap (Lm 𝑥 𝑡1) 𝑡2) = FV 𝑡1 ∖ {𝑥} ∪ FV 𝑡2 and FV (𝑡 ′
1
[𝑡 ′

2
/𝑥]) = FV 𝑡 ′

1
∖ {𝑥} ∪ FV 𝑡 ′

2
.

On the other hand, the schematic rule corresponding to the rule (ParBeta) from §2 (i.e., (ParBeta’)

without the side-condition), shown in Fig. 14, is not vc-amenable, because its vc-amenability is

equivalant to the following clearly false statement:

For all 𝑥 ∈ Var and 𝑡1, 𝑡 ′1, 𝑡2, 𝑡
′
2
∈ LTerm, 𝑥 ∉ FV (Ap (Lm 𝑥 𝑡1) 𝑡2) and 𝑥 ∉ FV (𝑡 ′

1
[𝑡 ′

2
/𝑥]). □

Now we can rigorously define Urban et al.’s notion of vc-compatibility, and state their criterion:

1
This is the main point where we must resolve the ambiguity of variables and terms versus variable metavariables and

sterms from Urban et al.’s account.
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Def 33. Let T= (T , _[_],Abs,Op) is a Σ-enriched nominal set, 𝑛 ∈ N, and Rls be a set of schematic

rules over Σ and 𝑛. Then we say that the pair (T, Rls) is variable-convention- (vc-) compatible if the
following two conditions hold:

• Abs, Op and all the predicates sideP𝑖 from side-conditions of the schematic rules in Rls are
equivariant.

• the schematic rules in Rls are vc-amenable.

Thm 34. [Urban et al. 2007] Assume Rls is a set of schematic rules over Σ and 𝑛, and T= (T , _[_],
Vr,Abs,Op) is a Σ-enriched nominal set such that (T, Rls) is vc-compatible.

Let P be a set and Psupp : P → Pfin (Var). Let 𝜑 : P → T𝑛 → Bool and assume the following

holds:

For all 𝑝 ∈ P , rl = ((hyps
1
, . . . , hyps𝑘 ), conc, (side1, . . . , side𝑙 )) ∈ Rls, 𝜌 : VMVar → Var and

𝛿 : TMVar → T such that BVMs rl ∩ Psupp 𝑝 = ∅, we have that
(1)

∧𝑘
𝑖=1

𝐽Rls,T (intT 𝜌 𝛿 hyps𝑖 ) ∧ (∀𝑝. 𝜑 𝑝 (intT 𝜌 𝛿 hyps𝑖 ))
and

(2)

∧𝑙
𝑖=1

sideP𝑖 (intT 𝜌 𝛿 sideT 𝑖 ) (𝜌 sideV 𝑖 )
imply

(3) 𝜑 (intT 𝜌 𝛿 conc).
Then ∀𝑝 ∈ P, 𝑡 ∈ T . 𝐽Rls,T 𝑡 −→ 𝜑 𝑝 𝑡 .

Proof. We will show that the structures and assumptions of this theorem are a particular case of

those of our Thm. 7. Since “T ” is already in use (denoting the fixed Σ-enriched nominal set), we will

“prime” the notation for the nominal set required by Thm. 7, thus denoting it by T ′ = (T ′, _[_]′T ′ ).
We will write _[_]′ instead of _[_]′T ′

and Supp′ instead of Supp′T
′
.

We take T ′ = (T ′, _[_]′) to be 𝑛’th power of the nominal set (T , _[_]), more precisely we define

T ′ = T𝑛
and (𝑡1, . . . , 𝑡𝑛) [_] = (𝑡1 [_], . . . , 𝑡𝑛 [_]). Note that Supp′ (𝑡1, . . . , 𝑡𝑛) =

⋃𝑛
𝑖=1

Supp 𝑡𝑖 .
We define 𝐺 : (T ′ → Bool) → (Pfin (Var) → T ′ → Bool) as follows:
𝐺 𝜑 𝐵 𝑡 ′ ≡
∃rl = ((hyps

1
, . . . , hyps𝑘 ), conc, (side1, . . . , side𝑙 )) ∈ Rls. ∃𝜌 : VMVar → Var, 𝛿 : TMVar → T .

𝐵 = Im 𝜌 (BVMs rl) ∧ 𝑡 ′ = intT 𝜌 𝛿 conc ∧
(∧𝑘

𝑗=1
𝜑 (intT 𝜌 𝛿 hyps 𝑗 )) ∧ (∧𝑙

𝑖=1
sideP𝑖 (intT 𝜌 𝛿 sideT 𝑖 ) (𝜌 sideV 𝑖 ))

Note that, if we ignore the Pfin (Var)-argument 𝐵 (highlighted above), 𝐺 is just the operator

underlying Fig. 12’s inductive definition of 𝐽Rls,T. In addition,𝐺 requires that 𝐵 is the interpretation

(via 𝜌) of all the bound variable metavariables of the given rule.

We now verify for T ′
and 𝐺 the hypotheses of Thm. 7:

• 𝐺 is immediately monotonic (in fact, the monotonicy of𝐺 is what guarantees the correctness

of 𝐽Rls,T’s definition in the first place).

• That𝐺 is equivariant follows from all the involved operators and predicates being assumed

equivariant.

• For verifying the T ′
-refreshability of 𝐺 , we verify the stronger T ′

-freshness condition (see

Def. 6): by our choice of 𝐵, this condition is here equivalent to the assumed vc-amenability.

We therefore infer the conclusion of Thm. 7, which we apply for the parameter structure

(P, Psupp). Expanding the definition of 𝐺 , this gives us exactly the desired induction principle. □

Summary. In the main paper we mention two improvements of our strong induction criterion

compared to Urban et al’s criterion, namely (1) the ability to cope with “native” rules of calculi

such as (ParBeta) thanks to the more general condition (T-refreshability) and (2) the more general,
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𝑃 || 𝑄 ≡ 𝑄 || 𝑃 (ParCommut) (𝑃 || 𝑄) || 𝑅 ≡ 𝑃 || (𝑃 || 𝑅) (ParAssoc) 𝑃 || 0 ≡ 𝑃 (ParZ)

𝜈 (𝑥). 𝜈 (𝑦). 𝑃 ≡ 𝜈 (𝑦) . 𝜈 (𝑥) . 𝑃 (NuCommut) 𝜈 (𝑥). 0 ≡ 0 (NuZero)

𝜈 (𝑥) . (𝑃 || 𝑄) ≡ (𝜈 (𝑥). 𝑃) || 𝑄 (NuPar)

[𝑥 ∉ FV 𝑄] !𝑃 ≡ 𝑃 || !𝑃 (Repl)

𝑃 ≡ 𝑃 (Refl)

𝑃 ≡ 𝑄
𝑄 ≡ 𝑃 (Sym)

𝑃 ≡ 𝑄 𝑄 ≡ 𝑅
𝑄 ≡ 𝑅 (Trans)

Structural rules

(𝑎 𝑥. 𝑃) || (𝑎(𝑦) . 𝑄) =⇒ 𝑃 || (𝑄 [𝑦/𝑥]) (Com)

𝑃 =⇒ 𝑄

𝑃 || 𝑅 =⇒ 𝑄 || 𝑅 (ParCong)

𝑃 =⇒ 𝑄

𝜈 (𝑥). 𝑃 =⇒ 𝜈 (𝑥) . 𝑄 (NuCong)

𝑃 ≡ 𝑃 ′ 𝑃 =⇒ 𝑄 𝑄 ≡ 𝑄 ′

𝑃 ′ =⇒ 𝑄 ′ (Compat)

Operational rules (reduction semantics modulo ≡)

Fig. 15. Variant of 𝜋-calculus based on structural congruence

semantic nature, based on Knaster-Tarski, which allows more flexible rules, not having to fit a

given format. Above we showed how our criterion implies theirs. Having to define their criterion

rigorously incurs a significant amount of technical details, which we believe further advocates for

the comparative elegance of our semantic approach. On the other hand, admittedly a rule-format

based criterion seems more straightforward to implement.

B STRONG RULE INDUCTION FOR A 𝜋-CALCULUS WITH STRUCTURAL RULES
Next we show how our strong rule induction criterion applies to one of the standard presentations

of 𝜋-caclulus [Milner et al. 1992; Sangiorgi and Walker 2001], namely one that:

• first defines some structural rules, via an inductively defined equivalence relation ≡ on

processes;

• then defines a reduction semantics =⇒ on processes that operates modulo ≡.
Fig. 15 shows the inductive definitions of these two relations. Thm. 7 instantiates to both of them

and gives the following strong rule induction principles for them. The verification of the theorem’s

hypotheses proceeds again seamlessly along our §6’s heuristic.

Prop 35. Let (P, Psupp : P → Pfin (Var)) be a parameter structure. Let 𝜑 : P → Proc → Proc →
Bool and assume the following hold:

- [cases different from LNuCommutM, LNuZeroM and LNuParM omitted, as they don’t involve

binders]
2

- LNuCommutM: ∀𝑝, 𝑥,𝑦, 𝑃 . 𝑥,𝑦 ∉ Psupp 𝑝 −→ 𝜑 𝑝 (𝜈 (𝑥). 𝜈 (𝑦). 𝑃) (𝜈 (𝑦). 𝜈 (𝑥). 𝑃)
- LNuZeroM: ∀𝑝, 𝑥 . 𝑥 ∉ Psupp 𝑝 −→ 𝜑 𝑝 (𝜈 (𝑥). 0) 0

- LNuParM: ∀𝑝, 𝑥, 𝑃 . 𝑥 ∉ Psupp 𝑝 ∧ 𝑥 ∉ FV 𝑄 −→ 𝜑 𝑝 (𝜈 (𝑥). (𝑃 || 𝑄)) ((𝜈 (𝑥). 𝑃) || 𝑄)
Then ∀𝑝, 𝑃, 𝑃 ′ . 𝑃 ≡ 𝑃 −→ 𝜑 𝑝 𝑃 𝑃 ′.

2
Here and elsewhere (inclding throughout the paper): We omit these cases because they do not exhibit anything new

compared to standard induction. But this is not to suggest that the rules corresponding to these cases are completely

irrelevant for the conditions that need to be verified in order for Thm. 23 to apply—for example, their building blocks must

still be equivariant.
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Prop 36. Let (P, Psupp : P → Pfin (Var)) be a parameter structure. Let 𝜑 : P → Proc → Proc →
Bool and assume the following hold:

- [cases different from LComM and LNuCongM omitted, as they don’t involve binders]

- LComM: ∀𝑝, 𝑎, 𝑥,𝑦, 𝑃 . 𝑦 ∉ Psupp 𝑝 ∪ {𝑎, 𝑥} ∪ FV 𝑃 −→ 𝜑 𝑝 (𝑎 𝑥. 𝑃) || (𝑎(𝑦). 𝑄)) (𝑃 || (𝑄 [𝑦/𝑥]))
- LNuCongM: ∀𝑝, 𝑥, 𝑃,𝑄. 𝑥 ∉ Psupp 𝑝 ∧ (𝑃 =⇒ 𝑄) ∧ (∀𝑝′ . 𝜑 𝑝′ 𝑃 𝑄) −→ 𝜑 𝑝 (𝜈 (𝑥). 𝑃) (𝜈 (𝑥). 𝑄)
Then ∀𝑝, 𝑃, 𝑃 ′ . (𝑃 =⇒ 𝑃 ′) −→ 𝜑 𝑝 𝑃 𝑃 ′.

Since ≡ participates in the definition of =⇒, its equivariance is required in order to instantiate

Thm. 7 to =⇒ (yielding Prop. 36).

Similarly to other situations discussed in the main paper, again Prop. 36 shows some improve-

ments compared to prior state of the art. Namely, it allows us to assume not only 𝑦 ∉ Psupp 𝑝 , but
also 𝑦 ∉ {𝑎, 𝑥} and 𝑦 ∉ FV 𝑃 , whereas, in order to apply, the [Urban et al. 2007] criterion would

instead require that 𝑦 ∉ {𝑎, 𝑥} and 𝑦 ∉ FV 𝑃 be added as side-conditions to the rule (Com).

C MORE DETAILS AND PROOFS ABOUT 𝜅-LS-NOMINAL SETS
In this section we give more details about 𝜅-LS-nominal sets, including the connection with nominal

sets (§C.1), and the closure properties enjoyed by the 𝜅-LS-nominal sets (§C.2) to which we alluded

at the end of §9.2 (in connection with goal (G3)).

C.1 Connection with nominal sets
First, the straightforward fact that 𝜅-LS-nominal sets generalize nominal sets:

Lemma 37. A = (𝐴, _[_]A , SuppA) be an ℵ0-LS-nominal set (so 𝜅 = ℵ0). ThenA = (𝐴, _[_]A) is
a nominal set, and for all 𝑎 ∈ 𝐴, SuppA 𝑎 is a finite supporting set for 𝑎 (in the nominal-set sense).

Proof. This follows immediately for the definition, since “ℵ0-small” means “finite”. □

Note that, when moving from nominal sets to 𝜅-LS-nominal sets, only the replacement of

finiteness by 𝜅-smallness is a generalization. The other variation, namely the consideration of a

“loose” supporting-set operator, is more of a particularization: It refers to choosing and making

explicit in the structure some data that was already available in the notion of nominal set (and, as

explained in §9.2, its role is to calibrate/facilitate the generalization from finiteness to 𝜅-smallness).

This is situation is reflected in an adjunction between the categories of these two structures for

𝜅 = ℵ0, which we describe next.

We let N𝑜𝑚 [Pitts 2013] be the category whose objects are the nominal sets, and whose mor-

phisms, say between A = (𝐴, _[_]A) and B = (𝐵, _[_]B), are permutation-commuting (i.e.,

equivariant) functions between their carrier sets 𝑓 : 𝐴 → 𝐵, in that the following holds:

𝑓 (𝑎[𝜎]A) = (𝑓 𝑎) [𝜎]B for all 𝑎 ∈ 𝐴 and 𝜎 ∈ Perm
Moreover, for each infinite 𝜅 , we let LSN𝑜𝑚

𝜅
be the category whose objects are 𝜅-LS-nominal

sets, and whose morphisms, say between A = (𝐴, _[_]A , SuppA) and B = (𝐵, _[_]B , SuppB),
are functions between the carrier sets 𝑓 : 𝐴 → 𝐵 that are permutation-commuting and support-

preserving, in that the following hold:

• 𝑓 (𝑎[𝜎]A) = (𝑓 𝑎) [𝜎]B for all 𝑎 ∈ 𝐴 and 𝜎 ∈ Perm
• SuppB (𝑓 𝑎) ⊆ SuppA 𝑎 for all 𝑎 ∈ 𝐴

(It is easy to see that LSN𝑜𝑚
𝜅
forms indeed a category.)

Now we define the following functors 𝐹 : LSN𝑜𝑚 ℵ0

→ N𝑜𝑚 and 𝐺 : N𝑜𝑚 → LSN𝑜𝑚ℵ0

.

• On objects, forA = (𝐴, _[_]A , SuppA), we take 𝐹 A = (𝐴, _[_]A); on morphisms, we take

𝐹 𝑓 = 𝑓 .
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• On objects, for A = (𝐴, _[_]A), we take 𝐺 A = (𝐴, _[_]A, SuppA), where SuppA is the

standard support operator (giving the least supporting set) on the nominal set A; on

morphisms, we take 𝐺 𝑓 = 𝑓 .

That 𝐹 is well-defined is straightforward.

That 𝐺 is well-defined on objects amounts to nominal sets satisfying the property of semi-

naturality of support w.r.t. permutation: SuppA (𝑎[𝜎]) ⊆ Im 𝜎 (SuppA 𝑎) for all𝑎 ∈ 𝐴 and𝜎 ∈ Perm.

That𝐺 is well-defined on morphisms amounts to the property that equivariant functions between

nominal sets also preserve the support (in the above sense, i.e., of not introducing new atoms), or,

equivalently, preserve the freshness predicate. Both of these are well-known properties of nominal

sets [Pitts 2013]. (And of course the functoriality of both 𝐹 and 𝐺 is straightforward because they

are the identity on morphisms.)

Prop 38. The functors 𝐹 and 𝐺 form an adjunction 𝐹 ⊣ 𝐺 between LSN𝑜𝑚 ℵ0

and N𝑜𝑚. (So 𝐹 is

the left adjoint.)
3

Proof. The essence of this adjunction is that, given an ℵ0-LS-nominal-set A = (𝐴, _[_]A ,
SuppA), a nominal set B = (𝐵, _[_]B), and a function 𝑓 : 𝐴 → 𝐵, the following statements are

equivalent:

• 𝑓 is a 𝜅0-LS-nominal-set morphism between A and 𝐺 B = (𝐵, _[_]B, SuppB) (where SuppB is

therefore the standard support operator of the nominal set B).

• 𝑓 is a nominal-set morphism between 𝐹 A = (𝐴, _[_]A) and B.

The left-to-right implication is immediate.

For the right-to-left implication, assume that 𝑓 is a nominal-set morphism between (𝐴, _[_]A)
and B. Let Supp′A be the standard support operator of the nominal set A (returning the least

supporting sets). SuppA can of course be different from Supp′A , but since the former also returns

some supporting sets, we have Supp′A 𝑎 ⊆ SuppA 𝑎 for all 𝑎 ∈ 𝐴. Moreover, since 𝑓 is a nominal-set

morphism, we know that it preserves the standard support operators, meaning SuppB (𝑓 𝑎) ⊆
Supp′A 𝑎 ⊆ SuppA 𝑎 for all𝑎 ∈ 𝐴, whichmakes 𝑓 a nominal-setmorphism betweenA = (𝐴, _[_]A ,
SuppA) and (𝐵, _[_]B, SuppB), as desired. □

C.2 Closure properties
We will express the closure properties using the notion of 𝜅-natural functor. These are inspired by

Traytel et al.’s bounded natural functors (BNFs) [Traytel et al. 2012] but have fewer restrictions

(e.g., they are nor required to preserve weak pullbacks).

Def 39. Given 𝑛 ∈ N and a cardinal 𝜅, an 𝑛-ary 𝜅-natural functor is a triple (G,Gmap,
(Gset𝑖 )𝑖∈{1,...,𝑛}) where (G,Gmap) is an 𝑛-ary endofunctor on the category of sets and functions,

each Gset𝑖 is a natural transformation between the 𝑖’th component of (G,Gmap) and the 𝜅-bounded
powerset functor, and Gmap satisfies the Gset-congruence property:
In more detail, each Gset𝑖 is a family (Gset𝑖

𝐴
)
𝐴∈Set𝑛 where Gset𝑖(𝐴1,...,𝐴𝑛 ) : G(𝐴1, . . . , 𝐴𝑛) →

P<𝜅 (𝐴𝑖 ) such that the following properties hold:

• Naturality: For any tuples of sets 𝐴 = (𝐴1, . . . , 𝐴𝑛) and 𝐵 = (𝐵1, . . . , 𝐵𝑛), and of functions

𝑓 = (𝑓1 : 𝐴1 → 𝐵1, . . . , 𝑓𝑛 : 𝐴𝑛 → 𝐵𝑛), it holds that (Im 𝑓𝑖 ) ◦ Gset𝑖
𝐴
= Gset𝑖

𝐵
◦ Gmap 𝑓 .

• Congruence: For any tuples of sets 𝐴 = (𝐴1, . . . , 𝐴𝑛) and 𝐵 = (𝐵1, . . . , 𝐵𝑛), and of functions

𝑓 = (𝑓1 : 𝐴1 → 𝐵1, . . . , 𝑓𝑛 : 𝐴𝑛 → 𝐵𝑛) and 𝑔 = (𝑔1 : 𝐴1 → 𝐵1, . . . , 𝑔𝑛 : 𝐴𝑛 → 𝐵𝑛), and
3
The fact that the forgetful functor 𝐹 turns out to be a left adjoint is a consequence of the direction in which preservation of

the support operator is formulated as an inclusion: SuppB (𝑓 𝑎) ⊆ SuppA 𝑎, and not SuppA 𝑎 ⊆ SuppB (𝑓 𝑎) . The former

is indeed the correct direction, because this is the one holding for nominal sets.
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for any 𝑎 ∈ 𝐺 (𝐴1, . . . , 𝐴𝑛), if ∀𝑖 ∈ {1, . . . , 𝑛}. ∀𝑏 ∈ Gset𝑖
𝐴
𝑎. 𝑓𝑖 𝑏 = 𝑔𝑖 𝑏 then Gmap 𝑓 𝑎 =

Gmap𝑔 𝑎.

𝜅-natural functors form a very comprehensive class of functors. It includes all the bounded

natural functors [Traytel et al. 2012], hence also all container-type functors [Abbott et al. 2005]

such as sums, products, lists, streams, trees of various kinds, etc., as well bounded sets, multisets,

etc.

Next, we will show that that our 𝜅-LS-nominal sets are closed under the application of such

functors, meaning that whenever we have 𝜅-LS-nominal set structures on the set arguments 𝐴𝑖

to such a functor 𝐺 , we have a natural 𝜅-LS-nominal set structure on 𝐺 (𝐴1, . . . , 𝐴𝑛) as well. In
particular, this gives us sums and products of 𝜅-LS-nominal sets.

The utility of this result for formal proof engineering, in particular for the application of our

LS-nominal-set based strong rule induction criteria (Thms. 20 and 23) is that we have a standard

and automatic way to endow with LS-nominal-set structure any datatype whose basic building

blocks are already LS-nominal sets—and these are the typical domains of the inductively defined

predicates of interest, in other words Thms. 20 and 23 can be seamlessly fed with the necessary

LS-nominal set structures. The great utility of such closure properties for nominal sets [Pitts 2006]

is illustrated by the success of the Nominal Isabelle package [Urban and Tasson 2005].

Prop 40. Assume that 𝜅 is a regular cardinal
4
and 𝜅′ < 𝜅. Then LS-nominal sets are closed under

the applications of 𝑛-ary 𝜅′-natural functors (for any 𝑛) on the category of sets.

Proof. Let A𝑖 = (𝐴𝑖 , _[_]A𝑖 , SuppA𝑖 ) for 𝑖 ∈ {1, . . . , 𝑛} be 𝑛 permutative sets and let (G,Gmap,
Gset) be an 𝑛-ary 𝜅′-natural functor. We define the following structure A = (𝐴, _[_]A, SuppA) on
the carrier set 𝐴 = G(𝐴1, . . . , 𝐴𝑛):

• _[_]A is defined by _[𝜎]A = Gmap (_[𝜎]A1 , . . . _[𝜎]A𝑛 )
• SuppA : 𝐴 → P<𝜅 (Var) is defined by SuppA 𝑎 =

⋃𝑛
𝑖=1

⋃
𝑢∈Gset𝑖 𝑎 Supp

A𝑖 𝑢.

That SuppA is well defined, i.e., that |SuppA 𝑎 | < 𝜅 for all 𝑎, follows from |Gset𝑖 𝑠 | < 𝑘 ′, |Svars𝑖 𝑢 | <
𝜅, 𝜅′ < 𝜅 and 𝜅 being regular.

The 𝜅-pre-LS-nominal set properties of A follow form the corresponding properties of the A𝑖 ’s

and the functoriality of Gmap. The fact that, for all 𝑎 ∈ G(𝐴1, . . . , 𝐴𝑛), SuppA 𝑎 is a supporting

set for 𝑎, follows from the corresponding properties of each SuppA𝑖
and the congruence property

of Gmap w.r.t. Gset. Finally, semi-naturality of SuppA follows from the semi-naturality of each

SuppA𝑖
and the naturality of each Gset𝑖 . □

D TERMSWITH BINDINGS ORGANIZED INTO ABSTRACT DATATYPES
This paper’s results were concerned with strong rule induction, and are datatype-agnostic: They

work with predicates defined inductively on any nominal set, or more generally any 𝜅-LS-nominal

set. But our examples of course involve specific (𝜅-LS-)nominal sets, which are always extensions

or variations of (possibly infinitary) sets of terms with bindings of some sort. Moreover, verifying

the assumptions of our theorems typically requires basic properties of terms with bindings. In

what follows, we describe the necessary background for datatypes of terms with bindings. More

precisely, for the signatures of finitary and infinitary 𝜆-calculus and of the 𝜋-calculus, we describe

properties of the corresponding terms over this signature, considered modulo alpha-equivalence.

We will take an abstract datatype view. Namely, we will not show any concrete construction of

terms as alpha-equivalence classes—several equivalent constructions are possible, e.g., [Barendregt

1985; Pitts 2006; Urban 2008]. Instead, we list properties that characterize the datatypes of terms

4
Regular cardinals include ℵ0 and all infinite successor cardinals, in particular ℵ1, the first uncountable cardinal.
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and their basic operators (namely the constructors, permutation and free-variable operators) as an

abstract datatype, i.e., up to structure-preserving isomorphism.

For each such abstract datatype, we will have a recursion principle, allowing one to define

functions recursively on that type. There are several choices for such a recursor—Popescu [2024]

gives an overview. Our choice is a variation of the one described by Norrish [Norrish 2004] for

the syntax of 𝜆-calculus. More precisely, we use the recursor from Blanchette et al. [Blanchette

et al. 2019], who generalize Norrish’s recursor to an arbitrary (possibly infinitary) syntax with

bindings. These are similar to recursors developed by Gabbay and Pitts [Gabbay and Pitts 2002],

Pitts [Pitts 2006] and Urban and Berghofer [Urban and Berghofer 2006] in the context of nominal

logic. While Blanchette et al. describe the recursor in functorial terminology (employing so-called

map-restricted bounded natural functors, MRBNFs), we here reformulate it using our concepts and

notations (employing a variation of 𝜅-LS-nominal sets).

D.1 Finitary 𝜆-terms as an abstract datatype
In this subsection, Var is a countable set of variables and Perm is the set of permutations on Var ,
meaning here bijections of finite support. Recall from §2 that (finitary) 𝜆-terms, forming the set

LTerm, are generated by the constructors Vr : Var → LTerm, Ap : LTerm → LTerm → LTerm and

Lm : Var → LTerm → LTerm. Of these constructors, Vr and Ap are free—whereas Lm is not, but

a “quasi-injectivity” / “injectivity up to renaming” property holds for it (Lemma 41(6) below). In

addition to the constructors, we also have the free-variable operator FV : LTerm → Pfin (Var) and
permutation operator _[_] : LTerm → Perm → LTerm.

Lemma 41. (Distinctness and (quasi-)injectivity of the constructors) The following hold:

(1) Vr 𝑥 ≠ Ap 𝑡1 𝑡2;
(2) Vr 𝑥 ≠ Lm 𝑥 ′ 𝑡 ;
(3) Ap 𝑡1 𝑡2 ≠ Lm 𝑥 𝑡 ;

(4) Vr 𝑥 = Vr 𝑥 ′ iff 𝑥 = 𝑥 ′;
(5) Ap 𝑡1 𝑡2 = Ap 𝑡 ′

1
𝑡 ′
2
iff 𝑡1 = 𝑡

′
1
and 𝑡2 = 𝑡

′
2
;

(6) Lm 𝑥 𝑡 = Lm 𝑥 ′ 𝑡 ′ iff there exists 𝑦 that is fresh for 𝑥, 𝑥 ′, 𝑡, 𝑡 ′ (i.e., 𝑦 ∉ {𝑥, 𝑥 ′} ∪ FV 𝑡 ∪ FV 𝑡 ′)
such that 𝑡 [𝑦↔𝑥] = 𝑡 ′ [𝑦↔𝑥 ′].

Lemma 42. (Equivariance of the constructors) The following hold, assuming 𝜎 ∈ Perm:

(1) (Vr 𝑦) [𝜎] = Vr (𝜎 𝑦);
(2) (Ap 𝑡1 𝑡2) [𝜎] = Ap (𝑡1 [𝜎]) (𝑡2 [𝜎]);
(3) (Lm 𝑥 𝑡) [𝜎] = Lm (𝜎 𝑥) (𝑡 [𝜎]).

Lemma 43. (Free variables versus constructors) The following hold:

(1) FV (Vr 𝑦) = {𝑦};
(2) FV (Ap 𝑡1 𝑡2) = FV 𝑡1 ∪ FV 𝑡2;

(3) FV (Lm 𝑥 𝑡) = FV 𝑡 ∖ {𝑥}.

Lemma 44. (Structural induction) Assume 𝜑 : LTerm → Bool is a predicate such that the following

hold:

• ∀𝑥 . 𝜑 (Vr 𝑥);
• ∀𝑡1, 𝑡2. 𝜑 𝑡1 ∧ 𝜑 𝑡2 −→ 𝜑 (Ap 𝑡1 𝑡2);
• ∀𝑥, 𝑡 . 𝜑 𝑡 −→ 𝜑 (Lm 𝑥 𝑡).

Then ∀𝑡 . 𝜑 𝑡 .

In the above lemmas, the only place where the fact that we work not with entirely free terms

but with terms quotiented to alpha is visible, is Lemma 41(6).
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Note that the structural induction principle (Lemma 44) means that the vacuously true predicate

on terms is the same as the predicate 𝐾 defined inductively by the following clauses:

𝐾 (Vr 𝑥) (Kr) 𝐾 𝑡1 𝐾 𝑡2

𝐾 (Ap 𝑡1 𝑡2)
(Ap)

𝐾 𝑡

𝐾 (Lm 𝑥 𝑡) (Lm)

Thanks to this observation, our strong rule induction criterion (Thm. 7) applies, yielding the

following:

Lemma 45. (Strong structural induction) Assume (P, Psupp : P → Pfin (Var)) is a parameter

structure and 𝜑 : P → LTerm → Bool is a predicate such that the following hold:

• ∀𝑝, 𝑥 . 𝜑 𝑝 (Vr 𝑥);
• ∀𝑝, 𝑡1, 𝑡2 . (∀𝑞. 𝜑 𝑞 𝑡1) ∧ (∀𝑞. 𝜑 𝑞 𝑡2) −→ 𝜑 𝑝 (Ap 𝑡1 𝑡2);
• ∀𝑝, 𝑥, 𝑡 . 𝑥 ∉ Psupp 𝑝 ∧ (∀𝑞. 𝜑 𝑞 𝑡) −→ 𝜑 𝑝 (Lm 𝑥 𝑡).

Then ∀𝑝, 𝑡 . 𝜑 𝑝 𝑡 .
So strong structural induction is a particular case of strong rule induction, although the former

is typically established independently at the time when the datatype of terms is defined (e.g., [Pitts

2006], [Urban 2008], [Blanchette et al. 2019]).

𝜆-terms form a standard example of a nominal set, in particular they form an ℵ0-LS-nominal set.

In order to characterize uniquely the 𝜆-terms among the structures equipped with constructor and

LS-nominal set operators, we will use a notion that is weaker than nominal sets, and even weaker

than ℵ0-LS-nominal sets.

Just for the next definition, we will stop assuming that Var is countable, but perform the definition

under the more general assumption that the cardinality of Var is an infinite regular cardinal 𝜅.

Remember (from Def. 19) that 𝜅-LS-nominal sets are tuples A = (𝐴, _[_]A , SuppA) where
(𝐴, _[_]A) is a 𝜅-pre-nominal set,

SuppA returns supported sets and SuppA is semi-natural. Now we introduce 𝜅-quasi-LS-nominal

sets by simply removing the semi-naturality assumption.

Def 46. A 𝜅-quasi-LS-nominal set (𝜅-QLS-nominal set for short) is a triple A = (𝐴, _[_]A , SuppA)
where 𝐴 is a set, and _[_]A : 𝐴 → Perm → 𝐴 and SuppA : 𝐴 → P<𝜅 (Var) are such that:

- (𝐴, _[_]A) is a 𝜅-pre-nominal set;

- SuppA returns supported sets w.r.t. _[_]A , i.e., (∀𝑥 ∈ SuppA . 𝜎 𝑥 = 𝑥) implies 𝑎[𝜎]A for all 𝑎

and 𝜎 ;

Note that the concept of equivariance also makes sense for 𝜅-QLS-nominal sets.

Now we are back to assuming Var countable, i.e., that 𝜅 = ℵ0. So a nominal set is in particular

an ℵ0-LS-nominal set, which is in particular an ℵ0-QLS-nominal set. In the rest of this subsection,

we will omit the “ℵ0” qualification, thus simply writing “LS-nominal set” and “QLS-nominal set".

Def 47. A 𝜆-enriched QLS-nominal set is a tuple A = (𝐴, _[_]A, SuppA,VrA, LmA,ApA) such
that (𝐴, _[_]A, SuppA) is a QLS-nominal set, and VrA : Var → 𝐴, ApA : 𝐴 → 𝐴 → 𝐴 and

LmA
: Var → 𝐴 → 𝐴 are operators, such that the following hold:

• VrA , ApA and LmA
are equivariant;

• SuppA (VrA 𝑥) ⊆ {𝑥} for all 𝑥 ∈ Var ;
• SuppA (ApA 𝑎1 𝑎2) ⊆ SuppA 𝑎1 ∪ SuppA 𝑎2 for all 𝑎1, 𝑎2 ∈ 𝐴;
• SuppA (LmA 𝑥 𝑎) ⊆ SuppA 𝑎 ∖ {𝑥} for all 𝑥 ∈ Var and 𝑎 ∈ 𝐴.

Thus, 𝜆-enriched QLS-nominal sets are structures that emulate 𝜆-terms to a certain degree.

And indeed, the structure LTerm = (LTerm, _[_], FV ,Vr, Lm,Ap) is the primary example of a

𝜆-enriched QLS-nominal set.



Barendregt Convenes with Knaster and Tarski: Strong Rule Induction for Syntax with Bindings 0:45

Def 48. Given two 𝜆-enriched QLS-nominal sets A = (𝐴, _[_]A, SuppA,VrA, LmA,ApA) and
B = (𝐵, _[_]B, SuppB,VrB, LmB,ApB), a morphism between A and B is a function ℎ : 𝐴 → 𝐵

that commutes or (in the case of the variable operators) sub-commutes with the operators, in the

following sense:

(1) ℎ (𝑎[𝜎]A) = (ℎ 𝑎) [𝜎]B for all 𝜎 ∈ Perm and 𝑎 ∈ 𝐴;
(2) SuppB (ℎ 𝑎) ⊆ SuppA 𝑎 for all 𝑎 ∈ 𝐴;
(3) ℎ (VrA 𝑥) = VrB 𝑥 for all 𝑥 ∈ Var ;
(4) ℎ (ApA 𝑎1 𝑎2) = ApB (ℎ 𝑎1) (ℎ 𝑎2) for all 𝑎1, 𝑎2 ∈ 𝐴;
(5) ℎ (LmA 𝑥 𝑎) = LmB 𝑥 (ℎ 𝑎) for all 𝑥 ∈ Var and 𝑎 ∈ 𝐴.

The following recursion principle holds for 𝜆-terms, which also characterizes the structure

LTerm uniquely up to isomorphism:

Prop 49. LTerm is initial in the category of 𝜆-enriched QLS-nominal sets. More explicitly, for

any 𝜆-enriched QLS-nominal set A = (𝐴, _[_]A, SuppA,VrA, LmA,ApA), there exists a unique
morphism from LTerm to A, i.e., a function ℎ : LTerm → 𝐴 satisfying the following properties:

(1) ℎ (𝑡 [𝜎]) = (ℎ 𝑡) [𝜎]A for all 𝜎 ∈ Perm and 𝑡 ∈ LTerm;

(2) SuppA (ℎ 𝑡) ⊆ FV 𝑡 for all 𝑡 ∈ LTerm;

(3) ℎ (Vr 𝑥) = VrA 𝑥 for all 𝑥 ∈ Var ;
(4) ℎ (Ap 𝑡1 𝑡2) = ApA (ℎ 𝑡1) (ℎ 𝑡2) for all 𝑡1, 𝑡2 ∈ LTerm;

(5) ℎ (Lm 𝑥 𝑡) = LmA 𝑥 (ℎ 𝑡) for all 𝑥 ∈ Var and 𝑡 ∈ LTerm.

Of the properties (1)–(5) above, only (3)–(5) correspond to what is usually called a recursive

definition, because they show how ℎ behaves recursively on the constructors. On the other hand,

(1) and (2) are additional properties of ℎ, showing how it (sub)commutes with mapping and free-

variables, which here act as “recursion-helping” operators.

D.2 Infinitary 𝜆-terms as an abstract datatype
In this subsection, iVar is a set of variables of cardinality ℵ1, and Perm = Permℵ1

is the set of

ℵ1-permutations on Var , meaning here bijections of countable support. (Differently from the main

paper, we write iVar rather than Var , to avoid confusion with the countable set Var that we use for
the finitary 𝜆-calculus. Again differently from the main paper, we write Perm instead of Permℵ1

.)

Recall from §9.3 that infinitary 𝜆-terms (iterms), forming the set ILTerm, are generated by the

constructors iVr : iVar → ILTerm, iAp : ILTerm → ILTerm∞ → ILTerm and iLm : iVar∞,≠ →
ILTerm → ILTerm. Of these constructors, iVr and iAp are free and iLm is not. In addition to

the constructors, we also have the free-variable operator FV : ILTerm → Pcountable (Var) and
permutation operator _[_] : ILTerm → Perm → ILTerm.

We will also use the map, lift and set operators for streams; recall that these operators map a

function and universally extend a predicate componentwise from elements to streams, and take the

elements appearing in a stream, respectively: (map 𝜎 as)𝑖 = as𝑖 , lift 𝜑 as = (∀𝑖 ∈ N. 𝜑 as𝑖 ), and
set as = {as𝑖 | 𝑖 ∈ N}.

Lemma 50. (Distinctness and (quasi-)injectivity of the constructors) The following hold, assuming

xs, xs′ ∈ iVar∞,≠
:

(1) iVr 𝑥 ≠ iAp 𝑡 ts;
(2) iVr 𝑥 ≠ iLm xs 𝑡 ;
(3) iAp 𝑡 ts ≠ iLm xs 𝑡 ′;
(4) iVr 𝑥 = iVr 𝑥 ′ iff 𝑥 = 𝑥 ′;
(5) iAp 𝑡 ts = iAp 𝑡 ′ ts′ iff 𝑡 = 𝑡 ′ and ts = ts′;



0:46 Jan van Brügge, James McKinna, Andrei Popescu, and Dmitriy Traytel

(6) iLm xs 𝑡 = iLm xs′ 𝑡 ′ iff there exists ys that is fresh for xs, xs′, 𝑡, 𝑡 ′ (i.e., set ys ∩ (set xs ∪
set xs′ ∪ FV 𝑡 ∪ FV 𝑡 ′) = ∅) such that 𝑡 [ys↔xs] = 𝑡 ′ [ys↔xs′].

Above, given any xs, ys ∈ iVar∞,≠
such that set ys ∩ set xs = ∅, ys↔xs denotes the permutation

that takes each xs𝑖 to ys𝑖 and each ys𝑖 to xs𝑖 . (This is well-defined because the streams xs and ys
are nonrepetitive and disjoint.)

5

Lemma 51. (Equivariance of the constructors) The following hold, assuming 𝜎 ∈ Perm and

xs ∈ iVar∞,≠
:

(1) (iVr 𝑥) [𝜎] = iVr (𝜎 𝑥);
(2) (iAp 𝑡 ts) [𝜎] = iAp (𝑡 [𝜎]) (map (_[𝜎]) ts);
(3) (iLm xs 𝑡) [𝜎] = iLm (map 𝜎 xs) (𝑡 [𝜎]).
Lemma 52. (Free variables versus constructors) The following hold, assuming xs ∈ iVar∞,≠

:

(1) FV (iVr 𝑥) = {𝑥};
(2) FV (iAp 𝑡 ts) = FV 𝑡 ∪ ⋃

𝑡 ′∈ set ts FV 𝑡 ′;
(3) FV (iLm xs 𝑡) = FV 𝑡 ∖ set xs.

Lemma 53. (Structural induction) Assume𝜑 : ILTerm → Bool is a predicate such that the following
hold:

• ∀𝑥 . 𝜑 (iVr 𝑥);
• ∀𝑡, ts. 𝜑 𝑡 ∧ lift 𝜑 ts −→ 𝜑 (iAp 𝑡 ts);
• ∀xs, 𝑡 . 𝜑 𝑡 −→ 𝜑 (iLm xs 𝑡).

Then ∀𝑡 . 𝜑 𝑡 .
Lemma 54. (Strong structural induction, can be obtained from plain structural induction using

Thm. 20) Assume (P, Psupp : P → Pcountable (iVar)) is a parameter structure and 𝜑 : P → ILTerm →
Bool is a predicate such that the following hold:

• ∀𝑝, 𝑥 . 𝜑 𝑝 (iVr 𝑥);
• ∀𝑝, 𝑡, ts. (∀𝑞. 𝜑 𝑞 𝑡) ∧ lift (𝜆𝑡 ′ . ∀𝑞. 𝜑 𝑞 𝑡 ′) ts
−→ 𝜑 𝑝 (iAp 𝑡 ts);

• ∀𝑝, xs, 𝑡 . set xs ∩ Psupp 𝑝 = ∅ ∧ (∀𝑞. 𝜑 𝑞 𝑡)
−→ 𝜑 𝑝 (iLm xs 𝑡).

Then ∀𝑝, 𝑡 . 𝜑 𝑝 𝑡 .

Next we describe the corresponding instance of the recursor from [Blanchette et al. 2019].

Def 55. An i𝜆-enriched QLS-nominal set is a tupleA = (𝐴, _[_]A, SuppA, iVrA, iLmA, iApA) such
that (𝐴, _[_]A, SuppA) is a QLS-nominal set (over iVar), and iVrA : iVar → 𝐴, iApA : 𝐴 → 𝐴∞ →
𝐴 and iLmA

: iVar∞,≠ → 𝐴 → 𝐴 are operators, such that the following hold:

• iVrA , iApA and iLmA
are equivariant;

• SuppA (iVrA 𝑥) ⊆ {𝑥} for all 𝑥 ∈ iVar ;
• SuppA (iApA 𝑎 ss) ⊆ SuppA 𝑎 ∪ ⋃

𝑎′∈ set ss SuppA 𝑎′ for all 𝑎 ∈ 𝐴 and as ∈ 𝐴∞
;

• SuppA (iLmA xs 𝑎) ⊆ SuppA 𝑎 ∖ set xs for all xs ∈ iVar∞,≠
and 𝑎 ∈ 𝐴.

Def 56. Given two i𝜆-enriched QLS-nominal sets A = (𝐴, _[_]A, SuppA, iVrA, iLmA, iApA) and
B = (𝐵, _[_]B, SuppB, iVrB, iLmB, iApB), a morphism between A and B is a function ℎ : 𝐴 → 𝐵

that commutes or sub-commutes with the operators, in the following sense:

5
Note that permutations of sufficiently large core, here countably infinite, are needed in the very statement of fundamental

properties of abstractions. This is another reason why we believe that considering infinitary permutations is important

when reasoning about infinitary syntax—here, specifically we need the size of the permutations to match the number of

variables that can be simultaneously bound. (See also Remark 18 from the main paper.)
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(1) ℎ (𝑎[𝜎]A) = (ℎ 𝑎) [𝜎]B for all 𝜎 ∈ Perm and 𝑎 ∈ 𝐴;
(2) SuppB (ℎ 𝑎) ⊆ SuppA 𝑎 for all 𝑎 ∈ 𝐴;
(3) ℎ (iVrA 𝑥) = iVrB 𝑥 for all 𝑥 ∈ iVar ;
(4) ℎ (iApA 𝑎 ss) = iApB (ℎ 𝑎) (map ℎ ss) for all 𝑎 ∈ 𝐴 and as ∈ 𝐴∞

;

(5) ℎ (iLmA xs 𝑎) = iLmB xs (ℎ 𝑎) for all xs ∈ iVar∞,≠
and 𝑎 ∈ 𝐴.

Prop 57. ILTerm = (ILTerm, _[_], FV , iVr, iLm, iAp) is initial in the category of i𝜆-enriched QLS-

nominal sets. More explicitly, for any i𝜆-enriched QLS-nominal set A = (𝐴, _[_]A, SuppA, iVrA,
iLmA, iApA), there exists a unique morphism from ILTerm to A, i.e., a function ℎ : ILTerm → 𝐴

satisfying the following properties:

(1) ℎ (𝑡 [𝜎]) = (ℎ 𝑡) [𝜎]A for all 𝜎 ∈ Perm and 𝑡 ∈ ILTerm;

(2) SuppA (ℎ 𝑡) ⊆ FV 𝑡 for all 𝑡 ∈ ILTerm;

(3) ℎ (iVr 𝑥) = VrA 𝑥 for all 𝑥 ∈ iVar ;
(4) ℎ (iAp 𝑡 ts) = iApA (ℎ 𝑡) (map ℎ ts) for all 𝑡 ∈ ILTerm and ts ∈ ILTerm∞

;

(5) ℎ (iLm xs 𝑡) = iLmA xs (ℎ 𝑡) for all xs ∈ iVar∞,≠
and 𝑡 ∈ ILTerm.

D.3 𝜋-calculus processes as an abstract datatype
In this subsection, Var is a countable set of variables (a.k.a. names, or channels), and Perm is the

set of permutations on Var , here meaning bijections of finite support. In §8.1 we omitted from the

grammar some 𝜋-calculus syntax constructors. We give the full grammar here:

𝑃 ::= 0 | 𝑃 +𝑄 | 𝑃 || 𝑄 | !𝑃 | [𝑥 = 𝑦]𝑃 | [𝑥 ≠ 𝑦]𝑃 | 𝑎 𝑥. 𝑃 | 𝑎(𝑥). 𝑃 | 𝜈 (𝑥). 𝑃

So the 𝜋-calculus processes, forming the set Proc, are generated by the constructors:

• 0 ∈ Proc
• + : Proc → Proc → Proc
• || : Proc → Proc → Proc
• [ _ = _ ] _ : Var → Var → Proc → Proc
• [ _ ≠ _ ] _ : Var → Var → Proc → Proc
• _̄ _. _ : Var → Var → Proc → Proc (output)
• _(_). _ : Var → Var → Proc → Proc (input)
• 𝜈 (_). _ : Var → Proc → Proc

Of these constructors, all are free except for the last two (which introduce bindings). In addition to

the constructors, we also have the free-variable operator FV : Proc → Pfin (Var) and permutation

operator _[_] : Proc → Perm → Proc.

Lemma 58. (Distinctness and (quasi-)injectivity of the constructors) The following hold:

(1) The processes 0, 𝑃 +𝑄, 𝑃1 || 𝑄1, !𝑃2, [𝑥 = 𝑦]𝑃3, [𝑥1 ≠ 𝑦1]𝑃4, 𝑎 𝑥2. 𝑃, 𝑎1 (𝑥3). 𝑃, 𝜈 (𝑥4). 𝑃5 are

all distinct;

(2) 𝑃 +𝑄 = 𝑃 ′ +𝑄 ′
iff 𝑃 = 𝑃 ′ and 𝑄 = 𝑄 ′

;

(3) 𝑃 || 𝑄 = 𝑃 ′ || 𝑄 ′
iff 𝑃 = 𝑃 ′ and 𝑄 = 𝑄 ′

;

(4) !𝑃 = !𝑃 ′ iff 𝑃 = 𝑃 ′;
(5) [𝑥 = 𝑦]𝑃 = [𝑥 ′ = 𝑦′]𝑃 ′ iff 𝑥 = 𝑥 ′, 𝑦 = 𝑦′ and 𝑃 = 𝑃 ′;
(6) [𝑥 ≠ 𝑦]𝑃 = [𝑥 ′ ≠ 𝑦′]𝑃 ′ iff 𝑥 = 𝑥 ′, 𝑦 = 𝑦′ and 𝑃 = 𝑃 ′;
(7) 𝑎 𝑥. 𝑃 = 𝑎′ 𝑥 ′ . 𝑃 ′ iff 𝑎 = 𝑎′, 𝑥 = 𝑥 ′ and 𝑃 = 𝑃 ′;
(8) 𝑎(𝑥). 𝑃 = 𝑎′ (𝑥 ′). 𝑃 ′ iff 𝑎 = 𝑎′ and there exists 𝑦 that is fresh for 𝑎, 𝑎′, 𝑥, 𝑥 ′, 𝑃, 𝑃 ′ (i.e., 𝑦 ∉

{𝑎, 𝑎′, 𝑥, 𝑥 ′} ∪ FV 𝑃 ∪ FV 𝑃 ′) such that 𝑃 [𝑦↔𝑥] = 𝑃 ′ [𝑦↔𝑥 ′];
(9) 𝜈 (𝑥). 𝑃 = 𝜈 (𝑥 ′). 𝑃 ′ iff there exists 𝑦 that is fresh for 𝑥, 𝑥 ′, 𝑃, 𝑃 ′ (i.e., 𝑦 ∉ {𝑥, 𝑥 ′} ∪ FV 𝑃 ∪ FV 𝑃 ′)
such that 𝑃 [𝑦↔𝑥] = 𝑃 ′ [𝑦↔𝑥 ′].
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Lemma 59. (Equivariance of the constructors) The following hold, assuming 𝜎 ∈ Bij<ℵ0
(Var):

(1) 0[𝜎] = 0;

(2) (𝑃 +𝑄) [𝜎] = 𝑃 [𝜎] +𝑄 [𝜎];
(3) (𝑃 || 𝑄) [𝜎] = 𝑃 [𝜎] || 𝑄 [𝜎];
(4) (!𝑃) [𝜎] = ! (𝑃 [𝜎]);
(5) ( [𝑥 = 𝑦]𝑃) [𝜎] = [𝜎 𝑥 = 𝜎 𝑦] (𝑃 [𝜎]);
(6) ( [𝑥 ≠ 𝑦]𝑃) [𝜎] = [𝜎 𝑥 ≠ 𝜎 𝑦] (𝑃 [𝜎]);
(7) (𝑎 𝑥. 𝑃) [𝜎] = 𝜎 𝑎 𝜎 𝑥. 𝑃 [𝜎];
(8) (𝑎(𝑥). 𝑃) [𝜎] = 𝜎 𝑎 (𝜎 𝑥). 𝑃 [𝜎];
(9) (𝜈 (𝑥). 𝑃) [𝜎] = 𝜈 (𝜎 𝑥). 𝑃 [𝜎].

Lemma 60. (Free variables versus constructors) The following hold:

(1) FV 0 = ∅;
(2) FV (𝑃 +𝑄) = FV 𝑃 ∪ FV 𝑄 ;

(3) FV (𝑃 || 𝑄) = FV 𝑃 ∪ FV 𝑄 ;

(4) FV (!𝑃) = FV 𝑃 ;

(5) FV ( [𝑥 = 𝑦]𝑃) = FV 𝑃 ∪ {𝑥,𝑦};
(6) FV ( [𝑥 ≠ 𝑦]𝑃) = FV 𝑃 ∪ {𝑥,𝑦};
(7) FV (𝑎 𝑥. 𝑃) = FV 𝑃 ∪ {𝑎, 𝑥};
(8) FV (𝑎(𝑥). 𝑃) = (FV 𝑃 ∖ {𝑥}) ∪ {𝑎};
(9) FV (𝜈 (𝑥). 𝑃) = FV 𝑃 ∖ {𝑥}.

Lemma 61. (Structural induction) Assume 𝜑 : Proc → Bool is a predicate such that the following

hold:

• 𝜑 0;

• ∀𝑃,𝑄. 𝜑 𝑃 ∧ 𝜑 𝑄 −→ 𝜑 (𝑃 +𝑄);
• ∀𝑃,𝑄. 𝜑 𝑃 ∧ 𝜑 𝑄 −→ 𝜑 (𝑃 || 𝑄);
• ∀𝑃 . 𝜑 𝑃 −→ 𝜑 (!𝑃);
• ∀𝑥,𝑦, 𝑃 . 𝜑 𝑃 −→ 𝜑 ( [𝑥 = 𝑦]𝑃);
• ∀𝑥,𝑦, 𝑃 . 𝜑 𝑃 −→ 𝜑 ( [𝑥 ≠ 𝑦]𝑃);
• ∀𝑎, 𝑥, 𝑃 . 𝜑 𝑃 −→ 𝜑 (𝑎 𝑥. 𝑃);
• ∀𝑎, 𝑥, 𝑃 . 𝜑 𝑃 −→ 𝜑 (𝑎(𝑥) . 𝑃);
• ∀𝑥, 𝑃 . 𝜑 𝑃 −→ 𝜑 (𝜈 (𝑥). 𝑃).

Then ∀𝑃 . 𝜑 𝑃 .

Lemma 62. (Strong structural induction, can be obtained from plain structural induction using

Thm. 7) Assume (P, Psupp : P → Pfin (Var)) is a parameter structure and 𝜑 : P → Proc → Bool is a
predicate such that the following hold:

• ∀𝑝. 𝜑 𝑝 0;

• ∀𝑝, 𝑃,𝑄. (∀𝑞. 𝜑 𝑞 𝑃) ∧ (∀𝑞. 𝜑 𝑞 𝑄) −→ 𝜑 (𝑃 +𝑄);
• ∀𝑝, 𝑃,𝑄. (∀𝑞. 𝜑 𝑞 𝑃) ∧ (∀𝑞. 𝜑 𝑞 𝑄) −→ 𝜑 (𝑃 || 𝑄);
• ∀𝑝, 𝑃 . (∀𝑞. 𝜑 𝑞 𝑃) −→ 𝜑 (!𝑃);
• ∀𝑝, 𝑥,𝑦, 𝑃 . (∀𝑞. 𝜑 𝑞 𝑃) −→ 𝜑 𝑝 ( [𝑥 = 𝑦]𝑃);
• ∀𝑝, 𝑥,𝑦, 𝑃 . (∀𝑞. 𝜑 𝑞 𝑃) −→ 𝜑 𝑝 ( [𝑥 ≠ 𝑦]𝑃);
• ∀𝑝, 𝑎, 𝑥, 𝑃 . (∀𝑞. 𝜑 𝑞 𝑃) −→ 𝜑 𝑝 (𝑎 𝑥. 𝑃);
• ∀𝑝, 𝑎, 𝑥, 𝑃 . 𝑥 ∉ Psupp 𝑝 ∪ {𝑎} ∧ (∀𝑞. 𝜑 𝑞 𝑃) −→ 𝜑 𝑝 (𝑎(𝑥). 𝑃);
• ∀𝑝, 𝑥, 𝑃 . 𝑥 ∉ Psupp 𝑝 ∧ (∀𝑞. 𝜑 𝑞 𝑃) −→ 𝜑 𝑝 (𝜈 (𝑥). 𝑃).

Then ∀𝑝, 𝑃 . 𝜑 𝑝 𝑃 .
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Note that above, in the last but one hypothesis (for the input case), we allow ourselves to assume

the freshness of 𝑥 not only for the parameter 𝑝 , but also for the binding-“passive” part of the process,

𝑎.

Next we describe the corresponding instance of the recursor from [Blanchette et al. 2019]. For

brevity, we will skip some intermediate concepts, e.g., morphisms, and describe more directly the

end product.

Def 63. A 𝜋-enriched QLS-nominal set is a tuple B = (𝐵, _[_]B, SuppB, SZero, PlusB, ParB, BangB,
MatchB,MismatchB,OutB, InpB,NuB) such that (𝐵, _[_]B, SuppB) is a QLS-nominal set, and

• SZero ∈ 𝐵
• PlusB : 𝐵 → 𝐵 → 𝐵

• ParB : 𝐵 → 𝐵 → 𝐵

• BangB : 𝐵 → 𝐵

• MatchB
: Var → Var → 𝐵 → 𝐵

• MismatchB
: Var → Var → 𝐵 → 𝐵

• OutB : Var → Var → 𝐵 → 𝐵

• InpB : Var → Var → 𝐵 → 𝐵

• NuB
: Var → 𝐵 → 𝐵

are operators, such that the following hold:

• all the operators are equivariant;

• SuppB SZero = ∅;
• SuppB (PlusB 𝑏1 𝑏2) ⊆ SuppB 𝑏1 ∪ SuppB 𝑏2;

• SuppB (ParB 𝑏1 𝑏2) ⊆ SuppB 𝑏1 ∪ SuppB 𝑏2;

• SuppB (BangB 𝑏) ⊆ SuppB 𝑏;
• SuppB (MatchB 𝑥 𝑦 𝑏) ⊆ SuppB 𝑏 ∪ {𝑥,𝑦};
• SuppB (MismatchB 𝑥 𝑦 𝑏) ⊆ SuppB 𝑏 ∪ {𝑥,𝑦};
• SuppB (OutB 𝑎 𝑥 𝑏) ⊆ SuppB 𝑏 ∪ {𝑎, 𝑥};
• SuppB (InpB 𝑎 𝑥 𝑏) ⊆ (SuppB 𝑏 ∖ {𝑥}) ∪ {𝑎};
• SuppB (NuB 𝑥 𝑏) ⊆ SuppB 𝑏 ∖ {𝑥}.

Prop 64. Proc = (Proc, _[_], FV , 0, +, || , [ _ = _ ] _, [ _ ≠ _ ] _, _̄ _, _(_), 𝜈 (_). _) is
the initial 𝜋-enriched QLS-nominal sets. More explicitly, for any 𝜋-enriched QLS-nominal set

B = (𝐵, _[_]B, SuppB, SZero, SPlus, SPar, SBang, SMatch, SMismatch, SOut, SInp, SNu), there exists
a unique morphism from Proc to B, i.e., a function ℎ : Proc → 𝐵 satisfying the following properties:

(1) ℎ (𝑡 [𝜎]) = (ℎ 𝑡) [𝜎]B (assuming 𝜎 ∈ Perm);

(2) SuppA (ℎ 𝑡) ⊆ FV 𝑡 ;

(3) ℎ 0 = ZeroB ;
(4) ℎ (𝑃 +𝑄) = PlusB (ℎ 𝑃) (ℎ 𝑄);
(5) ℎ (𝑃 || 𝑄) = ParB (ℎ 𝑃) (ℎ 𝑄);
(6) ℎ (!𝑃) = BangB (ℎ 𝑃);
(7) ℎ ( [𝑥 = 𝑦]𝑃) = MatchB 𝑥 𝑦 (ℎ 𝑃);
(8) ℎ ( [𝑥 ≠ 𝑦]𝑃) = MismatchB 𝑥 𝑦 (ℎ 𝑃);
(9) ℎ (𝑎 𝑥. 𝑃) = OutB 𝑎 𝑥 (ℎ 𝑃);
(10) ℎ (𝑎(𝑥). 𝑃) = InpB 𝑎 𝑥 (ℎ 𝑃);
(11) ℎ (𝜈 (𝑥). 𝑃) = NuB 𝑥 (ℎ 𝑃).
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D.4 The syntax of infinitary FOL, L𝜅1,𝜅2
, as an abstract datatype

In this subsection, we consider the setting from §9.1: 𝜅1, 𝜅2 are infinite cardinals, 𝜅 = max(𝜅1, 𝜅2),
Var is a set of variables of cardinality 𝜅, and Perm = Perm𝜅 is the set of permutations on Var ,
meaning here bijections of 𝜅-small support.

Recall from §9.1 that the L𝜅1,𝜅2
-formulas, forming the set Fmla = Fmla𝜅1,𝜅2

, are generated by

the constructors Eq : Var → Var → Fmla, Neg : Fmla → Fmla, Conj : P<𝜅1
(Fmla) → Fmla, and

All : P<𝜅2
(Var) → Fmla → Fmla. Of these constructors, Eq, Neg and Conj are free, and All is not.

In addition to the constructors, we also have the free-variable operator FV : Fmla → P<𝜅 (Var) and
permutation operator _[_] : Fmla → Perm → Fmla.

Among all our example datatypes in this paper, this one that recursive through a “permutative”

type constructor (here, that of P<𝜅1
) and is also the first one to bind sets of variables. The latter will

be reflected in the slightly more elaborate quasi-injectivity property for the binding constructor

All, Lemma 65(5): Since we no longer have fixed positions for the variables in the binders, we must

control their correspondence via explicit permutations.

Lemma 65. (Distinctness and (quasi-)injectivity of the constructors) The following hold:

(1) The formulas Eq 𝑥 𝑦, Neg 𝑓 , Conj 𝐹 and All 𝑉 𝑓 are all distinct;

(2) Eq 𝑥 𝑦 = Eq 𝑥 ′ 𝑦′ iff 𝑥 = 𝑥 ′ and 𝑦 = 𝑦′;
(3) Neg 𝑓 = Neg 𝑓 ′ iff 𝑓 = 𝑓 ′;
(4) Conj 𝑓 𝐹 = Conj 𝐹 ′ iff 𝐹 = 𝐹 ′;
(5) All 𝑉 𝑓 = All 𝑉 ′ 𝑓 ′ iff there exists 𝜎, 𝜎 ′ ∈ Perm such that

• Im 𝜎 𝑉 = Im 𝜎 ′ 𝑉 ′
,

• Im 𝜎 𝑉 is fresh for 𝑉 ,𝑉 ′, 𝑓 , 𝑓 ′ (i.e., Im 𝜎 𝑉 ∩ (𝑉 ∪ 𝑉 ′ ∪ FV 𝑓 ∪ FV 𝑓 ′) = ∅), and
• 𝑓 [𝜎] = 𝑓 ′ [𝜎 ′].
An alternative (simpler but asymmetric) formulation of the quasi-injectivity of All (point (5)

above) is the following:

(5’) All 𝑉 𝑓 = All 𝑉 ′ 𝑓 ′ iff there exists 𝜎 ∈ Perm such that

• Im 𝜎 𝑉 = 𝑉 ′
,

• 𝑉 is fresh for All 𝑉 ′ 𝑓 ′ (i.e., 𝑉 ∩ FV (All 𝑉 ′ 𝑓 ′) = ∅), and
• 𝑓 [𝜎] = 𝑓 ′.

Lemma 66. (Equivariance of the constructors) The following hold, assuming 𝜎 ∈ Perm:

(1) (Eq 𝑥 𝑦) [𝜎] = Eq (𝜎 𝑥) (𝜎 𝑦);
(2) (Neg 𝑓 ) [𝜎] = Neg (𝑓 [𝜎]);
(3) (Conj 𝐹 ) [𝜎] = Conj (Im (_[𝜎]) 𝐹 );
(4) (All 𝑉 𝑓 ) [𝜎] = All (Im 𝜎 𝑉 ) (𝑓 [𝜎]).
Lemma 67. (Free variables versus constructors) The following hold:

(1) FV (Eq 𝑥 𝑦) = {𝑥,𝑦};
(2) FV (Neg 𝑓 ) = FV 𝑓 ;

(3) FV (Conj 𝐹 ) = ⋃ (Im FV 𝐹 );
(4) FV (All 𝑉 𝑓 ) = FV 𝑓 ∖𝑉 .

Lemma 68. (Structural induction) Assume 𝜑 : Fmla → Bool is a predicate such that the following

hold:

• ∀𝑥,𝑦. 𝜑 (Eq 𝑥 𝑦);
• ∀𝑓 . 𝜑 𝑓 −→ 𝜑 (Neg 𝑓 );
• ∀𝐹 . (∀𝑓 ∈ 𝐹 . 𝜑 𝑓 ) −→ 𝜑 (Conj 𝐹 );
• ∀𝑉 , 𝑓 . 𝜑 𝑓 −→ 𝜑 (All 𝑉 𝑓 ).
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Then ∀𝑡 . 𝜑 𝑡 .

Lemma 69. (Strong structural induction, can be obtained from plain structural induction using

Thm. 20) Assume (P, Psupp : P → P<𝜅 (iVar)) is a parameter structure and 𝜑 : P → Fmla → Bool
is a predicate such that the following hold:

• ∀𝑝, 𝑥,𝑦. 𝜑 𝑝 (Eq 𝑥 𝑦);
• ∀𝑝, 𝑓 . (∀𝑞. 𝜑 𝑞 𝑓 ) −→ 𝜑 𝑝 (Neg 𝑓 );
• ∀𝑝, 𝐹 . (∀𝑓 ∈ 𝐹 . (∀𝑞. 𝜑 𝑞 𝑓 )) −→ 𝜑 𝑝 (Conj 𝐹 );
• ∀𝑝,𝑉 , 𝑓 . 𝑉 ∩ Psupp 𝑝 = ∅ ∧ (∀𝑞. 𝜑 𝑞 𝑓 ) −→ 𝜑 (All 𝑉 𝑓 ).

Then ∀𝑝, 𝑡 . 𝜑 𝑝 𝑡 .

Finally, we describe the corresponding instance of the recursor from [Blanchette et al. 2019].

Def 70. An L𝜅1,𝜅2
-enriched QLS-nominal set is a tuple A = (𝐴, _[_]A, SuppA, EqA,NegA,ConjA,

AllA) such that (𝐴, _[_]A, SuppA) is a QLS-nominal set and EqA : Var → Var → 𝐴, NegA : 𝐴 →
𝐴, ConjA : P<𝜅1

(𝐴) → 𝐴, and All : P<𝜅2
(Var) → 𝐴 → 𝐴 are operators, such that the following

hold:

• EqA , NegA , ConjA and AllA are equivariant;

• SuppA (EqA 𝑥 𝑦) ⊆ {𝑥,𝑦};
• SuppA (NegA 𝑓 ) ⊆ SuppA 𝑓 ;

• SuppA (ConjA 𝐹 ) ⊆ ⋃ (Im SuppA 𝐹 );
• SuppA (AllA 𝑉 𝑓 ) ⊆ SuppA 𝑓 ∖𝑉 .

Prop 71. Fmla = (Fmla, _[_], FV , Eq,Neg,Conj,All) is initial in the category of L𝜅1,𝜅2
-enriched

QLS-nominal sets. More explicitly, for any L𝜅1,𝜅2
-enriched QLS-nominal setA = (𝐴, _[_]A, SuppA,

EqA,NegA,ConjA,AllA), there exists a unique morphism from Fmla to A, i.e., a function ℎ :

Fmla → 𝐴 satisfying the following properties:

(1) ℎ (𝑓 [𝜎]) = (ℎ 𝑓 ) [𝜎]A for all 𝜎 ∈ Perm and 𝑓 ∈ Fmla;
(2) SuppA (ℎ 𝑓 ) ⊆ FV 𝑓 for all 𝑓 ∈ Fmla;
(3) ℎ (Eq 𝑥 𝑦) = EqA 𝑥 𝑦 for all 𝑥 ∈ iVar ;
(4) ℎ (Neg 𝑓 ) = NegA (ℎ 𝑓 ) for all 𝑓 ∈ Fmla;
(5) ℎ (Conj 𝐹 ) = ConjA (Im ℎ 𝐹 ) for all 𝐹 ∈ P<𝜅1

(Fmla).
(6) ℎ (All 𝑉 𝑓 ) = AllA 𝑉 (ℎ 𝑓 ) for all 𝑓 ∈ Fmla and 𝑉 ∈ P<𝜅2

(Var).

E MORE DETAILS ON THE INFINITARY LAMBDA CALCULUS CASE STUDY
Here we give details on the isomorphism between the (finitary) 𝜆-calculus and the uniform affine

infiniary 𝜆-calculus established by Mazza [2012], which we have mechanized in Isabelle taking

advantage of our developed binder-aware datatype, recursion and induction infrastructure. We

will highlight the places where binding-aware reasoning is essential. We will use the concepts and

notations from §9.3. The presentation will avoid any Isabelle jargon—we defer to §G the discussion

of Isabelle-specific aspects.

We start by recalling the following nuance: The finitary 𝜆-calculus is defined over a countable

set of variables, i.e., of cardinality ℵ0, whereas the infinitary one is defined over an uncountable set

of variables, namely of cardinality ℵ1. (This nuance is not addressed by Mazza, who works with

the same countable set of variables for both calculi; more about this in §E.9.) We therefore write

Var for the countable set of variables used by finitary 𝜆-calculus, and iVar for the uncountable set
of variables used by the infinitary 𝜆-calculus, and refer to the elements of iVar as ivariables.
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iAp (iLm xs 𝑡) ts ⇒ 𝑡 [ts/xs] (iBeta) 𝑡 ⇒ 𝑡 ′

iLm xs 𝑡 ⇒ iLm xs 𝑡 ′
(iXi)

𝑡 ⇒ 𝑡 ′

iAp 𝑡 ts ⇒ iAp 𝑡 ′ ts
(iApL)

𝑖 ∈ N ts𝑖 ⇒ 𝑡 ′

iAp 𝑡 ts ⇒ iAp 𝑡 (ts[𝑖 := 𝑡 ′]) (iApR)

Fig. 16. Plain 𝛽-reduction for iterms

E.1 Plain infinitary 𝛽-reduction
As a warm-up, in Fig. 16 we define the straightforward notion of 𝛽-reduction on iterms, ⇒ :

ILTerm → ILTerm → Bool. Thus, similarly to 𝛽-reduction for the fininary 𝜆-calculus, we have the

reduction of the 𝛽-redexes (rule (iBeta)), which can take place under any sequence of abstractions

and applications (rules (iXi), (iApL) and (iApR)). The differences from the finitary case come from the

very structure of the syntax: Since now we bind not individual variables but entire (nonrepetitive)

streams of variables, 𝛽-reduction substitutes all these variables simultaneously; moreover, in the

right rule for application, we choose one position 𝑖 in the stream ts that constitutes the application’s
second argument. (We write (ts[𝑖 := 𝑡 ′]) for the stream obtained from ts by replacing, on its position
𝑖 , ts𝑖 with 𝑡 ′.)

The strong rule induction for this relation is obtained by instantiating our (equivariance-based)

strong induction criterion (Thm. 7):

Prop 72. Let (P, Psupp : P → Pcountable (Var)) be a parameter structure. Let 𝜑 : P → ILTerm →
ILTerm → Bool and assume the following hold:

- (iBeta) case: ∀𝑝, xs, 𝑡, ts.
set xs ∩ (Psupp 𝑝 ∪ ⋃

𝑡 ′∈ set ts FV 𝑡 ′) = ∅
−→ 𝜑 𝑝 (iAp (iLm xs 𝑡) ts) (𝑡 [ts/xs])

- (iXi) case: ∀𝑝, xs, 𝑡, 𝑡 ′ .
set xs ∩ Psupp 𝑝 = ∅ ∧ (𝑡 ⇒ 𝑡 ′) ∧ (∀𝑞. 𝜑 𝑞 𝑡 𝑡 ′)
−→ 𝜑 𝑝 (iLm xs 𝑡) (iLm xs 𝑡 ′)

- (iApL) case: ∀𝑝, 𝑡, 𝑡 ′, ts.
(𝑡 ⇒ 𝑡 ′) ∧ (∀𝑞. 𝜑 𝑞 𝑡 𝑡 ′)
−→ 𝜑 𝑝 (iAp 𝑡 ts) (iAp 𝑡 ′ ts)

- (iApR) case: ∀𝑝, 𝑡, ts, 𝑖, 𝑡 ′ .
(ts𝑖 ⇒ 𝑡 ′) ∧ (∀𝑞. 𝜑 𝑞 ts𝑖 𝑡 ′)
−→ 𝜑 𝑝 (iAp 𝑡 ts′) (iAp 𝑡 (ts′ [𝑖 := 𝑡 ′]))

Then ∀𝑝, 𝑡, 𝑡 ′ . (𝑡 ⇒ 𝑡 ′) −→ 𝜑 𝑝 𝑡 𝑡 ′.

Note that, in the (iBeta) case, the obtained strong induction principle allows us to avoid the

variables not only of the parameter 𝑝 , but also of the “passive” terms of the rule, namely all the

terms in ts. By contrast, prior state of the art (provided it would have been extended to apply to

infinitary syntax), rather than offering freshness of 𝑥 for ts as a bonus of the exported induction,

would instead amend the statement of the (iBeta) rule from Fig. 16 to require this freshness condition
in the first place.

This “formal bonus” for strong induction can bring some convenience in proofs—for example,

when proving that the affine predicate (defined in §9.3) is preserved by 𝛽-reduction:

Lemma 73. If affine 𝑡 and 𝑡 ⇒ 𝑡 ′ then affine 𝑡 ′.
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The proof of this must go by rule induction on 𝑡 ⇒ 𝑡 ′. Here, in the (iBeta) case, standard rule

induction would require us to show that affine (iAp (iLm xs 𝑡) ts) implies affine (𝑡 [ts/xs]), whereas
strong induction (Prop. 21) with empty set of parameters would additionally allow us to assume

that set xs ∩ ⋃
𝑡 ′∈ set ts FV 𝑡 ′ = ∅. Both alternatives require an additional lemma expressing that

affine is preserved by substitution. But with the strong induction alternative the following lemma,

naturally assuming affinity and disjointness conditions between the involved terms, suffices:

Lemma 74. If affine 𝑡 , (∀𝑖, 𝑗 . FV ts𝑖 ∩ FV ts 𝑗 = ∅) and (∀𝑖 . affine ts𝑖 ∧ FV 𝑡 ∩ FV ts𝑖 = ∅), then
affine (𝑡 [ts/xs]).

By contrast, with the standard induction alternative, we would need a stronger and more subtle

(and harder to prove) version of the substitution lemma:

Lemma 75. If affine 𝑡 , (∀𝑖, 𝑗 . FV ts𝑖 ∩ FV ts 𝑗 = ∅) and (∀𝑖 . affine ts𝑖 ∧ FV 𝑡 ∩ FV ts𝑖 ⊆ set xs),
then affine (𝑡 [ts/xs]).

In turn, the proof of either of the above two lemmas requires strong rule induction for the affine
predicate (Prop. 21), where, as usual, the freshness assumptions allow substitution to be pushed

inside abstractions.

While 𝛽-reduction as defined above preserves affinineness, it does not preserve the notion of

uniformity required for the isomorphism with the finitary calculus, so Mazza introduces a different

one. But before formalizing that, we need some properties of renaming equivalence (the relation

underlying uniformity).

E.2 More on renaming equivalence
Recall the renaming equivalence relation ≈ : ILTerm → ILTerm → Bool defined in §9.3 and the

strong rule induction associated to it, Prop. 22. When introducing this relation, Mazza briefly notes

that it is symmetric and transitive (but not reflexive).

Lemma 76. The following hold for all 𝑡, 𝑡 ′, 𝑡 ′′ ∈ ILTerm:

(1) 𝑡 ≈ 𝑡 ′ implies 𝑡 ′ ≈ 𝑡 .
(2) 𝑡 ≈ 𝑡 ′ and 𝑡 ′ ≈ 𝑡 ′′ implies 𝑡 ≈ 𝑡 ′′.

While symmetry (point (1)) follows routinely by standard rule induction, proving transitivity

(point (2)) requires some work. In a proof by rule induction on 𝑡 ≈ 𝑡 ′, in the inductive case for

abstractions (iLm), we know (as inductive hypothesis) that ∀𝑡 ′′ . 𝑡 ≈ 𝑡 ′ ∧ 𝑡 ′ ≈ 𝑡 ′′ −→ 𝑡 ≈ 𝑡 ′′, and
we also know iLm xs 𝑡 ≈ iLm xs 𝑡 ′ ≈ 𝑠′′ where xs ∈ Super , and must show iLm xs 𝑡 ≈ 𝑠′′. For
this, we must be able to show that 𝑠′′ has the form iLm xs 𝑡 ′′ for some 𝑡 ′′ such that 𝑡 ′ ≈ 𝑡 ′′, which
would allow us to apply the inductive hypothesis to obtain 𝑡 ≈ 𝑡 ′′, and then apply the (iLm) rule to

prove what we wanted. So we need the following inversion lemma for ≈ w.r.t. abstractions:
6

Lemma 77. If xs ∈ Super and iLm xs 𝑡 ≈ 𝑠′, then there exists 𝑡 ′ such that 𝑠′ = iLm xs 𝑡 ′ and
𝑡 ≈ 𝑡 ′.

This last lemma is proved as follows: From the standard inversion rule for ≈ and the distinctness

of the iterm constructors, we obtain ys ∈ Super and 𝑠1, 𝑡1 such that (1) 𝑡1 ≈ 𝑠1, (2) iLm xs 𝑡 =

iLm ys 𝑡1 and (3) 𝑠′ = iLm ys 𝑠1. We take 𝑡 ′ to be 𝑠1 [(map iVr xs)/ys], where map is the mapping

function for streams. Now, 𝑠′ = iLm xs 𝑡 ′ follows from (3) and the properties of abstraction and

substitution. Moreover, from (2) and the properties of abstraction and substitution, we obtain that

6
We also need corresponding lemmas w.r.t. variable injections and applications, but these are straightforward to prove

thanks to the injectiveness of iVr and iAp.
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𝑡 = 𝑡1 [(map iVr xs)/ys]. So 𝑡 ≈ 𝑡 ′ amounts to 𝑡1 [(map iVr xs)/ys] ≈ 𝑠1 [(map iVr xs)/ys], which
can be inferred from (1) and the following:

Lemma 78. If xs, ys ∈ Super and 𝑡 ≈ 𝑡 ′ then 𝑡 [(map iVr xs)/ys] ≈ 𝑡 ′ [(map iVr xs)/ys].
The last lemma follows from a more general result, stating that (under certain conditions), ≈

preserves substitution. But before stating that we need to take stock of another property of ≈
(which follows by standard induction), namely that any two renaming-equivalent iterms touch the

same supervariables, and touch only finitely many of them:

Lemma 79. If 𝑡 ≈ 𝑡 ′, then the sets {xs ∈ Super | set xs ∩ FV 𝑡 ≠ ∅} and {xs ∈ Super |
set xs ∩ FV 𝑡 ′ ≠ ∅} are equal, and finite.

Now the mentioned more general result:

Lemma 80. (Lemma 11 from [Mazza 2012]) If 𝑡 ≈ 𝑡 ′, xs ∈ Super and (∀𝑡1, 𝑡2. {𝑡1, 𝑡2} ⊆ set ts ∪
set ts′ −→ 𝑡1 ≈ 𝑡2), then 𝑡 [ts/xs] ≈ 𝑡 ′ [ts′/xs].

The proof of this lemma goes by strong rule induction on 𝑡 ≈ 𝑡 ′ (Prop. 22). We take the parameters

to be triples (xs, ts, ts′), and Psupp (xs, ts, ts′) = set xs ∪ ⋃
𝑡 ∈set ts∪ set ts′ FV 𝑡 . Each Psupp (xs, ts, ts′)

is obviously countable, and also touches a finite number of supervariables because:

• set xs touches only the supervariable xs;
• all iterms in set ts ∪ set ts′ being mutually renaming equivalent, by Lemma 79 they touch

exactly the finite set of supervariables that some ts𝑖 does (for some 𝑖).

Thanks to being able to assume, in the (iLm) case, that the binding stream of variables is fresh

for xs, ts and ts′, the substitutions _[ts/xs] and _[ts′/xs] can be pushed inside the abstractions (as

easy as they inside applications) and the proof goes smoothly.

This concludes the journey of proving that ≈ transitive, which on the way also gathered some

reusable lemmas, including an inversion and a substitutivity lemma for ≈; strong rule induction
was required for the latter. (Interestingly, while Mazza concludes that ≈ is transitive immediately

after defining this relation and only later states his Lemma 11 (our Lemma 80), our formal analysis

reveals the usefulness of proving Lemma 11 before transitivity, in order to help in the transitivity

proof.)

E.3 Uniformity and uniform infinitary 𝛽-reduction
Renaming equivalence is symmetric and transitive but not reflexive, i.e., it is a partial equivalence

relation (PER). An iterm 𝑡 is said to be uniform, written uniform 𝑡 , provided it is renaming-equivalent

to itself, 𝑡 ≈ 𝑡 . Let us call a stream of iterms ts uniform, written uniformS ts, if ∀𝑖, 𝑗 . ts𝑖 ≈ ts 𝑗 . In
particular, in a uniform stream ts each ts𝑖 is uniform, but the condition is much stronger than

that—as any two iterms ts𝑖 and ts 𝑗 are required to be renaming equivalent, in particular, have the

same (iLm, iAp, 𝑖Lm)-structure as trees.
So uniformity of an iterm means that all injected variables belong to some supervariables,

all binders in abstractions are supervariables, and all iterm streams from the righthand side of

applications are uniform (via uniformS).
For later usage, let us note the following inversion rule for uniformity of abstractions, as an

immediate consequence of Lemma 77:

Lemma 81. If xs ∈ Super and uniform (iLm xs 𝑡) then uniform 𝑡 .

From the previous discussion it should be clear that 𝛽-reduction as defined in Appendix E.1

appe does not preserve uniformity. This is mostly because it allows reducing a single iterm in the

righthand side stream of iterms of an application. Mazza addresses this by introducing a different
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uniformS ts ∀𝑖 . ts𝑖 ⇒head ts′𝑖
ts ⇒0 ts′

(iBeta)

xs ∈ Super ts ⇒𝑘 ts′

map (iLm xs) ts ⇒𝑘 map (iLm xs) ts′ (iXi)

uniformSS tss ts ⇒𝑘 ts′

map
2
iAp ts tss ⇒𝑘+1 map

2
iAp ts′ tss

(iApL)

uniformS ts flat tss ⇒𝑘 flat tss′

map
2
iAp ts tss ⇒𝑘+1 map

2
iAp ts tss′

(iApR)

Fig. 17. Uniform 𝛽-reduction for streams of iterms

notion, which we call uniform (infinitary) 𝛽-reduction. It is a ternary relation⇒ : ILTerm → N →
ILTerm → Bool, where we write 𝑡 ⇒𝑘 𝑡

′
for its application to the iterms 𝑡, 𝑡 ′ and the number 𝑘 . The

numeric argument simply tracks the applicative depth of the redexes, i.e., the number of applications

under which reduction occurs; it is meant to offer a more precise description of reduction, and

is orthogonal to the notion of uniformity. Mazza’s inductive definition of this relation [Mazza

2012, Def. 7] is extremely informal, much more so than the rest of his definitions—in the inductive

case for righthand side of application, he writes the following (where we paraphrase to use our

notations):

“if ts is such that ∀𝑖, 𝑗 . ts𝑖 ≈ ts 𝑗 and ts0 ⇒𝑘 𝑡
′
0
, by uniformity the ‘same’ reduction

can be performed in all ts𝑖 , obtaining the term 𝑡 ′𝑖 . If we define ts
′
such that ts′𝑖 = 𝑡

′
𝑖

for all 𝑖 , we set iAp 𝑡 ts ⇒𝑘+1 iAp 𝑡 ts′.”

To make this rigorous, we must inductively describe a form of parallel reduction of a stream of
iterms, making sure that the same redex is reduced in all members of the stream. To this end, we

define 𝛽-reduction not on iterms, but on streams on iterms,⇒ : ILTerm∞ → N → ILTerm∞ → Bool.
The definition, shown in Fig. 17, uses several auxiliary operators.

• In the (iBeta) rule, we use the head-reduction relation ⇒head : ILTerm → ILTerm → Bool
defined as follows: 𝑡1 ⇒head 𝑡2 iff there exist xs, 𝑡 and ts such that 𝑡1 = iAp (iLm xs 𝑡) ts
and 𝑡2 = 𝑡 [ts/xs]. (Thus 𝑡1 becomes 𝑡2 by reducing a redex located at its “head”, i.e., top.)

• In the (iApL) rule, we use the predicate uniformSS, which is the further extension of uniform
and uniformS to streams of streams (i.e., stream matrices) of iterms: uniformSS tss =

(∀𝑖, 𝑖′, 𝑗, 𝑗 ′ . tss𝑖,𝑖′ ≈ tss 𝑗, 𝑗 ′ ); and map
2
(binary stream-map), applied to any function 𝑓 :

𝑈 → 𝑉 → 𝑊 (such as iAp) and two streams us ∈ 𝑈∞
and vs ∈ 𝑉∞

, yields the stream

obtained by applying 𝑓 componentwise to these: (map
2
𝑓 us vs)𝑖 = 𝑓 us𝑖 vs𝑖 for all 𝑖 .

• In the (iApR) rule, flat tss is the flattening (via “dovetailing”) of the stream of streams of

iterms tss into a single stream of iterms; formally, we have a bijection 𝑏 : N2 → N between

the pairs of indexes of tss and the indexes of flat tss such that the elements correspond to

each other, in that (flat tss)𝑏 (𝑖, 𝑗 ) = tss𝑖, 𝑗 .

A few notes on the design decisions for this definition:

• Mazza intends his reduction relation to work on uniform terms only. In our formalization,

we acheive this by adding uniformity conditions only when necessary, namely on the source

of head-reduction in (iBeta) and on the reduction-passive terms in (iApL) and (iApR); the

uniformity of all the other involved terms does not need to be stated, as it follows inductively

from the definition. Indeed, one of the sanity checks we prove by standard rule induction is

the following:

Lemma 82. (corresponds to Prop. 14(1) from [Mazza 2012]) If ts ⇒𝑘 ts′, then uniformS ts
and uniformS ts′.
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Proving this requires the following lemmawhen dealing with the (iBeta) case, which clarifies

why we required

uniformS ts but not uniformS ts′ in the (iBeta) rule:

Lemma 83. If ts ⇒head ts′ and uniformS ts,
then uniformS ts′.

• The use of the combinator flat is essential in the (iApR) rule. Indeed, for example replacing

the flat tss ⇒𝑘 flat tss′ hypothesis with something like lift
2
(⇒𝑘 ) tss tss′ (meaning

∀𝑖 . tss𝑖 ⇒𝑘 tss′𝑖 ), thus lifting ⇒𝑘 componentwise to streams of streams, would not achieve

the desired result. This is because we want all the iterms in the “matrix” tss to reduce by
exactly the “same reduction”, which is achieved by the flattening approach—whereas the

lifting approach would only achieve “sameness” inside each column of the matrix, not across

different columns.

We obtain the strong rule induction for uniform 𝛽-reduction by instantiating our relative-

equivariance criterion, Thm. 23, with parameters similar to the ones we used for the renaming

equivalence strong induction (described in §9.3 and the end of §9.4). This is no surprise, since the

rules for uniform reduction use (derivatives of) the uniform predicate, which in turn is defined

from renaming equivalence.

Prop 84. Let (P, Psupp : P → Pcountable (Var)) be a parameter structure such that, for any 𝑝 ∈ P ,
{xs ∈ Super | set xs ∩ Psupp 𝑝 ≠ ∅} is finite. Let 𝜑 : P → ILTerm → N → ILTerm → Bool and
assume the following hold:

- (iBeta) case: ∀𝑝, ts, ts′ . uniformS ts ∧ (∀𝑖 . ts𝑖 ⇒head ts′𝑖 )
−→ 𝜑 𝑝 ts 0 ts′

- (iXi) case: ∀𝑝, xs, ts, 𝑘, ts′ .
set xs ∩ Psupp 𝑝 = ∅ ∧ (ts ⇒𝑘 ts′) ∧ (∀𝑞. 𝜑 𝑞 ts 𝑘 ts′)
−→ 𝜑 𝑝 (map (iLm xs) ts) 𝑘 (map (iLm xs) ts′)

- (iApL) case: ∀𝑝, ts, 𝑘, ts′, tss. uniformSS tss∧
(ts ⇒𝑘 ts′) ∧ (∀𝑞. 𝜑 𝑞 ts 𝑘 ts′)
−→ 𝜑 𝑝 (map (iAp ts) tss) (𝑘 + 1) (map (iAp ts′) tss)

- (iApR) case: ∀𝑝, ts, tss, 𝑘, tss′ . uniformS ts∧
(flat tss ⇒𝑘 flat tss′) ∧ (∀𝑞. 𝜑 𝑞 (flat tss) 𝑘 (flat tss′))
−→ 𝜑 𝑝 (map (iAp ts) tss) (𝑘 + 1) (map (iAp ts) tss′)

Then ∀𝑝, ts, 𝑘, ts′ . (ts ⇒𝑘 ts′) −→ 𝜑 𝑝 ts 𝑘 ts′.

Note that, unlike in the case of the other 𝛽-reduction relations we discussed so far (e.g., the

finitary 𝛽-reduction from Fig. 1 and plain infinitary 𝛽-reduction from Fig. 16), here the associated

strong rule induction allows the parameter freshness assumption only for the inductive 𝜆-case

(here, (iXi)) and not for the reduction base case (here (iBeta)). This is because this time in the

base case we have “hidden” the involved binding structure inside a different relation, ⇒head, and

the strong rule induction for an inductively defined relation does not cross the boundaries of its

auxiliary relations such as ⇒head; nor we believe it should, for the sake of modularity. Instead,

for such auxiliary relations we can take care of the desired freshness enhancement separately, for

example we can prove the following lemma for⇒head (where we highlight what this lemma brings

in addition to the definition of ⇒head):

Lemma 85. If a countable set of variables𝐴 is such that {xs ∈ Super | set xs ∩ 𝐴 ≠ ∅} is finite, and
if 𝑡1 is uniform and 𝑡1 ⇒head 𝑡2, then there exist xs ∈ Super , 𝑡 and ts such that 𝑡1 = iAp (iLm xs 𝑡) ts
and 𝑡2 = 𝑡 [ts/xs] and set xs ∩ 𝐴 = ∅.
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So using Prop. 84 in conjunction with Lemma 85 (taking 𝐴 to be Psupp 𝑝) enables fresh assump-

tions for both (iBeta) and (iXi). It should be noted that for the other 𝛽-reduction relations we could

have also hidden the binding structure in the base case under an auxiliary head reduction relation,

to the same effect on the generated strong rule induction; and solutions similar to Lemma 85

could have been used to address that. This shows that the outreach of strong rule induction is less

essential for axioms than for proper induction rules, since for the former we can easily deploy

alternative ad hoc solutions. In particular, going back to our motivating examples in §2, the strong

rule induction benefits are less essential for axioms such as (Beta) than for rules such as (ParBeta)

and (Xi).

E.4 Translating finitary to infinitary 𝜆-terms
Remember that Super denotes the countable set of supervariables, consisting of nonrepetitive

streams xs of ivariables such that any two distinct streams xs, ys ∈ Super are disjoint, in that

set xs ∩ set ys = ∅.
Let superOf : Var → Super be a fixed bijection between the (countable) sets of variables and

supervariables; we will write superOf −1
: Super → Var for its inverse.

We will call position any element 𝑝 of N∗
, i.e., any word (list) over natural numbers, and let

natOf : N∗ → N be a fixed injection between positions and natural numbers. Given 𝑝 ∈ N∗
and

𝑛 ∈ N, we will write 𝑝 · 𝑛 for the word obtained from 𝑝 by adding 𝑛 at the end.

The set Super and the functions superOf and natOf will all be parameters of the to-be-defined

translation; their exact choice does not matter beyond having to satisfy their above stated properties.

Mazza defines his finitary-to-infinitary translation as a function J_K_ : LTerm → N∗ → ILTerm,

recursively by the following equations:

(3) JVr 𝑥K𝑝 = iVr ((superOf 𝑥)natOf 𝑝 )
(4) JLm 𝑥 𝑡K𝑝 = iLm (superOf 𝑥) J𝑡K𝑝
(5) JAp 𝑡1 𝑡2K𝑝 = iAp J𝑡1K𝑝 ·0 (J𝑡2K𝑝 ·1, J𝑡2K𝑝 ·2, J𝑡2K𝑝 ·3, . . .)

(A slightly more succinct way to write the righthand side of the equation for application is

iAp J𝑡1K𝑝 ·0 (map J𝑡2K𝑝 ·_ (natsFrom 1))

where, for any 𝑛, natsFrom 𝑛 denotes the stream of natural numebrs starting from 𝑛, namely

[𝑛, 𝑛 + 1, 𝑛 + 2, . . .].)
The intuition is that every variable 𝑥 in the original term is duplicated in the translation into

countably many ivariable “copies” of it sourced from its corresponding supervariable, superOf 𝑥 .
The positions are used to make sure that the copies located inside different parts of the resulted

iterm are distinct, thus ensuring that the iterm is affine. Indeed, in the recursive case for application,

we see that the position 𝑝 grows with different numbers postpended on the different arguments

of infinitary application, which ensures disjointness in conjunction with choosing the particular

“copy” based on this position counter (natOf 𝑝) when reaching the Vr-leaves. Correspondingly,
abstraction over a variable is translated to abstraction over its supervariable, i.e., over all its “copies”.

Since terms are alpha-equivalence classes, in particular the constructor Lm is not injective,

equations (3)–(5) above are not a priori guaranteed to form a correct definition. To make them

into a rigorous definition, we deploy Prop. 49’s recursion principle. This requires us to organize

the target domain 𝐴 = (N∗ → ILTerm) into a 𝜆-enriched QLS-nominal set. The constructor-like

operators on 𝐴, namely VrA , ApA and LmA
, are determined by the above recursive equations; for

example, for any 𝑥 ∈ Var and 𝑎 ∈ 𝐴, we take LmA 𝑥 𝑎 to be 𝜆𝑝. iLm (superOf 𝑥) (𝑎 𝑝). As for the
permutation and support operators, we determine them by formulating answers to the questions on
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how should the to-be-defined function J_K_ interact with permutation and free variables, namely,

for 𝑡 ∈ LTerm and 𝜎 ∈ Perm,

• J𝑡 [𝜎]K𝑝 = ?

• ? ⊆ FV 𝑡

where the question marks must be replaced with expressions depending on J𝑡K_, i.e., on the

application of J_K_ to 𝑡 (and to positions possibly different from 𝑝).

Note that answering these questions is likely to be useful anyway (and it will!) for later proofs

involving this translation—just that the recursor requires us to think these through in advance.

Upon analysis, the following possible answers emerge:

(1) J𝑡 [𝜎]K𝑝 = J𝑡K𝑝 [v2iv 𝜎]
(2) Im superOf −1 (TouchedSuper J𝑡K𝑝 ) ⊆ FV 𝑡

where:

• v2iv 𝜎 (read “variable to ivariable”) is the conversion of 𝜎 : Var → Var , via superOf , into
a supervariable-structure preserving function on iVar → iVar; namely, for any 𝑦 ∈ iVar
such that 𝑦 appears in some (necessarily unique) supervariable xs, we define v2iv 𝜎 𝑦 as

(superOf (𝜎 (superOf −1 xs)))𝑖 for the unique 𝑖 such that xs𝑖 = 𝑦.
• For any 𝑡 ∈ ILTerm, TouchedSuper 𝑡 is the set of all supervariables that are touched by (the

free variables of) 𝑠 , namely {xs ∈ Super | set xs ∩ FV 𝑡 ≠ ∅}
Equation (1) above is seen to be quite intuitive if we remember that the translation sends

variables to supervariables, which means that bijections 𝜎 between variables naturally correspond

to bijections between supervariables, hence (thanks to the supervariables being mutually disjoint)

to supervariable-structure preserving bijections between ivariables; therefore indeed (A) applying

a bijection on variables and then translating should be the same as (B) first translating and then

applying this corresponding bijection of its ivariable “copies” in the translation.

As for the above inclusion (2), we obtained it by adjunction from

TouchedSuper J𝑡K𝑝 ⊆ Im superOf (FV 𝑡),
which is again intuitive if we think in terms of the variable-supervariable correspondence.

(A good approach for coming up with (1) and (2) is to “pretend” that that J_K_ has already been

defined via (3)–(5) and think about formulating lemmas describing its behavior w.r.t. mapping and

free-variables.)

With the structure on (N∗ → ILTerm) determined by Mazza’s recursive clauses (3)–(5) together

with clauses (1) and (2), we would like to check that (N∗ → ILTerm) becomes a 𝜆-enriched QLS-

nominal set. However, this is not true while working with the entire set ILTerm. Among other things

that go wrong, the TouchedSuper operator does not behave well on iterms that are non-uniform.

The solution comes from remembering that the translation is aimed to target not arbitrary, but

uniform iterms. So restricting the target domain to the subset 𝐾 ⊆ (N∗ → ILTerm) consisting
of mutually renaming-equivalent (in particular uniform) position interpretations only, namely

𝐾 = {𝑢 : N∗ → ILTerm | ∀𝑝, 𝑝′ . 𝑢 𝑝 ≈ 𝑢 𝑝′}, does the job. Indeed, it is now routine to check that 𝐾

becomes a 𝜆-enriched QLS-nominal set, and therefore Prop. 49 legitimates Mazza’s definition as

well as our two additional (tentative) properties, obtaining:

Lemma 86. There exists a unique function J_K_ : 𝐾 → ILTerm such that the above clauses (1)–(5)

hold.

Immediately from the definition of 𝐾 , we have the following:

Lemma 87. (Lemma 15(2) from [Mazza 2012]) For all 𝑡 ∈ LTerm and 𝑝, 𝑝′ ∈ N∗
, we have J𝑡K𝑝 ≈

J𝑡K𝑝′ ; in particular, J𝑡K𝑝 is uniform.
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By routine structural induction on 𝑡 ∈ LTerm we can also prove that all the free variables of J𝑡K𝑝
that appear in some supervariable must necessarily appear there at a position higher than 𝑝 (w.r.t.

the prefix order, via natOf ):

Lemma 88. For all 𝑡 ∈ LTerm, 𝑝, 𝑝′ ∈ N∗
and xs ∈ Super , if xsnatOf 𝑝′ ∈ FV J𝑡K𝑝 then 𝑝 is a prefix

of 𝑝′.

This immediately implies:

Lemma 89. (statement inlined in Mazza’s proof sketch for Lemma 15(1) in [Mazza 2012]) For

all 𝑡 ∈ LTerm and 𝑝, 𝑝′ ∈ N∗
, if 𝑝 and 𝑝′ are incomparable w.r.t. the prefix order then FV J𝑡K𝑝 ∩

FV J𝑡K𝑝′ = ∅.

Using the above, the affinity of all iterms in the image of the translation follows routinely by

structural induction:

Lemma 90. (Lemma 15(1) from [Mazza 2012]) For all 𝑡 ∈ LTerm and 𝑝 ∈ N∗
, we have that J𝑡K𝑝 is

affine.

E.5 Translating infinitary to finitary terms
For the translation L_M in the opposite direction, i.e., from infinitary (back to) finitary terms, Mazza

writes the following equations:

(3) L iVr xs𝑖 M = Vr (superOf −1 xs)
(4) L iLm xs 𝑡 M = Lm (superOf −1 xs) L𝑡 M
(5) L iAp 𝑡 tsM = Ap L𝑡 M Lts0 M
These recursive equations are clearly intended not for arbitrary iterms, but for uniform ones:

• The bound stream of variables xs from iLm xs 𝑡 in equation (4) is assumed to be a super-

variable, since the inverse of the superOf function is being applied to it.

• In the application case, equation (5), all the terms in ts but the first one (ts0) are ignored,

which is only meaningful if no essential information is lost—as guaranteed when the iterm

iAp 𝑡 ts is uniform, making all the iterms ts𝑖 mutually renaming equivalent.

And indeed, Mazza explicitly restricts his definition to uniform iterms, writing the type of L_M as
{𝑡 ∈ ILTerm | uniform 𝑡} → LTerm (again paraphrasing to use our notations).

While it is possible to extend equations (3)–(5) above to an attempted definition on the entire set

of iterms (not just uniform ones), e.g., performing an arbitrary choice when xs in iLm xs 𝑡 is not
a supervariable, this would make it hard to deploy the nominal-style recursor for the syntax of

infinitary 𝜆-calculus expressed in Prop. 57 (as well as, it seems, any potential infinitary generalization

of other nominal-style recursors, which are very close to each other in terms of expressiveness

[Popescu 2024]). And this is no surprise, given the above observation that L_M is not intended to

work on the entire set of iterms, which is what Prop. 57’s recursor specializes in.

E.6 A custom, supervariable-sensitive recursor
So instead, we develop a custom recursor specialized in a subdomain of iterms that are “good”

(well-behaved) w.r.t. the supervariable infrastructure.
7
Namely, we define the predicate good :

ILTerm → Bool inductively as in Fig. 18.

We chose the predicate good to be a sweet spot between uniformity (which is unary but not

inductive hence not recursion-friendly) and renaming equivalence (which is inductive but binary,

7
The ideas are likely generalizable to a recursor on restricted domains of terms with bindings, subject to some abstract

conditions; but we have not yet investigated such a potential generalization.
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xs ∈ Super 𝑥 ∈ set xs
good (iVr 𝑥) (iVr)

xs ∈ Super good 𝑡
good (iLm xs 𝑡) (iLm)

good 𝑡 ∀𝑡 ′ ∈ set ts. good 𝑡 ′ ∀𝑡1, 𝑡2 . {𝑡1, 𝑡2} ⊆ set ts −→ TouchedSuper 𝑡1 = TouchedSuper 𝑡2
good (iAp 𝑡 ts) (iAp)

Fig. 18. The good predicate on iterms

hence in itself not suitable as a domain-restricting predicate). Like renaming equivalence, it requires

the injected variables to belong to some supervariables (in rule (iVr)) and the bound streams of

variables to be supervariables (in rule (iLm)). Moreover, in rule (iAp) we require a property that we

know it holds for renaming equivalence and uniformity (thanks to Lemma 79), namely that all iterms

from the righthand side stream of terms in applications touch exactly the same supervariables. This

is a way to ensure that good terms touch only finitely many supervariables; indeed, this follows by

standard rule induction:

Lemma 91. good 𝑡 implies that TouchedSuper 𝑡 is finite for all 𝑡 ∈ ILTerm.

Moreover, that goodness is a sound approximation of renaming equivalence (hence also of

uniformity) can be proved by standard rule induction, using Lemma 79:

Lemma 92. 𝑡 ≈ 𝑡 ′ implies good 𝑡 and good 𝑡 ′ for all 𝑡, 𝑡 ′ ∈ ILTerm. In particular, uniform 𝑡 implies

good 𝑡 for all 𝑡 ∈ ILTerm.

Thm. 23 also applies to this predicate, yielding a strong rule induction principle similar to those

for renaming equivalence and uniform 𝛽-reduction.

Prop 93. Let (P, Psupp : P → Pcountable (Var)) be a parameter structure such that, for any 𝑝 ∈ P ,
{xs ∈ Super | set xs ∩ Psupp 𝑝 ≠ ∅} is finite. Let 𝜑 : P → ILTerm → Bool and assume the following

hold:

- (iVr) case: ∀𝑝, xs, 𝑥 . xs ∈ Super ∧ 𝑥 ∈ set xs −→ 𝜑 𝑝 (iVr 𝑥)
- (iLm) case:∀𝑝, xs, 𝑡 .set xs ∩ Psupp 𝑝 = ∅∧ xs ∈ Super ∧ good 𝑡 ∧ (∀𝑞. 𝜑 𝑞 𝑡) −→ 𝜑 𝑝 (iLm xs 𝑡)
- (iAp) case: ∀𝑝, 𝑡, ts. good 𝑡 ∧ (∀𝑞. 𝜑 𝑞 𝑡) ∧ (∀𝑡 ′ ∈ set ts. good 𝑡 ′ ∧ (∀𝑞. 𝜑 𝑞 𝑡 ′)) ∧

(∀𝑡1, 𝑡2. {𝑡1, 𝑡2} ⊆ set ts −→ TouchedSuper 𝑡1 = TouchedSuper 𝑡2)
−→ 𝜑 𝑝 (iAp 𝑡 ts)

Then ∀𝑝, 𝑡 . good 𝑡 −→ 𝜑 𝑝 𝑡 .

In what follows we formulate a recursion principle for defining functions on good iterms, so in

particular one that is sensitive to the notion of supervariable. To this end, we introduce variations

of the notions of permutative and QLS-nominal sets that take supervariables into account; we focus

on the case of the set of variables being iVar , hence its cardinal 𝜅 being ℵ1.

Def 94. For any set of ivariables𝐴 ⊆ iVar , we let TSuper 𝐴 be the set of its touched supervariables,

namely {xs ∈ Super | set xs ∩ 𝐴 ≠ ∅}. (Note that, for any 𝑡 ∈ ILTerm, we have TouchedSuper 𝑡 =
TSuper (FV 𝑡).)

A (countable-core) permutation 𝜎 is called Super-sensitive when:
• it is Super-compatible, in that it preserves the supervariables (via mapping): for all xs ∈
Var∞,≠

, if xs ∈ Super then map 𝜎 xs ∈ Super ;
• its core (i.e., support) touches only finitely many supervariables, in that TSuper (Core 𝜎) is
finite.
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We let PermSuper denote the set of Super-sensitive (countable-core) permutations.

A Super-sensitive pre-nominal set is a pairA = (𝐴, _[_]A) where𝐴 and _[_] : 𝐴 → PermSuper →
𝐴 is an action of PermSuper on 𝐴.

A Super-sensitive QLS-nominal set is a triple A = (𝐴, _[_], SuppA) where:
• (𝐴, _[_]A) is a Super-sensitive pre-nominal set;

• SuppA : S → Pcountable (Var) is such that (∀xs ∈ TSuper (SuppA 𝑎). map 𝜎 ; xs = xs) implies

𝑎[𝜎]A = 𝑎 for all 𝜎 ∈ PermSuper and 𝑎 ∈ 𝐴.

Now we define a corresponding variation of the notion of i𝜆-enriched QLS-nominal set:

Def 95. A Super-sensitive i𝜆-enriched QLS-nominal set is a tupleA = (𝐴, _[_]A, SuppA, iVrA, iLmA,
iApA) such that (𝐴, _[_]A, SuppA) is a Super-sensitive QLS-nominal set, and iVrA : iVar → 𝐴,

iApA : 𝐴 → 𝐴∞ → 𝐴 and iLmA
: iVar∞,≠ → 𝐴 → 𝐴 are operators such that the following hold:

• iVrA , iApA and iLmA
are equivariant w.r.t. Super-sensitive permutations;

• TSuper (SuppA (iVrA 𝑥)) ⊆ TSuper {𝑥} for all 𝑥 ∈ iVar ;
• TSuper (SuppA (iApA 𝑎 as)) ⊆
TSuper (SuppA 𝑎) ∪ ⋃

𝑎′∈ set as TSuper (SuppA 𝑎′)
for all 𝑎 ∈ 𝐴 and as ∈ 𝐴∞

;

• TSuper (SuppA (iLmA xs 𝑎)) ⊆ TSuper (SuppA 𝑎) ∖ {xs} for all xs ∈ Super and 𝑎 ∈ 𝐴.

The difference between this variation and the original (Def. 55) is that everything is conditioned

by supervariable sensitivity or membership to some supervariable, and the inclusions between the

sets of variables are not “raw” as before but mediated through the sets of touched supervariables.

So, roughly speaking, we have a relativization of the original concept w.r.t. supervariables. And the

same goes for morphisms:

Def 96. Given two Super-sensitive i𝜆-enriched QLS-nominal setsA = (𝐴, _[_]A, SuppA, iVrA, iLmA,
iApA) and B = (𝐵, _[_]B, SuppB, iVrB, iLmB, iApB), a morphism between A and B is a function

ℎ : 𝐴 → 𝐵 that commutes or sub-commutes with the operators, in the following sense:

(1) ℎ (𝑎[𝜎]A) = (ℎ 𝑎) [𝜎]B for all 𝜎 ∈ PermSuper and 𝑎 ∈ 𝐴;
(2) TSuper (SuppB (ℎ 𝑎)) ⊆ TSuper (SuppA 𝑎) for all 𝑎 ∈ 𝐴;
(3) ℎ (iVrA 𝑥) = iVrB 𝑥 for all xs ∈ Super and 𝑥 ∈ iVar such that 𝑥 ∈ set xs;
(4) ℎ (iApA 𝑎 as) = iApB (ℎ 𝑠) (map ℎ as) for all 𝑠 ∈ 𝐴 and as ∈ 𝐴∞

such that∀𝑎1, 𝑎2. {𝑎1, 𝑎2} ⊆
set as −→ TSuper (SuppA 𝑎1) = TSuper (SuppA 𝑎2);

(5) ℎ (iLmA xs 𝑎) = iLmB xs (ℎ 𝑎) for all xs ∈ Super and 𝑎 ∈ 𝐴.

Note that, in the clause (4) above, we condition the commutation of ℎ with the application

operators by the arguments having the same touched supervariables, similarly to what we did

when defining the good predicate on iterms.

It is easy to see that the set {𝑡 ∈ ILTerm | good 𝑡} is closed under the term constructors and map-

ping, and that ILTerm Super = ({𝑡 ∈ ILTerm | good 𝑡}, _[_], FV , iVr, iLm, iAp) is a Super-sensitive
i𝜆-enriched QLS-nominal set. In fact, we can show that it is the initial one, which gives us a

recursion principle for good terms:

Prop 97. ILTermSuper is initial in the category of Super-sensitive i𝜆-enriched QLS-nominal sets.

More explicitly, for any i𝜆-enriched QLS-nominal set A = (𝐴, _[_]A, SuppA, iVrA, iLmA, iApA),
there exists a uniquemorphism fromILTerm Super toA, i.e., a functionℎ : {𝑡 ∈ ILTerm | good 𝑡} →
𝐴 satisfying the following properties:

(1) ℎ (𝑡 [𝜎]) = (ℎ 𝑎) [𝜎]A for all 𝜎 ∈ PermSuper and 𝑡 ∈ ILTerm such that good 𝑡 ;
(2) TSuper (SuppA (ℎ 𝑡)) ⊆ TouchedSuper 𝑡 for all 𝑡 ∈ ILTerm such that good 𝑡 ;
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(3) ℎ (iVr 𝑥) = SVr 𝑥 for all xs ∈ Super and 𝑥 ∈ iVar such that 𝑥 ∈ set xs;
(4) ℎ (iAp 𝑡 ts) = iApA (ℎ 𝑡) (map ℎ ts) for all 𝑡 ∈ ILTerm and ts ∈ ILTerm∞

such that good 𝑡 ,
∀𝑡 ′ ∈ ts. good 𝑡 ′ and ∀𝑡1, 𝑡2 . {𝑡1, 𝑡2} ⊆ set ts −→ TouchedSuper 𝑡1 = TouchedSuper 𝑡2;

(5) ℎ (iLm xs 𝑡) = iLmA xs (ℎ 𝑡) for all xs ∈ Super and 𝑡 ∈ ILTerm such that good 𝑡 .

E.7 Back to translating infinitary to finitary terms
We can now deploy Prop. 97’s recursor to complete (and make rigorous) the definition given by

Mazza’s clauses (3)–(5) from §E.5, which we rephrase here taking goodness into account:

(3) L iVr 𝑥 M = Vr (superOf −1 xs) for all xs ∈ Super and 𝑥 ∈ set xs.
(4) L iLm xs 𝑡 M = Lm (superOf −1 xs) L𝑡 M for all xs ∈ Super and 𝑡 ∈ ILTerm such that good 𝑡 .
(5) L iAp 𝑡 tsM = Ap L𝑡 M Lts0 M for all 𝑡 ∈ ILTerm and ts ∈ ILTerm∞

such that good 𝑡 , (∀𝑡 ′ ∈
ts. good 𝑡 ′) and (∀𝑡1, 𝑡2. {𝑡1, 𝑡2} ⊆ set ts −→ TouchedSuper 𝑡1 = TouchedSuper 𝑡2).

Note that (5) can equivalently be written as:

(5) L iAp 𝑡 tsM = Ap L𝑡 M Lts0 M for all 𝑡 ∈ ILTerm and ts ∈ ILTerm∞
such that good (iAp 𝑡 ts).

Using Prop. 97, we will turn the above into a recursive definition of a function L_M : {𝑡 ∈ ILTerm |
good 𝑡} → 𝐴, where 𝐴 = LTerm. To this end, we will organize 𝐴 as a Super-sensitive i𝜆-enriched
QLS-nominal set A = (𝐴, _[_]A, SuppA, iVrA, iLmA, iApA). Similarly to how we proceeded to

deploying the (finitary) 𝜆-term recursor in §E.4, we have that iVrA , iLmA
and iApA are determined

by the above clauses; and we determine the permutation and support operators by analyzing how

the to-be-defined function L_M should interact with mapping and free variables, namely:

• L𝑡 [𝜎] M = ? for all 𝑡 ∈ ILTerm and 𝜎 ∈ PermSuper such that good 𝑡 ,
• ? ⊆ TouchedSuper (FV 𝑡) for all 𝑡 ∈ ILTerm such that good 𝑡 ,

where the question marks must be replaced with expressions depending on L𝑡 M. Here again, we
can give some natural answers to these questions:

(1) L𝑡 [𝜎] M = L𝑡 M[iv2v 𝜎] for all 𝑡 ∈ ILTerm and 𝜎 ∈ PermSuper such that good 𝑡 .
(2) Im superOf (FV L𝑡 M) ⊆ TouchedSuper (FV 𝑡) for all 𝑡 ∈ ILTerm such that good 𝑡 .

Above, iv2v (read “ivariable to variable”) is the inverse of the conversion operator v2iv used in

the opposite translation (from finitary to infinitary terms, in §E.4). It converts, via superOf , a
Super-sensitive function 𝑔 : iVar → iVar into a function iv2v 𝑔 : Var → Var . It is defined by

iv2v 𝑔 = 𝜆𝑥 . superOf −1 (map 𝑔 (superOf 𝑥)).
With the structure determined by clauses (1)–(5), it is routine to check that A = (𝐴, _[_]A,

SuppA, iVrA, iLmA, iApA) is an i𝜆-enriched QLS-nominal set, which, via Prop. 97, gives us:

Lemma 98. There exists a unique function J_K : {𝑡 ∈ ILTerm | good 𝑡} → S such that the above

clauses (1)–(5) hold.

Note that Mazza’s informal definition of J_K has a different type, namely J_K : {𝑡 ∈ ILTerm |
uniform 𝑡} → S. But because uniform implies good (by Lemma 92), the restriction of our defined

function to uniform terms gives us Mazza’s exact version (plus the clauses (1) and (2) as “bonus”):

Lemma 99. There exists a unique function J_K : {𝑡 ∈ ILTerm | uniform 𝑡} → S such that the

following clauses hold:

(1) L𝑡 [𝜎] M = L𝑡 M[iv2v 𝜎] for all 𝑡 ∈ ILTerm and

𝜎 ∈ PermSuper such that uniform 𝑡 .

(2) Im superOf (FV L𝑡 M) ⊆ TouchedSuper (FV 𝑡) for all 𝑡 ∈ ILTerm such that uniform 𝑡 .

(3) L iVr 𝑥 M = Vr (superOf −1 xs) for all xs ∈ Super and 𝑥 ∈ set xs.
(4) L iLm xs 𝑡 M = Lm (superOf −1 xs) L𝑡 M for all xs ∈ Super and 𝑡 ∈ ILTerm such that uniform 𝑡 .

(5) L iAp 𝑡 tsM = Ap L𝑡 M Lts0 M for all 𝑡 ∈ ILTerm and ts ∈ ILTerm∞
such that uniform (iAp 𝑡 ts).
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Ap (Lm 𝑥 𝑡1) 𝑡2 →0 𝑡1 [𝑡2/𝑥] (Beta)
𝑡 →𝑘 𝑡

′

Lm 𝑥 𝑡 →𝑘 Lm 𝑥 𝑡 ′
(Xi)

𝑡1 →𝑘 𝑡
′
1

Ap 𝑡1 𝑡2 →𝑘+1 Ap 𝑡 ′
1
𝑡2

(ApL)

𝑡2 →𝑘 𝑡
′
2

Ap 𝑡1 𝑡2 →𝑘+1 Ap 𝑡1 𝑡 ′
2

(ApR)

Fig. 19. 𝜆-calculus 𝛽-reduction indexed by the applicative depth of the redex

So we can in principle regard good as an auxiliary over-approximation of uniform that helped

us complete the formal definition of L_M. However, retaining the more general type {𝑡 ∈ ILTerm |
good 𝑡} → S for L_M will be helpful beyond this goal, as it will allow us to do proofs by rule

induction on good.

E.8 The isomorhism
To summarize what we have so far:

• Each term 𝑠 ∈ LTerm is translated, for each position 𝑝 ∈ N∗
, to an iterm J𝑠K𝑝 ∈ ILTerm

that is both uniform and affine; and in fact, for all 𝑝, 𝑞 ∈ N∗
, J𝑠K𝑝 and J𝑠K𝑞 are renaming

equivalent.

• Each good, in particular, each uniform iterm 𝑡 ∈ ILTerm is translated to a term L𝑡 M.
Mazza’s goal is to show that the two translations give an isomorphism between (1) 𝜆-terms under

𝛽-reduction and (2) equivalence classes of uniform affine items modulo renaming-equivalence
8

under (infinitary) uniform 𝛽-reduction. (Recall that we already know from Lemma 82 that uniform

𝛽-reduction ensures the uniformity of its participating terms.)

To avoid lack of clarity, we will use single arrow for 𝛽-reduction on (finitary) terms, and keep

using double arrow for uniform 𝛽-reduction on iterms. In fact, to synchronize the two and state

Mazza’s result faithfully, we introduce the indexed version of the former, tracking the applicative

depth of the redex like we did for the latter. Thus, we define→ : LTerm → N → LTerm as in Fig. 19.

We omit showing the generated strong induction principle, since it is very similar to that of plain

𝛽-reduction.

Mazza’s main result consists of a sequence of five statements, which in our formalization looks

as follows:

Thm 100. The following hold:
(1) (Lemma 16 from [Mazza 2012]) 𝑡 ≈ 𝑡 ′ implies L𝑡 M = L𝑡 ′ M for all 𝑡, 𝑡 ′ ∈ ILTerm.

(2) (Thm. 19(1) from [Mazza 2012]) LJ𝑠K𝑝 M = 𝑠 for all 𝑠 ∈ LTerm and 𝑝 ∈ N∗
.

(3) (Thm. 19(2) from [Mazza 2012]) JL𝑡 MK𝑝 ≈ 𝑡 for all 𝑡 ∈ ILTerm and 𝑝 ∈ N∗
such that uniform 𝑡 .

(4) (corresponds to Thm. 19(3) from [Mazza 2012]) For all 𝑠, 𝑠′ ∈ LTerm, 𝑘 ∈ N and ps ∈ (N∗)∞, if
𝑠 →𝑘 𝑠

′
then there exists ts′ such that (map J𝑠K_ ps) ⇒𝑘 ts′ and lift

2
(≈) ts′ (map J𝑠′K_ ps) (in

particular, uniformS ts′).
(5) (corresponds to Thm. 19(4) from [Mazza 2012]) For all ts, ts′ ∈ ILTerm∞

and 𝑘 ∈ N, if ts ⇒𝑘 ts′

then lift
2
(→𝑘 ) (map L_M ts) (map L_M ts′).

(Recall that, for any two streams as, as′ over some set 𝐴 and binary relation 𝑅 on 𝐴, we write

lift
2
𝑅 as as′ for the componenwise lifting of the relation to these streams, namely ∀𝑖 . 𝑅 as𝑖 as′𝑖 .)

Points (1)–(3) of Thm 100 model faithfully the indicated results from [Mazza 2012]. Together,

they express that, for any position 𝑝 , J_K and L_M𝑝 give mutually inverse bijections between terms

8
Note that renaming equivalence is a partial equivalence on iterms, and an equivalence on uniform iterms.
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and equivalence classes of uniform iterms w.r.t. renaming equivalence. And since Lemma 90 states

that the actual renaming-equivalence representative produced by L_M𝑝 is affine, the result can be

read as establishing a syntactic isomorphism, up to renaming equivalence, between terms and

uniform affine iterms.

Moreover, (4) and (5) of Thm 100 cover the operational-semantics component of the isomorphism,

essentially stating that J_K and L_M𝑝 preserve (uniform) 𝛽-reduction. Recall from §E.3 that, in order

to make Mazza’s definition of uniform 𝛽-reduction rigorous, we had to define ⇒ not on iterms

like Mazza, but on streams on iterms. So while points (4) and (5) of our theorem correspond to

Mazza’s indicated results, they are not formulated exactly like those results—but they involve some

lifting and mapping in order to work with streams of iterms. However, it is possible to recover

Mazza’s original formulations exactly. We do this by defining the inductive relation⇒′
: ILTerm →

N → ILTerm → Bool as in Fig. 20. The definition of⇒′
matches Mazza’s definition faithfully, in

particular it does not commit to parallel reduction of streams of iterms until it becomes strictly

necessary, namely for the right-application rule (iApR). As highlighted in the listing of (iApR), ⇒′

makes use of our parallel relation ⇒, i.e., from the moment one commits to parallel reduction one

must stick to parallel reduction—which again, as far as we see, is the only way to make Mazza’s

definition rigorous.

To establish the formal connection between ⇒′
(which is faithful to Mazza’s definition) and ⇒

(which is what allowed us to get the job done), the following result about ⇒ is crucial. It states

that, once⇒𝑘 has been established between two streams of terms ts and ts′, it will be preserved no
matter how we shuffle, duplicate or delete elements from ts and ts′ in a synchronous manner, i.e.,

affecting the same positions in ts and ts′:

Lemma 101. For all ts, ts′ ∈ ILTerm∞
, 𝑘 ∈ N and 𝑓 : N → N, if ts ⇒𝑘 ts′ then

map (𝜆𝑖. ts𝑓 𝑖 ) (natsFrom 0) ⇒𝑘 map (𝜆𝑖. ts′
𝑓 𝑖
) (natsFrom 0).

(Note that the stream map (𝜆𝑖. ts𝑓 𝑖 ) (natsFrom 0) consists of ts𝑓 0, ts𝑓 1, ts𝑓 2 and so on.)

This result, which can be regarded as a form of equivariance, or more accurately parametricity

of⇒ for stream indexes (w.r.t. arbitrary functions, not only small bijections), follows by standard

rule induction. It has two important particular cases, where, for any item 𝑎, we write 𝑎𝜔 for the

infinite stream that repeats 𝑎:

Lemma 102. The following hold:
(1) For all ts, ts′ ∈ ILTerm∞

and 𝑘 ∈ N, if ts ⇒𝑘 ts′ then flat ts𝜔 ⇒𝑘 flat ts′𝜔 .
(2) For all tss, tss′ ∈ (ILTerm∞)∞, 𝑘 ∈ N and 𝑖 ∈ N, if flat tss ⇒𝑘 flat tss′ then tss𝑖 ⇒𝑘 tss′𝑖 .

These two particular cases allow us to connect ⇒′
and⇒:

Lemma 103. The following hold:
(1) For all 𝑡, 𝑡 ′ ∈ ILTerm and 𝑘 ∈ N, if 𝑡 ⇒′

𝑘
𝑡 ′ then 𝑡𝜔 ⇒𝑘 𝑡 ′𝜔 .

(2) For all ts, ts′ ∈ ILTerm∞
, 𝑘 ∈ N and 𝑖 ∈ N, if ts ⇒𝑘 ts′ then ts𝑖 ⇒′

𝑘
ts′𝑖 .

Point (1) of Lemma 103 follows by rule induction using Lemma 102(1) in the (iApR) case; likewise,

point (2) of Lemma 103 follows by rule induction using Lemma 102(2) in the (iApR) case.

Note that Lemma 103 implies an alternative definition of ⇒′
, namely 𝑡 ⇒′

𝑘
𝑡 ′ iff 𝑡𝜔 ⇒𝑘 𝑡 ′𝜔 ,

which further substantiates the intuition that in our development weworked with the parallelization

of Mazza’s relation. Using ⇒′
, we can now formulate Mazza-style the operational-semantics

component of the isomorphism (i.e., reformulate points (4) and (5) of or Thm. 100):

Thm 104. The following hold:
(1) (Thm. 19(3) from [Mazza 2012]) For all 𝑠, 𝑠′ ∈ LTerm, 𝑘 ∈ N and 𝑝 ∈ N∗

, if 𝑠 →𝑘 𝑠
′
then there
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𝑡 ⇒head 𝑡
′

𝑡 ⇒′
0
𝑡 ′

(iBeta)

xs ∈ Super 𝑡 ⇒′
𝑘
𝑡 ′

iLm xs 𝑡 ⇒′
𝑘

iLm xs 𝑡 ′
(iXi)

uniformS ts 𝑡 ⇒′
𝑘
𝑡 ′

iAp 𝑡 ts ⇒′
𝑘+1

iAp 𝑡 ′ tss
(iApL)

uniform 𝑡 ts ⇒𝑘 ts′

iAp 𝑡 ts ⇒′
𝑘+1

iAp 𝑡 ts′
(iApR)

Fig. 20. Uniform 𝛽-reduction for iterms

exists 𝑡 ′ such that J𝑠K𝑝 ⇒′
𝑘
𝑡 ′ and 𝑡 ′ ≈ J𝑠′K𝑝 (in particular, uniform 𝑡 ′).

(2) (Thm. 19(4) from [Mazza 2012]) For all 𝑡, 𝑡 ′ ∈ ILTerm and 𝑘 ∈ N, if 𝑡 ⇒′
𝑘
𝑡 ′ then L𝑡 M →𝑘 L𝑡 ′ M.

The above follows immediately from Thm. 100(4,5) and Lemma 103. This concludes the statements

of the isomorphism result from Mazza.

What we have not yet discussed is the proof of Thm. 100. We will do this next, highlighting

as usual the places where strong rule induction was necessary. Point (1) of Thm. 100 follows by

standard rule induction on 𝑡 ≈ 𝑡 ′, and point (2) by structural induction on the term 𝑠 .

For point (3) of Thm. 100 , we use that “uniform implies good” and perform standard rule

induction on good 𝑡 ; however, the uniformity assumption is also needed, i.e., the statement proved

by rule induction is not

good 𝑡 implies ∀𝑝. JL𝑡 MK𝑝 ≈ 𝑡 ,
but

good 𝑡 and uniform 𝑡 implies ∀𝑡 . JL𝑡 MK𝑝 ≈ 𝑡 .
(Indeed, uniformity is needed in the (iApR) case.) Note also that using structural induction on

𝑡 in conjunction with inversion rules for goodness or uniformity would not have been a valid

alternative to rule induction, since in the abstraction case we would not have guaranteed that the

binding stream of variables is a supervariable (as required for applying the corresponding inversion

rule for uniformity, expressed by Lemma 81, or a similar inversion rule for goodness).

For proving points (4) and (5) of Thm. 100, it is clear that we need properties about the interaction

between the translations and substitution. First, J_K_ commutes with substitution up to renaming

equivalence, in the following way:

Lemma 105. (corresponds to Lemma 17 from [Mazza 2012]) For all 𝑠, 𝑠′ ∈ LTerm, 𝑝, 𝑞 ∈ N∗
,

qs ∈ (N∗)∞ and 𝑥 ∈ Var , it holds that J𝑠 [𝑠′/𝑥]K𝑝 ≈ J𝑠K𝑞 [(map J𝑠′K_ qs) / (superOf 𝑥)].
This lemma follows by strong structural induction on 𝑠—where the parameters’ variables (to be

avoided) are those of 𝑠′ together with 𝑥 .
Note that, thanks to the “positional” flexibility of J_K_ w.r.t. renaming equivalence (expressed

by Lemma 87), in the above lemma we were able to allow on the right positions 𝑞, qs completely

unrelated to the one on the left, 𝑝 . (Mazza’s Lemma 17 actually forces 𝑝 and 𝑞 to be equal, but this

is unnecessary—which helps, because in the proof of Thm. 100(4) we need this stronger version. In

addition, Mazza’s Lemma 17 assumes that all positions in qs are mutually unrelated by the prefix

order, which is also unnecessary.)

Now, point (4) of Thm. 100 follows by standard rule induction on 𝑠 →𝑘 𝑠
′
, using Lemma 105 in

the (Beta) case (like Mazza anticipated).

As for L_M, it also commutes with substitution, in the following sense:

Lemma 106. (Lemma 18 from [Mazza 2012]) For all 𝑡 ∈ ILTerm, ts ∈ ILTerm∞
and xs ∈ Super such

that uniform 𝑡 and uniformS ts, it holds that L𝑡 [ts/xs] M = L𝑡 M[ts0 / (superOf −1 xs)].
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To prove this, we again note (like when proving Thm. 100(3)) that uniformity implies goodness,

which allows us to assume good 𝑡 . And here again, structural induction on 𝑡 would not do the job

due to the impossibility of applying the inversion rule for uniformity or goodness. So the only

option left is rule induction on good 𝑡 ; moreover, (unlike with Thm. 100(3)) this time we must cope

with substitution, in particular avoid the variables in the abstraction case, so we need our strong

rule induction on good 𝑡 (Prop. 93)—which indeed gets the job done.

Finally, point (5) of Thm. 100 follows by standard rule induction on ts ⇒𝑘 ts′, using Lemma 106

in the (iBeta) case (again like Mazza anticipated).

E.9 Summary of the case study
Overall, our formal proofs were able to confirm Mazza’s theorem that establishes an isomorphism

between (finitary) 𝜆-calculus under 𝛽-reduction and an infinitary uniform affine 𝜆-calculus under a

suitable notion of uniform 𝛽-reduction. Not only was Mazza right about the main theorem, but

also his suggested sequence of lemmas leading to this main theorem were correct, and we ended

up using them as Mazza envisioned.

Besides confirming the result, our formalization made a few contributions to rigor and clarity:

• We formally worked with terms and iterms modulo alpha-equivalence.

• Wemade the definition of uniform 𝛽-reduction rigorous, which required to shift from iterms

to streams of iterms.

• We identified a few places in the lemmas where some of the assumptions made were

unnecessary.

• As expected for a full detailed formal proof, there were quite a few gaps that needed to be

filled.

Concerning the first point above, equating terms and iterms modulo 𝛼 , this was explicitly Mazza’s

intention, as he writes in [Mazza 2012, § 2] (referring to the infinitary terms): “As usual, terms are

always considered up to alpha-equivalence.” Now, considering terms “up to” or “modulo” 𝛼 usually

means working with alpha-equivalence classes, which is what we did in our formalization.

Working with alpha-equivalence classes rather than “raw terms” has the huge benefit of substi-

tution being well-behaved, which is essential in reasoning. But this also has a few drawbacks, the

most important one being the higher difficulty of defining functions recursively. And indeed, for

defining the translation operators we needed to deploy nominal recursors, which turned out to

require a substantial formalization effort—especially since for translating uniform iterms to terms

we ended up designing a custom recursor.

Rule inversion lemmas are another area where working with alpha-equivalence imposes con-

straints that may seem unintuitive at first. For example, one may hope to prove stronger versions

of our inversion lemma for uniformity of abstractions, (Lemma 81), such as “if uniform (iLm xs 𝑡)
then xs ∈ Super and uniform 𝑡”, or at least “if uniform (iLm xs 𝑡) then xs ∈ Super or uniform 𝑡”. But

these do not hold on iterms as alpha-equivalence classes. This is because, since iLm is not injective,

any iterm that has the form iLm xs 𝑡 with xs supervariable and 𝑡 uniform, also has the form

iLm ys 𝑠 where ys is not a supervariable and 𝑠 is not uniform. This situation is imposing to formal

developments like ours a certain discipline that is not visible from, and indeed is often bypassed

by, informal developments—which, assuming alpha-equated terms for the sake of well-behaved

substitution while also pretending that inversion rules à la free datatypes hold, want to have their

cake and eat it too.

Another aspect where our formalization differs from Mazza’s informal development is that, while

he considers a countable set of variables for infinitary terms (iterms), we assume uncountably many.

This is because, as noted by Blanchette et al. [Blanchette et al. 2019], as soon as we shift to infinitary
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terms, the usual assumptions that one usually takes for granted with finitary syntax no longer

work here; and the countability of variables is one of these assumptions. Indeed, infinitary syntax

makes it possible for a term to have an infinite number of free variables, running the danger of

preventing the availability of (enough) fresh variables for it; in turn, this would negatively impact

the definition of substitution, and even the very definition of alpha-equivalence that bootstraps the

notion of terms as equivalence classes. Uncountably addresses this by making sure that we always

have enough fresh variables. (We should note that other workarounds are sometimes possible. For

example, Kurz et al. [Kurz et al. 2012, 2013] work with infinitary (coinductive) terms of finite support,

which means allowing, for a term, infinitely many variables to participate in its bindings but only

finitely many to appear free. This approach would not have worked here, since we need the iterms

produced by the translation to have infinitely many distinct “copies” of the original free variables.)

Last but not least, we used this case study to validate this paper’s main results, the strong rule

induction principles. We have instantiated our general theorems to provide strong rule induction

principles for the various notions of 𝛽-reduction, the affine predicate, renaming equivalence, and

also the good predicate that emerged as an auxiliary to the infinitary-to-finitary translation. These

principles have been used in key places in our proof development, mostly those involving the

interaction between these different predicates and (finitary or infinitary) substitution.

F MORE DETAILS ON THE SYSTEM F<: SUBTYPING CASE STUDY
The POPLmark challenge [Aydemir et al. 2005] uses a presentation of subtyping that does not

directly imply transitivity of subtyping (see figure 6). Proving this property is the goal of part one

of the challenge. Similar to the case study in Appendix E, we have mechanized this theorem in

Isabelle using our infrastructure.

As the syntax of System F<: is finite, the set of variables only need to be countable, i.e. of

cardinality ℵ0. Also, as seen in section 8.2, we first prove (by normal induction) that Γ ⊢ 𝑆 <:𝑇

implies a well-formed context. This extra context allows us to derive the strong induction theorem

for the subtyping predicate (Prop. 14) that will be used in the rest of this section.

Equipped with the strong induction theorem it is possible to directly follow the proof sketch

outlined in the original POPLmark challenge. Instantiating the parameter structure of the strong

induction theorem with the domain of the context ensures that the bound variable in the (All) case

is not yet in the context. This directly allows to add the variable to the context while retaining

well-formedness. Without this freshness we would need to manually rename the variables in all

three arguments of the subtyping relation manually in ever proof.

The proof sketch starts out with reflexivity, context permutation and weakening for subtyping.

Lemma 107. If wf Γ and FV 𝑇 ⊆ dom Γ then Γ ⊢ 𝑇 <:𝑇

Lemma 108. (Permutation of the context) If Γ ⊢ 𝑆 <:𝑇 , wf Δ and Δ = 𝜋 (Γ) then Δ ⊢ 𝑆 <:𝑇

Lemma 109. (Weakening of subtyping) If Γ ⊢ 𝑆 <:𝑇 and wf Γ,Δ then Γ,Δ ⊢ 𝑆 <:𝑇

All these properties follow directly by strong induction, namely strong structural induction for

Lemma 107 and strong rule induction on the definition of typing (Prop. 14) for Lemmas 108 and

109.

The most interesting case is the (All) case in the proof of Lemmas 109, where we use permutation

to swap the new variable to the end of the context (Γ, 𝑋 <:𝑇 ′,Δ to Γ,Δ, 𝑋 <:𝑇 ′
)

The proof of Lemma 107 follows by strong structural induction on the syntax of System F<:,

which is the following principle:

Prop 110. Let (P, Psupp : P → Pfin (Var)) be a parameter structure. Let 𝜑 : P → Type → Bool and
assume that:
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- LTVrM: ∀𝑝, 𝑥 . 𝜑 𝑝 (TVr 𝑋 )
- LTopM: ∀𝑝. 𝜑 𝑝Top
- LArrowM: ∀𝑝,𝑇1,𝑇2. (∀𝑞. 𝜑 𝑞 𝑇1) ∧ (∀𝑞. 𝜑 𝑞 𝑇1) −→ 𝜑 𝑝 (𝑇1 → 𝑇2)
- LAllM: ∀Γ. (∀Γ′ . 𝜑 Γ′ 𝑇1) ∧ (∀Γ′ . 𝜑 Γ′ 𝑇 ) ∧ 𝑋 ∉ FV Γ −→ 𝜑 Γ (∀𝑋 <: 𝑇1.𝑇

Then ∀𝑝,𝑇 . 𝜑 𝑝 𝑇 .
Note that, like with all the (binding-aware) datatypes, the (strong) structural induction principle

associated to a datatype (such as Prop. 110 for the datatype of System F<: syntax, Lemma 44 for

the datatype of 𝜆-calculus syntax, etc.) is a particular case of (strong) rule induction—namely, it

coincides with the (strong) rule induction principle associated to an (alternative) inductive definition

of equality on that datatype.

The proof of Lemma 107 shows the additional flexibility we get from the universal quantification

over parameters. We use Prop. 110 where P is the set of contexts Γ and Psupp Γ = FV Γ. During the
inductive proof, in the LAllM case where the type has the form ∀𝑋 <: 𝑇1 .𝑇 , for a fixed Γ, we know
that (1) Γ′ ⊢ 𝑇1 <:𝑇1 for all Γ

′
and (2) Γ′ ⊢ 𝑇 <:𝑇 for all Γ′, and must prove (3) Γ ⊢ (∀𝑋 <: 𝑇1 .𝑇 )<:

(∀𝑋 <: 𝑇1.𝑇 ). And in order to prove the latter (using the rule (All) for typing from Fig. 6) we need

to know that Γ′ ⊢ 𝑇1 <:𝑇1 and Γ, 𝑋 <: 𝑇1 ⊢ 𝑇 <:𝑇 , so we must instantiate (1) with Γ and (2) with

(Γ, 𝑋 <: 𝑇1)—so the universal quantification over the parameter was essential.

F.1 Transitivity and narrowing, version 1
With those basic lemmas it is now possible to prove transitivity of subtyping. However, as the proof

sketch points out, transitivity requires narrowing which in turn requires transitivity (although

only on smaller terms).

Thm 111. (Transitivity and Narrowing)

(1) Γ ⊢ 𝑆 <:𝑄 and Γ ⊢ 𝑄 <:𝑇 implies Γ ⊢ 𝑆 <:𝑇

(2) Γ, 𝑋 <:𝑄,Δ ⊢ 𝑀 <:𝑁 and Γ ⊢ 𝑅<:𝑄 implies Γ, 𝑋 <:𝑅,Δ ⊢ 𝑀 <:𝑁

The proof uses simultaneous (strong) induction on𝑄 followed by a (strong) rule induction on the

resulting typing derivations. While the individual cases follow the exact steps that are described in

the proof sketch, in the (All) case they require additional strong inversion rules, namely Lemma 112

and 113 below.

Lemma 112. (Strong rule inversion, first case)
If (1) Γ ⊢ (∀𝑋 <:𝑆1 . 𝑆2)<:𝑇

(2) 𝑋 ∉ dom Γ
(3) for all Γ: wf Γ and FV (∀𝑋 <:𝑆1. 𝑆2) ⊆ dom Γ implies 𝑃 Γ (∀𝑋 <:𝑆1. 𝑆2) Top
(4) for all Γ,𝑇1 and𝑇2: Γ ⊢ 𝑇1 <:𝑆1 and Γ, 𝑋 <:𝑇1 ⊢ 𝑆2 <:𝑇2 implies 𝑃 Γ (∀𝑋 <:𝑆1 . 𝑆2) (∀𝑋 <:𝑇1.𝑇2)

then 𝑃 Γ (∀𝑋 <:𝑆1 . 𝑆2);𝑇 .
Lemma 113. (Strong rule inversion, second case)

If (1) Γ ⊢ 𝑆 <:∀𝑋 <:𝑇1.𝑇2

(2) 𝑋 ∉ dom Γ
(3) for all Γ, 𝑌 , 𝑈 : 𝑌 <: 𝑈 ∈ Γ, Γ ⊢ 𝑈 <: ∀𝑋 <: 𝑇1 .𝑇2and 𝑃 Γ 𝑈 (∀𝑋 <: 𝑇1.𝑇2) implies

𝑃 Γ (TVr 𝑌 ) (∀𝑋 <:𝑇1.𝑇2)
(4) for all Γ, 𝑆1, 𝑆2: Γ ⊢ 𝑇1 <:𝑆1 and Γ, 𝑋 <:𝑇1 ⊢ 𝑆2 <:𝑇2 implies 𝑃 Γ (∀𝑋 <:𝑆1 . 𝑆2) (∀𝑋 <:𝑇1.𝑇2)

then 𝑃 Γ (∀𝑋 <:𝑆1 . 𝑆2);𝑇 .
These strong inversion rules allow to keep the exact same variable in the binder instead of

obtaining a new one (as highlighted in their statement). To be able to derive these, the variable

already needs to be fresh in the context. However, this is already the case thanks to the use of

strong induction.
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F.2 Transitivity and narrowing, version 2
While the individual cases of the nested, simultaneous induction in the previous section are straight

forward, it requires a lot of very repetitive proof code. Given that narrowing only needs transitivity

for strictly smaller terms, we can first prove narrowing by assuming transitivity:

Lemma 114. (Narrowing under assumed transitivity)

If (1) Γ, 𝑋 <:𝑄,Δ ⊢ 𝑀 <:𝑁

(2) Γ ⊢ 𝑅<:𝑄

(3) for all Γ,𝑆 , 𝑇 : Γ ⊢ 𝑆 <:𝑄 and Γ ⊢ 𝑄 <:𝑇 implies Γ ⊢ 𝑆 <:𝑇

then Γ, 𝑋 <:𝑅,Δ ⊢ 𝑀 <:𝑁

It is important that the type in the "middle" (highlighted above) is fixed, otherwise it would not be

possible to use the induction hypothesis of the transitivity proof to fill in this assumption. Besides

only proving a single theorem at a time, separating the proofs also allows to prove narrowing by

induction on the typing derivation instead of on the type. This means that no rule inversions need

to be done, further simplifying the proof. In fact, all but the (Trans-TV) case can be solved directly

by the automation of Isabelle in our formalization.

With Lemma 114, it is possible to prove transitivity by induction on 𝑄 . For the (All) case the

strong inversion rules are again useful to ensure that all binders use the same variable. As mentioned

earlier, this case also uses the narrowing theorem by instantiating the extra assumption about

transitivity with the induction hypothesis of the (All) case. After the proof is complete the full

narrowing theorem can be obtain by plugging in the transitivity theorem.

G ISABELLE IMPLEMENTATION AND FORMALIZATION
G.1 Datatypes with bindings
We elaborate on our implementation (§10) of Blanchette et al.’s MRBNF-based foundational ap-

proach [Blanchette et al. 2019] to datatypes with bindings in Isabelle/HOL. It uses user-friendly

custom syntax to define binder datatypes. For example, the type of 𝜆-terms (App. D) can be intro-

duced as follows in an Isabelle theory document:

binder_datatype 'var lterm =
Var 'var

| App "'var lterm" "'var lterm"
| Lam x::'var t::"'var lterm" binds x in t

Internally this syntax creates the pre-datatype lterm_pre. This type distinguishes between bound

and free positions and replaces recursive occurrences in the syntax with new type variables (dis-

tinguishing between recursive occurrences in which different variables are bound; here, nothing is

bound in the arguments of App, whereas the first argument of Lam is bound in its second argument).

The above declaration produces this pre-datatype:

('var, 'bvar, 'rec, 'brec) lterm_pre =
'var

+ ('rec * 'rec)
+ ('bvar * 'brec)

The binding annotations written by the user are reflected in this type as the type variables rep-

resenting recursive occurrences in the App and Lam cases are different. Furthermore the type has

one free and one bound position ('var and 'bvar respectively).
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Afterwards the pre-datatype is proved to be an MRBNF by composition of known type construc-

tors (in this case sum, product and identity). This composition also produces suitable map and free

variable functions:

map_lterm_pre :: ('var => 'var) => ('bvar => 'bvar) => ('a => 'c) => ('b => 'd)
=> ('var, 'bvar, 'a, 'b) lterm_pre => ('var, 'bvar, 'c, 'd) lterm_pre

set1_lterm_pre :: ('var, 'bvar, 'rec, 'brec) lterm => 'var set
set2_lterm_pre :: ('var, 'bvar, 'rec, 'brec) lterm => 'bvar set
set3_lterm_pre :: ('var, 'bvar, 'rec, 'brec) lterm => 'rec set
set4_lterm_pre :: ('var, 'bvar, 'rec, 'brec) lterm => 'brec set

The fact that the pre-datatype is an MRBNF implies the existence of a (least) fixpoint. Its charac-

teristic equation is:

'var lterm = ('var, 'var, 'var lterm, 'var lterm) lterm_pre

Solving the type fixpoint equation means here that the new type 'var LTerm is defined as the

quotient of the ordinary (non-binding) datatype

'var lterm_raw = 'var + 'var lterm_raw * 'var lterm_raw + 'var * 'var lterm_raw

by the alpha-equivalence relation induced by the binding relation. Moreover, the declaration defines

constructors, substitution, and free variable functions, and proves their properties as described

in App. D.1, e.g., distinctness, (quasi)-injectivity, and equivariance of the constructors, functorial

properties of variable-for-variable substitution, and the strong structural induction principle. All

these facts are proved automatically from first principles of Isabelle’s higher-order logic.

Unlike in App. D.1, the introduced datatype is polymorphic in the variable type 'var. This type
variable is required to be large enough via a type class that the declaration introduces. In our

example, 'var is required to be infinite and can be thus instantiated with any infinite type; in our

proofs we instantiate 'var with (a type isomorphic to) nat.
The declaration can be easily adapted to yield 𝜆-iterms (App. D.2). Note that the reference xs used

to declare the binding relation for this complex binder appears nested in another type (dstream):

binder_datatype 'var iterm =
Var 'var

| App "'var iterm" "'var iterm stream"
| Lam "(xs::'var) dstream" t::"'var iterm" binds xs in t

Here, 'a stream is Isabelle’s type of infinite sequences (defined as a codatatype in Isabelle’s

standard library) and 'a dstream is a subtype of 'a stream only containing sequences without

repeating elements (which we have introduced specifically for this work). The new type’s type

variable 'var is subject to a type class constraint that requires it to be uncountably infinite; in our

proofs about 𝜆-iterms we instantiate 'var with an uncountable subtype of nat set (the type of
sets of natural numbers).

Similar declarations yield types used in our other case studies: 𝜋-calculus (App. D.3) and Sys-

tem F<: (App. F). In general, our implementation supports multiple type variables and arbitrary

constructor argument types. At the time of writing the user-friendly syntax does not directly

support mutual recursion, however the underlying ML code covers this as well. We are in the

process of providing support for binder codatatypes.

G.2 Rule induction
We formalize strong rule induction principles for inductive predicates using a hierarchy of lo-

cales [Ballarin 2014; Kammüller et al. 1999], Isabelle’s module system. Specifically, locales constitute

an extensible mechanism for managing local parameters and assumptions. For example, our first
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Fig. 21. Definition of 𝛽-reduction using binder_inductive.

variants of strong rule induction (Thms. 7 and 20) are proved abstractly in a locale called Induct,
which (via distributed over several sublocales) fixes the structure of a 𝜅-LS-nominal set Tand the

operator𝐺 and assumes the properties of being a 𝜅-LS-nominal set, monotonicity, equivariance and

T-refreshability. The strong rule induction theorem is a statement about the inductive predicate 𝐼𝐺
defined as the least fixpoint of 𝐺 in the very same locale. A similar locale, for lack of a better name

called IInduct, exists for our more general Thm. 23. The generality is captured by a sublocale rela-

tion showing that the parameters of IInduct can be instantiated using those of Induct (and suitable
“passive” choices for the extra parameters of IInduct) and the assumptions of IInduct follow from

the assumptions of Induct (given the above suitable choices). In principle, we could always work in

the most general setting. However, the assumptions of Induct are easier to discharge for examples

that do not need the full generality. In fact, we even defined and use even more restricted locale vari-

ants, called Induct_simple and IInduct_simple, which replace T-refreshability with T-freshness.
To obtain a concrete strong rule induction theorem for a conventional (non-binding-aware)

inductive predicate 𝐼 , a user can manually follow the following six steps. (1) Define the operator 𝐺 ,

which underlies 𝐼 ’s definition and abstracts over the bound variables, and (2) indicate the specific 𝜅-

LS-nominal set of interest. Then (3) instantiate (or interpret using Isabelle terminology) the Induct
locale and, after (4) proving the locale’s assumptions, obtain the principle about 𝐼𝐺 . The syntactic

mismatch between 𝐼 and 𝐼𝐺 is easily rectified by proving their equivalence: both are defined as least

fixpoints of two operators that differ from each other only in that one abstracts over the bound

variable positions and possibly some currying. (5) It is thus easy to prove 𝐼 = 𝐼𝐺 . Combining this

fact with the strong rule induction about 𝐼𝐺 , (6) another routine proof gives us the desired strong

rule for 𝐼 , where the inductive step is split into as many cases as there are introduction rules for 𝐼

(whereas the rule for 𝐼𝐺 only has one case formulated using 𝐺). The obtained rule is ready to be

used with our binder_induction proof method.

Our binder_inductive and make_binder_inductive commands automate all these steps, while

requiring the user to prove T-refreshability in step (4). Moreover, the commands deviate from the

above recipe in step (3): instead of instantiating the locale, the commands automate the proofs

performed in the locale for the specific 𝐺 . This is more convenient when dealing with currying:

the locale’s predicate 𝐼𝐺 must always be uncurried and step (5) must rectify this mismatch in case

the predicate 𝐼 is curried, which is usually the case.
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Fig. 22. Definition of parallel 𝛽-reduction using binder_inductive and using a semi-automated tactic for
T-refreshability.

As we discuss in §5 and §6, we have also taken steps to automate the required T-refreshability
proof. We have packaged the steps outlined in §6 as an ML tactic that orchestrates the retrieval of

a fresh set of bound variables as well as the “as appropriate” instantiation of existential quantifiers

and the following reasoning based on user input. Our ongoing work is synthesize this input au-

tomatically from the given introduction rules: at the moment of writing our automation succeeds

in simple cases such as 𝛽-reduction, but still relies on user input for more complex examples. For

example, Fig. 21 shows the full Isabelle script formalizing 𝛽-reduction and obtaining its equivariance

and strong rule induction principle and Fig. 22 shows what needs to be done to obtain the same

result for parallel 𝛽-reduction in which the T-refreshability proof requires manual user input.

G.3 Statistics
Our implementation consists of 21 500 lines of Isabelle/ML, most of which are dedicated to the

construction of MRBNF-based datatypes with bindings and recursive functions on such types. In

addition, our formalization comprises of 16 000 lines of Isabelle definitions and proofs. Of those

roughly 4 300 lines are dedicated to reusable infrastructure such as the formal prerequisites for the

datatype construction, the locales for our enhanced rule induction principles, and generic theories

for countable and uncountable variable types. The rest is distributed over our case studies: 1 200
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lines for the formalization of System F<: and the proof of the POPLmark 1A challenge; 1 200 lines

for the 𝜋-calculus formalization; 700 lines for the infinitary first-order logic; and 6 500 lines for the

isomorphism between the 𝜆-calculus and affine uniform infinitary 𝜆-calculus. Our formalization

contains 15 usages of strong rule induction principles and 17 usages of strong structural induction

principles (always applied using the binder_induction proof method). Although the applications

of strong induction principles are rare in absolute numbers, they were truly essential in our

formalizations. For example, in the affine uniform infinitary 𝜆-calculus case study we could follow

Mazza’s high-level proof sketches rather faithfully.
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