
Anoma Research Topics | TECHNICAL REPORT

Heterogeneous Paxos 2.0: the Specs
Aleksandr Karbyshev a and Isaac Sheff a

aHeliax AG

* E-Mail: aleksandr@heliax.dev, isaac@heliax.dev

Abstract
We present Heterogeneous Paxos 2.0 (HP2.0), an improved version of Heterogeneous Paxos
consensus algorithm (HP). In a nutshell, HP2.0 simplifies the algorithm logic, reduces
bandwidth usage, and enables a more efficient implementation.
HP2.0 is compatible with the requirements of HP and satisfies the same correctness
properties. A formal specification of HP2.0 in TLA+ is available as a separate software
artefact, with a formal proof of the key safety property of Agreement in TLAPS.
This report provides an accessible account of HP2.0, of the design space in which it exists,
and of the design choices that led us to our current system.

Keywords: consensus ; distributed algorithm ; heterogeneous Paxos ;

(Received Jun 17, 2024; Version: Nov 19, 2024)

Contents

1 Introduction 2
1.1 Original Heterogeneous Paxos 2
1.2 Why Heterogeneous Paxos 2.0? 2

2 Differences From Original Heterogeneous Paxos 3
2.1 Broadcast Primitive . 3
2.2 2a Messages . 3
2.3 One Message In, at Most One Message Out 3
2.4 Byzantine Behaviour Detection 4
2.5 Logic changes . 4

2.5.1 Buried . 4
2.5.2 Well-Formed . 4
2.5.3 Acceptor Algorithm 5

3 Specification 5
3.1 Network Model . 5
3.2 Learner Graph . 5
3.3 Protocol Message Structure 6

3.3.1 Properties of All Protocol Messages 6
3.3.2 Properties of Proposal Messages 6
3.3.3 Properties of Non-Proposal Messages 6

DOI: 10.5281/zenodo.14183994 Anoma Research Topics | November 19, 2024 | 1–12

https://art.anoma.net
https://orcid.org/0000-0002-7984-4104
https://orcid.org/0000-0002-7822-1503
https://dx.doi.org/10.5281/zenodo.14183994

3.4 Definitions . 7
3.5 Protocol . 9
3.6 Protocol Properties . 11
3.7 Mailbox Layer . 11

4 Future Work 12

References 12

1. Introduction
We present Heterogeneous Paxos 2.0 (HP2.0): an improved, simpler, and more
efficient version of Heterogeneous Paxos consensus protocol (HP) [SWvRM20].
The assumptions and guarantees of HP2.0 are similar to those of HP, but
we simplify the algorithm logic and reduce communication complexity, thus
improving efficiency.

A formal specification of HP2.0 in TLA+ [Lam02] is available in the Typhon
repository [Ano]. The TLA+ spec has a formally verified proof of Agreement,
a key safety property [Ano]. Here, rather than focusing on proofs, we attempt
to explain the protocol in more reader-friendly terms.

This report is intended as the definitive “source of truth” for the definition
of HP2.0. However, as we continue to integrate and prove more optimizations
and simplifications, HP2.0 remains a work in progress.

1.1. Original Heterogeneous Paxos
This report assumes readers are familiar with the original HP technical re-
port [SWvRM20], and is intended to explain the improvements we have made
for HP2.0.

Original HP generalizes the Paxos consensus protocol [Lam98] for a setting
with arbitrary quorums of acceptors, tolerating mixed crash and byzantine
failures, with each learner tolerating different failure scenarios. The motiva-
tion, roles for participants, and trust model of HP2.0 are identical to those in
HP [SWvRM20, §1–4, 8].

1.2. Why Heterogeneous Paxos 2.0?
HP2.0 improves upon HP by being both simpler and more efficient. The
simplifications not only make the protocol easier to formally specify in TLA+,
but also facilitate proving things about it and streamline its implementation.
The differences between HP and HP2.0 are outlined in Section 2.

HP2.0 admits a substantially more efficient implementation than HP, with
no loss in power. For example, calculating which byzantine acceptors are
caught in a message could naively require exponential time for HP. The

DOI: 10.5281/zenodo.14183994 Anoma Research Topics | November 19, 2024 | 2

https://dx.doi.org/10.5281/zenodo.14183994
http://art.anoma.net

Byzantine behaviour detection modification of HP2.0 (Section 2.4) enables an
implementation that can perform this check in linear time.

2. Differences From Original Heterogeneous Paxos
The HP2.0 consensus algorithm results from five substantial improvements
to HP, which we describe in the remainder of this section.

2.1. Broadcast Primitive
HP2.0 assumes a broadcast primitive, which is responsible for sending mes-
sages to each acceptor and learner. For the liveness property to hold, broadcast
must guarantee that if a message is received by one honest acceptor (i.e., an
acceptor that is both safe and live), then that message is eventually received
by all acceptors.

HP2.0 assumes a partially synchronous network [DLS88], where after some
unknown global stabilization time (GST), all messages arrive within some
(unknown but fixed) latency bound. After GST, the broadcast guarantee must
deliver messages to all honest recipients within an (unknown) finite bound
dependent on network latency. We do not require any particular message
ordering guarantees.

In the HP algorithm, broadcast was implemented by having each acceptor
echo well-formed messages to all other acceptors. In contrast, HP2.0 leaves
the exact implementation of broadcast flexible, allowing for multiple possible
approaches. One such implementation, as used in HP, involves all acceptors
echoing all received messages to all other acceptors and learners. A more
bandwidth-efficient implementation, however, would require acceptors to
explicitly request any missing messages when a received message references
one they do not recognize.

2.2. 2a Messages
Instead of sending a 2a-message for each learner as in HP [SWvRM20], we
send a single 2a (non-proposal) message associated with a set of learners.
Conceptually, this is similar to sending a set of 2a-messages, but in practice,
it is more efficient, both to send and to track with refs (Section 3.3).

2.3. One Message In, at Most One Message Out
With the broadcast primitive and the 2a-messages, we can substantially sim-
plify our protocol: In fact, we can remove all recursion and broadcast at most
one message for each message received. This entails another minor change:
instead of each actor receiving its own message in the same atomic action
that it sends it (messages are broadcast, so actors receive their own mes-
sages), they receive them in some future action, just like any other message.

DOI: 10.5281/zenodo.14183994 Anoma Research Topics | November 19, 2024 | 3

https://dx.doi.org/10.5281/zenodo.14183994
http://art.anoma.net

This change, in turn, may increase implementation efficiency by breaking up
atomic actions into smaller schedulable pieces.

2.4. Byzantine Behaviour Detection
Each message specifies the previous message from the same sender (Sec-
tion 3.3). This makes it much easier to detect certain kinds of Byzantine
behaviour: two messages referencing the same parent form a proof of mis-
behaviour. In contrast, the original protocol called for comparing transitive
history sets [SWvRM20]. This change makes detecting Byzantine behaviour
much easier to implement without sacrificing any guarantees.

2.5. Logic changes
In some cases, we were able to simplify Heterogeneous Paxos by remov-
ing unnecessary constraints and checks. Our formal proof shows that the
streamlined HP2.0 protocol retains the same safety conditions (Agreement
and Validity) as the original. In each case, simplification can only improve live-
ness: all acceptor actions allowed without the simplification remain allowed
with the simplification. Termination guarantees therefore remain unchanged.

We make three such simplifications: in the definition of Buried, the defini-
tion of Well-Formed, and the acceptor algorithm.

2.5.1. Buried
In HP2.0, to bury a 2a-message 𝑥 , the acceptor must have seen a different
2a-message with a higher ballot and a different value. In contrast, HP required
that a quorum of acceptors observe such a message [SWvRM20, Definition 28].
Upon analysing the formal safety proof for HP, we found that the quorum
was only used to establish the existence of a single higher ballot 2a-message
with a different value. We have formally proven that the quorum condition is
unnecessary for burying an older 2a-message.

By eliminating this unnecessary constraint, HP2.0 consensus algorithm
can achieve faster progress than HP in certain scenarios, as the acceptors no
longer need to wait for redundant 2a-messages to propagate.

2.5.2. Well-Formed
We removed the “Sig(𝑧) ∈ Sig(q(𝑧))” constraint for a 2a-message to be
considered well-formed [SWvRM20, Assumption 29]. This constraint required
that an acceptor must itself be part of the 1b-quorum from the same ballot
in order to issue a 2a-message. However, this constraint was not necessary
in both original Paxos [Lam98] and Byzantized Paxos [Lam11], and it has
proven to be superfluous here as well. By removing it, acceptors can issue
2a-messages under strictly wider conditions: this change does not damage
liveness.

DOI: 10.5281/zenodo.14183994 Anoma Research Topics | November 19, 2024 | 4

https://dx.doi.org/10.5281/zenodo.14183994
http://art.anoma.net

2.5.3. Acceptor Algorithm
In [SWvRM20, Figure 3], acceptors could only issue 2a-messages in response
to a 1b-message with the most recent ballot. HP2.0 allows acceptors to issue
2a-messages in response to any 1b-message. While a 1b-message from an
old ballot would not enable any new 2a-messages, and so it is not clear why
an acceptor would ever need to send a 2a-message in response to an old
1b, allowing this action does not affect the protocol’s formal guarantees:
Agreement, Termination, and Validity. We therefore remove this condition to
keep the formal protocol as simple as possible.

3. Specification
3.1. Network Model
We assume the closed-world distributed system consisting of a fixed finite set
of acceptors A, a fixed finite set of proposers P and a fixed finite set of learners
L. We denote by S ⊆ A a set of safe, non-Byzantine, acceptors that follow
the protocol.

We assume that message broadcast is reliable, i.e., every message sent or
received by a correct (i.e., safe and live) acceptor or proposer is eventually re-
ceived by all live acceptors and learners1. The delivery order of sent messages
does not have to be preserved.

3.2. Learner Graph
We use the notion of learner graph introduced in [SWvRM20]. We recap its
formal definition below.

Let L be a fixed finite set of learners, and A a fixed finite set of acceptors.

• Nodes of learner graph are elements 𝛼 ∈ L.

• Each learner 𝛼 is labelled with a set 𝑄𝛼 ⊆ 2A. The elements of 𝑄𝛼 are
quorums 𝑞 ⊆ A. We assume that each 𝑄𝛼 is closed upwards, i.e., for
any 𝑞′ ⊇ 𝑞 ∈ 𝑄𝛼 , we have 𝑞′ ∈ 𝑄𝛼 .

• For any pair 𝛼, 𝛽 ∈ L, there is a graph edge labelled with a set of
quorums, 𝛼−𝛽 ⊆ 2A, called a safe set of 𝛼 and 𝛽 . We assume that any
safe set 𝛼−𝛽 is closed upwards, i.e., for any 𝑞′ ⊇ 𝑞 ∈ 𝛼−𝛽 , we have
𝑞′ ∈ 𝛼−𝛽 .

• The graph is undirected, i.e., 𝛼−𝛽 = 𝛽−𝛼 .

Definition 1 (Condensation). We say that the learner graph is condensed if
for all 𝛼, 𝛽,𝛾 ∈ L

𝛼−𝛽 ∩ 𝛽−𝛾 ⊆ 𝛼−𝛾
1As learners are never required to send messages, all learners are trivially live.

DOI: 10.5281/zenodo.14183994 Anoma Research Topics | November 19, 2024 | 5

https://dx.doi.org/10.5281/zenodo.14183994
http://art.anoma.net

Definition 2 (Validity). We say that the learner graph is valid if for any
𝑠 ∈ 𝛼−𝛽 , 𝑞 ∈ 𝑄𝛼 , and 𝑟 ∈ 𝑄𝛽 we have 𝑠 ∩ 𝑞 ∩ 𝑟 ≠ ∅.
Definition 3 (Entanglement). We say that learners 𝛼 and 𝛽 are entangled if
the set of safe acceptors S belongs to the learners’ safe set.

Entangled(𝛼, 𝛽) def
= S ∈ 𝛼−𝛽

3.3. Protocol Message Structure
As far as message encoding “on the wire” is concerned, there are two types of
messages: proposal messages, also called 1a-messages, and non-proposal
messages. The encoding of these must be distinct, allowing recipients to
identify the type of the received message.

3.3.1. Properties of All Protocol Messages
1. Each protocol message 𝑥 carries a cryptographic signature that uniquely

identifies the message signer, denoted by Sig(𝑥), with Sig(𝑥) ∈ A ∪ P.

2. Each protocol message has a unique hash, which other messages can
use to reference it.

3.3.2. Properties of Proposal Messages
1. For each proposal message 𝑥 , Sig(𝑥) must be a proposer: a participant

authorized to generate new proposals.

2. Each proposal message 𝑥 has a field 𝑥 .val containing a proposed value.

3. Each proposal message 𝑥 has a field 𝑥 .bal: a natural number specific
to this proposal—its ballot number. We assume that ballots are value-
specific: 𝑥 .bal = 𝑦.bal implies 𝑥 .val = 𝑦.val. One way to implement
this is to include the hash of the value in the (least significant bits of
the) ballot.

3.3.3. Properties of Non-Proposal Messages
1. Each non-proposal message 𝑥 carries a finite list of references to some

other messages, 𝑥 .refs. In practice, each reference is represented by
a hash of the referenced message. Acceptors remember previously
received messages (known_messages), allowing them to resolve refer-
ences.

2. Each non-proposal message 𝑥 carries a distinguished reference, 𝑥 .prev,
to a previous message signed by the same signer, identified by Sig(𝑥).
If 𝑥 is the first message sent by the sender, 𝑥 .prev contains a special
non-reference value ⊥.

DOI: 10.5281/zenodo.14183994 Anoma Research Topics | November 19, 2024 | 6

https://dx.doi.org/10.5281/zenodo.14183994
http://art.anoma.net

3.4. Definitions
Definition 4 (1b). A non-proposal message 𝑥 is called a 1b-message, denoted
as 𝑥 :1b, if its references contain a proposal message. Formally:

𝑥 :1b
def
= ∃𝑦 ∈ 𝑥 .refs. 𝑦 :1a

Definition 5 (2a). Non-proposal message 𝑥 is called a 2a-message, denoted as
𝑥 :2a, if its references do not contain a proposal message. Formally:

𝑥 :2a
def
= ∀𝑦 ∈ 𝑥 .refs.¬𝑦 :1a

We extend Sig over sets of messages to mean the set of signers of those
messages:
Definition 6 (Message set signers). For any set of messages 𝑀 :

Sig(𝑀) def
= {Sig(𝑚) | 𝑚 ∈ 𝑀}

Definition 7 (Transitive references).

Tran(𝑥) def
= {𝑥} ∪

⋃
𝑚∈𝑥 .refs

Tran(𝑚)

Definition 8 (Transitive previous).

PrevTran(𝑥) def
= {𝑥} ∪

{
PrevTran(𝑥 .prev) if 𝑥 .prev ≠ ⊥
∅ otherwise

Definition 9 (Message 1a).

Get1a(𝑥) def
= argmax

𝑚:1a ∈Tran(𝑥)
𝑚.bal

Definition 10 (Ballot).

B(𝑥) def
= Get1a(𝑥).bal

Definition 11 (Value).

V (𝑥) def
= Get1a(𝑥).val

Definition 12 (Caught acceptors).

Caught (𝑥) def
= Sig

©­­­«
 𝑚 ∈ Tran(𝑥)

∃𝑚′ ∈ Tran(𝑥).
Sig(𝑚) = Sig(𝑚′)

∧𝑚 ∉ PrevTran(𝑚′)
∧𝑚′ ∉ PrevTran(𝑚)


ª®®®¬

DOI: 10.5281/zenodo.14183994 Anoma Research Topics | November 19, 2024 | 7

https://dx.doi.org/10.5281/zenodo.14183994
http://art.anoma.net

Definition 13 (Connected learners). For any learner 𝛼 and message 𝑥 :

Con𝛼 (𝑥)
def
= {𝛽 ∈ L | ∃𝑠 ∈ 𝛼−𝛽. 𝑠 ∩ Caught (𝑥) = ∅}

Definitions 14 to 18 are mutually recursive. They are sound because the
recursive call is done on descendants of argument messages relative to the
message reference relation.
Definition 14 (Buried 2a-messages). For any learner 𝛼 , 2a-message 𝑥 and
message 𝑦:

Buried𝛼 (𝑥,𝑦)
def
=

∃𝑧 ∈ Tran(𝑦). 𝑧 :2a ∧ 𝛼 ∈ lrns(𝑧) ∧ B(𝑧) > B(𝑥) ∧ V (𝑧) ≠ V (𝑥)

Definition 15 (Connected 2a-messages). For any learner 𝛼 and message 𝑥 :

Con2as𝛼 (𝑥)
def
=

 𝑚 ∈ Tran(𝑥)

𝑚 :2a
∧ Sig(𝑚) = Sig(𝑥)
∧ ∃𝛽 ∈ lrns(𝑥).

𝛽 ∈ Con𝛼 (𝑥) ∧ ¬Buried𝛽 (𝑚, 𝑥)


Definition 16 (Freshness). For any learner 𝛼 and 1b-message 𝑥 :

fresh𝛼 (𝑥)
def
= ∀𝑚 ∈ Con2as𝛼 (𝑥). V (𝑚) = V (𝑥)

Definition 17 (Quorum of message). For any learner 𝛼 , 2a-message 𝑥 :

q𝛼 (𝑥)
def
= Sig

({
𝑚 ∈ Tran(𝑥) | 𝑚 :1b ∧ fresh𝛼 (𝑚) ∧ B(𝑚) = B(𝑥)

})
Definition 18 (2a-message learners). For any 2a-message 𝑥 :

lrns(𝑥) def
= {𝛼 ∈ L | q𝛼 (𝑥) ∈ 𝑄𝛼 }

The following chain property does not have a direct analogue in HP. It
requires that the parent of a message be from the same sender, and included
in the messages refs field.
Definition 19 (Chain property). For any message 𝑥 :

ChainRef (𝑥) def
= 𝑥 .prev ≠ ⊥ → 𝑥 .prev ∈ 𝑥 .refs ∧ Sig(𝑥 .𝑝𝑟𝑒𝑣) = Sig(𝑥)

Definition 20 (Decision). For any learner 𝛼 and set of messages 𝑆 :

Decision𝛼 (𝑆)
def
= Sig(𝑆) ∈ 𝑄𝛼 ∧ ∀𝑥,𝑦 ∈ 𝑆. 𝑥 :2a ∧ 𝛼 ∈ lrns(𝑥) ∧ B(𝑥) = B(𝑦)

Any set of messages 𝑆 such that Sig(𝑆) ∈ 𝑄𝛼 is called a message quorum. If
Decision𝛼 (𝑆) holds, we shall write V (𝑆) to denote V (𝑥) for some message 𝑥 ∈ 𝑆 .

DOI: 10.5281/zenodo.14183994 Anoma Research Topics | November 19, 2024 | 8

https://dx.doi.org/10.5281/zenodo.14183994
http://art.anoma.net

Definition 21 (Well-formedness). For any message 𝑥 :

WellFormed1b(𝑥) def
= ∀𝑦 ∈ Tran(𝑥). 𝑥 ≠ 𝑦 ∧ 𝑦 ≠ Get1a(𝑥) → B(𝑦) ≠ B(𝑥)

WellFormed2a(𝑥) def
= lrns(𝑥) ≠ ∅

WellFormed (𝑥) def
=

ChainRef (𝑥)
∧ (𝑥 :1b → WellFormed1b(𝑥))
∧ (𝑥 :2a → 𝑥 .refs ≠ ∅ ∧WellFormed2a(𝑥))

3.5. Protocol
The formal specification of the protocol is formulated in TLA+ [Lam02] in

the Typhon repository [Ano]. The algorithm itself is formulated in PlusCal
language [Lam09], which gets translated to TLA+ code.

For better readability, we present the pseudocode of learner and acceptor
algorithms in Figures 1 and 2, respectively. Like TLA+, we specify exactly
which actions are safe for each actor. This does not rule out unnecessary or
repetitive actions. Formally, each action is a predicate over state changes: the
action is only deemed safe if every part of the predicate holds true. Actions
can include other actions.

To ensure liveness, we require weak fairness [Lam02]: in any execution
trace, if an action is safe for an infinite sequence, it eventually occurs.

Next, we describe the semantics of some particular instructions.

Instruction Semantics.

broadcast(𝒛) When called, it sends message 𝑧 to every learner and acceptor,
including the caller. Formally, this would mean that the defined state
change is only allowed if the new state includes 𝑧 in the network.

assume 𝑷 is a synonym of PlusCal’s "when" instruction [Lam24]. The in-
struction, defined for Boolean state predicate 𝑃 , restricts possible ex-
ecutions and should be considered as a guard à la Dijkstra [Dij75]:
execution of the function containing "assume 𝑃" is only possible if the
predicate evaluates to true during such a putative execution.

with 𝒙 ∈ 𝑺: 𝑪 is adopted from the PlusCal counterpart [Lam24]: an ele-
ment 𝑠 is non-deterministically chosen from the given set 𝑆 and 𝐶 is
executed with 𝑥 being locally defined to be equal to 𝑠 . The instruction
"with 𝑥 = 𝑣: 𝐶" is equivalent to "with 𝑥 ∈ {𝑣}: 𝐶".

𝑪1 || . . . || 𝑪𝒌 means a parallel execution of 𝐶𝑖 , 𝑖 = 1, . . . , 𝑘 .

DOI: 10.5281/zenodo.14183994 Anoma Research Topics | November 19, 2024 | 9

https://dx.doi.org/10.5281/zenodo.14183994
http://art.anoma.net

1 Acceptor::init():

2 known_messages = {}
3 recent_messages = {}
4 prev_message = ⊥
5

6 Acceptor::process_1a(𝑚):

7 assume 𝑚 :1a
8 with 𝑧 = msg(prev = prev_message, refs = recent_messages∪ {𝑚}):
9 if WellFormed1b(𝑧):

10 recent_messages = {𝑧}
11 prev_message = 𝑧

12 broadcast(𝑧)

13

14 Acceptor::process_1b(𝑚):

15 assume 𝑚 :1b
16 with 𝑧 = msg(prev = prev_message, refs = recent_messages∪ {𝑚}):
17 if WellFormed2a(𝑧):
18 recent_messages = {𝑧}
19 prev_message = 𝑧

20 broadcast(𝑧)

21 else:

22 recent_messages ∪= {𝑚}
23

24 Acceptor::process_2a(𝑚):

25 assume 𝑚 :2a
26 recent_messages ∪= {𝑚}
27

28 Acceptor::receive(𝑚):

29 assume 𝑚 ∉ known_messages

30 assume ∀𝑟 ∈ 𝑚.refs. 𝑟 ∈ known_messages

31 known_messages ∪= {𝑚}
32

33 Acceptor::process_message(𝑚):

34 assume WellFormed (𝑚)
35 receive(𝑚)

36 process_1a(𝑚) || process_1b(𝑚) || process_2a(𝑚)

Figure 1. Heterogeneous Paxos 2.0 acceptor specification.

DOI: 10.5281/zenodo.14183994 Anoma Research Topics | November 19, 2024 | 10

https://dx.doi.org/10.5281/zenodo.14183994
http://art.anoma.net

1 Learner::init():

2 known_messages = {}
3 decision = ⊥
4

5 Learner::receive(𝑚):

6 assume 𝑚 ∉ known_messages

7 assume ∀𝑟 ∈ 𝑚.refs. 𝑟 ∈ known_messages

8 known_messages ∪= {𝑚}
9

10 Learner::process_message(𝑚):

11 assume WellFormed (𝑚)
12 receive(𝑚)

13

14 Learner::decide():

15 with 𝑠 ⊆ known_messages:

16 assume Decisionself (𝑠)
17 decision = V (𝑠)

Figure 2. Heterogeneous Paxos 2.0 learner specification.

3.6. Protocol Properties
Theorem 22 (Validity). For any learner 𝛼 , and set of messages 𝑠 :

Decision𝛼 (𝑠) =⇒ ∃𝑥 . 𝑥 :1a ∧ V (𝑠) = V (𝑥)

Proof. Directly follows from the definitions of B, V and Decision. □

Theorem 23 (Safety). Let the learner graph of the network be valid and con-
densed. Let 𝛼, 𝛽 ∈ L be learners such that Entangled(𝛼, 𝛽). For any protocol
execution and reachable network state, if Decision𝛼 (𝑠𝛼) and Decision𝛽 (𝑠𝛽) hold
in that state, for some message quorums 𝑠𝛼 and 𝑠𝛽 , then V (𝑠𝛼) = V

(
𝑠𝛽
)
.

Proof. See TLA+ protocol formalization [Ano]. □

3.7. Mailbox Layer
The predicates Acceptor::receive() and Learner::receive() (Figures 1 and 2)
define causal message delivery, i.e., the message can be received only once and
only if all its direct references have already been received. In practice, this
logic can be separated out into a special mailbox component. This component
can be used by both local acceptor and learner, avoiding code duplication and
allowing for more efficient message processing.

A mailbox implementation could be integrated into the broadcast imple-
mentation (Section 2.1): one mailbox might request missing messages from
another when it receives a message 𝑚, but has not yet received 𝑚’s causal
dependencies.

DOI: 10.5281/zenodo.14183994 Anoma Research Topics | November 19, 2024 | 11

https://dx.doi.org/10.5281/zenodo.14183994
http://art.anoma.net

4. Future Work
Due to the recursive structure of protocol messages, a naïve implementation of
the presented algorithm—utilizing caching of learner values for 2a-messages—
would result in message processing complexity that is polynomial in 𝑙 and 𝑛,
where 𝑙 represents the number of learners in the network and 𝑛 is the total
number of messages received so far.

In ongoing work, we are developing an efficient implementation of HP2.0
using additional data structures achieving a linear time complexity of message
processing, 𝒪(𝑙 · 𝑛). We also plan to formally prove that this implementation
correctly realizes the proposed algorithm.

References
Ano. Anoma. Typhon project github repository. https://github.com/anoma/typhon/

releases/tag/hpaxos-2.0-art-v3. (cit. on pp. 2, 9, and 11.)
Dij75. Edsger W. Dijkstra. Guarded commands, nondeterminacy and formal derivation

of programs. Commun. ACM, 18(8):453–457, 1975. (cit. on p. 9.)
DLS88. Cynthia Dwork, Nancy A. Lynch, and Larry J. Stockmeyer. Consensus in the

presence of partial synchrony. J. ACM, 35(2):288–323, 1988. (cit. on p. 3.)
Lam98. Leslie Lamport. The part-time parliament. ACM Trans. Comput. Syst., 16(2):133–

169, 1998. (cit. on pp. 2 and 4.)
Lam02. Leslie Lamport. Specifying Systems, The TLA+ Language and Tools for Hardware

and Software Engineers. Addison-Wesley, 2002. (cit. on pp. 2 and 9.)
Lam09. Leslie Lamport. The pluscal algorithm language. In Martin Leucker and Carroll

Morgan, editors, Theoretical Aspects of Computing - ICTAC 2009, 6th International
Colloquium, Kuala Lumpur, Malaysia, August 16-20, 2009. Proceedings, volume
5684 of Lecture Notes in Computer Science, pages 36–60. Springer, 2009. (cit. on
p. 9.)

Lam11. Leslie Lamport. Byzantizing paxos by refinement. In David Peleg, editor,
Distributed Computing - 25th International Symposium, DISC 2011, Rome, Italy,
September 20-22, 2011. Proceedings, volume 6950 of Lecture Notes in Computer
Science, pages 211–224. Springer, 2011. (cit. on p. 4.)

Lam24. Leslie Lamport. A PlusCal User’s Manual. C-Syntax Version 1.8, 2024. (cit. on
p. 9.)

SWvRM20. Isaac Sheff, Xinwen Wang, Robbert van Renesse, and Andrew C. Myers. Het-
erogeneous paxos: Technical report, 2020. (cit. on pp. 2, 3, 4, and 5.)

DOI: 10.5281/zenodo.14183994 Anoma Research Topics | November 19, 2024 | 12

https://github.com/anoma/typhon/releases/tag/hpaxos-2.0-art-v3
https://github.com/anoma/typhon/releases/tag/hpaxos-2.0-art-v3
https://dx.doi.org/10.5281/zenodo.14183994
http://art.anoma.net

	Introduction
	Original Heterogeneous Paxos
	Why Heterogeneous Paxos 2.0?

	Differences From Original Heterogeneous Paxos
	Broadcast Primitive
	2a Messages
	One Message In, at Most One Message Out
	Byzantine Behaviour Detection
	Logic changes
	Buried
	Well-Formed
	Acceptor Algorithm

	Specification
	Network Model
	Learner Graph
	Protocol Message Structure
	Properties of All Protocol Messages
	Properties of Proposal Messages
	Properties of Non-Proposal Messages

	Definitions
	Protocol
	Protocol Properties
	Mailbox Layer

	Future Work
	References

