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Abstract — CubeSats are an established trend in the space 

industry.  The CubeSat standard opens opportunities for rapid 

and low-cost access to space. The use of COTS components 

instead of space-hardened hardware greatly reduces the cost of 

CubeSat-based missions and provides the additional benefit of 

increasing software functionalities at a low power consumption. 

However, COTS components are not designed for the space 

environment, making CubeSats sensitive to space radiation. 

This means that CubeSats need additional software mechanisms 

to guarantee resilient behavior in the presence of space 

radiation. Our proposal is that such software implemented fault 

tolerance mechanisms must be tailored to the specific code 

running in each CubeSat and the logical way to achieve that is 

to extend the software development process for CubeSats to 

include the systematic resilience evaluation of software as part 

of the CubeSats software lifecycle process. 

This paper proposes a set of structured steps to enhance the 

classic software development process used in CubeSats, focusing 

particularly on the Verification and Validation (V&V) phase. 

The approach uses fault injection as an integral part of the 

development environment for CubeSats software and includes 

three major steps: a) sensitivity evaluation (verification) of 

software in the presence of faults caused by space radiation, b) 

strengthen of the software with targeted software implemented 

fault tolerance (SWIFT) mechanisms and c) validation of the 

effectiveness of the SWIFT mechanisms to confirm that the 

software is immune to space radiation faults. These added steps 

to the V&V process must be carried out during software 

development, as well as every time the CubeSat software has an 

update, or even a minor change, to ensure that the impact of 

faults caused by space radiation is tolerated by the CubeSat 

software. The paper demonstrates the proposed approach using 

three different embedded software running in the EDC 

(Environment Data Collection) CubeSat board, which is part 

(payload) of a constellation of satellites being developed by the 

Brazilian National Institute for Space Research (INPE). EDC 

use case  provides a realistic insight on the effectiveness of the 

proposed steps. Our results show that the proposed approach 

can reduce the percentage of silent data corruption (the most 

problematic failure mode) from the range of 15% to less than 

1% and even to 0% in some embedded software, meaning that 

the CubeSat software becomes immune to space radiation. 

Keywords — CubeSats, COTS, software development, 

verification and validation, soft errors, fault injection, software 

fault tolerance techniques  

I. INTRODUCTION 

Nowadays, the interest in the development and 
deployment of CubeSats solutions has become a trend in the 
space industry. CubeSats are small-satellites built with up to 
12 units in the shape of a cube of 10cm edge and weight of 
10kg maximum, according to the CubeSat Design 
Specification (CDS) - a standard de facto for mechanical 
design and interfacing for satellites [1]. In fact, the CubeSat 

standard strongly reduces cost and development time of space 
projects, increases accessibility to space, and sustains 
frequent satellite launches. CubeSat-based projects place 
emphasis on the use of Commercial-Off-The-Shelf (COTS) 
components and systems. When compared with space-
hardened components - specially designed to withstand the 
harsh space conditions - COTS present several benefits like 
low cost, high performance, and low energy consumption, 
which open opportunities to rapid develop of new space 
technologies and to carry out affordable space missions. 

 Despite these advantages, COTS components are not 
designed for space applications, which means they are 
susceptible to transient errors as a result of single event upsets 
(SEU) caused by space radiation. In fact, errors caused by 
SEU are established as the major cause of COTS components 
failures in space [2]. The impact of space radiation could 
damage COTS on a permanent basis, but the most common 
effect is to cause transient faults [2] that may lead the 
software to crash or to produce erroneous results.  

Although CubeSats generally use ordinary COTS 
hardware (i.e., sensitive to space radiation), typical 
architectures of CubeSats boards [3] include several 
mechanisms to cope with faults caused by space radiation. 
Memory is typically protected through error detection and 
correction codes, and communication structures also use 
error detection and correction provided by the 
communication protocols and associated hardware of the 
communication links. Memory, in particular, represents a 
large silicon surface exposed to radiation, which means that 
protecting memory from transient bit flip errors due to space 
radiation is mandatory. 

Fortunately, the protection of memory and 
communication channels against transient faults caused by 
space radiation is relatively easy to achieve at low cost 
because of the regular nature of such structures. For example, 
the use of extended Hamming codes [4] to assure single error 
correction and double error detection in the memory just 
requires two extra parity bits and is a frequent solution in 
CubeSat boards. Similarly, the use of communication 
protocols and techniques such as forward error correction 
codes [5] are effective in dealing with errors caused by 
transient faults in communication channels. 

The big challenge is to protect the processor(s) of 
CubeSat boards from the effects of space radiation. 
Obviously, the use of space-grade processors that resist space 
radiation is not an option for CubeSats, as the cost of such 
processors is several orders of magnitude higher than the cost 
of common COTS processors. But, unfortunately, COTS 
processors are not immune to space radiation and, at the same 
time, the complex internal structure of processors does not 
allow the use of affordable data error detection and correction 
methods that protect uniform and regular structures such as 
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memories and communication channels. In other words, 
existing CubeSat boards can deal with transient faults caused 
by space radiation that affect memory and communication, 
but the processor represents the major weakness for the 
reliability of CubeSats. 

The obvious solution would be to rely on classic fault-
tolerant architectures at the board level [6] to tolerate faults 
of the COTS processors in CubeSats. But these techniques 
represent a substantial increase of hardware redundancy, with 
high negative impact on the board weight and power 
consumption. For example, the use of duplicated processors 
in CubeSat boards would require a large amount of additional 
hardware to deal with the comparison of the two processors, 
no matter the concrete flavor of fault-tolerant architecture 
used in the board design. For example, techniques such as 
lock-step dual processor architectures would require the low-
level comparison of the hardware signals of both processors 
(and, most likely, can only be used if the processors are 
implemented in FPGAs to have access to the internal 
processor structure to allow synchronization of signals). 
Other architectures such as symmetric multiprocessors (i.e., 
two or more identical processors sharing a single main 
memory) would also need additional hardware and have 
negative impact at other levels (e.g., would require a 
multiprocessor-aware operating system) [6]. 

Recent research work (PhD thesis of C. Fuchs, December 
2019 [7]) proposes a novel on-board-computer architecture 
for very small satellites (<100kg) capable of achieving high 
reliability without using radiation hardened semiconductors, 
through the combined use of hardware and software-
implemented fault tolerance techniques [7].  However, in 
spite of this promising research result from C. Fuchs, to the 
best of our knowledge, there are no fault-tolerant boards 
available for CubeSats, especially boards that can cope with 
transient faults that affect the processor, which are the major 
threat for the reliability of CubeSats.  

The current situation in the space industry is that, in spite 
of the growing interest in CubeSats, this category of satellites 
is still considered as not adequate for high-priority and 
critical missions, and the reason is the low reliability of 
CubeSats [8]. Data from 178 launched CubeSats show that 
the 2-year reliability estimation ranges from 65% to 48% [8]. 
The detailed analysis of the results presented in [8], 
concerning the subsystem identified as root cause of the 
failure, shows that the payload subsystem contributes with 
modest figures (from 3% to 4%), which make sense in an 
analysis focused on failures of CubeSat missions with a 
strong incidence of DOA (dead-on-arrival), where the 
satellite never achieved a detectable functional state. 
However, we may speculate that the failure rate in CubeSat 
payload software could be much higher, especially 
considering transient failures in the payload software that, 
apparently, has not been considered in [8].   

In this paper we propose a pure software implemented 
solution that allows us to improve the reliability of existing 
CubeSats without requiring any change or extra hardware in 
the CubeSats boards currently available. Our approach takes 
into account the fact that the impact of faults caused by space 
radiation at processor level is highly dependent on the actual 
software running in the CubeSat, as the error propagation 
phenomena and the translation of the erroneous behavior 
caused by faults into critical failure modes depend on low-
level features of the code such as the data structures and code 
constructs. Abundant fault injection literature shows that 
depending on the actual code, the effect of faults could be 
relatively minor or could be devastating. This fact can be 

attested in many fault injection papers as reported (and 
condensed) in periodic surveys and fault injection papers (see 
[9], [10], [11]). 

In particular, a project involving NASA JPL [12] reported 
results from an injection campaign on a NASA COTS-based 
payload system for onboard processing of scientific data and 
shows that the percentages of the different failure modes are 
quite dependent on the software running in the system at the 
moment when the faults were injected. This difference 
reaches up to 45% in some failure modes, particularly in 
potentially dangerous failure modes such as “silent data 
corruption”, in which the radiation induced faults cause 
erroneous software results but do not activate any error 
detection mechanism available in the system. Similar results 
have been obtained in a recent and quite comprehensive fault 
injection study [13]. 

This dependency of the impact of transient faults on the 
actual software running in the CubeSats suggests that 
software implemented solutions must be instantiated at all 
levels of the software development lifecycle, considering 
both system software (operating systems, libraries, etc.) and 
application code. This is precisely the goal of the present 
paper that proposes an additional set of steps for the 
development of software applications for CubeSats. The 
contributions of the paper are as follows: 

● Proposes an extension of the software development 
process for CubeSats using fault injection as an integral 
part of the development setup to verify the sensitivity of 
the software to space radiation induced faults and 
validate subsequent iterations of the software enhanced 
with software implemented fault tolerance mechanisms. 

● Presents the proposed extension as a set of additional 
steps to the V&V phase. These steps include 1) 
sensitivity analysis, 2) software enhancement with fault 
tolerance techniques and 3) validation of the final 
software resilience. Although this extension is presented 
and discussed in the paper as part of the traditional 
waterfall V model, the proposal is largely agnostic 
concerning the software development process and can be 
used in agile methodologies as well. 

● Applies the proposed methodology to a concrete 
CubeSat board and shows that the effects of transient 
faults induced by space radiation can be reduced to 
nearly zero using the proposed approach. 

The structure of the paper is as follows: next section 
presents a brief state of the art on software development 
practices for CubeSats; section III presents the proposed 
approach; section IV describes the use case using a real 
CubeSat board, including the application do the proposed 
approach and discusses the results; and section V concludes 
the paper and outlines future work.   

II. SOFTWARE DEVELOPMENT PRACTICES FOR 

CUBESATS 

The advent of the CubeSats has made the development 
cycle of small satellite projects much faster and cheaper than 
traditional space missions. The satellite structure, cabling and 
interfaces have been significantly simplified with the 
CubeSat standardization [1], but the complexity of software 
embedded in the satellite subsystems just increased. Thanks 
to technological evolution of embedded electronics, 
memories and satellite processors, the potential for adding 
functionalities implemented by software has grown [14]. 
Subsystems onboard CubeSat based satellites have their own 
software architecture and the challenge lies in the integration 
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of the so-called software-intensive systems (SiS) in a short 
development time imposed by CubeSat missions [15], [16].  

The focus on the concept of interoperability of SiSs 
aboard spacecraft is not a concern limited to CubeSats. In the 
last 20 years, the satellite industry evolved from viewing 
software (mostly developed in house) as an important aspect 
of the entire spacecraft, to the current trend in which satellite 
software results from the integration of SiSs provided by 
different suppliers. Efforts in the V&V process are 
fundamental to support the integration phase with effective 
tools and methods, which made the process onerous in time 
and resources. This is acceptable in the development cycle of 
traditional satellites but incompatible to CubeSat philosophy, 
whose project shall be much faster and cheaper [17]. 

Moreover, CubeSats also have caused a shift from the 
classic waterfall model usually adopted for space software 
development into incremental approaches and agile methods. 
Currently, the development of most CubeSat software 
follows such approaches. The On Board Data Handling 
(OBDH) typically has grown in complexity because new 
services are required by payloads late in the development 
time. More pieces of software are developed to interface, 
control and operate different subsystems. These new features 
increase the overall complexity of the satellite and increase 
the number of possible software defects [15], [16], making 
the behaviour of the software under faulty conditions caused 
by space radiation quite unpredictable. Considering that the 
success of CubeSat missions relies on the OBDH, it is 
essential to mitigate such weaknesses without increasing the 
costs of the V&V. 

Regarding software assurance practices, simulation and 
testing are the most common activities to verify and validate 
CubeSats software, according to a survey conducted at 
NASA Ames Research Center [18]. However, even those 
activities do not receive due attention on CubeSats projects, 
as an intensive program of verification and validation cannot 
be accommodated into the limited budget of such projects. 
Despite this, according to the same survey [18], an emerging 
trend relies on the use of model-based design methods due to 
their capability to automate the creation of detailed software 
design from high-level graphical inputs, and then use 
automatic code generation to create the code. Unfortunately, 
the automatic code generation for complex projects is still 
limited.  

Although fault-tolerant software methods are used for 
run-time monitoring in CubeSats, the use of rigid V&V 
methods is not a trend in current CubeSats software 
development due to time and budget constraints of such 
projects. This includes the crucial verification of possible 
effects of space radiation induced faults. 

III. ENHANCED VERIFICATION AND VALIDATION FOR 

CUBESATS SOFTWARE DEVELOPMENT 

A. Context and preliminary experiments to validate 
assumptions 

The proposed approach uses fault injection as an integral 
part of the development environment for CubeSats software 
and includes three high-level steps: 

a. Sensitivity evaluation (verification) of the software 
in the presence of faults caused by space radiation; 

b. Enhancement of the software with targeted 
software-implemented fault tolerance (SWIFT) 
mechanisms; and 

c. Validation of the effectiveness of the SWIFT 

mechanisms to confirm that the software is immune 

to space radiation faults.  

These steps must be carried out during CubeSat software 
development, as well as every time the CubeSat software is 
updated, to ensure that the impact of faults caused by space 
radiation is tolerated by the CubeSat software. Fault injection 
is an establish technique and SWIFT techniques are well-
known. The innovation of the proposed approach is not in the 
use of fault injection to evaluate the CubeSat boards (that is 
not effective as the impact depends much more on the 
software running on the board than on the CubeSat board 
itself), nor in the use of SWIFT to propose a fault tolerant 
architecture for CubeSats. The new aspect of our approach 
resides in the fact that fault injection and SWIFT are now 
proposed as integral part of the software development process 
for CubeSats. Fault injection is essential to evaluate the 
impact of SEU on the CubeSat software and SWIFT makes 
the software resilient to space radiation.  

CubeSat boards high-level architecture can be divided in 
three layers, as shown in Fig. 1. The hardware layer is the 
physical part of the CubeSat composed of several COTS-
based elements, such as the onboard computer, payload 
boards, solar panels, RF antennas, among others. The middle 
layer is the system software that includes the operating 
systems running in the different boards (e.g., FreeRTOS, 
eCos, among others) and, depending on the specific board, 
may include other software elements such as drivers and 
software designed to deal with specific sensors or actuators 
or to perform specific functions (e.g., to control satellite 
attitude). The third layer is the CubeSat application software 
that performs specific mission tasks and is developed to run 
on the different satellite boards, on top of the system 
software. 

At the hardware layer, CubeSats boards use regular COTS 
components but the boards include several mechanisms to 
make them more resilient to the space environment. CubeSat 
boards are ruggedized with layers of resin coating for 
mechanical and thermal protection. Additionally, memory is 
protected with error detection and correction bits, as well as 
communication channels are also protected with error 
detection and correction mechanisms provided by the 
communication protocols and associated hardware of the 
communication links. Memory, in particular, is protected 
against transient bit-flip errors due to space radiation, as the 
memory chips represent a large silicon area exposed to 
radiation, making SEU in memory very frequent. 

 
Fig. 1. Simplified view of a CubeSat board organization 

As already mentioned, the protection of uniform 
hardware structures such as the memory and the 
communication channels is very simple and is in fact a 
common practice in standard COTS hardware boards for all 
sort of applications. CubeSats simply take advantage of 
available standard solutions such as extended Hamming 
codes [4] for single error correction and double error 
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detection in the memory and forward error correction codes 
[5] for transient faults in communication channels. These 
mechanisms are well aligned with the CubeSat “philosophy” 
of low cost, low energy consumption, and low weight. 

Protecting the processor from the SEU effects is the 
central problem because the processor is not a regular and 
simple structure. The use of space-grade processors that resist 
to space radiation is not an option for CubeSats because of 
the very high cost of such processors. The obvious solution 
would be to use classic fault-tolerant architectures with 
massive levels of redundancy, as the ones used in large-scale 
satellites [19] or in the aircraft industry [20], [21]. 
Unfortunately, these well-proven solutions are not an option 
for CubeSats, even if designed around COTS components, as 
they are expensive, heavy, and require high power 
consumption. Classic architectures used in avionics and in 
large satellites would require pairs of duplicated processors 
and the inherent hardware logic to vote the results from the 
different signals, which would ruin the simplicity and low 
cost of CubeSats. 

The reality is that there are no fault-tolerant CubeSat 
boards available from manufacturers that solve the problem 
of transient faults in the processor at the hardware board layer 
and CubeSats are still regarded as very low-cost small 
satellites for non-critical low earth orbit (LEO) missions. 

One important advantage of classic fault-tolerant 
techniques applied at a low architectural level (e.g., triple 
modular redundancy [21] or even hybrid proposals such as 
the recent architecture proposed in [7]) is that these 
techniques provide a reasonable transparent solution for the 
development of software applications on top of a fault-
tolerant architecture. That is, the developer of application 
software does not need to worry about possible transient 
faults, as they are tolerated at the lower levels of the hardware 
layer or by the system software [23], [24].  

Since there are no fault-tolerant CubeSats boards 
currently available (and they are not likely to appear in the 
near future because of the high cost, energy consumption, and 
weight imposed by hardware fault tolerance), it means that 
possible solutions for the transient processor faults due to 
SEU are not transparent for the developer of software 
applications for CubeSats. This is obviously a clear 
assumption for any proposal that attempts to solve the 
problem of transient processor faults in CubeSats boards 
through the use of SWIFT techniques, which also includes 
the approach proposed in this paper. The developer of 
CubeSat applications must be aware that the application may 
be affected by transient processor faults and deal with the 
SWIFT techniques needed to tolerate such faults (i.e., the 
SWIFT techniques are an integral part of the software under 
development). Naturally, the development of CubeSat 
applications will become more complex, as the application 
software needs to deal with both the functional aspects and 
the SWIFT techniques, but this is the price to pay to assure 
the required reliability for CubeSat applications running on 
simple and low-cost non-fault-tolerant boards. 

The development of a library of software components that 
implement the skeleton of software fault-tolerant techniques 
is out of the scope of the present paper. However, in the 
context of a future industrial application of the proposed 
steps, it will be crucial to have a library of SWIFT methods 
to be used/adapted to each particular situation, in order to 
simplify and accelerate the development of CubeSat software 
capable of tolerating the hardware transient faults caused by 
space radiation. Of course, those techniques should be 
tailored to the specific software under development, as 

mentioned before, but a general skeleton or code (e.g., a voter 
that compares two inputs and signs if they differ) that can be 
reused could be made available in the form of reusable 
components available for the software development teams. 
This will reduce the time necessary to integrate SWIFT 
techniques into the code under development, making it easier 
and cheaper to apply the approach proposed in this paper. 

The application of SWIFT techniques at the software 
application level to tolerate hardware transient faults, as 
proposed in the present paper, relies on two assumptions: 

a. The system software, and specifically the operating 
system of the CubeSat board, is operating properly 
after the transient fault, allowing the correct 
processing of SWIFT techniques at the application 
level; and 

b. Possible malfunctions (errors) caused by the fault 
can be detected by the error detection mechanisms 
available in the CubeSat board, so the board can be 
restarted to re-establish a correct state to run the 
SWIFT techniques and tolerate the fault. 

This means that in the worst-case scenario (bullet b)) 
when an error is detected or the system crashes as a 
consequence of the transient fault, the base layers of the 
CubeSat (i.e, hardware and operating system) should be able 
to recover the system to a state from which it can operate 
properly. In satellite systems (and in general in cyber-
physical systems) this is done through the use of classical 
forward recovery techniques [25], [26], [27] that bring the 
system to a correct state, normally resetting key elements 
such as the operating system. To assure this, a key feature of 
base layers of CubeSats (hardware and system software) is 
the effectiveness of the error detection mechanisms available 
in such layers  

As mentioned, all CubeSats boards have error detection 
of two bits errors and correction of one bit in memory using 
extended Hamming code [4]. The correction of one-bit error 
is fully transparent, as it is processed at the hardware level, 
and in case of detection of errors in two bits (no correction), 
the error must be handled by the system software (in general, 
the action is to reset the system as these errors are mostly 
caused by transient faults due to SEU, and they disappear 
after reset). 

Another very relevant error detection mechanism that also 
exists in all CubeSat boards is the watchdog timer (WDT) 
[28] that detects deviations of the correct software behavior 
that changes its timing features (most frequently, WDT are 
used to detect crashes). WDT can be controlled (i.e., 
refreshed periodically) by the system software, which makes 
the error detection transparent to the application software, or 
can be periodically refreshed by the application software. 
Other types of simple error detection mechanisms are 
associated with the memory management units of the 
CubeSat board and allow the detection of erroneous memory 
access behavior (e.g., instruction fetch outside the code 
segments, read/write in memory areas not available, etc.). 
More sophisticated (and also more effective) error detection 
mechanisms such as signature monitoring [29], [30], are in 
general not available in CubeSat boards. 

Given the relevance of the assumptions mentioned above 
(bullets a) and b)) for the approach proposed in this paper, we 
decided to perform a preliminary experiment to evaluate 
these assumptions in faulty scenarios. The goal is to evaluate 
the probability of the CubeSat board (hardware layer and 
system software) to behave correctly after a fault, in such a 
way that SWIFT techniques can be applied to tolerate the 
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faults. It is clear that SWIFT techniques can only be applied 
if the operating system is working properly. 

This preliminary experiment consists of the injection of 
10000 faults into the EDC board (a real CubeSat board) used 
as case study. For this experiment, the EDC board (target 
system) was not running any real software application. 
Instead, the EDC was just running the real-time operating 
system (FreeRTOS) and, a “dummy” task that blinked a LED 
light and refresh the watchdog timer counter. The idea was to 
evaluate the impact of faults in the system software (mainly 
the FreeRTOS), to evaluate whether the operating system is 
running properly after the fault or not. 

The faults were injected following the traditional 
approach that emulates transient hardware faults in the 
processor through single bit flips in the processor registers, 
as proposed and used by reference fault injection works/tools 
in the last decades [31], [32], [33], [39]. More specifically, 
we used CubeSatFI [39] (fault injector dedicated to being use 
on CubeSats) where the faults were injected at random in all 
the processor registers and at a random time during the 
execution of the software, to emulate the random effects of 
space radiation. 

The results obtained are presented in Fig. 2. The 
confidence intervals (shown in the numeric values in each bar 
of the chart) are calculated for 95% of confidence, using 
confidence intervals for proportions in binomial distributions 
(Bernoulli trials). 

The classification of the failure modes was made based 
on the results obtained and includes the following failure 
mode types: 

● No Effect/OS OK: The fault had no visible impact 
on the system. The operating system continues to 
work normally as expected. 

● Error detection (WDT): The fault crashes the 
operating system, but the watchdog detects this 
erroneous situation and restarts the system. After 
restarting, the system is working normally again. 

● OS CRASH: The system crashes after being 
affected and the watchdog timer cannot detect it. 

 
Fig. 2. Impact of faults on the Hardware and operating system 

The results show that most of the faults did not affect 
(80.38%) the operating system, which means that the 
operating system continues operating properly, as expected. 
This result is in line with previous fault injection results [9], 
[10], [11], [12], [13] in other systems, as the inherent 
redundancy and unused resources lead to a large percentage 
of benign faults. It was observed that 18.78% of the faults 
activate the watchdog timer, assuring that after a crash the 
operating system can restart and back operating properly 
again. These two values together (99.16%) show that the 
hardware layer and error detection at the system software 

layers meet the assumptions described above (both a) and b)) 
in more that 99% of the faults, and SWIFT techniques can be 
effectively applied at the software application layer. This 
means that software developers can develop applications on 
top of COTS boards and use SWIFT techniques to tolerate 
processor transient faults due to SEU, as the probability of 
the operating system and the system software being operating 
properly after the transient fault (to allow the correct 
processing of SWIFT techniques at the application level) is 
very high (> 99% in our experiments). 

It is worth noting that in this experiment the error 
detection available in the target system (EDC board) was only 
the WDT. Even so, the percentage of cases observed in which 
the proposed approach could not work is reduced to 0.84%. 
Obviously, the inclusion of additional error detection 
mechanisms in the CubeSat boards could reduce even further 
this percentage. Even knowing that the percentages of cases 
where the assumptions a) and b) (see above) are met may 
dependent on the actual operating system and system 
software, we consider this result quite encouraging. 

B. Enhanced Verification and Validation Steps 

Our proposal focuses on enhancing the verification and 
validation of CubeSats software through a set of additional 
steps. These steps are intended to be the least intrusive 
possible on the software development life cycle used by the 
companies, space agencies, and other institutions that are 
developing CubeSat software. Since budget and time are 
constraints that must be considered, expensive software 
verification and validation activities are impossible to 
accommodate on such projects.  

The proposed steps require a fault injection tool as part of 
the toolset used in the CubeSats software development 
process. The use of fault injection tools is quite common in 
the software industry [34], [10] and most fault injection tools 
are considered simple and affordable tools, fully in line with 
typical CubeSat budget constraints. In particular, fault 
injection tools using JTAG and the Test Access Port (TAP) 
such as many existing tools (e.g., [32], [33], [35]) can be 
easily adapted to CubeSats, as nearly all CubeSat boards are 
equipped with JTAG and TPA. 

Fig. 3 illustrates the proposed additional steps. More 
specifically, our proposal does not change the previous 
phases of the existing software development process, but 
simply adds additional V&V steps after the integration test 
step, which is always part of the process, no matter the flavor 
of the software development process used by the CubeSat 
developer.  

Step 1 - Evaluate the software sensitivity to space 
radiation: After integration testing the software is subject to 
a comprehensive fault injection campaign to evaluate the 
impact of SEU on the CubeSat behavior. Faults are injected 
in the processor registers of the target board using a random 
distribution (both in space - registers- and time), since space 
radiation tends to affect the processor randomly. This will 
allow us to understand  the behavior of the target software in 
the presence of space radiation that affects the processor of 
the board where the software is running.  

Step 2 - Strengthen the software with tailored software 
implemented fault tolerance (SWIFT) techniques: The 
results obtained in the previous step must be analyzed and the 
impact of the faults on the target software should be 
categorized into failure modes. According to the failure 
modes obtained, the project manager should decide if it is 
necessary enhance the software with additional SWIFT 
techniques to avoid failure modes such as silent data 
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corruption (erroneous output results with no error detection) 
or to recover the software after crash failure modes. This 
decision should be taken considering the criticality of the 
CubeSat mission, the resources available in the target 
CubeSat board, and the budget available to implement these 
techniques. Many SWIFT techniques can be used, from 
simple re-execution and voting to self-checking software 
[25], [26], [27], [35], [36]. If the target system has enough 
resources, it is extremely recommended to add SWIFT 
techniques to increase fault coverage as much as possible. 
Obviously, we are aware that including additional SWIFT 
techniques in the CubeSat software after a first version of the 
software has been through integration testing could be 
problematic. For fault masking techniques such as software 
re-execution and voting [36], [37] this task of adding this 
technique to existing software is relatively easy. But for other 
SWIFT techniques such as algorithm-based fault tolerance 
[37] the existing software must be largely refactored to 
incorporate the SWIFT technique. 

 Step 3 - Validate the effectiveness of the SWIFT 
techniques: After the software is strengthened with 
additional SWIFT techniques, it must be submitted to 
regression testing (using a test suite developed in earlier 
stages of the software development lifecycle) to assure that 
the functional requirements (and also non-functional 
requirements such as response time) are still met. The 
validation of the effectiveness of SWIFT is then performed 
through a fault injection campaign similar to the one run in 
step 1. That is, the process enters the cycle proposed in Fig. 3 
until the desired software resilience in the presence of 
transient faults is achieved. The objective is to have a flexible 
way to enhance the resilience of the CubeSat software to cope 
with transient faults to reach the software resilience level that 
is necessary for the CubeSat mission and validating the 
results through fault injection in the actual software under 
development. This incremental approach (i.e., just enough 
software fault tolerance) seems more appropriate to CubeSat 
constraints, avoiding the drawback of generic (and massive) 
software fault tolerance architecture that costs resources and 
increase the impact surface of space radiation on the software 
behaviour as observed in [38].  

 

Fig. 3. Additional steps for the CubeSat software development process 

The proposed steps should be included in the software 
development process used in the CubeSat development 
project. If the project follows the classic V-Model, the fault 
injection evaluation of the software sensitivity to SEU should 

be included after the integration testing (right-side of the V). 
Obviously, if the CubeSat project follows an agile process 
(this is a growing trend in CubeSats development), the 
proposed steps should be performed each time that the 
software has a considerable increment. Since the impact of 
SEU-induced faults depends on the actual software that is 
running on the CubeSat, every time the software changes, it 
is crucial to perform the proposed additional V&V steps. In 
fact, these steps are quite in line with test-driven development 
(TDD) used in agile development processes, where the 
software requirements are converted into test cases and each 
software increment aims to pass the new set of test cases. 
After the test pass, the code is refactored, and the test suite is 
run again to assure that no existing functionality is broken. 
This cycle is repeated for each new functionality. Similarly 
to TDD, when the CubeSat software has a major or even a 
minor change, the proposed V&V steps should be executed 
to evaluate the resilience against SEU-induced faults, and the 
software is considered fully developed when it meets the 
safety and dependable requirements to tolerate space 
radiation. 

An important aspect for the actual application of the 
proposed approach is the availability of fault injector tools 
such as CubeSatFI [39] as part of the software development 
environment to allow the execution of fault injection 
campaigns in an easy and automatic way (and at low cost).  

IV. USE CASE: EDC CUBESAT BOARD 

  This section presents a use case of the proposed enhanced 
V&V approach using the Environmental Data Collector 
(EDC) [40], a CubeSat payload board for the Brazilian 
Environmental Data Collection System (SBCDA). Is not 
worth mentioning that this payload is going to be used in all 
the future CubeSats from the CONASAT-project [41]. 

A. The EDC CubeSat board 

The CubeSat platform is a 1U (i.e., the satellite has a cubic 
shape with edges of 10 centimeters) and has a classical 
CubeSat hardware architecture comprising the onboard 
computer (OBC), payload boards (EDC in this case), two 
UHF antennas, a UHF transceiver, an electrical power system 
(EPS), and a battery pack. Fig. 4 shows the main blocks of 
the satellite hardware architecture.  

The EDC board is a new payload developed to meet the 
demand for a signal receiver CubeSat-compatible to provide 
onboard signal processing. The EDC design uses only COTS 
components, which makes the EDC less reliable than a classic 
space grade transponder. The board was designed by a 
division inside INPE and was produced by an external 
company under direct quality control of INPE, while the 
software for the EDC board has been developed in house by 
the EDC software team. This is a typical arrangement for the 
development of CubeSats for real (and serious) missions. 
Furthermore, the EDC software team works with the team 
responsible for the development of the flight software for the 
onboard computer (OBC) to carry out the integration of the 
EDC payload in the satellite. 

The UHF antenna - Payload is dedicated to receiving 
signals from the data collection platforms (DCP) and is 
connected to the EDC, while the UHF antenna - TMTC is 
used for communication with the receiving stations (RS) and 
is connected to the UHF transceiver. The UHF transceiver is 
the subsystem responsible for receiving and transmitting the 
telecommand (TC) and telemetry (TM), respectively. The 
EPS subsystem supplies power to the entire platform through 
six solar panels and several voltage converters. The platform 
also has a battery pack with a capacity of 10.2 Wh. The OBC 
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is responsible for configuring, controlling, and commanding 
the operation of all satellite subsystems. The telecommands 
received from an RS are decoded in the OBC to control the 
subsystems onboard the satellite. The OBC is also 
responsible for monitoring the overall health of the satellite. 
Health assessment can be performed in several ways, 
depending on the subsystem being assessed. Telemetry 
sensors are used to verify that the parameters of a given 
subsystem are acceptable (such as temperature or voltage 
level). Telemetry data collected from each subsystem is also 
stored for transmission to an RS. The OBC acts as the I2C 
bus master for transmitting commands to the EPS 
subsystems, UHF antennas, and UHF transceiver. The flight 
software implements in the OBC a routine of commands and 
requests to control the data processed by the EDC. This is 
performed through a UART communication interface. With 
the payload data in hand, the OBC uses the USART interface 
to transfer it to the UHF transceiver. The UHF transceiver 
transmits through the UHF antenna TMTC at the frequency 
of 462 MHz. While the beacons are transmitted by the same 
antenna at the frequency of 435 MHz. The UHF transceiver 
is configured for a baud rate of 9600 bits per second. 

 

Fig. 4. Hardware architecture block diagram overview 

B. Application of the proposed approach  

Since the EDC software is still under development, the 
demonstration and evaluation of the proposed approach uses 
software applications that play the role of the real EDC 
application payload. The use of different applications has 
several advantages, particularly as a first evaluation of the 
proposed approach before using it in the final EDC software 
still under development. It introduces some diversity to the 
evaluation since we use three applications and allowed us to 
select applications with very different profiles, concerning 
code size, code complexity and, particularly, covering 
different types and sizes for the data processed by the 
applications. All the applications were written in C, as this 
language is highly used in CubeSat software. The 
applications selected are: 

● Matrices: it is a program that computes the result of the 
multiplication of two matrices 30 times and at the end of 
each run, calculates a cyclic redundancy check (CRC) 
for the result of the multiplication. After the 30 runs, 
calculate a final CRC of the 30 CRCs previously 
calculated. In our experiment, the program uses two 
30x30 integer matrices. This is a computation intensive 
program in a relatively large dataset (due to the 30 
iterations of the matrices). 

● PI: Computes the value of π using the Leibniz formula. 
In our experiment, the program computed the π using 
60000 terms. This is a computation intensive program 
with a highly sensitive result, as even a minor error in a 

decimal case of the very long π number calculated will 
be detected. 

● Fibonacci: it is a recursive program that computes the 
sequence of Fibonacci and sums the calculated 
elements. In our experiment, the program computed the 
sum of the first 30 elements of the Fibonacci sequence. 
This is a simple recursive program that intensively uses 
the stack memory. 

It is worth mentioning that these payload software 
applications (obviously) do not correspond to software 
payload that is going to fly in future CubeSats from 
CONASAT-project. However, they represent a variety of 
application profiles, as mentioned before. Additionally, they 
are executed in fully realistic conditions (exactly the same 
conditions as the future EDC software), running on top of the 
real system software running on the EDC board, namely the 
FreeRTOS operating system and all the software needed for 
exchanging messages between EDC board and the OBC 
board. Furthermore, these applications represent demanding 
scenarios, as they impose a considerable processing load to 
the EDC board and reproduce the case of payload software 
that takes a considerable amount of time to execute 
(particularly Matrices and PI), which means the successful 
completion of the application is quite exposed to SEUs. 

The fault injection campaigns consist of 10000 faults for 
the evaluation of the impact of faults in each application. All 
faults are single bit-flips faults, as this model is widely 
accepted as a realistic simulation of SEU faults. The target of 
the injected faults are the registers of the processor of the 
EDC board. The register affected by each fault was selected 
randomly (among all the processor registers) and the bit of 
the register affected by the faults was also selected at random. 
The trigger of each fault is also randomly defined within an 
injection window (i.e., within a time interval defined by the 
tester). The injection window interval was defined as between 
2 and 4 seconds after resetting the CubeSat to assure that each 
fault is injected in the system without having the effects of 
previous faults. The fault injection (for the software 
sensitivity evaluation step) was performed using CubeSatFI 
[39], a fault injection tool that takes advantage of the modern 
features of the actual microcontrollers by injecting faults in a 
fully automated way through the JTAG interface. The tool 
offers the possibility of designing an entire experiment, 
choosing the specific target that we want to affect, as well as 
the moment that we want the fault to be injected. 

As discussed before, the processor is the main weak point 
for the reliability of CubeSats boards in the presence of space 
radiation. In the EDC board, memory is protected with single 
error correction and double error detection parity codes and 
the messages exchange between the EDC and OBC boards 
are also protected with error detection mechanisms. 

At the end of the injection window, the target system will 
be running for a period of 26 seconds to collect data on the 
impact of the fault for further analysis of the effects of the 
fault. This period of 26 seconds corresponds roughly to 8 
times the average execution time of the application that takes 
longer, to assure time enough for possible error propagation 
that may affect the result.  

The results produced by each software application are 
sent to the host computer that controls the experiments 
through the UART interface of the EDC payload board. The 
results of the campaigns are saved in a file to further analysis.  

These campaigns with randomly injected faults (both in 
the register space and in time) are appropriated to emulate the 
effects of transient faults caused by SEU, as space radiation 
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tends to affect the processor in a random way. We decided to 
keep the single bit-flip model and not to include faults 
injected in multiple bits of registers because these multiple 
bits faults (caused by space radiation bursts) tend to cause 
drastic impact on the software and are easy to detect, and 
consequently are easy to handle. 

It is worth noting that due to the random nature of the 
injection process, the injected faults may affect either the 
payload software application or the EDC software, namely 
the FreeRTOS operating system and the software used for 
exchanging messages between EDC board and the OBC 
board, which represents a realistic scenario for SEU faults. 

The process was applied following the three additional 
steps of the proposed approach: 

1. Sensitivity evaluation by applying the fault injection 
campaigns (one campaign for each payload 
software) to the original software (i.e., without 
specific SWIFT techniques, unless some error 
detection techniques such as watchdog timer 
available in the EDC board). 

2. Strengthen of the payload software with a simple 
SWIFT technique that consists of r-execution of the 
payload software and voting of the results. 

3. Validation of the effectiveness of the SWIFT 
technique through the fault injection campaigns. 

Next subsection presents and discusses the results. 

C. Discussion 

Fig. 5 shows the general impact of faults in the three 
applications running on the EDC board. It is worth noting that 
each application was handled independently, as a fault 
injection campaign of 10000 faults was injected for each 
application. These experiments correspond to step 1 in a 
scenario where the EDC application does not have any 
SWIFT techniques.  

 

Fig. 5. Impact of faults distributed by failure modes 

The failure modes observed are the following: 

● No effect: The fault had no visible impact on the 
system, which means that the CubeSat continues to 
work normally and the expected results are received 
by the onboard computer.  

● Silent data corruption (SDC): The fault had no 
visible impact on the system. However, the results 
sent are incorrect. This is the worst type of fault 
impact, as errors propagated in the system and led to 
erroneous outputs. 

● System crash and restart (WDT): The system 
crashes and the watchdog timer (WDT) is activated. 
After the WDT activation, the system is restarted 
and goes back to working properly. 

● System crash and do not restart: The system 
crashes, remaining in that failure mode without 
WDT activation. 

● Erratic behavior: The system sends wrong 
information repeatedly that can be detected by the 
mechanisms available in the CubeSat. 

Considering the failure modes presented above, “silent 
data corruption (SDC)” is the worst of all and represents a 
serious risk since the faults that lead to this failure mode are 
impossible to detect in real situations (in the experiments we 
can detect these situations because we compared each output 
with the expected one). The code control flow is not affected, 
instead, the system produces an erroneous result impossible 
to be detected, which means that SWIFT techniques must be 
considered to avoid the serious failure caused by these faults. 
In contrast, when the system crashes and it is detected by the 
WDT, the system is restarted and back again to work as 
expected, ensuring system reliability. Likewise, the “system 
crash and do not restart” failure mode can be easily managed 
with external mechanisms such as a Heartbeat system that 
must receive a signal periodically from the CubeSat payload 
system. If the signal is not received means that the system is 
in a blocked situation after a crash and must be forced to 
restart. Finally, the faults that lead to an “erratic behavior” 
can be easily detected by the onboard computer that should 
restart the EDC board.  

The high percentage of faults that have no impact (“No 
effect” failure mode) in three payload application scenarios is 
quite normal and corroborates previous fault injection 
experiments reported in the literature (e.g., [12], [13]). This 
percentage varies between 66% and 76% depending on the 
software under test. The reason for such results can be 
justified by the intrinsic redundancy existing in computer 
systems and software.  

Analyzing in more detail the failure mode distribution for 
the different processor registers, Fig. 6 shows that some 
processor registers are not affected at all by the injected 
faults. The reason is because these registers (e.g., R5, R6, R8, 
R9, R10, R11, R12) are not used by the code. Of course, these 
situations vary according to the actual software that is being 
executed in the CubeSat.  Furthermore, the way the software 
uses the available resources of the processor is defined by the 
C compiler switches during the compilation phase (the EDC 
system software and all the applications are developed in the 
C language). In fact, the result of fault injection campaigns 
can be quite different if the code is compiled with different 
compilation switches, as this can influence the behavior and 
performance of the software in execution. Also, the fact that 
a big number of registers are normally not used by the 
compiler opens some possibilities to implement extra SWIFT 
mechanisms. 

For page limit reasons, we are not showing the figures 
equivalent to Fig. 6 for the PI and Fibonacci applications. The 
results are relatively similar to the ones presented in Fig. 6. 

To minimize the impact of the transient faults caused by 
space radiation, we added the “plain-vanilla” version of the 
SWIFT technique known as re-execution and voting [36], 
[37]. In practice, the code is executed twice, and the result is 
voted in order to decide if it is trustable. If the two results 
differ, the code is re-executed and compared with the two 
previous results. In the end, if the third run does not match 
either of the previous two, a message of error is sent to the 
output. In contrast, if the result matches one of the first two, 
it means that one execution was affected by the space 
radiation but the others can be considered trustable.  
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Fig. 6. Impact of faults on the different processor registers - example for the 

multiplication of matrices application 

Fig. 7 shows the distribution of the faults according to the 
different failure modes in each processor register after the 
application of the software fault tolerance technique 
explained above. The results show that the re-execution 
and the voter can almost eliminate the impact of faults 
that cause SDC on the general registers of the processor that 
are being used by the code (e.g., R0, R1, R2, R3, R4, R7). On 
R0 and R7 the silent data corruption is totally tolerated, 
turning these registers immune to this type of failure mode. 
Also in the R0, the simple technique of re-executing and 
voting turns this register immune to space radiation as this 
register presents a percentage of 100% of “No effect”. 
Positively, in the other registers the percentage of “No effect” 
added to the percentage of “System crash and restart (WDT”, 
which is also a benign failure mode, is quite close to 100%, 
showing that the CubeSat software is resilient against faults 
such as the ones caused by space radiation. 

Also in Fig. 7 we can see that the simple software fault 
tolerance technique used in the multiplication of matrices 
code just mitigates the effect of faults that leads to SDC on 
the special registers of the processor (e.g., PC, SP, LR). 
Looking at the other failure modes, we can see that the results 
did not change too much for these special registers. This was 
expected given the relevance of these special registers of the 
processor, as a fault affecting one of these registers can lead 
the system to an incoherent behavior or even block the entire 
system. To strengthen these registers and increase the 
percentage of “No effect”, more sophisticated error detection 
mechanisms must be added to the software under 
development (e.g., self-checking routines). 

Fig. 8 compares the global impact of the faults 
considering the three application scenarios before and after 
the payload applications have been strengthened with the re-
execution and voting SWIFT technique. Additionally, the 
analysis considers only the faults that affected the registers 
that are being used by the software under test (since faults 
injected in registers that are not used always lead to “No 
effect” failure mode).  

 

    

Fig. 7. Impact of faults on the different processor registers - example for the 
multiplication of matrices application with SWIFI techniques 

As mentioned, the impact of transient faults is dependent 
on the actual software that runs on top of the CubeSat and 
looking at the two charts in Fig. 8 we can see that the 
sensibility to space radiation varies according to the software 
running on the EDC board. The multiplication of matrices is 
the most sensible code, presenting the lowest percentage of 
“No effect” (note that we excluded from the analysis the 
faults that affected registers that are not used by the program, 
thus all the faults have the potential to affect the program). 
Although the direct goal of SWIFI techniques is not to 
increase the percentage of “No effect” failure mode, it is 
interesting to note that the SWIFI technique actually led to 
the increase of the percentage of “No effect” in all 
applications, as a consequence of the masking effect of the 
SWIFT technique used (i.e., as mentioned above, the code is 
executed a third time if the results of the two executions are 
different). 

Focusing on the effectiveness of the re-execution and 
voting in the three software applications, we can conclude 
that even a simple software fault tolerance technique like this 
can drastically increase the reliability of the CubeSat. The 
results presented in Fig. 8 show that the “silent data 
corruption” failure mode becomes residual, after the 
introduction of SWIFT technique, and this result is consistent 
for all the applications. In fact, the percentage of “silent data 
corruption” the PI application was reduced to 0%, while in 
the Matrices and Fibonacci was reduced to 0.79% and 0.18%, 
respectively. With a more sophisticated SWIFT technique 
(e.g., duplicated voter) the results can be even better. 

In addition to the software fault tolerance added to the 
software, the EDC board includes a watchdog timer (WDT). 
This error detection mechanism is present in all CubeSats 
boards and plays a very important role in detecting system 
crashes. Looking at Fig. 8, we can see that most failures that 
lead to system crashes are detected by the watchdog timer 
(i.e., the failures are classified as “System crash and restart 
(WDT)”). This means that after the system crash is detected 
by the WDT, the system is restarted and back to work as 
expected, assuring the availability of the system. Taking 
advantage of the WDT together with the software fault 
tolerance technique added to the embedded software, it is 
possible to make the CubeSats nearly immune to SEU faults. 
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Fig. 8. Comparison of the impact of faults distributed by failure modes on 

the all the software tested before and after being strengthened with 
SWIFT techniques 

V. CONCLUSIONS AND FUTURE WORK  

CubeSats are increasingly popular because of their low 
cost, as result of the use of commercial off-the-shelf (COTS) 
components. However, COTS components are susceptible to 
hardware transient faults caused by space radiation. 
Hardware fault tolerance in CubeSats is limited to memory 
and communication protection, leaving the processor 
unprotected because fault tolerance at processor level would 
dramatically increase CubeSats cost, energy consumption, 
and weight (hurting the three capital advantages of CubeSats: 
low cost, low energy needs, and low weight). In practice, the 
situation is that CubeSat cannot tolerate the faults cause by 
radiation and are still regarded as satellites that cannot be 
used in serious and critical missions. 

The obvious solution of tolerating hardware transient 
faults caused by radiation at the software level is also not used 
in real CubeSats (although there are a couple of proposals in 
the literature), mainly because the systematic use of a 
software fault tolerance architecture covering system 
software (e.g., operating systems) and applications would 
make the software project of CubeSats hugely complex, 
particularly if the fault tolerance techniques are transparent 
for the developer of CubeSats software applications. 

This paper proposes a set of additional steps to the 
software development process used in the development of 
CubeSats software applications with the goal of making 
CubeSats immune to space radiation faults. The proposed 
solution intends to be easy to adopt to the software 
development life cycle used by companies, space agencies, 
and other institutions that are developing CubeSats. The key 
idea is to use two well-known ingredients (fault injection and 
SWIFT techniques) in a way that is compatible with the 
known budget restrictions of CubeSats. 

The proposal adds the systematic measurement of the 
CubeSat software sensitivity to transient faults caused by 
space radiation as a mandatory step of the software 
development process, as part of the V&V stages. Depending 
on the results of the sensitivity analysis, the proposed 
approach recommends the enhancement of the software 
under development with targeted SWIFT techniques, to make 

the software resilient to the transient faults. The novelty is in 
the fact that the proposed SWIFT techniques are targeted (i.e., 
just enough and as simple as possible) and are applied only at 
the software application level. Although this means that the 
SWIFT techniques are not transparent for the developers (i.e., 
represent an extra effort), this approach keeps the simplicity 
required by CubeSats projects.  

The evaluation of the software sensitivity to transient 
faults can be easily achieved using affordable fault injection. 
Since it is well-documented in the literature that the impact 
of transient faults is highly dependent on the actual software 
code, general and very expensive software fault tolerant 
architectures (which are not yet available for CubeSats) are 
not recommended because of two reasons: a) they may be not 
needed in many cases (as the inherent redundancy of software 
tolerates the fault, as shown by the high percentage of “no 
effect” faults) and b) they impose a fixed and very high cost 
and complexity to the CubeSat software projects. These two 
reasons support our proposed approach of just enough 
SWIFT techniques to avoid silent data corruption failures, 
which are the real problematic impact of space radiation. 

In short, we can summarize the proposed solution in the 
following steps: 1) Evaluation of the software sensitivity to 
space radiation; 2) Strengthen the software with tailored 
software implemented fault tolerance (SWIFT) techniques; 
3) Validate the effectiveness of the resulting software with 
SWIFT techniques. These 3 steps iterate until the required 
software resilience is achieved. 

The proposed approach is evaluated using a real CubeSat 
board and three different software applications specifically 
designed to cover different features such as complexity, data 
size and execution type (iterative and recursive.) The results 
of injecting 30 thousand faults show that it is possible to 
reduce the percentage of faults that caused silent data 
corruption to residual values (or even to 0% in one of the 
applications used in the experiments, which means that the 
CubeSat application became immune to faults such as the 
ones caused by space radiation for the critical silent data 
corruption failure mode. Furthermore, the SWIFT technique 
used in the experiments consisted of simple software 
component re-execution and voting, which is a simple 
technique that can be easily added to software applications. 

Future work includes the evaluation of the real EDC 
application software that is currently under development and 
consequent improvement of the software with targeted 
SWIFT techniques to make it immune to space radiation as 
much as possible. The operating system used in these 
particular CubeSat boards (FreeRTOS) can also be enhanced 
with several mechanisms and new system calls to facilitate 
the development of SWIFT techniques at the application 
software level. Additionally, the development of a repository 
(library) of reusable SWIFT techniques for CubeSat software 
is also being considered, as this will reduce the effort of 
developing fault tolerance at the application level.  
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