
© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including

reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or

reuse of any copyrighted component of this work in other works. – DOI: 10.1109/PRDC55274.2022.00022

1

Enhanced software development process for
CubeSats to cope with space radiation faults

David Paiva

CISUC, University of Coimbra

Coimbra, Portugal

davidpaiva.uc@gmail.com

Fátima Mattiello-Francisco

COEPE, INPE

São José dos Campos, Brazil

fatima.mattiello@inpe.br

Raffael Lima

COENE, INPE

Natal, Brazil

raffael.sadite@inpe.br

Henrique Madeira

CISUC, University of Coimbra

Coimbra, Portugal

henrique@dei.uc.pt

Manoel Carvalho

COENE, INPE

Natal, Brazil

manoel.carvalho@inpe.br

Abstract — CubeSats are an established trend in the space

industry. The CubeSat standard opens opportunities for rapid

and low-cost access to space. The use of COTS components

instead of space-hardened hardware greatly reduces the cost of

CubeSat-based missions and provides the additional benefit of

increasing software functionalities at a low power consumption.

However, COTS components are not designed for the space

environment, making CubeSats sensitive to space radiation.

This means that CubeSats need additional software mechanisms

to guarantee resilient behavior in the presence of space

radiation. Our proposal is that such software implemented fault

tolerance mechanisms must be tailored to the specific code

running in each CubeSat and the logical way to achieve that is

to extend the software development process for CubeSats to

include the systematic resilience evaluation of software as part

of the CubeSats software lifecycle process.

This paper proposes a set of structured steps to enhance the

classic software development process used in CubeSats, focusing

particularly on the Verification and Validation (V&V) phase.

The approach uses fault injection as an integral part of the

development environment for CubeSats software and includes

three major steps: a) sensitivity evaluation (verification) of

software in the presence of faults caused by space radiation, b)

strengthen of the software with targeted software implemented

fault tolerance (SWIFT) mechanisms and c) validation of the

effectiveness of the SWIFT mechanisms to confirm that the

software is immune to space radiation faults. These added steps

to the V&V process must be carried out during software

development, as well as every time the CubeSat software has an

update, or even a minor change, to ensure that the impact of

faults caused by space radiation is tolerated by the CubeSat

software. The paper demonstrates the proposed approach using

three different embedded software running in the EDC

(Environment Data Collection) CubeSat board, which is part

(payload) of a constellation of satellites being developed by the

Brazilian National Institute for Space Research (INPE). EDC

use case provides a realistic insight on the effectiveness of the

proposed steps. Our results show that the proposed approach

can reduce the percentage of silent data corruption (the most

problematic failure mode) from the range of 15% to less than

1% and even to 0% in some embedded software, meaning that

the CubeSat software becomes immune to space radiation.

Keywords — CubeSats, COTS, software development,

verification and validation, soft errors, fault injection, software

fault tolerance techniques

I. INTRODUCTION

Nowadays, the interest in the development and
deployment of CubeSats solutions has become a trend in the
space industry. CubeSats are small-satellites built with up to
12 units in the shape of a cube of 10cm edge and weight of
10kg maximum, according to the CubeSat Design
Specification (CDS) - a standard de facto for mechanical
design and interfacing for satellites [1]. In fact, the CubeSat

standard strongly reduces cost and development time of space
projects, increases accessibility to space, and sustains
frequent satellite launches. CubeSat-based projects place
emphasis on the use of Commercial-Off-The-Shelf (COTS)
components and systems. When compared with space-
hardened components - specially designed to withstand the
harsh space conditions - COTS present several benefits like
low cost, high performance, and low energy consumption,
which open opportunities to rapid develop of new space
technologies and to carry out affordable space missions.

 Despite these advantages, COTS components are not
designed for space applications, which means they are
susceptible to transient errors as a result of single event upsets
(SEU) caused by space radiation. In fact, errors caused by
SEU are established as the major cause of COTS components
failures in space [2]. The impact of space radiation could
damage COTS on a permanent basis, but the most common
effect is to cause transient faults [2] that may lead the
software to crash or to produce erroneous results.

Although CubeSats generally use ordinary COTS
hardware (i.e., sensitive to space radiation), typical
architectures of CubeSats boards [3] include several
mechanisms to cope with faults caused by space radiation.
Memory is typically protected through error detection and
correction codes, and communication structures also use
error detection and correction provided by the
communication protocols and associated hardware of the
communication links. Memory, in particular, represents a
large silicon surface exposed to radiation, which means that
protecting memory from transient bit flip errors due to space
radiation is mandatory.

Fortunately, the protection of memory and
communication channels against transient faults caused by
space radiation is relatively easy to achieve at low cost
because of the regular nature of such structures. For example,
the use of extended Hamming codes [4] to assure single error
correction and double error detection in the memory just
requires two extra parity bits and is a frequent solution in
CubeSat boards. Similarly, the use of communication
protocols and techniques such as forward error correction
codes [5] are effective in dealing with errors caused by
transient faults in communication channels.

The big challenge is to protect the processor(s) of
CubeSat boards from the effects of space radiation.
Obviously, the use of space-grade processors that resist space
radiation is not an option for CubeSats, as the cost of such
processors is several orders of magnitude higher than the cost
of common COTS processors. But, unfortunately, COTS
processors are not immune to space radiation and, at the same
time, the complex internal structure of processors does not
allow the use of affordable data error detection and correction
methods that protect uniform and regular structures such as

https://doi.org/10.1109/PRDC55274.2022.00022

2

memories and communication channels. In other words,
existing CubeSat boards can deal with transient faults caused
by space radiation that affect memory and communication,
but the processor represents the major weakness for the
reliability of CubeSats.

The obvious solution would be to rely on classic fault-
tolerant architectures at the board level [6] to tolerate faults
of the COTS processors in CubeSats. But these techniques
represent a substantial increase of hardware redundancy, with
high negative impact on the board weight and power
consumption. For example, the use of duplicated processors
in CubeSat boards would require a large amount of additional
hardware to deal with the comparison of the two processors,
no matter the concrete flavor of fault-tolerant architecture
used in the board design. For example, techniques such as
lock-step dual processor architectures would require the low-
level comparison of the hardware signals of both processors
(and, most likely, can only be used if the processors are
implemented in FPGAs to have access to the internal
processor structure to allow synchronization of signals).
Other architectures such as symmetric multiprocessors (i.e.,
two or more identical processors sharing a single main
memory) would also need additional hardware and have
negative impact at other levels (e.g., would require a
multiprocessor-aware operating system) [6].

Recent research work (PhD thesis of C. Fuchs, December
2019 [7]) proposes a novel on-board-computer architecture
for very small satellites (<100kg) capable of achieving high
reliability without using radiation hardened semiconductors,
through the combined use of hardware and software-
implemented fault tolerance techniques [7]. However, in
spite of this promising research result from C. Fuchs, to the
best of our knowledge, there are no fault-tolerant boards
available for CubeSats, especially boards that can cope with
transient faults that affect the processor, which are the major
threat for the reliability of CubeSats.

The current situation in the space industry is that, in spite
of the growing interest in CubeSats, this category of satellites
is still considered as not adequate for high-priority and
critical missions, and the reason is the low reliability of
CubeSats [8]. Data from 178 launched CubeSats show that
the 2-year reliability estimation ranges from 65% to 48% [8].
The detailed analysis of the results presented in [8],
concerning the subsystem identified as root cause of the
failure, shows that the payload subsystem contributes with
modest figures (from 3% to 4%), which make sense in an
analysis focused on failures of CubeSat missions with a
strong incidence of DOA (dead-on-arrival), where the
satellite never achieved a detectable functional state.
However, we may speculate that the failure rate in CubeSat
payload software could be much higher, especially
considering transient failures in the payload software that,
apparently, has not been considered in [8].

In this paper we propose a pure software implemented
solution that allows us to improve the reliability of existing
CubeSats without requiring any change or extra hardware in
the CubeSats boards currently available. Our approach takes
into account the fact that the impact of faults caused by space
radiation at processor level is highly dependent on the actual
software running in the CubeSat, as the error propagation
phenomena and the translation of the erroneous behavior
caused by faults into critical failure modes depend on low-
level features of the code such as the data structures and code
constructs. Abundant fault injection literature shows that
depending on the actual code, the effect of faults could be
relatively minor or could be devastating. This fact can be

attested in many fault injection papers as reported (and
condensed) in periodic surveys and fault injection papers (see
[9], [10], [11]).

In particular, a project involving NASA JPL [12] reported
results from an injection campaign on a NASA COTS-based
payload system for onboard processing of scientific data and
shows that the percentages of the different failure modes are
quite dependent on the software running in the system at the
moment when the faults were injected. This difference
reaches up to 45% in some failure modes, particularly in
potentially dangerous failure modes such as “silent data
corruption”, in which the radiation induced faults cause
erroneous software results but do not activate any error
detection mechanism available in the system. Similar results
have been obtained in a recent and quite comprehensive fault
injection study [13].

This dependency of the impact of transient faults on the
actual software running in the CubeSats suggests that
software implemented solutions must be instantiated at all
levels of the software development lifecycle, considering
both system software (operating systems, libraries, etc.) and
application code. This is precisely the goal of the present
paper that proposes an additional set of steps for the
development of software applications for CubeSats. The
contributions of the paper are as follows:

● Proposes an extension of the software development
process for CubeSats using fault injection as an integral
part of the development setup to verify the sensitivity of
the software to space radiation induced faults and
validate subsequent iterations of the software enhanced
with software implemented fault tolerance mechanisms.

● Presents the proposed extension as a set of additional
steps to the V&V phase. These steps include 1)
sensitivity analysis, 2) software enhancement with fault
tolerance techniques and 3) validation of the final
software resilience. Although this extension is presented
and discussed in the paper as part of the traditional
waterfall V model, the proposal is largely agnostic
concerning the software development process and can be
used in agile methodologies as well.

● Applies the proposed methodology to a concrete
CubeSat board and shows that the effects of transient
faults induced by space radiation can be reduced to
nearly zero using the proposed approach.

The structure of the paper is as follows: next section
presents a brief state of the art on software development
practices for CubeSats; section III presents the proposed
approach; section IV describes the use case using a real
CubeSat board, including the application do the proposed
approach and discusses the results; and section V concludes
the paper and outlines future work.

II. SOFTWARE DEVELOPMENT PRACTICES FOR

CUBESATS

The advent of the CubeSats has made the development
cycle of small satellite projects much faster and cheaper than
traditional space missions. The satellite structure, cabling and
interfaces have been significantly simplified with the
CubeSat standardization [1], but the complexity of software
embedded in the satellite subsystems just increased. Thanks
to technological evolution of embedded electronics,
memories and satellite processors, the potential for adding
functionalities implemented by software has grown [14].
Subsystems onboard CubeSat based satellites have their own
software architecture and the challenge lies in the integration

3

of the so-called software-intensive systems (SiS) in a short
development time imposed by CubeSat missions [15], [16].

The focus on the concept of interoperability of SiSs
aboard spacecraft is not a concern limited to CubeSats. In the
last 20 years, the satellite industry evolved from viewing
software (mostly developed in house) as an important aspect
of the entire spacecraft, to the current trend in which satellite
software results from the integration of SiSs provided by
different suppliers. Efforts in the V&V process are
fundamental to support the integration phase with effective
tools and methods, which made the process onerous in time
and resources. This is acceptable in the development cycle of
traditional satellites but incompatible to CubeSat philosophy,
whose project shall be much faster and cheaper [17].

Moreover, CubeSats also have caused a shift from the
classic waterfall model usually adopted for space software
development into incremental approaches and agile methods.
Currently, the development of most CubeSat software
follows such approaches. The On Board Data Handling
(OBDH) typically has grown in complexity because new
services are required by payloads late in the development
time. More pieces of software are developed to interface,
control and operate different subsystems. These new features
increase the overall complexity of the satellite and increase
the number of possible software defects [15], [16], making
the behaviour of the software under faulty conditions caused
by space radiation quite unpredictable. Considering that the
success of CubeSat missions relies on the OBDH, it is
essential to mitigate such weaknesses without increasing the
costs of the V&V.

Regarding software assurance practices, simulation and
testing are the most common activities to verify and validate
CubeSats software, according to a survey conducted at
NASA Ames Research Center [18]. However, even those
activities do not receive due attention on CubeSats projects,
as an intensive program of verification and validation cannot
be accommodated into the limited budget of such projects.
Despite this, according to the same survey [18], an emerging
trend relies on the use of model-based design methods due to
their capability to automate the creation of detailed software
design from high-level graphical inputs, and then use
automatic code generation to create the code. Unfortunately,
the automatic code generation for complex projects is still
limited.

Although fault-tolerant software methods are used for
run-time monitoring in CubeSats, the use of rigid V&V
methods is not a trend in current CubeSats software
development due to time and budget constraints of such
projects. This includes the crucial verification of possible
effects of space radiation induced faults.

III. ENHANCED VERIFICATION AND VALIDATION FOR

CUBESATS SOFTWARE DEVELOPMENT

A. Context and preliminary experiments to validate
assumptions

The proposed approach uses fault injection as an integral
part of the development environment for CubeSats software
and includes three high-level steps:

a. Sensitivity evaluation (verification) of the software
in the presence of faults caused by space radiation;

b. Enhancement of the software with targeted
software-implemented fault tolerance (SWIFT)
mechanisms; and

c. Validation of the effectiveness of the SWIFT

mechanisms to confirm that the software is immune

to space radiation faults.

These steps must be carried out during CubeSat software
development, as well as every time the CubeSat software is
updated, to ensure that the impact of faults caused by space
radiation is tolerated by the CubeSat software. Fault injection
is an establish technique and SWIFT techniques are well-
known. The innovation of the proposed approach is not in the
use of fault injection to evaluate the CubeSat boards (that is
not effective as the impact depends much more on the
software running on the board than on the CubeSat board
itself), nor in the use of SWIFT to propose a fault tolerant
architecture for CubeSats. The new aspect of our approach
resides in the fact that fault injection and SWIFT are now
proposed as integral part of the software development process
for CubeSats. Fault injection is essential to evaluate the
impact of SEU on the CubeSat software and SWIFT makes
the software resilient to space radiation.

CubeSat boards high-level architecture can be divided in
three layers, as shown in Fig. 1. The hardware layer is the
physical part of the CubeSat composed of several COTS-
based elements, such as the onboard computer, payload
boards, solar panels, RF antennas, among others. The middle
layer is the system software that includes the operating
systems running in the different boards (e.g., FreeRTOS,
eCos, among others) and, depending on the specific board,
may include other software elements such as drivers and
software designed to deal with specific sensors or actuators
or to perform specific functions (e.g., to control satellite
attitude). The third layer is the CubeSat application software
that performs specific mission tasks and is developed to run
on the different satellite boards, on top of the system
software.

At the hardware layer, CubeSats boards use regular COTS
components but the boards include several mechanisms to
make them more resilient to the space environment. CubeSat
boards are ruggedized with layers of resin coating for
mechanical and thermal protection. Additionally, memory is
protected with error detection and correction bits, as well as
communication channels are also protected with error
detection and correction mechanisms provided by the
communication protocols and associated hardware of the
communication links. Memory, in particular, is protected
against transient bit-flip errors due to space radiation, as the
memory chips represent a large silicon area exposed to
radiation, making SEU in memory very frequent.

Fig. 1. Simplified view of a CubeSat board organization

As already mentioned, the protection of uniform
hardware structures such as the memory and the
communication channels is very simple and is in fact a
common practice in standard COTS hardware boards for all
sort of applications. CubeSats simply take advantage of
available standard solutions such as extended Hamming
codes [4] for single error correction and double error

4

detection in the memory and forward error correction codes
[5] for transient faults in communication channels. These
mechanisms are well aligned with the CubeSat “philosophy”
of low cost, low energy consumption, and low weight.

Protecting the processor from the SEU effects is the
central problem because the processor is not a regular and
simple structure. The use of space-grade processors that resist
to space radiation is not an option for CubeSats because of
the very high cost of such processors. The obvious solution
would be to use classic fault-tolerant architectures with
massive levels of redundancy, as the ones used in large-scale
satellites [19] or in the aircraft industry [20], [21].
Unfortunately, these well-proven solutions are not an option
for CubeSats, even if designed around COTS components, as
they are expensive, heavy, and require high power
consumption. Classic architectures used in avionics and in
large satellites would require pairs of duplicated processors
and the inherent hardware logic to vote the results from the
different signals, which would ruin the simplicity and low
cost of CubeSats.

The reality is that there are no fault-tolerant CubeSat
boards available from manufacturers that solve the problem
of transient faults in the processor at the hardware board layer
and CubeSats are still regarded as very low-cost small
satellites for non-critical low earth orbit (LEO) missions.

One important advantage of classic fault-tolerant
techniques applied at a low architectural level (e.g., triple
modular redundancy [21] or even hybrid proposals such as
the recent architecture proposed in [7]) is that these
techniques provide a reasonable transparent solution for the
development of software applications on top of a fault-
tolerant architecture. That is, the developer of application
software does not need to worry about possible transient
faults, as they are tolerated at the lower levels of the hardware
layer or by the system software [23], [24].

Since there are no fault-tolerant CubeSats boards
currently available (and they are not likely to appear in the
near future because of the high cost, energy consumption, and
weight imposed by hardware fault tolerance), it means that
possible solutions for the transient processor faults due to
SEU are not transparent for the developer of software
applications for CubeSats. This is obviously a clear
assumption for any proposal that attempts to solve the
problem of transient processor faults in CubeSats boards
through the use of SWIFT techniques, which also includes
the approach proposed in this paper. The developer of
CubeSat applications must be aware that the application may
be affected by transient processor faults and deal with the
SWIFT techniques needed to tolerate such faults (i.e., the
SWIFT techniques are an integral part of the software under
development). Naturally, the development of CubeSat
applications will become more complex, as the application
software needs to deal with both the functional aspects and
the SWIFT techniques, but this is the price to pay to assure
the required reliability for CubeSat applications running on
simple and low-cost non-fault-tolerant boards.

The development of a library of software components that
implement the skeleton of software fault-tolerant techniques
is out of the scope of the present paper. However, in the
context of a future industrial application of the proposed
steps, it will be crucial to have a library of SWIFT methods
to be used/adapted to each particular situation, in order to
simplify and accelerate the development of CubeSat software
capable of tolerating the hardware transient faults caused by
space radiation. Of course, those techniques should be
tailored to the specific software under development, as

mentioned before, but a general skeleton or code (e.g., a voter
that compares two inputs and signs if they differ) that can be
reused could be made available in the form of reusable
components available for the software development teams.
This will reduce the time necessary to integrate SWIFT
techniques into the code under development, making it easier
and cheaper to apply the approach proposed in this paper.

The application of SWIFT techniques at the software
application level to tolerate hardware transient faults, as
proposed in the present paper, relies on two assumptions:

a. The system software, and specifically the operating
system of the CubeSat board, is operating properly
after the transient fault, allowing the correct
processing of SWIFT techniques at the application
level; and

b. Possible malfunctions (errors) caused by the fault
can be detected by the error detection mechanisms
available in the CubeSat board, so the board can be
restarted to re-establish a correct state to run the
SWIFT techniques and tolerate the fault.

This means that in the worst-case scenario (bullet b))
when an error is detected or the system crashes as a
consequence of the transient fault, the base layers of the
CubeSat (i.e, hardware and operating system) should be able
to recover the system to a state from which it can operate
properly. In satellite systems (and in general in cyber-
physical systems) this is done through the use of classical
forward recovery techniques [25], [26], [27] that bring the
system to a correct state, normally resetting key elements
such as the operating system. To assure this, a key feature of
base layers of CubeSats (hardware and system software) is
the effectiveness of the error detection mechanisms available
in such layers

As mentioned, all CubeSats boards have error detection
of two bits errors and correction of one bit in memory using
extended Hamming code [4]. The correction of one-bit error
is fully transparent, as it is processed at the hardware level,
and in case of detection of errors in two bits (no correction),
the error must be handled by the system software (in general,
the action is to reset the system as these errors are mostly
caused by transient faults due to SEU, and they disappear
after reset).

Another very relevant error detection mechanism that also
exists in all CubeSat boards is the watchdog timer (WDT)
[28] that detects deviations of the correct software behavior
that changes its timing features (most frequently, WDT are
used to detect crashes). WDT can be controlled (i.e.,
refreshed periodically) by the system software, which makes
the error detection transparent to the application software, or
can be periodically refreshed by the application software.
Other types of simple error detection mechanisms are
associated with the memory management units of the
CubeSat board and allow the detection of erroneous memory
access behavior (e.g., instruction fetch outside the code
segments, read/write in memory areas not available, etc.).
More sophisticated (and also more effective) error detection
mechanisms such as signature monitoring [29], [30], are in
general not available in CubeSat boards.

Given the relevance of the assumptions mentioned above
(bullets a) and b)) for the approach proposed in this paper, we
decided to perform a preliminary experiment to evaluate
these assumptions in faulty scenarios. The goal is to evaluate
the probability of the CubeSat board (hardware layer and
system software) to behave correctly after a fault, in such a
way that SWIFT techniques can be applied to tolerate the

5

faults. It is clear that SWIFT techniques can only be applied
if the operating system is working properly.

This preliminary experiment consists of the injection of
10000 faults into the EDC board (a real CubeSat board) used
as case study. For this experiment, the EDC board (target
system) was not running any real software application.
Instead, the EDC was just running the real-time operating
system (FreeRTOS) and, a “dummy” task that blinked a LED
light and refresh the watchdog timer counter. The idea was to
evaluate the impact of faults in the system software (mainly
the FreeRTOS), to evaluate whether the operating system is
running properly after the fault or not.

The faults were injected following the traditional
approach that emulates transient hardware faults in the
processor through single bit flips in the processor registers,
as proposed and used by reference fault injection works/tools
in the last decades [31], [32], [33], [39]. More specifically,
we used CubeSatFI [39] (fault injector dedicated to being use
on CubeSats) where the faults were injected at random in all
the processor registers and at a random time during the
execution of the software, to emulate the random effects of
space radiation.

The results obtained are presented in Fig. 2. The
confidence intervals (shown in the numeric values in each bar
of the chart) are calculated for 95% of confidence, using
confidence intervals for proportions in binomial distributions
(Bernoulli trials).

The classification of the failure modes was made based
on the results obtained and includes the following failure
mode types:

● No Effect/OS OK: The fault had no visible impact
on the system. The operating system continues to
work normally as expected.

● Error detection (WDT): The fault crashes the
operating system, but the watchdog detects this
erroneous situation and restarts the system. After
restarting, the system is working normally again.

● OS CRASH: The system crashes after being
affected and the watchdog timer cannot detect it.

Fig. 2. Impact of faults on the Hardware and operating system

The results show that most of the faults did not affect
(80.38%) the operating system, which means that the
operating system continues operating properly, as expected.
This result is in line with previous fault injection results [9],
[10], [11], [12], [13] in other systems, as the inherent
redundancy and unused resources lead to a large percentage
of benign faults. It was observed that 18.78% of the faults
activate the watchdog timer, assuring that after a crash the
operating system can restart and back operating properly
again. These two values together (99.16%) show that the
hardware layer and error detection at the system software

layers meet the assumptions described above (both a) and b))
in more that 99% of the faults, and SWIFT techniques can be
effectively applied at the software application layer. This
means that software developers can develop applications on
top of COTS boards and use SWIFT techniques to tolerate
processor transient faults due to SEU, as the probability of
the operating system and the system software being operating
properly after the transient fault (to allow the correct
processing of SWIFT techniques at the application level) is
very high (> 99% in our experiments).

It is worth noting that in this experiment the error
detection available in the target system (EDC board) was only
the WDT. Even so, the percentage of cases observed in which
the proposed approach could not work is reduced to 0.84%.
Obviously, the inclusion of additional error detection
mechanisms in the CubeSat boards could reduce even further
this percentage. Even knowing that the percentages of cases
where the assumptions a) and b) (see above) are met may
dependent on the actual operating system and system
software, we consider this result quite encouraging.

B. Enhanced Verification and Validation Steps

Our proposal focuses on enhancing the verification and
validation of CubeSats software through a set of additional
steps. These steps are intended to be the least intrusive
possible on the software development life cycle used by the
companies, space agencies, and other institutions that are
developing CubeSat software. Since budget and time are
constraints that must be considered, expensive software
verification and validation activities are impossible to
accommodate on such projects.

The proposed steps require a fault injection tool as part of
the toolset used in the CubeSats software development
process. The use of fault injection tools is quite common in
the software industry [34], [10] and most fault injection tools
are considered simple and affordable tools, fully in line with
typical CubeSat budget constraints. In particular, fault
injection tools using JTAG and the Test Access Port (TAP)
such as many existing tools (e.g., [32], [33], [35]) can be
easily adapted to CubeSats, as nearly all CubeSat boards are
equipped with JTAG and TPA.

Fig. 3 illustrates the proposed additional steps. More
specifically, our proposal does not change the previous
phases of the existing software development process, but
simply adds additional V&V steps after the integration test
step, which is always part of the process, no matter the flavor
of the software development process used by the CubeSat
developer.

Step 1 - Evaluate the software sensitivity to space
radiation: After integration testing the software is subject to
a comprehensive fault injection campaign to evaluate the
impact of SEU on the CubeSat behavior. Faults are injected
in the processor registers of the target board using a random
distribution (both in space - registers- and time), since space
radiation tends to affect the processor randomly. This will
allow us to understand the behavior of the target software in
the presence of space radiation that affects the processor of
the board where the software is running.

Step 2 - Strengthen the software with tailored software
implemented fault tolerance (SWIFT) techniques: The
results obtained in the previous step must be analyzed and the
impact of the faults on the target software should be
categorized into failure modes. According to the failure
modes obtained, the project manager should decide if it is
necessary enhance the software with additional SWIFT
techniques to avoid failure modes such as silent data

6

corruption (erroneous output results with no error detection)
or to recover the software after crash failure modes. This
decision should be taken considering the criticality of the
CubeSat mission, the resources available in the target
CubeSat board, and the budget available to implement these
techniques. Many SWIFT techniques can be used, from
simple re-execution and voting to self-checking software
[25], [26], [27], [35], [36]. If the target system has enough
resources, it is extremely recommended to add SWIFT
techniques to increase fault coverage as much as possible.
Obviously, we are aware that including additional SWIFT
techniques in the CubeSat software after a first version of the
software has been through integration testing could be
problematic. For fault masking techniques such as software
re-execution and voting [36], [37] this task of adding this
technique to existing software is relatively easy. But for other
SWIFT techniques such as algorithm-based fault tolerance
[37] the existing software must be largely refactored to
incorporate the SWIFT technique.

 Step 3 - Validate the effectiveness of the SWIFT
techniques: After the software is strengthened with
additional SWIFT techniques, it must be submitted to
regression testing (using a test suite developed in earlier
stages of the software development lifecycle) to assure that
the functional requirements (and also non-functional
requirements such as response time) are still met. The
validation of the effectiveness of SWIFT is then performed
through a fault injection campaign similar to the one run in
step 1. That is, the process enters the cycle proposed in Fig. 3
until the desired software resilience in the presence of
transient faults is achieved. The objective is to have a flexible
way to enhance the resilience of the CubeSat software to cope
with transient faults to reach the software resilience level that
is necessary for the CubeSat mission and validating the
results through fault injection in the actual software under
development. This incremental approach (i.e., just enough
software fault tolerance) seems more appropriate to CubeSat
constraints, avoiding the drawback of generic (and massive)
software fault tolerance architecture that costs resources and
increase the impact surface of space radiation on the software
behaviour as observed in [38].

Fig. 3. Additional steps for the CubeSat software development process

The proposed steps should be included in the software
development process used in the CubeSat development
project. If the project follows the classic V-Model, the fault
injection evaluation of the software sensitivity to SEU should

be included after the integration testing (right-side of the V).
Obviously, if the CubeSat project follows an agile process
(this is a growing trend in CubeSats development), the
proposed steps should be performed each time that the
software has a considerable increment. Since the impact of
SEU-induced faults depends on the actual software that is
running on the CubeSat, every time the software changes, it
is crucial to perform the proposed additional V&V steps. In
fact, these steps are quite in line with test-driven development
(TDD) used in agile development processes, where the
software requirements are converted into test cases and each
software increment aims to pass the new set of test cases.
After the test pass, the code is refactored, and the test suite is
run again to assure that no existing functionality is broken.
This cycle is repeated for each new functionality. Similarly
to TDD, when the CubeSat software has a major or even a
minor change, the proposed V&V steps should be executed
to evaluate the resilience against SEU-induced faults, and the
software is considered fully developed when it meets the
safety and dependable requirements to tolerate space
radiation.

An important aspect for the actual application of the
proposed approach is the availability of fault injector tools
such as CubeSatFI [39] as part of the software development
environment to allow the execution of fault injection
campaigns in an easy and automatic way (and at low cost).

IV. USE CASE: EDC CUBESAT BOARD

 This section presents a use case of the proposed enhanced
V&V approach using the Environmental Data Collector
(EDC) [40], a CubeSat payload board for the Brazilian
Environmental Data Collection System (SBCDA). Is not
worth mentioning that this payload is going to be used in all
the future CubeSats from the CONASAT-project [41].

A. The EDC CubeSat board

The CubeSat platform is a 1U (i.e., the satellite has a cubic
shape with edges of 10 centimeters) and has a classical
CubeSat hardware architecture comprising the onboard
computer (OBC), payload boards (EDC in this case), two
UHF antennas, a UHF transceiver, an electrical power system
(EPS), and a battery pack. Fig. 4 shows the main blocks of
the satellite hardware architecture.

The EDC board is a new payload developed to meet the
demand for a signal receiver CubeSat-compatible to provide
onboard signal processing. The EDC design uses only COTS
components, which makes the EDC less reliable than a classic
space grade transponder. The board was designed by a
division inside INPE and was produced by an external
company under direct quality control of INPE, while the
software for the EDC board has been developed in house by
the EDC software team. This is a typical arrangement for the
development of CubeSats for real (and serious) missions.
Furthermore, the EDC software team works with the team
responsible for the development of the flight software for the
onboard computer (OBC) to carry out the integration of the
EDC payload in the satellite.

The UHF antenna - Payload is dedicated to receiving
signals from the data collection platforms (DCP) and is
connected to the EDC, while the UHF antenna - TMTC is
used for communication with the receiving stations (RS) and
is connected to the UHF transceiver. The UHF transceiver is
the subsystem responsible for receiving and transmitting the
telecommand (TC) and telemetry (TM), respectively. The
EPS subsystem supplies power to the entire platform through
six solar panels and several voltage converters. The platform
also has a battery pack with a capacity of 10.2 Wh. The OBC

7

is responsible for configuring, controlling, and commanding
the operation of all satellite subsystems. The telecommands
received from an RS are decoded in the OBC to control the
subsystems onboard the satellite. The OBC is also
responsible for monitoring the overall health of the satellite.
Health assessment can be performed in several ways,
depending on the subsystem being assessed. Telemetry
sensors are used to verify that the parameters of a given
subsystem are acceptable (such as temperature or voltage
level). Telemetry data collected from each subsystem is also
stored for transmission to an RS. The OBC acts as the I2C
bus master for transmitting commands to the EPS
subsystems, UHF antennas, and UHF transceiver. The flight
software implements in the OBC a routine of commands and
requests to control the data processed by the EDC. This is
performed through a UART communication interface. With
the payload data in hand, the OBC uses the USART interface
to transfer it to the UHF transceiver. The UHF transceiver
transmits through the UHF antenna TMTC at the frequency
of 462 MHz. While the beacons are transmitted by the same
antenna at the frequency of 435 MHz. The UHF transceiver
is configured for a baud rate of 9600 bits per second.

Fig. 4. Hardware architecture block diagram overview

B. Application of the proposed approach

Since the EDC software is still under development, the
demonstration and evaluation of the proposed approach uses
software applications that play the role of the real EDC
application payload. The use of different applications has
several advantages, particularly as a first evaluation of the
proposed approach before using it in the final EDC software
still under development. It introduces some diversity to the
evaluation since we use three applications and allowed us to
select applications with very different profiles, concerning
code size, code complexity and, particularly, covering
different types and sizes for the data processed by the
applications. All the applications were written in C, as this
language is highly used in CubeSat software. The
applications selected are:

● Matrices: it is a program that computes the result of the
multiplication of two matrices 30 times and at the end of
each run, calculates a cyclic redundancy check (CRC)
for the result of the multiplication. After the 30 runs,
calculate a final CRC of the 30 CRCs previously
calculated. In our experiment, the program uses two
30x30 integer matrices. This is a computation intensive
program in a relatively large dataset (due to the 30
iterations of the matrices).

● PI: Computes the value of π using the Leibniz formula.
In our experiment, the program computed the π using
60000 terms. This is a computation intensive program
with a highly sensitive result, as even a minor error in a

decimal case of the very long π number calculated will
be detected.

● Fibonacci: it is a recursive program that computes the
sequence of Fibonacci and sums the calculated
elements. In our experiment, the program computed the
sum of the first 30 elements of the Fibonacci sequence.
This is a simple recursive program that intensively uses
the stack memory.

It is worth mentioning that these payload software
applications (obviously) do not correspond to software
payload that is going to fly in future CubeSats from
CONASAT-project. However, they represent a variety of
application profiles, as mentioned before. Additionally, they
are executed in fully realistic conditions (exactly the same
conditions as the future EDC software), running on top of the
real system software running on the EDC board, namely the
FreeRTOS operating system and all the software needed for
exchanging messages between EDC board and the OBC
board. Furthermore, these applications represent demanding
scenarios, as they impose a considerable processing load to
the EDC board and reproduce the case of payload software
that takes a considerable amount of time to execute
(particularly Matrices and PI), which means the successful
completion of the application is quite exposed to SEUs.

The fault injection campaigns consist of 10000 faults for
the evaluation of the impact of faults in each application. All
faults are single bit-flips faults, as this model is widely
accepted as a realistic simulation of SEU faults. The target of
the injected faults are the registers of the processor of the
EDC board. The register affected by each fault was selected
randomly (among all the processor registers) and the bit of
the register affected by the faults was also selected at random.
The trigger of each fault is also randomly defined within an
injection window (i.e., within a time interval defined by the
tester). The injection window interval was defined as between
2 and 4 seconds after resetting the CubeSat to assure that each
fault is injected in the system without having the effects of
previous faults. The fault injection (for the software
sensitivity evaluation step) was performed using CubeSatFI
[39], a fault injection tool that takes advantage of the modern
features of the actual microcontrollers by injecting faults in a
fully automated way through the JTAG interface. The tool
offers the possibility of designing an entire experiment,
choosing the specific target that we want to affect, as well as
the moment that we want the fault to be injected.

As discussed before, the processor is the main weak point
for the reliability of CubeSats boards in the presence of space
radiation. In the EDC board, memory is protected with single
error correction and double error detection parity codes and
the messages exchange between the EDC and OBC boards
are also protected with error detection mechanisms.

At the end of the injection window, the target system will
be running for a period of 26 seconds to collect data on the
impact of the fault for further analysis of the effects of the
fault. This period of 26 seconds corresponds roughly to 8
times the average execution time of the application that takes
longer, to assure time enough for possible error propagation
that may affect the result.

The results produced by each software application are
sent to the host computer that controls the experiments
through the UART interface of the EDC payload board. The
results of the campaigns are saved in a file to further analysis.

These campaigns with randomly injected faults (both in
the register space and in time) are appropriated to emulate the
effects of transient faults caused by SEU, as space radiation

8

tends to affect the processor in a random way. We decided to
keep the single bit-flip model and not to include faults
injected in multiple bits of registers because these multiple
bits faults (caused by space radiation bursts) tend to cause
drastic impact on the software and are easy to detect, and
consequently are easy to handle.

It is worth noting that due to the random nature of the
injection process, the injected faults may affect either the
payload software application or the EDC software, namely
the FreeRTOS operating system and the software used for
exchanging messages between EDC board and the OBC
board, which represents a realistic scenario for SEU faults.

The process was applied following the three additional
steps of the proposed approach:

1. Sensitivity evaluation by applying the fault injection
campaigns (one campaign for each payload
software) to the original software (i.e., without
specific SWIFT techniques, unless some error
detection techniques such as watchdog timer
available in the EDC board).

2. Strengthen of the payload software with a simple
SWIFT technique that consists of r-execution of the
payload software and voting of the results.

3. Validation of the effectiveness of the SWIFT
technique through the fault injection campaigns.

Next subsection presents and discusses the results.

C. Discussion

Fig. 5 shows the general impact of faults in the three
applications running on the EDC board. It is worth noting that
each application was handled independently, as a fault
injection campaign of 10000 faults was injected for each
application. These experiments correspond to step 1 in a
scenario where the EDC application does not have any
SWIFT techniques.

Fig. 5. Impact of faults distributed by failure modes

The failure modes observed are the following:

● No effect: The fault had no visible impact on the
system, which means that the CubeSat continues to
work normally and the expected results are received
by the onboard computer.

● Silent data corruption (SDC): The fault had no
visible impact on the system. However, the results
sent are incorrect. This is the worst type of fault
impact, as errors propagated in the system and led to
erroneous outputs.

● System crash and restart (WDT): The system
crashes and the watchdog timer (WDT) is activated.
After the WDT activation, the system is restarted
and goes back to working properly.

● System crash and do not restart: The system
crashes, remaining in that failure mode without
WDT activation.

● Erratic behavior: The system sends wrong
information repeatedly that can be detected by the
mechanisms available in the CubeSat.

Considering the failure modes presented above, “silent
data corruption (SDC)” is the worst of all and represents a
serious risk since the faults that lead to this failure mode are
impossible to detect in real situations (in the experiments we
can detect these situations because we compared each output
with the expected one). The code control flow is not affected,
instead, the system produces an erroneous result impossible
to be detected, which means that SWIFT techniques must be
considered to avoid the serious failure caused by these faults.
In contrast, when the system crashes and it is detected by the
WDT, the system is restarted and back again to work as
expected, ensuring system reliability. Likewise, the “system
crash and do not restart” failure mode can be easily managed
with external mechanisms such as a Heartbeat system that
must receive a signal periodically from the CubeSat payload
system. If the signal is not received means that the system is
in a blocked situation after a crash and must be forced to
restart. Finally, the faults that lead to an “erratic behavior”
can be easily detected by the onboard computer that should
restart the EDC board.

The high percentage of faults that have no impact (“No
effect” failure mode) in three payload application scenarios is
quite normal and corroborates previous fault injection
experiments reported in the literature (e.g., [12], [13]). This
percentage varies between 66% and 76% depending on the
software under test. The reason for such results can be
justified by the intrinsic redundancy existing in computer
systems and software.

Analyzing in more detail the failure mode distribution for
the different processor registers, Fig. 6 shows that some
processor registers are not affected at all by the injected
faults. The reason is because these registers (e.g., R5, R6, R8,
R9, R10, R11, R12) are not used by the code. Of course, these
situations vary according to the actual software that is being
executed in the CubeSat. Furthermore, the way the software
uses the available resources of the processor is defined by the
C compiler switches during the compilation phase (the EDC
system software and all the applications are developed in the
C language). In fact, the result of fault injection campaigns
can be quite different if the code is compiled with different
compilation switches, as this can influence the behavior and
performance of the software in execution. Also, the fact that
a big number of registers are normally not used by the
compiler opens some possibilities to implement extra SWIFT
mechanisms.

For page limit reasons, we are not showing the figures
equivalent to Fig. 6 for the PI and Fibonacci applications. The
results are relatively similar to the ones presented in Fig. 6.

To minimize the impact of the transient faults caused by
space radiation, we added the “plain-vanilla” version of the
SWIFT technique known as re-execution and voting [36],
[37]. In practice, the code is executed twice, and the result is
voted in order to decide if it is trustable. If the two results
differ, the code is re-executed and compared with the two
previous results. In the end, if the third run does not match
either of the previous two, a message of error is sent to the
output. In contrast, if the result matches one of the first two,
it means that one execution was affected by the space
radiation but the others can be considered trustable.

9

Fig. 6. Impact of faults on the different processor registers - example for the

multiplication of matrices application

Fig. 7 shows the distribution of the faults according to the
different failure modes in each processor register after the
application of the software fault tolerance technique
explained above. The results show that the re-execution
and the voter can almost eliminate the impact of faults
that cause SDC on the general registers of the processor that
are being used by the code (e.g., R0, R1, R2, R3, R4, R7). On
R0 and R7 the silent data corruption is totally tolerated,
turning these registers immune to this type of failure mode.
Also in the R0, the simple technique of re-executing and
voting turns this register immune to space radiation as this
register presents a percentage of 100% of “No effect”.
Positively, in the other registers the percentage of “No effect”
added to the percentage of “System crash and restart (WDT”,
which is also a benign failure mode, is quite close to 100%,
showing that the CubeSat software is resilient against faults
such as the ones caused by space radiation.

Also in Fig. 7 we can see that the simple software fault
tolerance technique used in the multiplication of matrices
code just mitigates the effect of faults that leads to SDC on
the special registers of the processor (e.g., PC, SP, LR).
Looking at the other failure modes, we can see that the results
did not change too much for these special registers. This was
expected given the relevance of these special registers of the
processor, as a fault affecting one of these registers can lead
the system to an incoherent behavior or even block the entire
system. To strengthen these registers and increase the
percentage of “No effect”, more sophisticated error detection
mechanisms must be added to the software under
development (e.g., self-checking routines).

Fig. 8 compares the global impact of the faults
considering the three application scenarios before and after
the payload applications have been strengthened with the re-
execution and voting SWIFT technique. Additionally, the
analysis considers only the faults that affected the registers
that are being used by the software under test (since faults
injected in registers that are not used always lead to “No
effect” failure mode).

Fig. 7. Impact of faults on the different processor registers - example for the
multiplication of matrices application with SWIFI techniques

As mentioned, the impact of transient faults is dependent
on the actual software that runs on top of the CubeSat and
looking at the two charts in Fig. 8 we can see that the
sensibility to space radiation varies according to the software
running on the EDC board. The multiplication of matrices is
the most sensible code, presenting the lowest percentage of
“No effect” (note that we excluded from the analysis the
faults that affected registers that are not used by the program,
thus all the faults have the potential to affect the program).
Although the direct goal of SWIFI techniques is not to
increase the percentage of “No effect” failure mode, it is
interesting to note that the SWIFI technique actually led to
the increase of the percentage of “No effect” in all
applications, as a consequence of the masking effect of the
SWIFT technique used (i.e., as mentioned above, the code is
executed a third time if the results of the two executions are
different).

Focusing on the effectiveness of the re-execution and
voting in the three software applications, we can conclude
that even a simple software fault tolerance technique like this
can drastically increase the reliability of the CubeSat. The
results presented in Fig. 8 show that the “silent data
corruption” failure mode becomes residual, after the
introduction of SWIFT technique, and this result is consistent
for all the applications. In fact, the percentage of “silent data
corruption” the PI application was reduced to 0%, while in
the Matrices and Fibonacci was reduced to 0.79% and 0.18%,
respectively. With a more sophisticated SWIFT technique
(e.g., duplicated voter) the results can be even better.

In addition to the software fault tolerance added to the
software, the EDC board includes a watchdog timer (WDT).
This error detection mechanism is present in all CubeSats
boards and plays a very important role in detecting system
crashes. Looking at Fig. 8, we can see that most failures that
lead to system crashes are detected by the watchdog timer
(i.e., the failures are classified as “System crash and restart
(WDT)”). This means that after the system crash is detected
by the WDT, the system is restarted and back to work as
expected, assuring the availability of the system. Taking
advantage of the WDT together with the software fault
tolerance technique added to the embedded software, it is
possible to make the CubeSats nearly immune to SEU faults.

10

Fig. 8. Comparison of the impact of faults distributed by failure modes on

the all the software tested before and after being strengthened with
SWIFT techniques

V. CONCLUSIONS AND FUTURE WORK

CubeSats are increasingly popular because of their low
cost, as result of the use of commercial off-the-shelf (COTS)
components. However, COTS components are susceptible to
hardware transient faults caused by space radiation.
Hardware fault tolerance in CubeSats is limited to memory
and communication protection, leaving the processor
unprotected because fault tolerance at processor level would
dramatically increase CubeSats cost, energy consumption,
and weight (hurting the three capital advantages of CubeSats:
low cost, low energy needs, and low weight). In practice, the
situation is that CubeSat cannot tolerate the faults cause by
radiation and are still regarded as satellites that cannot be
used in serious and critical missions.

The obvious solution of tolerating hardware transient
faults caused by radiation at the software level is also not used
in real CubeSats (although there are a couple of proposals in
the literature), mainly because the systematic use of a
software fault tolerance architecture covering system
software (e.g., operating systems) and applications would
make the software project of CubeSats hugely complex,
particularly if the fault tolerance techniques are transparent
for the developer of CubeSats software applications.

This paper proposes a set of additional steps to the
software development process used in the development of
CubeSats software applications with the goal of making
CubeSats immune to space radiation faults. The proposed
solution intends to be easy to adopt to the software
development life cycle used by companies, space agencies,
and other institutions that are developing CubeSats. The key
idea is to use two well-known ingredients (fault injection and
SWIFT techniques) in a way that is compatible with the
known budget restrictions of CubeSats.

The proposal adds the systematic measurement of the
CubeSat software sensitivity to transient faults caused by
space radiation as a mandatory step of the software
development process, as part of the V&V stages. Depending
on the results of the sensitivity analysis, the proposed
approach recommends the enhancement of the software
under development with targeted SWIFT techniques, to make

the software resilient to the transient faults. The novelty is in
the fact that the proposed SWIFT techniques are targeted (i.e.,
just enough and as simple as possible) and are applied only at
the software application level. Although this means that the
SWIFT techniques are not transparent for the developers (i.e.,
represent an extra effort), this approach keeps the simplicity
required by CubeSats projects.

The evaluation of the software sensitivity to transient
faults can be easily achieved using affordable fault injection.
Since it is well-documented in the literature that the impact
of transient faults is highly dependent on the actual software
code, general and very expensive software fault tolerant
architectures (which are not yet available for CubeSats) are
not recommended because of two reasons: a) they may be not
needed in many cases (as the inherent redundancy of software
tolerates the fault, as shown by the high percentage of “no
effect” faults) and b) they impose a fixed and very high cost
and complexity to the CubeSat software projects. These two
reasons support our proposed approach of just enough
SWIFT techniques to avoid silent data corruption failures,
which are the real problematic impact of space radiation.

In short, we can summarize the proposed solution in the
following steps: 1) Evaluation of the software sensitivity to
space radiation; 2) Strengthen the software with tailored
software implemented fault tolerance (SWIFT) techniques;
3) Validate the effectiveness of the resulting software with
SWIFT techniques. These 3 steps iterate until the required
software resilience is achieved.

The proposed approach is evaluated using a real CubeSat
board and three different software applications specifically
designed to cover different features such as complexity, data
size and execution type (iterative and recursive.) The results
of injecting 30 thousand faults show that it is possible to
reduce the percentage of faults that caused silent data
corruption to residual values (or even to 0% in one of the
applications used in the experiments, which means that the
CubeSat application became immune to faults such as the
ones caused by space radiation for the critical silent data
corruption failure mode. Furthermore, the SWIFT technique
used in the experiments consisted of simple software
component re-execution and voting, which is a simple
technique that can be easily added to software applications.

Future work includes the evaluation of the real EDC
application software that is currently under development and
consequent improvement of the software with targeted
SWIFT techniques to make it immune to space radiation as
much as possible. The operating system used in these
particular CubeSat boards (FreeRTOS) can also be enhanced
with several mechanisms and new system calls to facilitate
the development of SWIFT techniques at the application
software level. Additionally, the development of a repository
(library) of reusable SWIFT techniques for CubeSat software
is also being considered, as this will reduce the effort of
developing fault tolerance at the application level.

ACKNOWLEDGMENT

This work was supported in part by the Grant CISUC-
UID/CEC/00326/2020, funded in part by the European Social Fund,
through the Regional Operational Program Centro 2020, and
supported in part by the H2020, Marie-Curie project ADVANCE
(“Addressing Verification and Validation Challenges in Future
Cyber-Physical Systems”), project funded by the VALU3S
(“Verification and Validation of Automated Systems’ Safety and
Security”) project, supported by the European Commission, and in
part by European Leadership (ECSEL) Joint Undertaking (JU)
under Grant 876852, and in part by the JU from the European
Union's Horizon 2020 Research and Innovation Programme.

11

REFERENCES

[1] "CubeSat Design Specification (1U - 12U) REV 14", CP-CDS-R14.
[2] R. Ecoffet, “Spacecraft Anomalies Associated with Radiation Effects”,

in RADECS 2013 Short Course Proceedings, Chap. VIII, 2013.
[3] F. Davoli, C. Kourogiorgas, M. Marchese, A. Panagopoulos, F.

Patrone, “Small satellites and CubeSats: Survey of structures,

architectures, and protocols”, Int. Journal of Satellite Communications

and Networking, September 2018.
[4] T. K. Moon, “Error Correction Coding. New Jersey: John Wiley &

Sons”, ISBN 978-0-471-64800-0, 2005.
[5] Z. Yuan and X. Zhao, "Introduction of forward error correction and its

application," 2012 2nd International Conference on Consumer

Electronics, Communications and Networks (CECNet), 2012.
[6] D. Sorin, "Fault tolerant computer architecture." Synthesis Lectures on

Computer Architecture 4.1 (2009): 1-104. 2009.
[7] C. M. Fuchs, “Fault-tolerant satellite computing with modern

semiconductors,” Ph.D. dissertation, Leiden University, 2019.
[8] M. Langer and J. Bouwmeester, “Reliability of CubeSats-statistical

data, developers’ beliefs and the way forward,” in AIAA/USU

Conference on Small Satellites (SmallSat), 2016.
[9] M-C Hsueh, T. K. Tsai and R. K. Iyer, "Fault injection techniques and

tools," in Computer, vol. 30, no. 4, pp. 75-82, April 1997.
[10] R. Natella, D. Cotroneo, H. Madeira, “Assessing Dependability with

Software Fault Injection: A Survey”, ACM Computing Surveys 48 (3),

2016.
[11] R. Barbosa, N. Silva, J. Duraes, H. Madeira, “Verification and

validation of (real time) COTS products using fault injection

techniques”, COTS-Based Software Systems, ICCBSS'07, 39, 2007.
[12] H. Madeira, R.Some, F. Moreira, D. Costa, D. Rennels, “Experimental

evaluation of a COTS system for space applications”, Int. Conference

on Dependable Systems and Networks, DSN-2002, USA, 2002.
[13] B. Sangchoolie, K. Pattabiraman, and J. Karlsson, “An Empirical Study

of the Impact of Single and Multiple Bit-Flip Errors in Programs,”

IEEE Transactions on Dependable and Secure Computing, 2020.
[14] R. Twiggs, “Origin of cubesat,” Small Satellites: Past, Present, Future,

Eds: Helvajian H., Janson SW, The Aerosp Press, California, 2008
[15] C. Batista, A. Weller, E. Martins, and F. Mattiello-Francisco, “Towards

increasing nanosatellite subsystem robustness,” Acta Astronautica, vol.

156, pp. 187–196, 2019
[16] D. Almeida and F. Mattiello-Francisco, “Modeling of the

interoperability between on-board computer and payloads of the

nanosat-br2 with support of the uppaal tool,” in 1st IAA Latin

American Symp. on Small Satellites. Colombia, 2017

[17] C. Batista, T. Basso, F. Mattiello-Francisco and R. Moraes, “Impacts

of the Space Technology Evolution in the V&V of Embedded

Software-Intensive Systems” in The 2020 International Conference on

Computational Science and Computational Intelligence (CSCI´20:

December 16-18, USA, 2020.
[18] S. A. Jacklin, “Survey of Verification and Validation Techniques for

Small Satellite Software Development”, NASA Ames Research

Center, 2015 Space Tech Expo Conference, May 19-21, 2015.
[19] H. P. Zima, M. L. James, and P. L. Springer, “Fault-tolerant on-board

computing for robotic space missions,” Concurrency and Computation:

Practice and Experience, vol. 23, no. 17, pp. 2192–2204, Dec. 2011.
[20] D. Briere and P. Traverse, “Airbus A320/A330/340 electrical flight

controls a family of fault-tolerant systems,” Digest of Papers -

International Symposium on Fault-Tolerant Computing, pp. 616–623,

1993.
[21] Y. C. Yeh, “Safety critical avionics for the 777 primary flight controls

system,” AIAA/IEEE Digital Avionics Systems Conference -

Proceedings, vol. 1, 2001, doi: 10.1109/DASC.2001.963311.
[22] C. H. Stapper, V. K. Jain, and V. K. Jain, Defect and Fault Tolerance

in VLSI Systems, 1st ed., vol. 2. New York, NY: Springer, 1990.

[23] T. C. Bressoud, “TFT: A software system for application-transparent

fault tolerance,” Digest of Papers - 28th Annual International

Symposium on Fault-Tolerant Computing, FTCS 1998, vol. 1998-

January, pp. 128–137, 1998, doi: 10.1109/FTCS.1998.689462.

[24] B. Hasircioglu, Y.-A. Pignolet, and T. Sivanthi, “Transparent Fault
Tolerance for Real-Time Automation Systems,” Proceedings of the 1st

International Workshop on Internet of People, Assistive Robots and

Things, pp. 7–12, 2018, doi: 10.1145/3215525.3215538.

[25] L. L. Pullum, “Software Fault Tolerance Techniques and

Implementation”. USA: Artech House, Inc., 2001.
[26] M. Yang, G. Hua, Y. Feng, and J. Gong, “Fault-Tolerance Techniques

for Spacecraft Control Computers”. 2017.
[27] S. Mukherjee, “Architecture Design for Soft Errors”, ed. by S.

Mukherjee, Morgan Kaufmann, 2008.
[28] N. Murphy, “Watchdog Timers”, in Embedded Systems Programming,

2000.

[29] K. Wilken and J. P. Shen, “Continuous Signature Monitoring: Low-

Cost Concurrent Detection of Processor Control Errors,” IEEE

Transactions on Computer-Aided Design of Integrated Circuits and

Systems, vol. 9, 6, 1990.

[30] J. Vankeirsbilck, N. Penneman, H. Hallez, and J. Boydens, “Random

additive signature monitoring for control flow error detection,” IEEE

Transactions on Reliability, vol. 66, no. 4, pp. 1178–1192, Dec. 2017.

[31] J. Carreira, H. Madeira, and J. G. Silva, “Xception: A technique for the

experimental evaluation of dependability in modern computers,” IEEE

Transactions on Software Engineering, vol. 24, no. 2, 1998.
[32] J. Aidemark, J. Vinter, P. Folkesson, and J. Karlsson, “GOOFI: Generic

object-oriented fault injection tool,” Proceedings of the International

Conference on Dependable Systems and Networks, pp. 83–88, 2001.
[33] H. Schirmeier, M. Hoffmann, C. Dietrich, M. Lenz, D. Lohmann and

O. Spinczyk, "FAIL: An Open and Versatile Fault-Injection

Framework for the Assessment of Software-Implemented Hardware

Fault Tolerance," 2015 11th European Dependable Computing

Conference (EDCC), 2015.
[34] L. Feinbube, L. Pirl and A. Polze, “Software Fault Injection: A

Practical Perspective”, book chapter, in “Dependability Engineering”,

Ed. F. García Márquez and M. Papaelias, ISBN 978-1-78923-259-2,

2018.
[35] Heinig, A., Korb, I., Schmoll, F., Marwedel, P. & Engel, M., “Fast and

low-cost instruction-aware fault injection”, In Horbach, M. (Hrsg.),

INFORMATIK 2013.

[36] I. Koren and C. Krishna, “Fault-Tolerant Systems”, Elsevier, 2nd

Edition – Sept. 2020.
[37] M. R. Lyu, “Software Fault Tolerance”, John Wiley & Sons Ltd, 1st

Ed 1995.
[38] Horst Schirmeier, “Efficient Fault-Injection-based Assessment of

Software-Implemented Hardware Fault Tolerance”, PhD thesis,

University of Dortmund, 2016.
[39] D. Paiva, J. M. Duarte, R. Lima, M. Carvalho, F. Mattiello-Francisco

and H. Madeira, "Fault injection platform for affordable verification

and validation of CubeSats software", 10th Latin-American Symp. on

Dependable Computing (LADC), 2021.

[40] INPE. "Environmental Data Collector (EDC)". INPE, July 5, 2021.

http://www.inpe.br/crn/projetos/edc.php Accessed on: September 23,

2022.

[41] K. P. Queiroz, S. M. Dias, J. M. Duarte, M. M. Carvalho, “Uma

Solução Para O Sistema Brasileiro De Coleta De Dados Ambientais

Baseada Em Nanossatélites”, Holos, Dez, 2018.

https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorRaw=Davoli%2C+Franco
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorRaw=Kourogiorgas%2C+Charilaos
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorRaw=Marchese%2C+Mario
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorRaw=Panagopoulos%2C+Athanasios
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorRaw=Patrone%2C+Fabio
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorRaw=Patrone%2C+Fabio
http://www.neng.usu.edu/ece/faculty/tmoon/eccbook/book.html
https://en.wikipedia.org/wiki/New_Jersey
https://en.wikipedia.org/wiki/John_Wiley_%26_Sons
https://en.wikipedia.org/wiki/John_Wiley_%26_Sons
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-0-471-64800-0
https://www.intechopen.com/books/6086

	I. Introduction
	II. Software development practices for CubeSats
	III. Enhanced verification and validation for CubeSats software development
	A. Context and preliminary experiments to validate assumptions
	B. Enhanced Verification and Validation Steps

	IV. Use Case: EDC CubeSat board
	A. The EDC CubeSat board
	B. Application of the proposed approach
	C. Discussion

	V. Conclusions and future work
	Acknowledgment
	References

