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ABSTRACT 

Novelty is an important psychological construct that 
affects both perceptual and behavioral processes.  Here, 
we propose a lexical novelty score (LNS) for a song’s 
lyric, based on the statistical properties of a corpus of 
275,905 lyrics (available at www.smcnus.org/lyrics/).  A 
lyric-level LNS was derived as a function of the inverse 
document frequencies of its unique words.  An artist-level 
LNS was then computed using the LNSs of lyrics 
uniquely associated with each artist.  Statistical tests were 
performed to determine whether lyrics and artists on 
Billboard Magazine’s lists of “All-Time Top 100” songs 
and artists had significantly lower LNSs than “non-top” 
songs and artists.  An affirmative and highly consistent 
answer was found in both cases.  These results highlight 
the potential utility of the LNS as a feature for MIR. 

 
1. INTRODUCTION 

From 2004 through 2013, both U.S. and worldwide 
Google searches for “lyrics” outnumbered searches for 
“games”, “news”, and “weather”, as computed by Google 
Trends1. The importance listeners place on song lyrics 
has motivated several explorations for translating a 
song’s lyric into queryable features: for example, by topic 
[1], genre [2], or mood [3–6]. All these cited examples 
have incorporated word frequency information: as a key 
statistic in the computational process.  The inverse 
document frequency (IDF) statistic, for example, is used 
to identify “diagnostic” terms within a lyric that can be 
further related to a particular topic, genre, or mood.   .                                       
     In the present paper, we propose using IDF 
information to derive a quantifiable and queryable feature 
of song lyrics: a lexical novelty score (LNS).  “Lexical” 
refers to properties of individual words, as distinct from 
their grammatical function or syntactical arrangement.  
Our LNS is based, in part, on the trimean of IDFs 
associated with the set of unique words in a lyric.  The 
greater the number of statistically infrequent (i.e., 

                                                           
1 http://www.google.com/trends/   
   explore#q=lyrics,+games,+news,+weather&cmpt 

“novel”) words in a lyric, the higher its IDF trimean.     . 
     Why might such a quantification of lexical novelty be 
useful?  A number of answers emerge from the domains 
of psycholinguistics and psychology. The novelty or 
unfamiliarity of a stimulus has a direct bearing on basic 
cognitive processing.  For example, words that are 
statistically infrequent (i.e., have a high IDF) are more 
difficult to perceive, recognize, and recall than more 
commonly encountered words (e.g., [7–9]).  The affective 
response associated with perceiving novelty, however, is 
a more complex process.  Berlyne [10], for example, 
extended a classic inverted–U relationship first proposed 
by Wilhelm Wundt [11]: a peak level of perceived 
pleasantness or “hedonic value” for moderately complex 
or moderately novel stimuli, and decreased liking for very 
simple/familiar or very complex/novel stimuli. Such a 
relationship has been documented across numerous 
classes of stimuli, including music [12], and can be 
further  modified by an individual perceiver’s preferences 
for novelty—a construct that has informed influential 
models of human personality [13].            .                      
     Taken together, this evidence suggests that a method 
to quantify novelty/complexity within song lyrics might 
find application within the domain of personalized music 
recommendation.  First, generated playlists could be 
optimized with the “right” level of lyric complexity based 
upon the user’s activity state (e.g., exercising, 
commuting, or intense studying) [14–15].  Second, by 
computing the level of lexical novelty in a user’s favorite 
artist, novel artists with a similar level of lexical novelty 
could be recommended. Third, songs with lyrics that are 
“not-too-simple” or “not-too-complex” could be used in 
paradigms supporting native or second language learning 
[16–17] or language recovery after brain injury [18].  

 
 

2. RELATED WORK 

Methods for translating a text into a single summary 
statistic or “grade” have been employed in a number of 
domains. Mid-twentieth century development of 
readability metrics—designed to quantify the ease with 
which a written text could be comprehended—emerged 
from the human factors literature (for a review and some 
context, see [19]), and have come to be widely applied in 
a variety of natural language settings [20–21]. 
Readability metrics are simple mathematical 
transformations of a text’s orthographic features: letter 
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count, syllable count, word count, and sentence count. 
2

 

Word frequency information is only rarely incorporated 
into readability calculations; for example, tallying the 
number of “difficult” [22] or “unfamiliar” [23] words (as 
defined by a set of 3000 words), or the “average grade 
level” of words (from a set of 100,000 words) [24].                    
     By contrast, word frequency information is fun-
damental to vector space model approaches for text 
retrieval [25]. The process by which candidate documents 
are matched to a particular query often involves the use 
of term frequency–inverse document frequency (tf*idf) 
calculations [26–27].  A useful summary statistic across a 
set of query terms is their average IDF [28–29].  It should 
be noted that our proposed idea of a lexical novelty score 
is distinct from prior uses of tf*idf for novelty detection 
[30], which attempts to detect new information in a 
“stream” of documents. It is also distinct from acoustic 
novelty audio segmentation methods based on changes in 
temporal self-similarity [31]. 
 

3. DATASETS AND PREPROCESSING STEPS 

3.1 Word frequency tables 

The two key data sources for the proposed IDF-based 
lyric LNS are a lyrics corpus and a look-up table of 
document frequencies (DFs).  Word frequencies could be 
estimated from the lyrics corpus itself.  However, such an 
operation could create a dependency between IDFs and 
resultant LNSs—or at least necessitate retabulating word 
frequencies and IDFs as more lyrics were added to the 
corpus.  Word frequency values derived from an 
independent corpus were thus desirable.           .               
     Numerous tables of word frequencies have been 
published (reviewed in [32]): for example, the Brown 
corpus (1 million words), British national corpus (100M 
words), Corpus of Contemporary American English 
(450M words), and Google Books corpus (155 billion 
words of American English).  In the present work, we 
selected the use word frequency tables derived from the 
SUBTLEXUS corpus [9]; a corpus of subtitle transcripts 
of 8388 American films and television programs. A list of 
74,286 non-stemmed words5 (46.7M word instances in 
total) has been compiled, with DFs (from 1 to 8388) and 
corpus frequencies (from 1 to 2,134,713) tabulated for 
each word.  In addition to being fully and freely 
available 6 , SUBTLEXUS word frequencies have the 
appealing property of being derived from spoken source 
material, which may provide a closer match to the usage 
patterns in sung speech.  The IDF of the ith word in the 
SUBTLEXUS table was computed as log10(8388/DFi).   

                                                           
2 For an illustration, www.readability-score.com 
5 The following items in the SUBTLEXUS table were excluded from this    
   tally: ’d, ’s, ’m, ’t, ’ll, ’re, don, gonna, wanna, couldn, didn, doesn.   
6 http://expsy.ugent.be/subtlexus/ 

3.2 Lyrics corpus 

Next, we discuss the issue of an appropriate lyrics corpus.  
The Million Song Dataset [33] is associated with a 
smaller lyrics corpus (237,662 lyrics) 7 , obtained in 
partnership with musiXmatch8. The bag-of-words format 
used to store each lyric, however, only references the 
5000 most frequent word stems (the part of a word 
common to all its inflectional and derivational variants; 
for example, “government”, “governor”, “governing”, 
and “governance” are all stemmed to “govern”) as 
computed by the Porter2 stemmer 

9.  (In fact, the 5000-
item stemmed word list contains more than 1000 non-
English stems when cross-checked with a 266,447-item 
dictionary derived from existing dictionary lists10.) The 
manner in which word variants are used during 
communication, however, conveys rich information about 
the communicator’s language facility [35–37].  
Furthermore, word variants can have very different IDFs; 
in SUBTLEXUS, the four variants of “govern” listed 
above have IDFs of .74, 1.32, 2.58, and 3.22, 
respectively. As a result, a LNS derived from word stems 
would ignore potentially “diagnostic” differences in 
lexical usage between lyrics..                           .       
     For this reason, a new lyrics corpus was obtained via 
special arrangement with LyricFind11, a leading provider 
of legal lyrics licensing and retrieval.  In addition to the 
lyrics corpus itself, metadata comprising performing 
artist, album, lyricist, and license territory information for 
each lyric was made available.  The full corpus contained 
587,103 lyrics.  After restricting the corpus to lyrics with 
United States copyright, 389,029 lyrics remained. 

3.3 Lyrics pre-processing 

A multi-step procedure converted each lyric from its 
original text format into a bag-of-words format.  Each 
lyric was first “cleaned” using a series of hand-crafted 
transformation rules (i.e., x o xc): (1) splitting of 
compounds (e.g., half-heartedohalf hearted) or removal 
of hyphenated prefixes (e.g., mis-heardo misheard); (2) 
elimination of contractions (e.g., you’ll’veoyou will 
have; gonnao going to); (3) restoration of dropped initial 
(e.g., ’tilountil), interior (e.g., ne’eronever), or final 
(tryin’otrying) letters; (4) abbreviation elimination (e.g., 
mr.omister); (5) adjustment of British English to 
American English spellings (e.g., colourocolor)12; and 
(6) correction of 4264 commonly misspelled words 13 .             
     Each lyric was then cross-checked with the 266,447-
item dictionary. Lyrics in which fewer than 80% of 

                                                           
7 http://labrosa.ee.columbia.edu/millionsong/musixmatch 
8  www.musixmatch.com 
9  http://snowball.tartarus.org 
10  http://wordlist.aspell.net 
11 www.lyricfind.com 
12 Using http://wordlist.aspell.net/varcon 
13 Using http://en.wikipedia.org/wiki/Wikipedia:Lists_of_     
    common_misspellings/For_machines 
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unique words could be matched to the dictionary were 
eliminated; 360,919 lyrics remained.  After removing 
duplicate lyrics, the final corpus contained 275,905 lyrics.                          
     A total of 67.6M word instances was present in this set 
of songs, with 66,975 unique words.  Of these items, 
51,832 were an exact match with the 74,286-item 
SUBTLEXUS word list; this accounted for  99.7% of the 
67.6M word instances in the lyrics corpus.  IDFs derived 
from the SUBTLEXUS corpus were generally in 
agreement with IDFs derived from the LyricFind corpus 
itself (Pearson’s r = .837). 

 

4. LYRIC-LEVEL LEXICAL NOVELTY SCORE  

 4.1 First-pass LNS: IDFTM 

A first-pass LNS for a lyric was defined as the trimean of 
SUBTLEXUS-derived IDFs (IDFTM) associated with the 
set of w unique words in that lyric (wu): 

   
         

 ,                           (1) 

where Q1, Q2, and Q3 are the first quartile, second quartile 
(median), and third quartile, respectively. The trimean is 
an outlier-robust measure of central tendency [37]. For 
example, a low-frequency variant of a common word not 
“corrected” during the cleaning step would yield a 
spuriously high IDF; the trimean (but not the arithmetic 
mean) is robust to this kind of outlier.              .                        
     The higher a lyric’s IDFTM, the more low-frequency 
(i.e., novel) words it contains.  Figure 1 plots IDFTM as a 
function of wu for all 275,905 lyrics (using log10 scaling 
on the x-axis). Observed wu values range from 12 to 895.                                               
     A few illustrative cases are highlighted on Figure 1.   
The highest IDFTM (= 2.3212; LyricID 1142131; marked 
c) is “Yakko’s World” from the cartoon Animaniacs. 
(Example text: “There’s Syria, Lebanon, Israel, Jordan / 
Both Yemens, Kuwait, and Bahrain / The Netherlands, 
Luxembourg, Belgium, and Portugal / France, England, 
Denmark, and Spain”.) The lowest IDFTM (= 0.0016; 
LyricID 53540; marked d) is “You Don’t Know” by 
Killing Heidi. (“I can see you / And you don’t have a clue 
/ Of what you’ve done / And there’s no reason / For what 
you’ve done to / Done to my ...”.)                     .                      
     Lyric e (LyricID 786811; “One More Bite of the 
Apple” by Neil Diamond) has the same wu as c (= 153), 
but a much lower IDFTM (= 0.0804), indicating lower 
lexical novelty: “Been away from you for much too long / 
Been away but now I’m back where I belong / Leave 
while I was gone away / But I do just fine”.  Lyric f 
(LyricID 78427; “Revelation” by Blood) has nearly the 
same wu as d (24 vs. 23) but a much higher IDFTM  
(= 1.5454), indicating higher lexical novelty (“Writhe and 
shiver in agonies undreamable / Wriggling and gasping / 
Anticipating the tumescent / Revelation of the flesh”). 
     Finally, cases g (LyricID 335431; “The Tear Drop” 

by Armand van Helden) and h (LyricID 1452671; 
“Sunshine” by Bow Wow) both have wu = 195, but very 
different IDFTM values (1.8464 vs. 0.1378).  High lexical 
novelty is present in g (“A buttress breaching barrage 
blast / A tumultuous thunderbolt tirade / An annihilating 
eradicating avalanche of absolute absolution”); low 
lexical novelty is present h (“What you hear me talkin’ 
’bout / You just ain’t gonna find out / Walkin’ around in 
somebody’s club / Now she’s sayin’ her house”). 

                                       
Figure 1. Scatter plot of unique words (wu) versus IDFTM. 

 

      A clear relationship is visible between wu and IDFTM 
(Pearson’s r = .477): as wu increases, so does the 
minimum observed IDFTM.  This can be attributed to 
statistical patterns present in natural language.  
Specifically, a small number of words account for a large 
percentage of total word instances; a phenomenon which 
follows Zipf’s law (e.g., [38]). In the SUBTLEXUS 
corpus, for example, 10 words (you, i, the, to, a, it, that, 
and, of, what) account for 24.3% of all 46.7M word 
instances. Because IDFTM is derived from the set of 
unique words in a lyric, as wu increases, so too must the 
number of lower-frequency (i.e., higher-IDF) words, 
causing the IDFTM to rise.  Such a pattern would manifest 
for any L-estimator (mean, median, midhinge, etc.).   .            
     A more informative statistic could be obtained if the 
IDFTM of a lyric with w unique words were compared 
against a large distribution of simulated IDFTM values 
obtained from repeated random draws of w unique words 
from the set of lyrics that had more than w unique words.  
This procedure is formalized next. 

4.2 Scaling IDFTM: Monte Carlo simulations 

Consider two lyrics, one with IDFTM = 0.25 and wu = 50, 
and the other with IDFTM = 0.5 and wu = 200.  Two 
scaling distributions of simulated IDFTM values were 
created using a 10,000-iteration procedure.  To create the 
scaling distribution for wu = 50, on each iteration, a single 
lyric was randomly selected from the set of 239,225 
lyrics with wu > 50.  The full set of words in that lyric 
(including repeated words) was randomly permuted, the 
first 50 unique words pulled, and the IDFTM of those 
words was taken.  To create the scaling distribution for  
wu = 200, a similar procedure was performed, using the 
set of 15,124 lyrics with wu > 200.  Figure 2 presents an 
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empirical cumulative distribution function (ECDF) of 
these two scaling distributions.  The “scaled IDFTM” is 
defined as the percentile P (i.e., the y-axis value on the 
ECDF, multiplied by 100) where x = IDFTM.  In the above 
example, when IDFTM = 0.25 and wu = 50, P = 85.8.  By 
contrast, when IDFTM = 0.25 and wu = 200, P = 10.3.  
This can be interpreted as follows: with a longer lyric (wu 
= 200 vs. wu = 50), the likelihood of obtaining an IDFTM 
> 0.5 by chance (i.e., 100 – P) is much higher (89.7% vs. 
14.2%); that is, it is a less novel occurrence.                    . 
 

 
 

Figure 2. ECDFs of simulated IDFTM values for two 
representative values of wu.   

To scale the full set of IDFTM values, the above 
simulation was modified in the following manner.  First, 
the range of target wu values was capped at 275, thus 
reserving 5228 lyrics with wu > 275 to create the scaling 
distribution for wu = 275. Second, the set of target  
P-values was defined as .01 to 99.99 in increments of .01. 
Third, to accurately estimate the “tails” of P (i.e., values 
near 0 and 100), many more Monte Carlo iterations at 
each wu are needed; thus, the number of iterations was 
increased from 10,000 to 1 million.                            .                               
     Figure 3 highlights the results of this simulation.  A 
representative set of “iso-probability curves” resulting 
from the Monte Carlo simulation are superimposed on the 
scatter plot first shown in Figure 1.  A given curve plots 
the Pth percentile (where P = {.01, 10, 50, 90, 99, 99.9, 
99.99}) of simulated IDFTM values across the set of wu 
values.  IDFP ≈ 0 indicates very low lexical novelty, IDFP 
≈ 50 indicates moderate lexical novelty, and IDFP ≈ 100 
indicates very high lexical novelty.   As expected, the iso-
probability curves for low P-values mirror the pattern in 
the real data: higher IDFTM values as wu increases.     . 
                  

 
 

 

Figure 3. Representative iso-probability curves.  

4.3 Second-pass LNS: Percentiles 

Each IDFTM was mapped to its corresponding IDFP using 
nearest neighbor interpolation.  IDFTM values below  
P = .01 (n = 80) or above P = 99.99 (n = 52) were set to 
IDFP = 0 or IDFP = 100, respectively.  Figure 4 plots 
IDFP as a function of wu for the final set of 270,677 
unique lyrics. The relationship between wu and IDFP  
(r = –.106) is much weaker than between wu and IDFTM  
(r = .477).  IDFP values were roughly uniform (mean = 
44.29; standard deviation = 29.70; skewness = 0.255).                               

Figure 4. Percentile-transformed novelty scores (IDFP) 
as a function of wu.                                         . 
 

Figure 5 presents an ECDF of both IDFTM and IDFP, 
highlighting the six lyrics discussed earlier. Compared to 
IDFTM, IDFP better differentiates lyrics with high lexical 
novelty (cases c, f, and g) versus low novelty (cases 
d, e, and h).                                 . 
 

                                 
 

 Figure 5. ECDFs for IDFTM  (upper) and IDFP  (lower). 

5. ARTIST-LEVEL LEXICAL NOVELTY 

Having defined IDFP as the lyric-level LNS, we next 
sought to characterize lexical novelty at the artist level. 
Artist information was obtained via LyricFind ArtistIDs, 
which are distinct for different combinations of individual 
artists.  To increase the specificity of an artist-level score, 
lyrics recorded by multiple artists (e.g., holiday songs,  
jazz standards) were excluded.  Artists associated with 
fewer than 10 unique lyrics (λu) were deemed to have an 
insufficient catalog, and were ignored.  A final set of 
5884 artists (a total of 216,072 lyrics) remained.  The 
trimean of each artist’s λu IDFP values was then taken as 
a simple and intuitive artist-level LNS.                           .                 
     Figure 6 plots artist-level LNS as a function of λu; no 
correlation was present between them (r = –.009.)  The 
distribution of values (mean = 43.49; standard deviation 
= 21.20) was roughly symmetrical (skewness = .459).   
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Figure 6.  Artist-level LNS as a function of λu.          . 
 

6. BILLBOARD MAGAZINE “TOP” LISTS 

Having derived both a lyric-level and an artist-level point 
estimate of lexical novelty, any number of subsequent 
analyses may be performed.  As an illustrative example, 
we turn to Billboard Magazine’s 2013 ranking of the 
“All-Time Top 100 Songs” 14  and “All-Time Top 100 
Artists” 15 . Rankings were calculated based on overall 
success on the magazine’s “Hot 100” chart, a weekly 
ranking of the top 100 popular music singles in the 
United States, published since August 1958 [40–41].   .                                                   
     The Top Songs list was determined by Billboard using 
an inverse point system, with time spent in the #1 
position of each weekly chart weighted highest, and time 
spent in the #100 position weighted lowest.  Of the 100 
songs on the list, 95 were present in the LyricFind corpus. 
Lyrics for the remaining five were queried from 
metrolyrics.com and processed as described in Section 4.                                                            
     The Top Artists list was determined by Billboard by 
aggregating all the songs which charted over the course 
of each artist’s career.  Of the 100 artists, 98 were among 
the set of 5884 artists with a valid artist-level LNS; the 
other two artists had λu < 10.  

 
7.  EXPERIMENTAL HYPOTHESES 

Two hypotheses were examined, both driven by the 
assumption that high lexical novelty is less likely to be 
“chart-worthy”.  Specifically, we predicted that both 
lyric-level and artist-level LNSs would be lower in the set 
of Top Songs and Top Artists relative to “non-top” songs 
and artists in the LyricFind corpus.              .                            
     Statistical significance was assessed using a 
nonparametric two-sample Mann–Whitney (MW) test.  A 
special sampling procedure was implemented to counter-
act the bias towards smaller p-values when comparing 
large samples [41].  On each of 10,000 iterations, two 
samples were drawn. The first sample was always the n 
Top Song or Top Artist LNSs, and the second sample 
was a random draw (without replacement) of n LNSs 

                                                           
14 billboard.com/articles/list/2155531/the-hot-100-all-time-top-songs 
15 billboard.com/articles/columns/chart-beat/5557800/hot-100-55th- 
      anniversary-by-the-numbers-top-100-artists-most-no 

from the remaining set of songs or artists (where n is 100 
for songs and 98 for artists).  The distribution of Z-values 
from the 10,000 MW tests indicates the strength of the 
difference between the samples: the more negative it 
falls, the greater our confidence that lexical novelty is 
systematically lower in the set of Billboard items.       .                          
. 
    .                 .                                  

                   8. EXPERIMENTAL RESULTS 

8.1 Billboard Top Songs analysis 

Figure 7a shows the ECDFs of lyric-level LNS for the set 
of 100 Top Songs and the remaining 270,582 songs.  
They are markedly different: LNSs for the Top Songs are 
“pulled” towards zero, indicating reduced lexical novelty 
in this set.  Consistent with this, the distribution of Z-
values (Figure 7b) is strongly negative: 98.4% of MW 
tests result were significant at p < .05, 89.9% at p < .01, 
and 61.1% at p < .001.  No correlation was present 
between Billboard’s song ranking and a song’s LNS  
(r = –.148, p = .140).                                                  . 
                        . 

 
Figure 7. (a.) ECDFs of LNSs for the 100 Top Songs and 
the remaining 270,582 songs in the corpus. (b.) ECDF of 
Z-values from the 10,000 MW tests.  

8.2 Billboard Top Artists analysis 

Figure 8a shows the ECDFs of artist-level LNS for the set 
of 98 Top Artists and the remaining 5786 artists.  As with 
the Top Songs, LNSs for the Top Artists are pulled 
towards zero, indicating reduced lexical novelty (i.e., 
lower IDFP trimean values) for the set of 98 Top Artists.  
The Z-value distribution (Figure 8b) is more negative 
than in the Top Songs analysis: 99.3% of tests were 
significant at p < .001, 95.8% at p < .0001, and 85.5% at 
p < .00001.  As with the Top Songs, no correlation was 
present between Billboard’s artist ranking and artist-level 
LNS (r = –.059, p = .564).                          .      
                        . 
 

 
Figure 8. (a.) ECDFs of artist-level LNSs for the 98 Top 
Artists and the remaining 5786 artists in the corpus.  
(b.) ECDF of Z-values from the 10,000 MW tests. 
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9. DISCUSSION 

9.1 Summary 

Stimulus novelty has influence over perception, memory, 
and affective response.  Here, we define a lexical novelty 
score (LNS) for song lyrics.  The LNS is derived from 
the inverse document frequency of all unique words in a 
lyric, and is scaled with respect to the number of unique 
words.  Higher-order scores can be easily defined at the 
level of artists, albums, or genres, creating additional 
features for filtering operations or similarity assessments.  
     Although the construct validity of the LNS must be 
assessed by future user studies (see Section 9.2), a first-
pass validation was performed by comparing LNSs 
associated with Billboard Magazine’s “official” lists of 
the 100 Top Songs and 100 Top Artists with LNSs from 
random sets of songs and artists.  Lexical novelty was 
significantly lower—in a highly consistent way—for 
items on the Billboard lists, supporting the broad 
hypothesis that moderate stimulus novelty is preferred 
over high stimulus novelty [10–12].                . 
     The absence of  any significant correlation between 
Billboard’s actual ranking of items on the Top Songs or 
Top Artists lists and our lexical novelty score should not 
be read as a “strike” against either Billboard’s 
methodology or our own.  Rather, we regarded these lists 
as a source of well-known independent data that enabled 
us to make a priori predictions concerning differences in 
lexical novelty at the set (rather than the item) level. 

6.2 Future directions 

The present analyses of Billboard’s “Top 100” lists are 
but one of many analyses that could be performed.  
Further work could explore differences in lexical novelty 
among genres, subgenres, or styles (using external 
sources of metadata, such as Echo Nest 16 , Rovi 17  or 
7digital 18); changes in lexical novelty over time (e.g., 
using lyric copyright date information); or correlations 
between lexical novelty and other performance-related 
metrics, such as RIAA-tracked album sales 19 .      .                                                      
     A potential refinement of our LNS calculation would 
be to make it sensitive to parts of speech.  Numerous 
English words can serve as multiple parts of speech, often 
with very different word frequencies.  Capturing these 
usage patterns would, in principle, increase the sensitivity 
of the LNS. A revised SUBTLEXUS table of document 
frequencies is available that tallies parts-of-speech [42], 
as are widely used parts-of-speech taggers20,21, making 
this modification tractable.                                 . 
   .                                   

                                                           
16 http://developer.echonest.com/docs/v4 
17 http://developer.rovicorp.com 
18 http://developer.7digital.com/ 
19 https://www.riaa.com/goldandplatinumdata.php 
20 http://ucrel.lancs.ac.uk/claws/trial.html 
21 http://nlp.stanford.edu/software/lex-parser.shtml 

     Finally, user studies must be performed to answer 
whether the proposed LNS itself has construct validity.  
These studies should evaluate, for example, whether 
lyrics with a high LNS yield longer reaction times and 
increased effort during a sentence processing task (e.g., as 
in [43]); or whether lyrics with a moderate LNS receive 
higher ratings of pleasure or liking than lyrics with either 
a low or a high LNS.                                         .   
     Together, these future steps will enhance the utility of 
the LNS in the context of music retrieval and 
recommendation applications.                               . 
 

10. DATA SET AVAILABILITY 

With gratitude to LyricFind, much of the data presented 
here—lyrics in bag-of-words format; lyric, artist, and 
album IDs; and lyric- and artist-level lexical novelty 
scores—is made publically available for the first time: 
www.smcnus.org/lyrics/. 
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