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ABSTRACT

In this paper, we propose a feature smoothing technique for
chord recognition tasks based on repeated patterns within
a song. By only considering repeated segments of a song,
our method can smooth the features without losing chord
boundary information and fine details of the original fea-
ture. While a similar existing technique requires several
hard decisions such as beat quantization and segmentation,
our method uses a simple pragmatic approach based on re-
currence plot to decide which repeated parts to include in the
smoothing process. This approach uses a more formal defi-
nition of the repetition search and allows shorter (“chord-
size”) repeated segments to contribute to the feature im-
provement process. In our experiments, our method out-
performs conventional and popular smoothing techniques (a
moving average filter and a median filter). In particular, it
shows a synergistic effect when used with the Viterbi de-
coder.

1. INTRODUCTION

The majority of state of the art chord recognition systems
are based on frame-wise analysis of chroma features ex-
tracted from an input signal. The chord sequence is deter-
mined by a pattern matching process that measures the fit
between a set of predefined chord models and each frame of
the input chromagram. In order to precisely identify chord
boundaries, the frame rate of the chroma features is typi-
cally faster than the rate of chord changes in music. How-
ever, this makes the chroma features sensitive to local tran-
sients and noise in the signal. A popular choice to cope
with this problem is to pre-process the chromagram using
either a low-pass filter or a median filter prior to the pat-
tern matching process. Both filters blur out transients and
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noise in the signal by smoothing the features across neigh-
boring frames. Another favored approach is using a Viterbi
decoder that finds the most likely sequence of chords based
on the chord-type probabilities estimated from the pattern
matching process. By reducing the number of chord tran-
sitions using a relatively high self-transition probability (the
probability of remaining in a chord), the Viterbi decoder can
filter out spurious transitions caused by short bursts of noise.

In our previous work [4], we found that the combina-
tion of pre-filtering (either a moving average filter or a me-
dian filter) and post-filtering (the Viterbi decoder) does not
yield a synergistic impact on performance, although many
systems use the combination [2, 6]. This is because the ef-
fects of pre-filtering substantially overlap with those of post-
filtering, i.e. they carry out essentially the same function in
the sense of constraining sudden movements over a short
series of local frames.

In this paper, we propose a feature smoothing technique
based on an important aspect of music, repetition. By aver-
aging repeated chroma patterns within a piece of music, our
method attenuates unsystematic deviations and noise and
reinforces harmonic information of chroma frames. This
method is inspired by the one proposed by Mauch et al. [6].
In their approach, the information about the repetitive struc-
ture of songs is used to enhance chroma features for chord
estimation. They use a conventional frame-by-frame self-
similarity matrix generated from a beat-synchronous chro-
magram. From the matrix, they extract repeated chord pro-
gressions of equal length by examining all diagonal lines.
The beat and bar information estimated from a song play a
crucial role in their greedy algorithm to find repeated sec-
tions. The found segments are merged into larger segment
types (e.g. verse and chorus) without overlapping. Their
new features are then obtained by averaging chroma features
from multiple occurrences of the same segment type.

Unlike Mauch et al., our method decides which repeated
parts to include in the smoothing process by a simple thresh-
olding operation using the technique of recurrence plots. As
our method doesn’t use beat and bar information, it avoid
the errors in the initial feature analysis (e.g. onset detec-
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Figure 1. Block diagram of feature smoothing process
based on recurrence plot.

tion or beat tracking), that propagate through the subsequent
processing stages and may hurt overall performance [8]. In
our method, repeated sections are not limited to a few large
units (e.g. chorus or verse), but include smaller units such
as chords. Thus, our method can generate new chroma fea-
tures using relatively many repeated frames collected from
all across the song. As the repeated frames are assumed to
have the same harmonic content, the smoothing only occurs
within the same chords, thus preserving boundary informa-
tion. In our experiments, this smoothing method yields bet-
ter results than the conventional methods in all cases includ-
ing the combination with the Viterbi decoder.

The remainder of this paper is structured as follows. In
Section 2, we provide a detailed description of our method.
In Section 3, we describe the data and evaluation method-
ology used in our experiments. The results and discussions
are provided in Section 4, and our conclusions and direc-
tions for future work are presented in Section 5.

2. APPROACH

The block diagram of our feature smoothing process is shown
in Figure 1. First, the audio signal is segmented and trans-

formed into chroma features. The chroma features are then

projected into phase space using time-delay embedding prior
to calculating the recurrence plot. The weight matrix is de-

rived from the recurrence plot, and combined with the orig-

inal chroma features as a coefficient set in the feature re-

construction process. To measure the performance of our

method on various types of chroma features, we evaluate our

method on conventional chroma features and one of their

most recent variants, CRP features [7]. The following sub-

sections discuss the details of the approach including the

feature set and our methodology for generating and apply-

ing the weight matrix to construct new chroma features.
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2.1 Chroma Features

Pitch Class Profile (PCP), or chroma features, represent the
energy of the audio signal present in each of the twelve pitch
classes of the chromatic scale. In this paper, the chroma
features are derived from a slightly modified version of the
constant-Q transform [3] by mapping each frequency bin of
the constant-Q spectrum to a corresponding pitch class. Let
us define the £ bin constant-Q kernel function as:

—j727 frm
b

Kr(m) = wr(m)e me0,Ny,—1] (1)
where wy, is a Hamming window of length Ny, which varies
with the center frequency fj so that it has a fixed Q-value.
The center frequency f; is based on the equal tempered

scale such that:
fk = 2k/ﬁfmin (2)

where (3 is the number of bins per octave, and fii, is the
minimum analysis frequency.

The constant-Q transform X, of a segmented audio sig-
nal z(m), m € [0, Ngeg — 1] is then calculated as:

N-1

1 *
i (Ves N2 2:% XWEKi(v) G

ch(k) =
where N > Ny Vk, X (v) is the N-point DFT of the signal,
and K} (v) is the conjugate of the N-point DFT of the k"
kernel function. The signal and kernel functions are padded
with trailing zeros to length N prior to applying the DFT. To
prevent underestimation of low frequencies where Ny, <
N, the smaller value between Nge, and NN is used as the
normalization factor. In this paper, we use § = 36, with
the analysis performed between fi,i, = 27.5Hz and fiax =
4186 Hz (i.e. corresponding to the MIDI pitches 21 to 108).
The STFT window length Ny, is 8192 (186 ms), and hop
size is 4096 (93 ms) samples at 44100 Hz sample rate.

A 12-bins per octave spectrum P(p), p € [1, N,] is ob-
tained by combining adjacent bins of the X, (k) using 3/12-
wide non-overlapping Gaussian windows. To avoid percus-
sive noise (e.g. bass drums) in low frequencies and to atten-
uate the effect of non-harmonic tones caused by high-order
harmonics in high frequencies, P(p) is windowed with a
Gaussian centered at C4 (MIDI pitch 60). Finally, a chroma
vector C' = {¢p}, b € [1,12] can simply be calculated by
folding the spectrum P(p).

2.2 CRP Features

CRP (Chroma DCT-Reduced log Pitch) features, proposed
by Miiller et al. [7], are one of the most recent variants of
conventional chroma features. Their derivation is inspired
by Mel-frequency cepstral coefficients (MFCCs) which are
popular in speech and music recognition. First, the spectrum
P(p) is logarithmized using log(P(p)-y+ 1) with a suitable



12th International Society for Music Information Retrieval Conference (ISMIR 2011)

ORIl
L/ / Vv //, / .

s S S lird w? i ¥4
100 200 300 400 500 600 700 800 900 1000

(a) S;,;

100 200 300 400 500 600 700 800 900 1000

(b) R; ;

0 100 200 300 400 500 600 700 800 900 1000 0

() Wi

Figure 2. (a) a similarity matrix (M = 25,7 = 1), (b) a recurrence plot (§ = 50), (c) a weight matrix

compression factor v > 1 € R, and transformed to the cep-
stral domain using the Discrete Cosine Transform (DCT).
The &-lowest coefficients of the resulting cepstrum are then
set to zero. Finally, the cepstrum is transformed back using
the inverse DCT, and the resulting pitch vectors are summa-
rized into the 12-dimensional chroma vectors, Crp. It is
important to note that by removing the DC component from
the cepstrum, a Crp vector contains both positive and neg-
ative values. The feature vectors are then normalized by the
¢2-norm. In this paper, we use v = 1000 and ¢ = 25 as
suggested by [7].

The main advantage of using CRP features for chord recog-
nition comes from applying logarithmic compression on the
spectrum P(p). In conventional chroma features, melodies
and bass lines are problematic, because they generate sin-
gle high-energy peaks that dominate the chroma feature dis-
tributions to the detriment of the background harmony of
the frame. The logarithm de-emphasizes the dominant pitch
salience while boosting the background harmonic contents.
In addition, by removing low coefficients from the cepstrum
(i.e. formants, spectral shape), CRP features maximize the
effect of compression and become invariant to changes in
timbre.

2.3 Recurrence Plot and Weight Matrix

The weight matrix is computed using recurrence plot (RP)
theory, which provides a sophisticated way to analyze se-
quential data [5], and have been previously used with chroma
features in other MIR tasks such as cover version identifi-
cation [9], and recently, in structural similarity [1]. A key
feature of recurrence plots is the use of time-delay embed-
ding. Time-delay embedding is a method for transforming
a time series into a multidimensional sequence of lagged
data. In other words, it provides a way to transform frame-
by-frame analysis into n-gram analysis (i.e. subsequence-
by-subsequence).

The n™™ time-delay embedded chroma vector C'(n) can be
constructed by concatenating all the elements of a chroma
sequence C'(n) = {cp(n)}, b € [1,12] from time n to n +
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(M —1)7 as:
C(n)

(ci(n),cr(n+7),...,ci(n+ (M =1)7),...
clg(n),cm(n + T), N ,012(n + (M — 1)7’))
“

C(n) is then normalized to have unit length. The self-similarity
matrix .5; ; is calculated as:

C@) - )|
2

where i, j € [1, N], N is the length of the time-delay em-
bedded chroma sequence, and || - || is the Euclidean norm.
The normalization factor (the constant 2 in the denominator)
is the maximum possible distance value between unit length
vectors. Hence, 0 < S; ; < 1,V 4,5 € [1, N].

Unlike a conventional frame-by-frame self-similarity ma-
trix (i.e. a special case of S; ; with parameters M = 1 and
7 = 1), the additional embedding process makes the matrix
more robust to short term noise or deviations by evaluating
vectors of sample sequences (i.e. M - 7 length sequence)
instead of using only samples. An RP can be obtained from
S;,; with a suitable threshold e as:

Si,j)v (6)

where H is the Heaviside step function. The choice of e
is important because it is the only criterion to determine
which parts are actually repeated. However, a global thresh-
olding with a fixed threshold is not appropriate in our case,
because the useful range of thresholds can vary greatly be-
tween songs or even within a given song. A better strategy
is to simply match the number of nearest neighbors in the
phase space constructed by Eqn. (4). In this approach, €(n)
is defined as a threshold to ensure that Iz; ,, = 1 for the 6
points closest to the n*® point of the trajectory. In practice,
we expand this approach to both columns and rows of RP
to include every possible repeated pattern in the smoothing
process as:

R; ;= H(e(n) —

Si; = ©)

Ri’j:H(G— ’L,]E[l,N]

S@n) V H(e(n) — Sn,j) 7)
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Figure 3. Reconstruction process: (a) overlapped chroma
segments (white boxes), (b) chroma summation over over-
lapped segments with weight values.

where 4, j,n € [1, N]. Finally, a weight matrix W; ; can be
calculated using information from S; ; and R; ; as:
Wij=(1—S5i;) Ri;

) ,

®)

Hence, the matrix is sparse and has real values indicating
the similarity degrees of repeated sections. Figure 2 shows
examples of a similarity matrix S, ;, a recurrence plot R; ;
and a weight matrix W; ; where M = 25, 7 = 1 and 6 = 50.
In this paper, we fix 7 = 1 (i.e. no skipping frames).

2.4 Feature Reconstruction

Each column (or row) of W; ; contains information about re-
currences of the current event across the whole song. More
specifically, the 7™ activated component (i.e. non-zero com-
ponents) in the " column vector indicates that the i" seg-
ment is similar to the j segment. For example, the first
column of Figure 3(a) shows that the 5% and 8™ segments
are similar to the first segment. For M = 3 and N = 10,
Figure 3(a) depicts the temporal validity of chroma vector
M-grams.

To generate the first smoothed chroma vector from the
example in Figure 3(a), the activated weights ati = {1, 5, 8}
of the first column are multiplied with the first frames of the
corresponding segments. Then the results are summed up
in the first smoothed chroma vector (see the left most down
arrow in Figure 3(b)). Similarly, the second frame of the
smoothed chromagram uses the weights on the second col-
umn and the first frames of the corresponding chroma seg-
ments (i.e. ¢ = {2,6,9}). However, the overlapping means
that the second frames from the previous segments should
also be considered (see the second column in Figure 3(b)).
More generally, the n'™ frame of the smoothed chromagram
is computed from the weights in the previous n — M — 1
columns. This process can be described as:
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Figure 4. Chromagrams: (a) an original chromagram ex-
cerpt from “Let It Be” by The Beatles, (b) a smoothed
chromagram using a moving average filter with A = 14,
(¢) a median filter with A = 14, and (d) our method with
M = 25,6 = 50.

where the denominator is a normalization factor that adjusts
for the contribution of overlapping chroma segments.

Figure 4(a) shows a chromagram and its smoothed ver-
sions using a moving average filter (Figure 4(b)), a median
filter (Figure 4(c)) and our method (Figure 4(d)). The mov-
ing average filter used in Figure 4(b) is calculated as:

B = A1
C’(n))\ZC(ner{?J) 10)
d=0
and the median filter used in Figure 4(c) is defined as:
C(n) = megian C(d),
(11)

den, n- |2 sasn+ [FF]
where ) is the number of adjacent frames to be processed.
In Figure 4, the chromagram generated by our method is
much cleaner than the original chromagram, while keeping
sharp boundaries between chord segments. Figure 4(b), on
the other hand, shows blurred boundaries, and the median
filter in Figure 4(c) removes both the noise and the fine de-
tail since it can’t distinguish the difference between those
signals.
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Without Viterbi Decoder With Viterbi Decoder
None Mean Median Our method None Mean Median Our method
C 49.93 | 65.51 (14) | 66.22 (14) | 69.23 (25,47) || 72.02 | 71.67 (4) | 72.54 (4) | 74.81 (25, 10)
Crp | 54.26 | 71.16 (14) | 71.05 (14) | 72.85(25,50) || 75.36 | 75.76 (4) | 75.64 (4) | 77.91 (25, 15)

Table 1. Average accuracies of the binary template model with no filtering (labeled ‘None’), a moving average filter (labeled
‘Mean’), a median filter, our method, and their combinations with the Viterbi decoder. The optimal parameters are given in
parentheses, (\) for both a moving average filter and a median filter, and (M, #) for our method.

3. EVALUATION METHODOLOGY

The experiments are performed on 249 chord annotated songs.
The data set comprises 179 songs ! from Christopher Harte’s
Beatles dataset, 20 songs from Matthias Mauch’s Queen
dataset and 50 pop songs from the RWC (Real World Com-
puting) database manually annotated by music students at
NYU. The evaluations are performed on 12 major, 12 minor
triads and a no-chord detection task. In the evaluation, audio
frames where the RMS is under -57 dB are assumed to be
no-chords.

For the pattern matching process, binary chord templates
and multivariate Gaussian Mixture Models (GMMs) are used.
The binary chord templates (for 12 major and 12 minor tri-
ads) are manually generated based on basic chord theory. In
a 12-dimensional binary chord template vector, each com-
ponent corresponding to a chord-tone is set to 1, and the
other components are set to 0 (e.g. [1000100100
0 0] for a C Major triad, where the left to right order of
the vector components follows the chromatic scale from C).
The detected chord on one given frame is the one whose
template is closest to the chroma vector of the frame in an
Euclidean sense. The pseudo-probabilities for applying the
Viterbi decoder are calculated by taking the reciprocal of the
Euclidean distances.

The parameters of the multivariate GMMs are estimated
from annotated training data using the EM algorithm. For
training, the data is segmented based on the chord annota-
tions and transposed to the C-based chord. The root-normal-
ized chord collection is used to train C-major and C-minor
models that are then re-transposed to the remaining roots to
define the 22 models. In this paper, we use a mixture of 15
Gaussians with diagonal covariance matrices.

For the Viterbi decoder, the transition penalty p is ap-
plied. The transition penalty adjusts the strength of the self-
transition probability relative to transitions between differ-
ent chords [4]. It is applied as follows:

log(a; ;) fori=j
where A = [a; ;] is the original transition probability matrix
and A = [a; ;] is the modified matrix with penalty p. For A,

! “Revolution 9” from The White Album is removed from the experiment
due to its lack of harmonic content.

655

None Mean Median Our method
C 73.85 | 73.52 (3) | 74.41 (4) | 75.78 (25, 6)
Crp | 77.82 | 77.63 (4) | 77.69 (4) | 79.61 (25,9)

Table 2. Average accuracies of GMMs. The optimal param-
eters are given in parentheses, (\) for both a moving average
filter and a median filter, and (M, #) for our method.

we use a uniform transition probability matrix in which all
chord transitions have the same probability, hence A4, ; =
1/24,V 4,5 € [1,24]

For statistical models (GMMs), each experiment is per-
formed using a 10-fold cross validation on 10 randomly clas-
sified groups; 9 groups contain 25 songs each, and one group
contains 24 songs. For each iteration, one group is selected
as a test set, and the remaining 9 groups are used for train-
ing. The chord recognition rate is calculated as follows:

total duration of correct chords

Accuracy = x 100% (13)

total duration of dataset

4. RESULTS AND DISCUSSION

Table 1 shows the average accuracies of the binary template

model with a moving average filter, a median filter, our method,

and their combinations with the Viterbi decoder. The results
show that Crp yields better results than C' in every case.
Also they show that our method outperforms the use of con-
ventional filters regardless of the types of features. Table 2
shows the result of using GMMs with the different combi-
nations of the filters. Similar to the case of the binary tem-
plate model, Crp performs better than C, and our method
maintains its advantages against both a moving average fil-
ter and a median filter. All differences between conventional
methods and our method are significant in paired t-test at
p < 0.01.

One notable difference between our method and the con-
ventional filters is its compatibility with the Viterbi decoder.
As shown in both tables, unlike our method, the moving av-
erage filter has almost no impact on the overall performance
when used in combination with the Viterbi decoder. This is
due to the blurred boundaries caused by the filter, as seen in
Figure 4(b). Figure 5 shows the distributions of deviations
(in frames) between annotated and detected boundaries of
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Figure 5. Distributions of deviations between annotated
and detected boundaries: Crp and binary template model
with the Viterbi decoder: (a) The Viterbi decoder only, pre-
filtering with (b) a moving average filter, (c) a median filter,
and (d) our method. In the graph, the X-axis means the
distance between annotated and detected chord boundaries
in frames, and the Y -axis means the number of boundaries
belonging to the distances.

the combinations of different pre-filtering methods and the
Viterbi decoder. For our goal, a sharp and narrow distribu-
tion is ideal, since it means little deviation from the ground
truth. In the case of Figure 5(d), the number of frames used
to generate a new frame is at least 50 (6 = 50). As shown
in Figure 5(b), although the moving average filter employs a
relatively small number of frames (A = 14) for smoothing,
it shows larger deviations than our method in Figure 5(d).

Although the median filter is much better at preserving
sharp edges than the moving average filter as shown in Fig-
ure 5(c), the results in Table 1 and Table 2 are not much bet-
ter than those of the moving average filter. In the case of
CRrp, the median filter shows about the same performance
as the moving average filter. The median filter is efficient
at removing impulsive noise. However, in whitened fea-
ture space such as Cgp, it has little influence on the per-
formance, but rather may lead to appreciable loss in sig-
nal details, because it uses only rank-order information of
the input data within the filter window without consider-
ing its original temporal-order information. These charac-
teristic errors of conventional filters hurt the performance.
In the case of Figure 5(b), the accuracy rate is 72.2%, and
for Figure 5(c), the accuracy rate is 72.7% for Crp fea-
tures (compared to 75.4% for Figure 5(a) and 76.4% for
Figure 5(d)). On the contrary, since our method keeps de-
viations low and also preserves fine details, it maximizes
the benefits of both our method and the Viterbi decoder.

5. CONCLUSION

In this paper, we provided a feature smoothing method based
on repeated patterns. By applying recurrence plot theory,
our method smoothes chroma features using information from
harmonically-related frames from the whole sequence, as
opposed to conventional smoothing where only a few ad-
jacent frames are used. We showed that this method con-
tributes to performance improvement by preserving the ben-
efit of a fast-frame-rate analysis (i.e. sensing precise chord
boundaries) while alleviating its problems (i.e. noise and
transients). This advantage is maintained among different
types of chroma features.

In our experiments, we applied the same parameters ()
and #) to all songs, despite the risk of over-smoothing. In
the future, we plan to develop adaptive methods for opti-
mally choosing these parameters for each individual track.
We fully expect this adaptation to improve performance be-
yond what is reported in this paper.
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