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We design various logics for proving hyper properties of iterative programs by application of abstract inter-
pretation principles.

In part I, we design a generic, structural, fixpoint abstract interpreter parameterized by an algebraic ab-
stract domain describing finite and infinite computations that can be instantiated for various operational,
denotational, or relational program semantics. Considering semantics as program properties, we define a
post algebraic transformer for execution properties (e.g. sets of traces) and a Post algebraic transformer for
semantic (hyper) properties (e.g. sets of sets of traces), we provide corresponding calculuses as instances of
the generic abstract interpreter, and we derive under and over approximation hyperlogics.

In part II, we define exact and approximate semantic abstractions, and show that they preserve the math-
ematical structure of the algebraic semantics, the collecting semantics post, the hyper collecting semantics
Post, and the hyperlogics.

Since proofs by sound and complete hyperlogics require an exact characterization of the program seman-
tics within the proof, we consider in part III abstractions of the (hyper) semantic properties that yield simpli-
fied proof rules.These abstractions include the join, the homomorphic, the elimination, the principal ideal, the
order ideal, the frontier order ideal, and the chain limit algebraic abstractions, as well as their combinations,
that lead to new algebraic generalizations of hyperlogics, including the ∀∃∗, ∀∀∗, and ∃∀∗ hyperlogics.
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1 Introduction
Program (hyper) logics provide methods for reasoning about (sets of) program executions as de-
fined by a semantics. For example, hyperproperties were defined by Michael Clarkson and Fred
Schneider on execution traces [14] but more recent proposals consider relational logics. We aim at
designing program (hyper) logics independently of a specific program semantics, and, more pre-
cisely, independently of the formal representation of program executions used by these semantics.

In part I, we recall elements of set and order theories (sect. 2) and then define a structural fix-
point algebraic program semantics (sect. 3.4) which is an abstract interpreter parameterized by an
algebraic abstract domain (sect. 3.3) defined axiomatically. The abstract domain includes terminat-
ing and nonterminating executions and can be instantiated to various data and execution models
such as the classic relational semantics (sect. 5) or the trace semantics corresponding to the original
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2 P. Cousot and J. Wang

definition of hyperproperties [14] (sect. 4 in the appendix) . Then in sect. 6, we define an execution
collecting semantics (e.g. sets of traces i.e. trace properties) and introduce a sound and complete
calculus post of execution properties. In sect. 7, we define a semantic collecting semantics (e.g. sets
of sets of traces i.e. hyperproperties) and introduce a structural, fixpoint, sound, and complete
calculus Post of semantics properties. In sect. 8, we define upper and lower semantic logics (e.g. a
logic for trace hyperproperties) and derive over and under sound and complete proof systems by
calculational design.

In part II, we define the abstraction of the structural algebraic program semantics (sect. 9) and
show that it induces an abstraction of the algebraic execution collecting semantics (sect. 10), the
algebraic semantic collecting semantics (sect. 11), and the algebraic upper and lower logics (sect.
12). Such abstractions preserve the mathematical structure of the algebraic semantic, collecting
semantics, and logics in the abstract. This shows that the algebraic semantics, collecting semantics,
and logics can be instantiated to any one in the hierarchies of semantics considered e.g. in [4, 18, 41].
Hyperlogics are under or over approximations of semantic properties that is sets of semantics. A

program semantics satisfies a hyperproperty if and only if it appears exactly in the hyperproperty.
It follows that proofs by semantic logics (for hyperproperties) require, for completeness, to describe
the program semantics exactly in the proof. By analogy with Hoare logic, this would require the
loop invariants to be the strongest, which is an extreme requirement.

This is why, in part III, we consider abstractions of semantic properties, which are less general,
but otherwise offer adequate representations of semantic properties and/or allow for much sim-
plified proof rules, closer to the tradition of classic program execution logics, and complete for
well identified classes of abstract semantic properties. The classic join abstraction (sect. 13), homo-
morphic abstraction (sect. 14), and intersection abstraction (sect. 15) yield simplified proof rules for
hyperlogics. The principal ideal (sect. 16), order ideal (sect. 17), frontiers (sect. 18), chain limit (sect.
19), chain limit order ideal (sect. 20) abstractions are more specific to hyperproperties. They are
compared in sect. 23. These abstraction generalize known hyperlogics for the algebraic semantics
and allow us to provide new sound and complete proof rules, including for ∀∃ (sect. 19.2), ∀∀ (sect.
20.2), and ∃∀ (sect. 22) (hyper)properties.. This last case is based on conjunctive abstractions (i.e.
conjunctions in logics or reduced products in static analysis) studied in sect. 22.1 of the appendix).

We finally briefly refer to the related works (already cited extensively in the text) in sect. 24 and
summarize our contributions in the conclusion which also proposes future work (sect. 25).

PaRt I: AlgebRaic Semantics, Execution PRopeRties, Semantic
(HypeR) PRopeRties, Calculi, and Logics

2 Elements of Set and Order Theories
2.1 Partially Ordered Sets

Definition 2.1 (Properties of posets). Let ⟨L, ⊑⟩ be a poset with partially defined least upper bound
(lub or join) ⊔, greatest lower bound (glb or meet) ⊓, infimum �, and supremum ⊺, if any. [31].

i. ⟨𝐿, ⊑, ⊔⟩ is a join semilattice when the least upper bound (lub, join) ⊔𝑆 exists for any non-
empty finite subset 𝑆 ∈ ℘(𝐿) ∖ {∅} of 𝐿. If it exists, the infimum is � = ⊔∅. The dual is a
meet semilattice with greatest lower bound (glb, meet) ⊓ and supremum ⊺ = ⊔𝐿, if it exists.
A lattice is both a join and meet semilattice. By limit we mean either the join or the meet.
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Calculational Design of Hyperlogics by Abstract Interpretation 3

ii. A poset is increasing chain complete if and only if every nonempty increasing chain of 𝐿 has
a lub. It is decreasing chain complete if and only if every nonempty decreasing chain of 𝐿 has
a glb1. It is chain complete if both increasing and decreasing chain complete.

iii. A poset is a complete lattice if and only if any subset, including the empty set, has a lub (hence
a glb and the infimum and supremum do exist).

Observe that (2.1.i) and (2.1.ii) are independent (i.e. none implies the other). We often use them
simultaneously. For example, in a increasing chain-complete join semilattice, lubs exist for non-
empty finite sets and non-empty increasing chains.

2.2 Ordinals
We let O = {0, 1, 2, . . . , 𝜔,𝜔+1, 𝜔+2, . . . , 𝜔×2, 𝜔×2+1, 𝜔×2+2, . . . , 𝜔×3, . . . , 𝜔×𝜔 = 𝜔2, . . . , 𝜔𝜔 , . . . ,

𝜔𝜔𝜔

, . . . , 𝜔 𝜔⋰
𝜔
}𝜔 times

, . . .} be the class of ordinals where 𝜔 is the first infinite limit ordinal [72].
⟨O, ⩽⟩ extends the order on the naturals ⟨N, ⩽⟩ into the infinite. Ordinals yield typical examples
of well-orderings (such that any two elements are comparable and any <-strictly decreasing chain
is finite). Any well-ordering is order-isomorphic to an ordinal (called its rank e.g. 𝜔 for N), [72, th.
13.10 & 13.11]. We use Von Neumann definition of ordinals [72, ch. 2] with 0 = ∅, the successor is
𝛿+1 = 𝛿∪{𝛿}, < is ∈, 𝜆 = ⋃𝛽<𝜆 𝛽 for infinite limit ordinals 𝜆 (which are not a successor ordinal such
as 𝜔 , 𝜔2, etc), and the corresponding transfinite induction [72, Sec. 10], 𝑃(0), ∀𝛿 ∈ O . 𝑃(𝛿) ⇒
𝑃(𝛿 + 1), and for all limit ordinals 𝜆 ∈ O, (∀𝛽 < 𝜆 . 𝑃(𝛽))⇒ 𝑃(𝜆) implies ∀𝛿 ∈ O . 𝑃(𝛿).

2.3 Functions on Partially Ordered Sets
Definition 2.2 (Properties of functions on posets). Let ⟨𝐿, ⊑⟩ be a poset and 𝑓 ∈ 𝐿 → 𝐿.
i. 𝑓 is increasing (sometimes referred to as monotone or isotone) means that ∀𝑥,𝑦 ∈ 𝐿 . (𝑥 ⊑

𝑦) ⇒ (𝑓 (𝑥) ⊑ 𝑓 (𝑦)). “Increasing” is order self-dual. Decreasing (or antitone) is ∀𝑥,𝑦 ∈ 𝐿 .
(𝑥 ⊑ 𝑦)⇒ (𝑓 (𝑦) ⊑ 𝑓 (𝑥));

For example, a sequence ⟨𝑋𝛿 ∈ 𝐿, 𝛿 < 𝜆⟩ for ordinals 𝛿, 𝜆 ∈ O is an increasing chain means
that ∀𝛿 ⩽ 𝛿 ′ < 𝜆 . 𝑋𝛿 ⊑ 𝑋𝛿 ′ . A decreasing chain has ∀𝛿 ⩽ 𝛿 ′ < 𝜆 . 𝑋𝛿 ′ ⊑ 𝑋𝛿 ;

ii. Function 𝑓 is existing finite join-preserving (also written existing finite ⊔-preserving) if and
only if for any non-empty finite set 𝑆 ∈ ℘𝑓 (𝐿) ∖ {∅} such that ⊔𝑆 exists in 𝐿 then ⊔𝑓 (𝑆)
exists in 𝐿 and 𝑓 (⊔𝑆) = ⊔𝑓 (𝑆) with 𝑓 (𝑆) = {𝑓 (𝑥) ∣ 𝑥 ∈ 𝑆}, and dually for meets. 𝑓 is
existing finite limit-preserving if and only if it is both existing finite join and meet preserving.
“Existing” can be omitted in a lattice;

iii. 𝑓 is upper-continuous (or existing increasing chain join-preserving) if and only if for any non-
empty increasing chain 𝑆 ∈ ℘𝑓 (𝐿) such that ⊔𝑆 exists in 𝐿, then ⊔𝑓 (𝑆) exists in 𝐿 such that
𝑓 (⊔𝑆) = ⊔𝑓 (𝑆). The dual is lower-continuous for existing decreasing chain meet-preserving,
and continuous means both lower and upper continuous. By Scott-Kleene theorem, continu-
ity ensures that functions reach fixpoints iteratively at 𝜔 [20, th. 15.36]. This condition for
convergence at 𝜔 is sufficient but not necessary e.g. [20, th. 15.21];

iv. 𝑓 is existing join-preserving (also written existing ⊔-preserving) if and only if for any non-
empty set 𝑆 ∈ ℘(𝐿) ∖ {∅} such that ⊔𝑆 exists in 𝐿, then ⊔𝑓 (𝑆) exists in 𝐿 such that 𝑓 (⊔𝑆) =
⊔𝑓 (𝑆), and dually for meets. 𝑓 is existing limit-preserving if and only if it is both existing join
and meet preserving. “Existing” can be omitted in a complete lattice;

v. The definitions 2.2.ii to 2.2.iv are extended to 𝑓 ∈ (𝐿×𝐿)→ 𝐿 by 𝑓 has left limit property if and
only if ∀𝑦 ∈ 𝐿 . 𝝀𝑥 . 𝑓 (𝑥,𝑦) has that limit property and 𝑓 has right limit property whenever

1We do not respectively use the classic CPO and dual CPO for which chains are usually restricted to be of length 𝜔 .
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4 P. Cousot and J. Wang

∀𝑥 ∈ 𝐿 . 𝝀𝑦 . 𝑓 (𝑥,𝑦) has that limit property. 𝑓 has that the limit property in both parameters
if and only if 𝑓 has both of the left and right limit properties;

vi. When extending the definitions 2.2.ii to 2.2.v to empty sets or chains, the function 𝑓 is then
said to be lower strict, dually upper strict, and strict for both cases.

Observe that 2.2.i⇐ 2.2.ii⇐ 2.2.iii⇐ 2.2.iv.

2.4 Fixpoints
Let 𝑓 ∈ L ↗Ð→ L be an increasing function on a poset ⟨L, ⊑⟩. There are essentially two classic
characterizations of the least fixpoint lfp⊑ 𝑓 of 𝑓 (we also use their order duals).

PRoposition 2.3 (Fixpoint). lfp⊑ 𝑓 = ⊓{𝑥 ∣ 𝑓 (𝑥) ⊑ 𝑥} by [81] on complete lattices which also
holds on increasing chain complete posets [38].

PRoposition 2.4 (IteRation to fixpoint). If ⟨L, ⊑, �, ⊔⟩ is a poset with infimum � and
partially defined join ⊔ then the iterates ⟨𝑋𝛿 , 𝛿 ∈ O⟩ of 𝑓 are partially defined as 𝑋𝛿+1 ≜ 𝑓 (𝑋𝛿), and
𝑋𝜆 ≜ ⊔𝛽<𝜆 𝑋

𝛽 for limit ordinals 𝜆 (hence𝑋 0 = ⊔∅ = � for limit ordinal 0).They are well defined when
𝑓 is increasing (hence when it is finite join preserving, upper-continuous or existing join-preserving)
and ⟨L, ⊑, �, ⊔⟩ is an increasing chain complete poset (hence when it is a complete lattice) in which
case they form an increasing chain (i.e. ∀𝛽 < 𝛿 ∈ O . 𝑋 𝛽 ⊑ 𝑋𝛿 ) ultimately stationary at the limit
∃𝜖 . ∀𝛽 ⩾ 𝜖 . 𝑋 𝛽 = lfp⊑ 𝑓 [23]. In case 𝑓 is upper-continuous (hence when preserving existing joins),
the iterates are stationary at 𝜖 = 𝜔 so that the iterates may be restricted to N and lfp⊑ 𝑓 = ⊔𝑛∈N𝑋

𝑛

[81, page 305].

2.5 Galois Connections, Retractions, and Isomorphisms
Galois connections are used throughout the paper either to formalize correspondances between
transformers or to formalize exact or approximate abstractions. Formally, a Galois connection ⟨𝐶,
⊑⟩ −−−→←−−−𝛼

𝛾
⟨𝐴, ⪯⟩ is a pair ⟨𝛼, 𝛾⟩ of functions between posets ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩ satisfying ∀𝑥 ∈ 𝐶 .

∀𝑦 ∈ 𝐴 . 𝛼(𝑥) ⪯ 𝑦⇔ 𝑥 ⊑ 𝛾(𝑦). We use a double headed arrow →Ð→ to indicate surjection in Galois
retractions and −−→Ð→←←Ð−− for bijections. We use classic properties of Galois connections which proofs
are found in [34].

2.6 Closures
We let 1 be the identity function. An upper closure operator 𝜌 on L is increasing, extensive and
idempotent so ⟨L, ⊑⟩ −−−→Ð→←−−−−−

𝜌

1 ⟨𝜌(L), ⊑⟩ where 𝜌(𝑋) ≜ {𝜌(𝑥) ∣ 𝑥 ∈ 𝑋} is the post image (dually, a
lower closure operator is reductive). It follows that 𝜌 preserves existing arbitrary joins so if ⟨L, ⊑,
�, ⊔⟩ is an increasing chain complete poset (respectively complete lattice ⟨L, ⊑, �, ⊺, ⊔, ⊓⟩) then
⟨𝜌(L), ⊑⟩ has the same structure with infimum 𝜌(�), join 𝝀𝑋 . 𝜌(⊔𝑋), meet ⊓ and top ⊺, if any. In
case of a complete lattice this is Morgan Ward’s [83, th. 4.1]. If 𝜌1 and 𝜌2 are upper closures on L
then 𝜌1 ○ 𝜌2 and 𝜌2 ○ 𝜌1 are upper closure operators on L if and only if 𝜌1 and 𝜌2 are commuting
(i.e. 𝜌1 ○ 𝜌2 = 𝜌2 ○ 𝜌1) in which case 𝜌1 ○ 𝜌2(L) = 𝜌2 ○ 𝜌1(L) = 𝜌1(L) ∩ 𝜌2(L) [76, p. 525].

3 Algebraic Semantics
We introduce the syntax and algebraic semantics of a simple iterative language based on an abstract
domain that generalizes [20, Ch. 21] to include infinite program behaviors.The algebraic semantics
is reminiscent of [12, 17, 37, 49, 50, 56, 57, 59, 60, 74] and others. Such algebraic semantics are a
basis for studying a hierarchy of program properties independently of the data manipulated by
programs.
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Calculational Design of Hyperlogics by Abstract Interpretation 5

3.1 Syntax
We consider an imperative language S with assignments, sequential composition, conditionals,
and conditional iteration with breaks. The syntax is S ∈ S ∶∶= x = A ∣ x = [𝑎,𝑏] ∣ skip ∣ S;S ∣
if (B) S else S ∣ while (B) S ∣ break. A is an arithmetic expression. The nondeterministic as-
signment x = [𝑎, 𝑏] with 𝑎 ∈ Z ∪ {−∞} and 𝑏 ∈ Z ∪ {∞}, −∞ − 1 = −∞, ∞ + 1 = ∞ (or any,
possibly unbounded, order isomorphic set). The Boolean expressions B include the negation ¬B. A
break exits the closest enclosing loop (which existence is to be checked syntactically).

3.2 Structural Definitions
Let ⊲ be the “immediate strict syntactic component” well-founded partial order on statements
S such that S1 ⊲ S1;S2, S2 ⊲ S1;S2, S1 ⊲ if (B) S1 else S2, S2 ⊲ if (B) S1 else S2, S ⊲
while (B) S, and is otherwise false.

Given a nonempty set V , the function 𝑓 ∈ S → V has a structural definition if and only if
𝑓 (S) ∈ V for basic commands (defined as minimal elements of ⊲) and, otherwise, is of the form
𝑓 (S) = 𝐹S({⟨S′, 𝑓 (S′)⟩ ∣ S′ ⊲ S}) where 𝐹S ∈ {⟨S′, 𝑣 ′⟩ ∣ S′ ⊲ S ∧ 𝑣 ′ ∈ V} → V is a total function.
Denotational semantics, Hoare logic, predicate transformers, and the abstract semantics of sect.
3.4 all have structural definitions (called “compositional” in denotational semantics).

3.3 Algebraic Computational Domain
We consider computational domains D♯+ and D♯∞ to be abstract domains respectively abstracting
the finite and infinite computations of statements and partially ordered by the respective compu-
tational orderings ⊑♯+ and ⊑♯∞, as follows (#♯ is polymorphic).
D♯+ ≜ ⟨L♯+, ⊑♯+, �♯+, ⊔♯+, init♯, assign♯Jx, AK, rassign♯Jx, 𝑎,𝑏K, test♯JBK, break♯, skip♯, #♯⟩ (1)
D♯∞ ≜ ⟨L♯∞, ⊑♯∞, ⊺♯∞, ⊓♯∞, #♯⟩ (2)

Example 3.1. Bi-inductive definitions [24] are used in [18] to define a trace semantics on states Σ
which can be isomorphically decomposed into the domain of finite traces ⟨L♯+, ⊑♯+, �♯+,⊔♯+⟩ = ⟨℘(Σ∗),
⊆, ∅, ∪⟩ (where ∪ is the lub of increasing chains starting form∅ for least fixpoints) and the domain
of infinite traces ⟨L♯∞, ⊑♯∞, ⊺♯∞, ⊓♯∞⟩ = ⟨℘(Σ𝜔), ⊆, Σ𝜔 , ∩⟩ (where ∩ is the glb of decreasing chains
starting form Σ𝜔 for greatest fixpoints), which abstractions yield a hierarchy of classic semantics,
including Hoare logic.

Our objective in part I is to study hyperlogics abstracting away from a particular semantics
thus allowing for multiple instantiations (such as traces in sect. 4) and, in part II, for multiple
abstractions (which include Hoare logic).

A single domain D♯ ≜ D♯+ ∪D♯∞ is used in denotational semantics [78, 80] but this is not always
possible e.g. when D♯+∩D♯∞ ≠ ∅. Moreover the separation into two different domains for finite and
infinite executions allows e.g. for the use of input-output relations for finite behaviors and traces
for infinite behaviors. (see also the discussion in remark 4.5 in the appendix.) ∎

Definition 3.2 (Abstract domain well-definedness). We say that D♯ ≜ ⟨D♯+, D♯∞⟩ is a well-defined
chain-complete lattice (respectively complete lattice) with increasing (respectively finite limit-
preserving, continuous, and existing limit-preserving) composition, if and only if
A. The finitary calculational domain ⟨L♯+, ⊑♯+, �♯+, ⊔♯+⟩ is an increasing chain-complete join semi-

lattice with infimum, (respectively ⟨L♯+, ⊑♯+, �♯+, ⊺♯+, ⊔♯+, ⊓♯+⟩ is a complete lattice);
B. init♯, break♯, skip♯ ∈ L♯+, assign♯Jx, AK, rassign♯Jx, 𝑎,𝑏K, test♯JBK ∈ L♯+ are well-defined in L♯+;
C. The infinitary calculational domain ⟨L♯∞, ⊑♯∞, ⊺♯∞, ⊔♯∞, ⊓♯∞⟩ is a decreasing chain-complete

join lattice with supremum (respectively ⟨L♯∞, ⊑♯∞, �♯∞, ⊺♯∞, ⊔♯∞, ⊓♯∞⟩ is a complete lattice);
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6 P. Cousot and J. Wang

D. The sequential composition #♯ ∈ (L♯+×L♯+ → L♯+)∪(((L♯+×L♯∞)∪(L♯∞×L♯+)∪(L♯∞×L♯∞))→ L♯∞)
is associative and satisfies the following conditions (where ⟨L♯𝑥 , ⊑♯𝑥 , �♯𝑥 , ⊺♯𝑥 , ⊔♯𝑥 , ⊓♯𝑥 ⟩, 𝑥 ∈ {+,∞}
designates ⟨L♯+, ⊑♯+, �♯+, ⊺♯+, ⊔♯+, ⊓♯+⟩when 𝑥 = + and ⟨L♯∞, ⊑♯∞, �♯∞, ⊺♯∞, ⊔♯∞, ⊓♯∞⟩when 𝑥 =∞).
a. ∀𝑆 ∈ L♯+ . 𝑆 #♯ init♯ = init♯ #♯ 𝑆 = 𝑆 ;
b. ∀𝑆 ∈ L♯+ . 𝑆 #♯ �♯+ = �♯+ and ∀𝑆 ∈ L♯𝑥 . �♯+ #♯ 𝑆 = �♯+ (same for L♯∞ when �♯∞ exists);
c. ∀𝑆 ∈ L♯∞ . ∀𝑆 ′ ∈ L♯𝑥 . 𝑆 #♯ 𝑆 ′ = 𝑆 ;
d. In its left, right, or both parameters, the sequential composition #♯ is either

i. increasing for ⊑♯+ and/or ⊑♯∞;
ii. finite join preserving for ⊔♯+ and/or ⊔♯∞;
iii. in addition to 3.2.D.d.ii, is lower continuous for ⊓♯+ and/or ⊓♯∞ and/or upper contin-

uous for ⊔♯+ and/or ⊔♯∞;
iv. existing arbitrary ⊔♯+-preserving and/or existing arbitrary ⊓♯∞-preserving.

RemaRK 3.3. In case L♯+ ∩L♯∞ = ∅, we can define L♯ ≜ L♯+ ∪L♯∞ with 𝑋+ ≜ 𝑋 ∩L♯+, 𝑋∞ ≜ 𝑋 ∩L♯∞,
and 𝑋 ⊑♯ 𝑌 ≜ 𝑋+ ⊑♯+ 𝑌+ ∧ 𝑋∞ ⊑♯∞ 𝑌∞ which corresponds to the bi-inductive definitions [24]
mentioned in example 3.1. ∎
RemaRK 3.4. Hypotheses 3.2.B, 3.2.D.d.i and 3.2.D.d.ii determine the precision of the semantic

of basic commands, composition, choices, conditionals, and iteration in the algebraic semantics.
These hypotheses as well as 3.2.D.d.iii and 3.2.D.d.iv determine whether fixpoint iterations should
be infinite or transfinite (see proposition 2.4). ∎

3.4 Definition of the Algebraic Semantics
The algebraic semantics of statements S ∈ S is an abstract property of executions. The basic com-
mands S are assignment, random assignment, break out of the immediately enclosing loop, and
skip, with the following JSK♯𝑒 and break JSK♯𝑏 finite/ending/terminating semantics in L♯+ as well as
infinite/nonterminating JSK♯� abstract semantics in L♯∞.
3.4.1 Basic Statements.Jx = AK♯𝑒 ≜ assign♯Jx, AK Jx = AK♯𝑏 ≜ �♯+ Jx = AK♯� ≜ �♯∞Jx = [𝑎, 𝑏]K♯𝑒 ≜ rassign♯Jx, 𝑎,𝑏K Jx = [𝑎, 𝑏]K♯𝑏 ≜ �♯+ Jx = [𝑎, 𝑏]K♯� ≜ �♯∞JbreakK♯𝑒 ≜ �♯+ JbreakK♯𝑏 ≜ break♯ JbreakK♯� ≜ �♯∞ (3)JskipK♯𝑒 ≜ skip♯ JskipK♯𝑏 ≜ �♯+ JskipK♯� ≜ �♯∞JBK♯𝑒 ≜ test♯JBK JBK♯𝑏 ≜ �♯+ JBK♯� ≜ �♯∞
For the assignment x = A, the abstract semantics assign♯Jx, AK is specified by the abstract domain,
and so, is well-defined by 3.2.B. Jx = AK♯𝑏 = �♯+ because the assignment cannot break. Jx = AK♯� =
�♯∞ since the assignment always terminates. The algebraic semantics of the other primitives is
similar, except for the break statement. JbreakK♯𝑒 = �♯+ since the break cannot continue in sequence.
The semantics JbreakK♯𝑏 of the break is given by the abstract domain primitive break♯which is finite
and well-defined. JbreakK♯� = �♯∞ since a break always terminates.

3.4.2 Structural Statements. For the sequential composition and the conditional where JB;SK♯𝑥 ≜
test♯JBK #♯ JSK♯𝑥 , 𝑥 ∈ {𝑒,𝑏,�}, we defineJS1;S2K♯𝑒 ≜ JS1K♯𝑒 #♯ JS2K♯𝑒 Jif (B) S1 else S2K♯𝑒 ≜ JB;S1K♯𝑒 ⊔♯+ J¬B;S2K♯𝑒JS1;S2K♯𝑏 ≜ JS1K♯𝑏 ⊔♯+ (JS1K♯𝑒 #♯ JS2K♯𝑏) Jif (B) S1 else S2K♯𝑏 ≜ JB;S1K♯𝑏 ⊔♯+ J¬B;S2K♯𝑏 (4)JS1;S2K♯� ≜ JS1K♯� ⊔♯∞ (JS1K♯𝑒 #♯ JS2K♯�) Jif (B) S1 else S2K♯� ≜ JB;S1K♯� ⊔♯∞ J¬B;S2K♯�
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The semantics of the composition and conditional are well-defined by 3.2.D for #♯ and 3.2.A and
3.2.C which ensure the existence of the finite and infinite joins.

S1;S2 terminates if S1 terminates and is followed by S2 that terminates. S1;S2 breaks (resp. non-
terminates) if either S1 breaks (resp. nonterminates) or S1 terminates and is followed by S2 that
breaks (resp. nonterminates).

For a given execution of the conditional if (B) S1 else S2 only one branch is taken, so the
semantics of the other one will be empty by definition (3) of JBK♯𝑒 that should return �♯+2 and
3.2.D.b.

Example 3.5. Assume that S1 never terminates in that JS1K♯� = ⊺♯∞ (sometimes named “chaos”
modelling all possible nonterminating behaviors).Then, by (4), JS1;S2K♯� ≜ JS1K♯� ⊔♯∞ (JS1K♯𝑒 #♯JS2K♯�)
= ⊺♯∞ ⊔♯∞ (JS1K♯𝑒 #♯ JS2K♯�) = ⊺♯∞ meaning that S1;S2 never terminates either in chaos.
For the conditional, assume B is always true and S1 never terminates in that JS1K♯� = ⊺♯∞. Then

the false branch is never taken so that J¬B;S2K♯� = �♯∞. It follows, by (4), that Jif (B) S1 else S2K♯�
≜ JB;S1K♯� ⊔♯∞ J¬B;S2K♯� = ⊺♯∞ ⊔♯∞ �♯∞ = ⊺♯∞ so that the conditional if (B) S1 else S2 never termi-
nates. ∎

3.4.3 Iteration. For iteration while (B) S, we define the transformers
backward ⃗𝐹 ♯𝑒 ≜ 𝝀𝑋 ∈ L♯+ . init♯ ⊔♯+ (JB;SK♯𝑒 #♯ 𝑋) (5)
forward 𝐹 ♯𝑒 ≜ 𝝀𝑋 ∈ L♯+ . init♯ ⊔♯+ (𝑋 #♯ JB;SK♯𝑒) (6)
infinite 𝐹 ♯� ≜ 𝝀𝑋 ∈ L♯∞ . JB;SK♯𝑒 #♯ 𝑋 (7)

Lemma 3.6 (Finite fixpoints well-definedness). If D♯+ is a well-defined increasing chain
complete join semilattice and #♯ left satisfies any one of the 3.2.D.d.i, 3.2.D.d.ii, 3.2.D.d.iii, or 3.2.D.d.iv
properties for D♯+ then ⃗𝐹 ♯𝑒 satisfy the same property and its least fixpoint deso exist (and similarly for
𝐹 ♯𝑒 when #♯ right satisfies any one of the properties listed in 3.2.D.d).

PRoof of lemma 3.6. By definition (5), ⃗𝐹 ♯𝑒 is the composition of constants init♯ and JB;SK♯𝑒 #♯,
the lub ⊔♯+ in a join semilattice (which satisfies all properties of definition 2.2), and sequential
composition #♯. Therefore, depending on which property 3.2.D.d.i, 3.2.D.d.ii, 3.2.D.d.iii, or 3.2.D.d.iv
does satisfy, ⃗𝐹 ♯𝑒 satisfies the same property. It follows by 3.2.A that the iterates of ⃗𝐹 ♯𝑒 do exist, so
that, by proposition 2.4, lfp⊑♯+ ⃗𝐹 ♯𝑒 does exists. The same way lfp⊑

♯
+ 𝐹 ♯𝑒 does exist by (6). □

Let us show that lfp⊑♯+ ⃗𝐹 ♯𝑒 = lfp⊑
♯
+ 𝐹 ♯𝑒 inductively defines the set of finite executions reaching the

entry of the iteration while(B) S after zero or more terminating body iterations. To see that, we
define

the powers ⟨𝑋𝛿 , 𝛿 ∈ O⟩ of𝑋 ∈ L♯+ are𝑋 0 ≜ init♯,𝑋𝛿+1 ≜𝑋 #♯𝑋𝛿 for successor ordinals,
and 𝑋𝜆 ≜ ⊔♯+𝛽<𝜆 𝑋 𝛽 for limit ordinals.

(8)

We now characterize the executions of iterations in terms of the fixpoints of the execution trans-
formers 5—6. We show that lfp⊑♯+ ⃗𝐹 ♯𝑒 = lfp⊑

♯
+ 𝐹 ♯𝑒 inductively characterize 0 or more finite iterations

of the loop body for which the loop condition holds and the loop body terminates.

Lemma 3.7 (Commutativity). If D♯+ is a well-defined complete lattice (resp. increasing chain-
complete poset) with right existing ⊔♯+-preserving (resp. right upper continuous) composition #♯ and
𝑋 ∈ L♯+ then ∀𝛿 ∈ O . 𝑋 #♯ 𝑋𝛿 = 𝑋𝛿 #♯ 𝑋 (resp. if ⟨𝑋𝛿 , 𝛿 ∈ O⟩ is an increasing chain).

PRoof of lemma 3.7. The proof is by transfinite induction on 𝛿 .
2unless the semantics of Boolean expressions is to be very exotic.
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● For 𝛿 = 0, we have 𝑋 #♯ 𝑋 0 = 𝑋 #♯ init♯ = init♯ #♯ 𝑋 = 𝑋 0 #♯ 𝑋 by definition 3.2.D.a and definition
(8) of the powers.

● If 𝑋 #♯ 𝑋𝛿 = 𝑋𝛿 #♯ 𝑋 by induction hypothesis, then 𝑋 #♯ 𝑋𝛿+1 = 𝑋 #♯ (𝑋 #♯ 𝑋𝛿) = 𝑋 #♯ (𝑋𝛿 #♯ 𝑋)
= (𝑋 #♯ 𝑋𝛿) #♯ 𝑋 = 𝑋𝛿+1 #♯ 𝑋 by def. (8) of the iterates, induction hypothesis, associativity 3.2.D,
and (8).

● If 𝜆 is a limit ordinal and ∀𝛽 < 𝜆 . 𝑋 #♯ 𝑋 𝛽 = 𝑋 𝛽 #♯ 𝑋 by induction hypothesis, then 𝑋 #♯ 𝑋𝜆 =
𝑋 #♯ (⊔♯+𝛽<𝜆 𝑋 𝛽) =⊔♯+𝛽<𝜆(𝑋 #♯𝑋 𝛽) =⊔♯+𝛽<𝜆 𝑋 𝛽+1 by (8), right existing ⊔♯+-preserving #♯ 3.2.D.d.iv
(resp. right upper continuity when ⟨𝑋𝛿 , 𝛿 ∈ O⟩ is an increasing chain 3.2.D.d.iii). □

Lemma 3.8 (Finite body iteRations). If D♯+ is a well-defined increasing chain-complete join
semilattice with right upper continuous composition #♯ then lfp⊑

♯
+ ⃗𝐹 ♯𝑒 = ⊔♯+

𝛿∈O
(JB;SK♯𝑒)𝛿 .

PRoof of lemma 3.8. By lemma 3.6, if D♯+ is a well-defined incraesing chain-complete join semi-
lattice with right upper continuous composition then ⃗𝐹 ♯𝑒 in (6) is upper continuous hence increas-
ing since continuous functions are increasing and the composition of increasing functions is in-
creasing. It follows, by proposition 2.4, that the least fixpoint lfp⊑♯+ ⃗𝐹 ♯𝑒 exists and is the limit of
the increasing iterates ⟨𝑋𝛿 , 𝛿 ∈ O⟩ of ⃗𝐹 ♯𝑒 from the infimum �♯+ (which exists in a chain-complete
lattice).

Let us prove that 𝑋𝛿 = ⊔♯+𝛽<𝛿(JB;SK♯𝑒)𝛽 by transfinite induction on 𝛿 .
● For 𝛿 = 0, we have 𝑋 0 = �♯+ = ⊔♯+∅ = ⊔♯+𝛽<0(JB;SK♯𝑒)𝛽 by definition of the iterates and the
infimum.

● Assume by induction hypothesis that 𝑋𝛿 = ⊔♯+𝛽<𝛿(JB;SK♯𝑒)𝛽 . Then 𝑋𝛿+1 = ⃗𝐹 ♯𝑒(𝑋𝛿) = init♯ ⊔♯+
(JB;SK♯𝑒 #♯ 𝑋𝛿) = init♯ ⊔♯+ (JB;SK♯𝑒 #♯ (⊔♯+𝛽<𝛿(JB;SK♯𝑒)𝛽)) = init♯ ⊔♯+ ⊔♯+𝛽<𝛿((JB;SK♯𝑒 #♯ JB;SK♯𝑒)𝛽) =
(JB;SK♯𝑒)0 ⊔♯+ ⊔♯+𝛽<𝛿(JB;SK♯𝑒)𝛽+1) = ⊔♯+𝛽<𝛿+1(JB;SK♯𝑒)𝛽 by definition of iterates, definition (5) of
⃗𝐹 ♯𝑒 , induction hypothesis, definition 3.2.D.d, definition of the powers, grouping terms in the join.

● Assume that 𝜆 is a limit ordinal and that, by induction hypothesis,∀𝛿 < 𝜆 . 𝑋𝛿 =⊔♯+𝛽<𝛿(JB;SK♯𝑒)𝛽 .
Then we have 𝑋𝜆 = ⊔♯+𝛿<𝜆𝑋𝛿 = ⊔♯+𝛿<𝜆⊔♯+𝛽<𝛿(JB;SK♯𝑒)𝛽 = ⊔♯+𝛽<𝜆(JB;SK♯𝑒)𝛽 by definition of the
iterates, induction hypothesis, and definition of the join ⊔♯+ (which exists since the iterates are
increasing.

We conclude by proposition 2.4 that lfp⊑♯+ ⃗𝐹 ♯𝑒 = ⊔♯+
𝛿∈O
(JB;SK♯𝑒)𝛿 . □

Lemma 3.9 (FoRwaRd veRsus bacKwaRd). If D♯ is a well-defined increasing chain-complete
join semilattice with right upper continuous sequential composition #♯ then lfp⊑

♯
+ ⃗𝐹 ♯𝑒 = lfp⊑

♯
+ 𝐹 ♯𝑒 .

PRoof of lemma 3.9. The proof is similar to that of lemma 3.8. Let ⟨𝑋𝛿 , 𝛿 ∈ O⟩ be the iter-
ates of 𝐹 ♯𝑒 . For the basis, 𝑋 0 = �♯+. For the successor induction step, 𝑋𝛿+1 = 𝐹 ♯𝑒 (𝑋𝛿) = init♯ ⊔♯+
(𝑋𝛿 #♯ JB;SK♯𝑒) = init♯ ⊔♯+ ((⊔♯+𝛽<𝛿(JB;SK♯𝑒)𝛽) #♯ JB;SK♯𝑒) = init♯ ⊔♯+ ⊔♯+𝛽<𝛿((JB;SK♯𝑒)𝛽 #♯ JB;SK♯𝑒) =
init♯ ⊔♯+ ⊔♯+𝛽<𝛿((JB;SK♯𝑒 #♯ JB;SK♯𝑒)𝛽) = (JB;SK♯𝑒)0 ⊔♯+ ⊔♯+𝛽<𝛿(JB;SK♯𝑒)𝛽+1) ⊔♯+𝛽<𝛿+1(JB;SK♯𝑒)𝛽 by def-
inition of iterates, definition (6) of 𝐹 ♯𝑒 , induction hypothesis, definition 3.2.D.d, lemma 3.7, defi-
nition of the powers, grouping terms in the join. For the limit induction step, 𝑋𝜆 = ⊔♯+𝛿<𝜆𝑋𝛿 =
⊔♯+𝛿<𝜆⊔♯+𝛽<𝛿(JB;SK♯𝑒)𝛽 = ⊔♯+𝛽<𝜆(JB;SK♯𝑒)𝛽 by definition of the iterates, induction hypothesis, and
definition of the join. We conclude that lfp⊑♯+ ⃗𝐹 ♯𝑒 = ⊔♯+

𝛿∈O
(JB;SK♯𝑒)𝛿 = lfp⊑

♯
+ ⃗𝐹 ♯𝑒 by proposition 2.4 and

lemma 3.8. □

Example 3.10. Assume that the test B of the iteration while (B) S is always false, that is test♯JBK =
�♯∞. Then, by (5), (6), (3.2.D.b), and def. lub, ⃗𝐹 ♯𝑒 = 𝐹 ♯𝑒 = 𝝀𝑋 ∈ L♯+ . init♯. It follows that lfp⊑♯+ ⃗𝐹 ♯𝑒 =
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lfp⊑
♯
+ 𝐹 ♯𝑒 = init♯ meaning that the loop is never entered. The semantics of the loop after 0 or more

iterations is therefore that after 0 iterations. ∎

Lemma 3.11 (Infinite fixpoint well-definedness). If D♯∞ is a well-defined decreasing chain
complete poset and #♯ right satisfies any one of the 3.2.D.d.i, 3.2.D.d.ii, 3.2.D.d.iii, or 3.2.D.d.iv properties
for D♯∞ then 𝐹 ♯� satisfies the same property and gfp⊑

♯
∞ 𝐹 ♯� does exist.

PRoof of lemma 3.11. If #♯ satisfies any one of the 3.2.D.d.i, 3.2.D.d.ii, 3.2.D.d.iii, or 3.2.D.d.iv
properties for D♯∞ then, by (7), 𝐹 ♯� = 𝝀𝑋 ∈ L♯∞ . JB;SK♯𝑒 #♯ 𝑋 satisfies the same property since JB;SK♯𝑒
is constant. By the dual of proposition 2.4, gfp⊑♯∞ 𝐹 ♯� exists in a decreasing chain complete poset. □

We now show that gfp⊑♯∞ 𝐹 ♯� coinductively characterizes the infinite executions of the iteration
while (B) S after infinitely many terminating iterations of the body S with condition B always
true.

Lemma 3.12 (Infinite body iteRations). If D♯ is a well-defined decreasing chain-complete
poset and #♯ is right increasing for ⊑♯∞ in 3.2.D.d.i then gfp⊑

♯
∞ 𝐹 ♯� = ⊓♯∞𝛿∈O((JB;SK♯𝑒)𝛿 #♯ ⊺♯∞).

PRoof of lemma 3.12. #♯ is increasing for ⊑♯∞ so that, by lemma 3.11, 𝐹 ♯� is is increasing for ⊑♯∞.
Since D♯ is a decreasing chain-complete poset, the iterates ⟨𝑋𝛿 , 𝛿 ∈ O⟩ of 𝐹 ♯� from the supremum
⊺♯∞ are well-defined, so that, by the dual of proposition 2.4, gfp⊑♯∞ 𝐹 ♯� exists and is the limit of these
iterates.These iterates are𝑋 0 = ⊺♯∞,𝑋 1 = 𝐹 ♯�(𝑋 0) = JB;SK♯𝑒 #♯⊺♯∞. Assume that𝑋𝛿 = (JB;SK♯𝑒)𝛿 #♯⊺♯∞
by induction hypothesis so that𝑋𝛿+1 = JB;SK♯𝑒 #♯𝑋𝛿 = JB;SK♯𝑒 #♯(JB;SK♯𝑒)𝛿 #♯⊺♯∞ = (JB;SK♯𝑒)(𝛿+1)−1#♯⊺♯∞
by associativity, def. (8) of the powers, and def. of the iterates in prop. 2.4.𝑋𝛿+1 is of the form of the
recurrence hypothesis proving that it holds for all iterates. Passing to the limit, we have gfp⊆ 𝐹 ♯� =
⊓♯∞𝛿∈O𝑋

𝛿 = ⊓♯∞𝛿∈O((JB;SK♯𝑒)𝛿 #♯ ⊺♯∞). □

The abstract semantics of iteration is defined asJwhile (B) SK♯𝑒 ≜ (lfp⊑♯+ ⃗𝐹 ♯𝑒) #♯ (J¬BK♯𝑒 ⊔♯𝑒 JB;SK♯𝑏) Jwhile (B) SK♯𝑏 ≜ �♯+ (9)Jwhile (B) SK♯𝑏𝑖 ≜ (lfp⊑♯+ ⃗𝐹 ♯𝑒) #♯ JB;SK♯� Jwhile (B) SK♯𝑙𝑖 ≜ gfp⊑
♯
∞ 𝐹 ♯� (10)Jwhile (B) SK♯� ≜ Jwhile (B) SK♯𝑏𝑖 ⊔♯∞ Jwhile (B) SK♯𝑙𝑖 (11)

The least fixpoint lfp⊑♯+ ⃗𝐹 ♯𝑒 defines executions reaching the loop entry point after zero or finitely
many iterations. Then (9) defines the finite executions of the loop when, after 0 or more iterations,
the iteration condition B is false, or a break is executed in the body which exists the loop. By (9)
the break is from the closest enclosing loop (which existence must be checked syntactically). The
loop nontermination in (11) can happen either because, after zero or finitely many iterations, the
next execution of the iteration body never terminates (10), or results in (10) from infinitely many
finite iterations, as defined by the greatest fixpoint gfp⊑♯∞ 𝐹 ♯�, and obtained as the limit of iterations
of 𝐹 ♯� from ⊺♯∞. These fixpoints in (9) and (10) do exist by lemmas 3.6 and 3.11.

TheoRem 3.13. If D♯ is well-defined then for all S ∈ S, JSK♯𝑒 , JSK♯𝑏 , and JSK♯� are well-defined.
PRoof of theoRem 3.13. The proof is by structural induction, observing that all operators

hence their compositions are well-defined, including ⊔♯+, ⊔♯∞, and #♯. Lemmas 3.6 and 3.11 show
that the transformers ⃗𝐹 ♯𝑒 , 𝐹 ♯𝑒 , 𝐹 ♯� are increasingso that their fixpoints do exist. □

3.5 Algebraic Abstract Semantic Domain and Abstract Semantics
The components of the abstract semantics can be recorded in a triple with named components,
ordered componentwise by ⊑♯, as follows
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L♯ ≜ (𝑒 ∶ L♯+ × � ∶ L♯∞ ×𝑏𝑟 ∶ L♯+) (12)JSK♯ ≜ ⟨𝑒 ∶ JSK♯𝑒 , � ∶ JSK♯�, 𝑏𝑟 ∶ JSK♯𝑏⟩
If 𝑇 = ⟨𝑒 ∶ 𝐹, � ∶ 𝐼 , 𝑏𝑟 ∶ 𝐵⟩ ∈ L♯, then we select the individual components of the Cartesian product
𝑇 using the field selectors 𝑒 , 𝑏𝑟 , and �, as follows

𝑇+ = 𝐹 , 𝑇∞ = 𝐼 , and 𝑇𝑏𝑟 = 𝐵. (13)
By convention,

The shorthand 𝐹 denotes ⟨𝑒 ∶ 𝐹, � ∶ �♯∞, 𝑏𝑟 ∶ �♯+⟩ and similarly for other unique nonempty
components.

(14)

The abstract semantics JSK♯ ∈ L♯ records three components JSK♯𝑒 , JSK♯�, and JSK♯𝑏 of the definition of
the algebraic semantics of statements S in sect. 3.4.
Lemma 3.14. If D♯ is a well-defined chain-complete join semilattice (respectively complete lat-

tice) with sequential composition #♯ satisfying any one of the hypotheses 3.2.D.d then ⟨L♯, ⊑♯⟩ has the
same structure, componentwise.

PRoof of lemma 3.14. Lemma 3.14 follows from the fact that the Cartesian product of complete
lattices (respectively, a chain-complete join semilattice) is a complete lattice [31, p. 33] (resp., is a
chain-complete join semilattice [31, p. 55]). □

All semantic definitions are extended componentwise. For #♯ ∈ L♯ × L♯ → L♯, we define
⟨𝑜𝑘 ∶⟨𝑒 ∶𝐹1,�∶𝐼1⟩, 𝑏 ∶𝐵1⟩ #♯ ⟨𝑜𝑘 ∶⟨𝑒 ∶𝐹2,�∶𝐼2⟩, 𝑏 ∶𝐵2⟩ ≜ ⟨𝑜𝑘 ∶⟨𝑒 ∶𝐹1 #♯ 𝐹2,�∶𝐼1 ⊔♯∞ (𝐹1 #♯ 𝐼2)⟩, 𝑏 ∶𝐵1 ⊔♯+ (𝐹1 #♯ 𝐵2)⟩
so that, by (4), JS1;S2K♯ = JS1K♯ #♯ JS2K♯. (15)

RemaRK 3.15. The semantic domain of our algebraic semantics is much more refined than tra-
ditional ones such as [57] where, the computational and logical ordering are subset inclusion and,
following the denotational semantics [80] approach, “Nontermination has to be represented by a
fictitious “state at infinity” that can be “reached” only by a non-terminating program. Also, if the
fictitious state is in the image of a state, then that image is universal.” [56]. This can be achieved
by instantiation e.g. to a trace semantics followed by an abstraction (mapping infinite traces to the
“fictitious “state at infinity””).

Moreover, we do not specify the algebraic semantics by “laws” (or axioms) but in structural
fixpoint form, which is known to be equivalent, according to the generalization [25] of Peter Aczel
correspondance [2] between deductive/proof systems and fixpoint definitions.The “laws” for basic
statements are the definitions (3). The other “laws” for structured statements and iteration are
theorems following from the definition 3.2 of an abstract domain and fixpoint induction principles
[19] following from propositions 2.3 and 2.4. ∎

All semantics in [4, 18, 41] can be instantiated to the algebraic abstract semantics of sect. 3.5.
There are obviously others, such as symbolic execution [61] (extended to infinite behaviors). For
semantics defined by transformations such as compilation, the transformation is an instance of
the algebraic abstract semantics, but the semantics of the transformed program is not, because of
a different syntax, although it can certainly be also defined in an algebraic style.

The original definition of hyperproperties [14] was relative to a trace (or path) semantics JSK𝜋
which, as shown in the appendix , is an instance of the algebraic abstract semantics JSK♯ where the
domain D♯+ is the complete lattice D𝜋

+ of sets of finite traces and the domain D♯∞ is the complete
latticeD𝜋

∞ of sets of infinite traceswhere traces account for the successive values taken by variables
during execution, as recorded in states. All operators preserve arbitrary joins. For lower continuity,
see counterexample 4.1 for infinite traces and the following lower continuity proof for finite traces.
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4 Trace Semantics
4.1 The Trace Semantics Domain
4.1.1 States. States 𝜎 ∈ Σ ≜ X → V (also called environments) map variables x ∈ X to their values
𝜎(x) in V including integers, Z ⊆ V.

4.1.2 Finite Traces. We let 𝜋 = 𝜋0𝜋1 . . . 𝜋𝑛−1 ∈ Σ𝑛 ≜ [0, 𝑛[ → Σ be the nonempty finite traces of
length ∣𝜋 ∣ = 𝑛, 𝑛 ⩾ 1 over states 𝜋𝑖 ∈ Σ, 𝑖 ∈ [0, 𝑛[, Σ+ ≜ ⋃𝑛⩾1 Σ

𝑛 . The empty trace 𝜖 is in Σ0 = {𝜖}.
Σ∗ ≜ Σ+ ∪ Σ0 is the set of possibly empty traces. A set of finite traces defines a property of finite
executions in extension.

⟨L𝜋+, ⊑𝜋+, �𝜋+, ⊺𝜋+, ⊔𝜋+, ⊓𝜋+⟩ ≜ ⟨℘(Σ+), ⊆, ∅, Σ+, ∪, ∩⟩ (16)

4.1.3 Infinite Traces. The infinite traces 𝜋 = 𝜋0𝜋1 . . . 𝜋𝑛 . . . ∈ Σ∞ ≜ [0,∞[→ Σ have length ∣𝜋 ∣ =∞
over states 𝜋𝑖 ∈ Σ, 𝑖 ∈ [0,∞[. We let Σ+∞ ≜ Σ+ ∪ Σ∞ and Σ∗∞ ≜ Σ∗ ∪ Σ∞.
A trace 𝜎𝜋 ∈ Σ+∞ has first state 𝜎 ∈ Σ. A trace of the form 𝜋𝜎 is necessarily finite with last state

𝜎 and 𝜋 ∈ Σ∗. If 0 ⩽ 𝑖 ⩽ 𝑗 < 𝑛 and 𝜋 ∈ Σ𝑛 then 𝜋[𝑖, 𝑗] ≜ 𝜋𝑖𝜋𝑖+1 . . . 𝜋 𝑗 is the subtrace of 𝜋 stating
at 𝑖 and ending at 𝑗 . A set of infinite traces defines a property of nonterminating executions in
extension.

⟨L𝜋∞, ⊑𝜋∞, �𝜋∞, ⊺𝜋∞, ⊓♯∞, ⊔♯∞⟩ ≜ ⟨℘(Σ∞), ⊆, ∅, Σ∞, ∩, ∪⟩ (17)

Notice that gfp⊑
𝜋
∞ 𝐹𝜋� = gfp

⊆ 𝐹𝜋� so that infinite execution traces are defined co-inductively.
4.1.4 Traces Operators.

init𝜋 ≜ Σ1 test𝜋 JBK ≜ {𝜎 ∣ 𝜎 ∈ BJBK}
assign𝜋 Jx, AK ≜ {𝜎𝜎[x← AJAK𝜎] ∈ Σ2 ∣ 𝜎 ∈ Σ} break𝜋 ≜ {𝜎 break-to(𝜎) ∣ 𝜎 ∈ Σ} (18)

rassign𝜋 Jx, 𝑎,𝑏K ≜ {𝜎𝜎[x← 𝑖] ∈ Σ2 ∣ 𝑎 − 1 < 𝑖 < 𝑏 + 1} skip𝜋 ≜ {𝜎𝜎 ∣ 𝜎 ∈ Σ}

See [20, page 43] for a definition of break-to (exiting the enclosing loop with variables unchanged).
We deliberately leave unspecified the syntax and semantics of arithmetic expressionsAJAK ∈ Σ → V
and Boolean expressions BJBK ∈ ℘(Σ) ≃ Σ → {true, false}. The only assumption on expressions is
the absence of side effects.

We let #𝜋 be the concatenation of sets of traces 𝑇 ∈ ℘(Σ∗∞) and 𝑇 ′ ∈ ℘(Σ∗∞) such that
𝑇 #𝜋 𝑇 ′ ≜ {𝜋 ′ ∈ 𝑇 ′ ∣ 𝜖 ∈ 𝑇} ∪ {𝜋 ∈ 𝑇 ∣ 𝜖 ∈ 𝑇 ′} ∪ (𝑇 ∩ Σ∞) ∪ {𝜋𝜎𝜋 ′ ∣ 𝜋𝜎 ∈ 𝑇 ∧ 𝜎𝜋 ′ ∈ 𝑇 ′}

The powers of a set 𝑇 ∈ ℘(Σ∗∞) of traces are {𝜖}𝑛 = {𝜖} and otherwise 𝑇 0 = Σ1and 𝑇𝑛+1 = 𝑇𝑛 #𝑇
= 𝑇 #𝑇𝑛 for all 𝑛 ⩾ 0. We denote 𝑇∞ ∈ ℘(Σ∞) the set of infinite traces obtained by concatenation
of traces of 𝑇 . Notice that # is right increasing but not right lower continuous on infinite traces
℘(Σ∞).

Counter example 4.1. Let 𝑟 = {𝜎1, 𝜎1𝜎2, . . . , 𝜎1 . . . 𝜎𝑛, . . .} be the prefix closure of the infinite trace
𝜎1𝜎2𝜎3 . . .. Define𝑋𝑖 = {𝜎𝑖𝜎𝑖+1𝜎𝑖+2 . . . , 𝜎𝑖+1𝜎𝑖+2 . . . , 𝜎𝑖+2 . . . , , . . .} be the suffix closure of the infinite
trace 𝜎𝑖𝜎𝑖+1𝜎𝑖+2𝜎𝑖+3 . . . so that ⟨𝑋𝑖 , 𝑖 ∈ N⟩ is a decreasing chain. Then 𝑟 #𝜋 ⋂𝑖∈N𝑋𝑖 = 𝑟 #𝜋 ∅ = ∅,
while ⋂𝑖∈N(𝑟 #𝜋 𝑋𝑖) = ⋂𝑖∈N{𝜎1𝜎2𝜎3 . . .} = {𝜎1𝜎2𝜎3 . . .}. ∎

However, # is right lower continuous on finite traces ℘(Σ+).

PRoof of Right loweR continuity of # foR finite tRaces. Let ⟨𝑋 𝑖 ∈ ℘(Σ+), 𝑖 ∈ N⟩ be a ⊆-
decreasing chain of sets of finite traces. We must prove that 𝑟 #𝜋 (⋂𝑖∈N𝑋

𝑖) = ⋂𝑖∈N(𝑟 #𝜋 𝑋 𝑖). The
inclusion ⊆ is trivial. Conversely, let 𝜋 ∈ ⋂𝑖∈N(𝑟 #𝜋 𝑋 𝑖) ⊆ ℘(Σ+) then there exists 𝜋0 ∈ 𝑋 0, 𝜋1 ∈ 𝑋 1,
…, 𝜋𝑖 ∈ 𝑋 𝑖 , … and 𝜋0, 𝜋1, …, 𝜋𝑖 , … ∈ 𝑟 such that 𝜋0 ⩽𝑠 𝜋1 ⩽𝑠 . . . ⩽𝑠 𝜋𝑖 ⩽𝑠 . . . and 𝜋 = 𝜋0Ì. 𝜋0 = 𝜋1Ì. 𝜋1 =
… = 𝜋𝑖Ì. 𝜋𝑖 = … where ⩽𝑠 is the suffix ordering on traces and Ì. is trace concatenation. The length
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of the ⟨𝜋𝑖 , 𝑖 ∈ N⟩ is ultimately stationary at some 𝑘 ∈ N. This means that there exists 𝜋𝑘 such that
∀𝑖 ∈ N . 𝜋𝑘 ∈ 𝑋 𝑖 . As a result, 𝜋 = 𝜋𝑘Ì. 𝜋𝑘 ∈ 𝑟 #𝜋 (⋂𝑖∈N𝑋𝑖). □

4.2 Structural Trace Semantics
lfp⊑

𝜋
+ 𝐹𝜋𝑒 = lfp

⊆ 𝐹𝜋𝑒 is the set of finite traces reaching the entry of the iteration while (B) S after
zero or more terminating body iterations .

Lemma 4.2. lfp⊆ 𝐹𝜋𝑒 = ⋃𝑛∈N(JB #𝜋 SK𝜋𝑒 )𝑛 .
PRoof of lemma 4.2. An instance of lemma 3.8 for D𝜋

+. □

gfp⊑
𝜋
∞ 𝐹𝜋� = gfp

⊆ 𝐹𝜋� is the set of infinite traces of the iteration while (B) S after infinitely many
terminating body iterations .

Lemma 4.3. gfp⊆ 𝐹𝜋� = (JB #𝜋 SK𝜋𝑒 )∞.

PRoof of lemma 4.3. An instance of lemma 3.12 for D𝜋
∞. Moreover,⊓♯∞𝑛∈N((JB;SK♯𝑒)𝑛 #♯�♯∞) be-

comes⋂𝑛∈N((JB;SK𝜋𝑒 )𝑛#𝜋Σ∞) = (JB #𝜋 SK𝜋𝑒 )∞ since all traces in (JB #𝜋 SK𝜋𝑒 )∞ belong to (JB #𝜋 SK𝜋𝑒 )𝑛#𝜋
Σ∞, 𝑛 ⩾ 0while any trace not of that form must be 𝜋𝜋 ′𝜋 ′′ with 𝜋 ∈ (JB #𝜋 SK𝜋𝑒 )𝑛 , 𝜋 ′ /∈ JB #𝜋 SK𝜋𝑒 , and
𝜋 ′′ ∈ Σ∞ for some 𝑛 ∈ N and so does not belong to 𝑋𝑛+2 hence not to the intersection. □

Example 4.4. Consider S ≜ while (x!=2) if (x==1) then break else x=x+2. It’s trace seman-
tics isJSK𝜋𝑒 = {x ∶ −2𝑘 ; x ∶ −2𝑘 + 2; . . . ; x ∶ 0; x ∶ 2 ∣ 𝑘 ⩾ −1} ∪ {x ∶ −2𝑘 + 1; x ∶ −2𝑘 + 3; . . . ; x ∶ 1 ∣ 𝑘 ⩾ 0}JSK𝜋𝑏 = ∅ (19)JSK𝜋� = {x ∶ 𝑛; . . . ; x ∶ 𝑛 + 2𝑘 ; . . . ∣ 𝑛 > 2} . ∎

PRoof of (19). We have J(x!=2) #𝜋 if (x==1) then break else x=x+2K = ⟨𝑜𝑘 ∶ {x ∶ 𝑛; x ∶ 𝑛 + 2 ∣
𝑛 ∉ {1, 2}}, 𝑏𝑟 ∶ {x ∶ 1}⟩ so that 𝐹𝜋𝑒 (𝑋) = {x ∶ 𝑛 ∣ 𝑛 ∈ Z}∪ {x ∶ 𝑛; x ∶ 𝑛 + 2;𝜋 ∣ 𝑛 ∉ {1, 2}∧ x ∶ 𝑛 + 2;𝜋 ∈
𝑋+} for the finite traces reaching the loop head.

The iterates are 𝐹𝜋𝑒
0 = ∅, 𝐹𝜋𝑒

1 = {x ∶ 𝑛 ∣ 𝑛 ∈ Z}, 𝐹𝜋𝑒
2 = {x ∶ 𝑛 ∣ 𝑛 ∈ Z} ∪ {x ∶ 𝑛; x ∶ 𝑛 + 2 ∣ 𝑛 ∉ {1, 2}},

𝐹𝜋𝑒
3 = {x ∶ 𝑛 ∣ 𝑛 ∈ Z} ∪ {x ∶ 𝑛; x ∶ 𝑛 + 2 ∣ 𝑛 ∉ {1, 2}} ∪ {x ∶ 𝑛; x ∶ 𝑛 + 2; x ∶ 𝑛 + 4 ∣ 𝑛 ∉ {−1, 0, 1, 2}}, so

that 𝐹𝜋𝑒
𝑘 = {x ∶ 𝑛 ∣ 𝑛 ∈ Z} ∪⋃𝑘−1

𝑗=1 {x ∶ 𝑛; . . . ; x ∶ 𝑛 + 2 𝑗 ; ∣ 𝑛 ∉ [3 − 2 𝑗, 2]} by induction hypothesis. For
the induction step

𝐹𝜋𝑒
𝑘+1

= 𝐹𝜋𝑒 (𝐹𝜋𝑒
𝑘)

= {x ∶ 𝑛 ∣ 𝑛 ∈ Z} ∪ {x ∶ 𝑛; x ∶ 𝑛 + 2;𝜋 ∣ 𝑛 ∉ {1, 2} ∧ x ∶ 𝑛 + 2;𝜋 ∈ 𝐹𝜋𝑒
𝑘} Hdef. 𝐹𝜋𝑒 I

= {x ∶ 𝑛 ∣ 𝑛 ∈ Z} ∪ {x ∶ 𝑛; x ∶ 𝑛 + 2;𝜋 ∣ 𝑛 ∉ {1, 2} ∧ x ∶ 𝑛 + 2;𝜋 ∈ {x ∶ 𝑛 ∣ 𝑛 ∈ Z} ∪
𝑘−1
⋃
𝑗=1
{x ∶ 𝑛; . . . ; x ∶

𝑛 + 2 𝑗 ∣ 𝑛 ∉ [3 − 2 𝑗, 2]}} Hinduction hypothesisI
= {x ∶ 𝑛 ∣ 𝑛 ∈ Z}∪{x ∶ 𝑛; x ∶ 𝑛 + 2;𝜋 ∣ 𝑛 ∉ {1, 2}∧ x ∶ 𝑛 + 2;𝜋 ∈ {x ∶ 𝑛 ∣ 𝑛 ∈ Z}}∪

𝑘−1
⋃
𝑗=1
{x ∶ 𝑛; x ∶ 𝑛 + 2;𝜋 ∣

x ∶ 𝑛 + 2;𝜋 ∈ {x ∶ 𝑛; . . . ; x ∶ 𝑛 + 2 𝑗 ∣ 𝑛 ∉ [3 − 2 𝑗, 2]}} Hdef. ∪I
= {x ∶ 𝑛 ∣ 𝑛 ∈ Z} ∪ {x ∶ 𝑛; x ∶ 𝑛 + 2 ∣ 𝑛 ∉ {1, 2}} ∪

𝑘−1
⋃
𝑗=1
{x ∶ 𝑛; x ∶ 𝑛 + 2;𝜋 ∣ x ∶ 𝑛 + 2;𝜋 ∈ {x ∶ 𝑛 + 2; . . . ; x ∶

𝑛 + 2 + 2 𝑗 ∣ 𝑛 + 2 ∉ [3 − 2 𝑗, 2]}} Hsimplification and renamingI
= {x ∶ 𝑛 ∣ 𝑛 ∈ Z} ∪ {x ∶ 𝑛; x ∶ 𝑛 + 2 ∣ 𝑛 ∉ {1, 2}} ∪

𝑘−1
⋃
𝑗=1
{x ∶ 𝑛; x ∶ 𝑛 + 2; x ∶ 𝑛 + 4; . . . ; x ∶ 𝑛 + 2( 𝑗 + 1) ∣ 𝑛 ∉

[1 − 2 𝑗, 0]}
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Hdef. ∈I
= {x ∶ 𝑛 ∣ 𝑛 ∈ Z} ∪ {x ∶ 𝑛; x ∶ 𝑛 + 2 ∣ 𝑛 ∉ {1, 2}} ∪

𝑘

⋃
𝑗 ′=2
{x ∶ 𝑛; x ∶ 𝑛 + 2; x ∶ 𝑛 + 4; . . . ; x ∶ 𝑛 + 2 𝑗 ′ ∣ 𝑛 ∉

[1 − 2( 𝑗 ′ − 1), 0]} Hdef. 𝑗 = 𝑗 ′ − 1 so 𝑗 ′ = 𝑗 + 1 I
= {x ∶ 𝑛 ∣ 𝑛 ∈ Z} ∪

𝑘

⋃
𝑗 ′=1
{x ∶ 𝑛; x ∶ 𝑛 + 2; . . . ; x ∶ 𝑛 + 2 𝑗 ′ ∣ 𝑛 ∉ [3 − 2 𝑗 ′, 2]}Hincorporating the term {x ∶ 𝑛; x ∶ 𝑛 + 2 ∣ 𝑛 ∉ {1, 2}} in the join for 𝑗 ′ = 1I

This shows that all iterates of 𝐹𝜋𝑒 have the form 𝐹𝜋𝑒
𝑘 . Since 𝐹𝜋𝑒 preserves joins, we have, by Tarski’s

fixpoint iteration theorem [81, page 305], that
lfp⊆ 𝐹𝜋𝑒

= ⋃
𝑘∈N

𝐹𝜋𝑒
𝑘

= ⋃
𝑘∈N
({x ∶ 𝑛 ∣ 𝑛 ∈ Z} ∪

𝑘−1
⋃
𝑗=1
{x ∶ 𝑛; . . . ; x ∶ 𝑛 + 2 𝑗 ; ∣ 𝑛 ∉ [3 − 2 𝑗, 2]})

= {x ∶ 𝑛 ∣ 𝑛 ∈ Z} ∪⋃
𝑗⩾1
{x ∶ 𝑛; . . . ; x ∶ 𝑛 + 2 𝑗 ; ∣ 𝑛 ∉ [3 − 2 𝑗, 2]}

= ⋃
𝑗∈N
{x ∶ 𝑛; . . . ; x ∶ 𝑛 + 2 𝑗 ; ∣ 𝑛 ∉ [3 − 2 𝑗, 2]}

Hsince for 𝑗 = 0, we have 𝑛 ∉ [3 − 2 𝑗, 2] which is 𝑛 ∉ [3, 2] that is 𝑛 ∉ ∅ or 𝑛 ∈ Z with
x ∶ 𝑛; . . . ; x ∶ 𝑛 + 2 𝑗 = x ∶ 𝑛; . . . ; x ∶ 𝑛 = x ∶ 𝑛I

For the infinite traces, we have
𝐹�(𝑋), 𝑋 ∈ ℘(Σ+∞)

= JB #𝜋 SK𝜋𝑒 #𝜋 𝑋∞
= {x ∶ 𝑛; x ∶ 𝑛 + 2;𝜋 ∣ 𝑛 ∉ {1, 2} ∧ x ∶ 𝑛 + 2;𝜋 ∈ 𝑋∞}

The iterates of 𝐹� are 𝐹�
0 = Σ∞, 𝐹�1 = {x ∶ 𝑛; x ∶ 𝑛 + 2;𝜋 ∣ 𝑛 ∉ {1, 2} ∧ x ∶ 𝑛 + 2;𝜋 ∈ Σ∞} =

{x ∶ 𝑛; x ∶ 𝑛 + 2;𝜋 ∣ 𝑛 ∉ {1, 2} ∧ 𝜋 ∈ Σ∞}, 𝐹�2 = {x ∶ 𝑛; x ∶ 𝑛 + 2;𝜋 ∣ 𝑛 ∉ {1, 2} ∧ x ∶ 𝑛 + 2;𝜋 ∈ {x ∶ 𝑛; x ∶
𝑛 + 2;𝜋 ∣ 𝑛 ∉ {1, 2} ∧ 𝜋 ∈ Σ∞}} = {x ∶ 𝑛; x ∶ 𝑛 + 2;𝜋 ∣ 𝑛 ∉ {1, 2} ∧ x ∶ 𝑛 + 2;𝜋 ∈ {x ∶ 𝑛 + 2; x ∶ 𝑛 + 4;𝜋 ′ ∣
𝑛 + 2 ∉ {1, 2} ∧ 𝜋 ′ ∈ Σ∞}} = {x ∶ 𝑛; x ∶ 𝑛 + 2; x ∶ 𝑛 + 4;𝜋 ′ ∣ 𝑛 ∉ {−1, 0, 1, 2} ∧ 𝜋 ′ ∈ Σ∞} which leads to
the induction hypothesis 𝐹�𝑘 = {x ∶ 𝑛; . . . ; x ∶ 𝑛 + 2𝑘 ;𝜋 ∣ 𝑛 ∉ [3− 2𝑘, 2]∧𝜋 ∈ Σ∞}. For the induction
step,

𝐹�
𝑘+1

= 𝐹�(𝐹�𝑘)
= {x ∶ 𝑛; x ∶ 𝑛 + 2;𝜋 ∣ 𝑛 ∉ {1, 2} ∧ x ∶ 𝑛 + 2;𝜋 ∈ {x ∶ 𝑛; . . . ; x ∶ 𝑛 + 2𝑘 ;𝜋 ∣ 𝑛 ∉ [3 − 2𝑘, 2] ∧ 𝜋 ∈ Σ∞}}
= {x ∶ 𝑛; x ∶ 𝑛+ 2;𝜋 ∣ 𝑛 ∉ {1, 2}∧x ∶ 𝑛+ 2;𝜋 ∈ {x ∶ 𝑛+ 2; . . . ; x ∶ 𝑛+ 2+ 2𝑘 ;𝜋 ′ ∣ 𝑛+ 2 ∉ [1− 2𝑘, 0]∧𝜋 ′ ∈

Σ∞}}
= {x ∶ 𝑛; x ∶ 𝑛 + 2; . . . ; x ∶ 𝑛 + 2 + 2𝑘 ;𝜋 ′ ∣ 𝑛 ∉ {1, 2} ∧ 𝑛 ∉ [1 − 2𝑘, 0] ∧ 𝜋 ′ ∈ Σ∞}
= {x ∶ 𝑛; . . . ; x ∶ 𝑛 + 2(𝑘 + 1);𝜋 ′ ∣ 𝑛 ∉ [3 − 2(𝑘 + 1), 2] ∧ 𝜋 ′ ∈ Σ∞}

This shows that all iterates of 𝐹� have the form 𝐹�
𝑘 . Since 𝐹� preserves meets, we have, by the

dual of Tarski’s fixpoint iteration theorem [81, page 305], that
gfp⊆ 𝐹�

= ⋂
𝑘∈N

𝐹�
𝑘
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= ⋂
𝑘∈N
{x ∶ 𝑛; . . . ; x ∶ 𝑛 + 2𝑘 ;𝜋 ∣ 𝑛 ∉ [3 − 2𝑘, 2] ∧ 𝜋 ∈ Σ∞}

= {x ∶ 𝑛; . . . ; x ∶ 𝑛 + 2𝑘 ; . . . ∣ 𝑛 > 2}

since all infinite traces of the form x ∶ 𝑛; . . . ; x ∶ 𝑛 + 2𝑘 ; . . . with 𝑛 > 2 belong to all iterates 𝐹�𝑘

hence to their intersection while, conversely, all other traces start with x ∶ 𝑛; . . . and 𝑛 ⩽ 2 so do
not belong to the 𝐹�𝑘 , 𝑘 ⩾ 1 so don’t belong to their intersection, or else, start with 𝑛 > 2, but have
the form x ∶ 𝑛; . . . ; x ∶ 𝑛 + 2𝑘 + 1; . . . and so do not belong to 𝐹�

𝑘 , hence to the intersection.
The trace semantics of S ≜ while (x!=2) if (x==1) then break else x=x+2 is thereforeJSK𝜋𝑒

≜ lfp⊆ 𝐹𝜋𝑒 #𝜋 (J¬(x!=2) K ∪ J(x!=2) #𝜋 if (x==1) then break else x=x+2K𝜋𝑏 ) Hby (9)I
= lfp⊆ 𝐹𝜋𝑒 #𝜋 ({x ∶ 2; x ∶ 2} ∪ {x ∶ 1})HJ¬(x!=2)K = {x ∶ 2; x ∶ 2} and J(x!=2) #𝜋 if (x==1) then break else x=x+2K = ⟨𝑜𝑘 ∶ {x ∶

𝑛; x ∶ 𝑛 + 2 ∣ 𝑛 ∉ {1, 2}}, 𝑏𝑟 ∶ {x ∶ 1}⟩I
= ⋃

𝑗∈N
{x ∶ 𝑛; . . . ; x ∶ 𝑛 + 2 𝑗 ; ∣ 𝑛 ∉ [3 − 2 𝑗, 2]} #𝜋 ({x ∶ 2; x ∶ 2, x ∶ 1})

= {x ∶ −2𝑘 ; x ∶ −2𝑘 + 2; . . . ; x ∶ 0; x ∶ 2 ∣ 𝑘 ⩾ −1} ∪ {x ∶ −2𝑘 + 1; x ∶ −2𝑘 + 3; . . . ; x ∶ 1 ∣ 𝑘 ⩾ 0}
since, by definition of #𝜋 , we have only two possible cases.

● Either 𝑛 + 2 𝑗 = 2, 𝑗 ∈ N, 𝑛 ∉ [3 − 2 𝑗, 2] so 𝑛 = −2𝑘 with 𝑗 = 1 + 𝑘 ⩾ 0 that is 𝑘 ⩾ −1 which
implies 𝑛 ∉ [3 − 2 𝑗, 2] = [3 − (2 − 𝑛), 2] = [𝑛 + 1, 2];

● Or 𝑛 + 2 𝑗 = 1, 𝑗 ∈ N, 𝑛 ∉ [3 − 2 𝑗, 2] so 𝑛 = −2𝑘 + 1 with 𝑗 = 𝑘 ⩾ 0 which implies 𝑛 ∉ [3 − 2 𝑗, 2]
since 𝑛 = −2𝑘 + 1 < 3 − 2𝑘 .

JSK𝜋𝑏 ≜ ∅ Hby (18)IJSK𝜋�
≜ lfp⊆ 𝐹𝜋𝑒 #𝜋 J(x!=2) #𝜋 if (x==1) then break else x=x+2K𝜋� ∪ gfp⊆ 𝐹𝜋� Hby (11)I
= gfp⊆ 𝐹𝜋� H(x!=2) #𝜋 if (x==1) then break else x=x+2 always terminatesI
= {x ∶ 𝑛; . . . ; x ∶ 𝑛 + 2𝑘 ; . . . ∣ 𝑛 > 2} □

RemaRK 4.5. We follow [24] by using least fixpoints for finite traces and greatest fixpoints for
infinite traces. We could, equivalently, definite finite traces by a greatest fixpoint as in [64], since
the least and greatest fixpoints are equal lfp⊆ 𝐹𝜋𝑒 = gfp

⊆ 𝐹𝜋𝑒 , which would look more uniform. How-
ever, the induction principles for least and greatest fixpoints are not the same. This would require
proofs relative to finite executions to be done coinductively instead of the usual inductive reason-
ings by induction on the length of traces. A related problem is that the abstraction theorems for
least and greatest fixpoints are not the same [20, Chapter 18]. The abstraction of a least fixpoint is,
in general, more precise than that of a greatest one. So if finite traces had been defined by a great-
est fixpoint, it would be necessary to prove that it is equal to the least fixpoint before applying the
appropriate abstractions. Then the greatest fixpoint characterization of the finite traces becomes
useless. Least and greatest fixpoints can also be merged using the bi-inductive order of [24] (which
abstractions yield Egli-Milner and Scott order [18]). ∎

4.3 Bi-inductive Trace Semantics
The trace semantics instantiation of (12) isJSK𝜋 ≜ ⟨𝑒 ∶ JSK𝜋𝑒 , � ∶ JSK𝜋�, 𝑏𝑟 ∶ JSK𝜋𝑏 ⟩ (20)
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belonging to the Cartesian product ∶ (𝑒 ∶ ℘(Σ+)×� ∶ ℘(Σ∞)×𝑏𝑟 ∶ ℘(Σ+)) with named selectors 𝑒 ,
�, and 𝑏𝑟 . Since JSK𝜋𝑒 and JSK𝜋� are disjoint they can be put together as follows.JSK𝜋 ≜ ⟨𝑜𝑘 ∶ JSK𝜋𝑒 ∪ JSK𝜋�, 𝑏𝑟 ∶ JSK𝜋𝑏 ⟩ (21)
belonging to the Cartesian product 𝑜𝑘 ∶ ℘(Σ+∞)×𝑏𝑟 ∶ ℘(Σ+) with named selectors 𝑜𝑘 and 𝑏𝑟 . We
can recover JSK𝜋𝑒 = (JSK𝜋𝑜𝑘) ∩ Σ+ and JSK𝜋� = (JSK𝜋𝑜𝑘) ∩ Σ∞. Moreover, if 𝑇 = ⟨𝑜𝑘 ∶ 𝑄, 𝑏𝑟 ∶ 𝐵⟩ ∈ 𝑜𝑘 ∶
℘(Σ+∞) ×𝑏𝑟 ∶ ℘(Σ+), then we define the shorthands

𝑇𝑜𝑘 = 𝑄 , 𝑇+ = 𝑄 ∩ Σ+, 𝑇∞ = 𝑄 ∩ Σ∞, and 𝑇𝑏𝑟 = 𝐵. (22)

Then the pairwise order on (𝑒 ∶ ℘(Σ+)×� ∶ ℘(Σ∞)) becomes the computational ordering of [24, 26]
defined on JSK𝜋𝑒 ∪ JSK𝜋� as 𝑋 ⊑ 𝑌 ≜ (𝑋 ∩ Σ+ ⊆ 𝑌 ∩ Σ+) ∧ (𝑋 ∩ Σ∞ ⊇ 𝑌 ∩ Σ∞).
Notice that the algebraic semantics can be instantiated to semantics of probabilistic and quan-

tum programs. In this cases the hyperlogics developed in this paper, which differentiate between
computational and approximation orders, apply to probabilistic programs [33, 79] and to quantum
programs [39, 84, 85]

5 Structural Fixpoint Natural Relational Semantics
The structural fixpoint natural relational semantics of [21, sect. II.1] is an instance of the algebraic
semantics of sect. 3. Given states Σ, � /∈ Σ denoting nontermination, and Σ� ≜ Σ∪ {�}, the finitary
domain L𝜚+ ≜ ⟨℘(Σ×Σ), ⊆⟩ in 3.2.A and the infinitary domain L𝜚∞ ≜ ⟨℘(Σ×{�}), ⊆⟩ in 3.2.C are both
complete lattices for set inclusion ⊆ so �𝜚+ = ∅. We let 1 be the identity function. The primitives
3.2.B are well-defined.

assign𝜚 Jx, AK ≜ {⟨𝜎, 𝜎[x← AJAK𝜎]⟩ ∣ 𝜎 ∈ Σ} init𝜚 ≜ 1

rassign𝜚 Jx, 𝑎,𝑏K ≜ {⟨𝜎, 𝜎[x← 𝑖]⟩ ∣ 𝜎 ∈ Σ ∧ 𝑎 − 1 < 𝑖 < 𝑏 + 1} break𝜚 ≜ 1 (23)
test𝜚 JBK ≜ {⟨𝜎, 𝜎⟩ ∣ 𝜎 ∈ BJBK} skip𝜚 ≜ 1

𝑟 #𝜚 𝑟 ′ ≜ {⟨𝑥, �⟩ ∣ ⟨𝑥, �⟩ ∈ 𝑟} ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑧 ∈ Σ . ⟨𝑥, 𝑧⟩ ∈ 𝑟 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝑟 ′}#𝜚 left preserves arbitrary joins ∪ on ℘(Σ × Σ�). #𝜚 right preserves non empty joins ∪ on
℘(Σ× Σ�). #𝜚 is right increasing (but not necessarily lower continuous for the finitary and
infinitary domains).

(24)

PRoof of (24).
Let ⟨𝑋𝑖 , 𝑖 ∈ Δ⟩ be a possibly empty family of elements of ℘(Σ × Σ�).
(⋃
𝑖∈Δ

𝑋𝑖) #𝜚 𝑟 ′
= ((⋃

𝑖∈Δ
𝑋𝑖 ∩ ℘(Σ × Σ)) ∪ (⋃

𝑖∈Δ
𝑋𝑖 ∩ ℘(Σ × {�}))) #𝜚 𝑟 ′ Hdef. ℘(Σ × Σ�)I

= {⟨𝑥, �⟩ ∣ ⟨𝑥, �⟩ ∈ (⋃
𝑖∈Δ

𝑋𝑖 ∩ ℘(Σ × {�}))} ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑧 ∈ Σ . ⟨𝑥, 𝑧⟩ ∈ (⋃
𝑖∈Δ

𝑋𝑖 ∩ ℘(Σ × Σ)) ∧ ⟨𝑧,

𝑦⟩ ∈ 𝑟 ′} Hdef. #𝜚 , ∀𝑥 ∈ Σ . ⟨𝑥, �⟩ /∈ Σ × Σ, and ∀𝑧 ∈ Σ . ⟨𝑥, 𝑧⟩ /∈ Σ × {�} since � /∈ ΣI
= ⋃

𝑖∈Δ
({⟨𝑥, �⟩ ∣ ⟨𝑥, �⟩ ∈ (𝑋𝑖 ∩℘(Σ×{�}))}∪{⟨𝑥, 𝑦⟩ ∣ ∃𝑧 ∈ Σ . ⟨𝑥, 𝑧⟩ ∈ (𝑋𝑖 ∩℘(Σ×Σ))∧⟨𝑧, 𝑦⟩ ∈ 𝑟 ′})Hdef. ∪I

= ⋃
𝑖∈Δ
({⟨𝑥, �⟩ ∣ ⟨𝑥, �⟩ ∈ (𝑋𝑖 ∩ ℘(Σ × Σ)) ∪ (𝑋𝑖 ∩ ℘(Σ × {�}))} ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑧 ∈ Σ . ⟨𝑥, 𝑧⟩ ∈

(𝑋𝑖 ∩ ℘(Σ × Σ)) ∪ (⋃
𝑖∈Δ

𝑋𝑖 ∩ ℘(Σ × {�})) ∧ ⟨𝑧, 𝑦⟩ ∈ 𝑟 ′}) H� /∈ ΣI
= ⋃

𝑖∈Δ
({⟨𝑥, �⟩ ∣ ⟨𝑥, �⟩ ∈ 𝑋𝑖} ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑧 ∈ Σ . ⟨𝑥, 𝑧⟩ ∈ 𝑋𝑖 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝑟 ′}) Hdef. ℘(Σ × Σ�)I

= ⋃
𝑖∈Δ
(𝑋𝑖 #𝜚 𝑟 ′) Hdef. #𝜚 , Q.E.D.I
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Notice that if Δ = ∅ then ∅ #𝜚 𝑟 ′ = ∅.
Let ⟨𝑋𝑖 , 𝑖 ∈ Δ⟩ be a nonempty family of elements of ℘(Σ × Σ�) ∖ {∅}.

𝑟 #𝜚 (⋃
𝑖∈Δ

𝑋𝑖)

= {⟨𝑥, �⟩ ∣ ⟨𝑥, �⟩ ∈ 𝑟} ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑧 ∈ Σ . ⟨𝑥, 𝑧⟩ ∈ 𝑟 ∧ ⟨𝑧, 𝑦⟩ ∈ (⋃
𝑖∈Δ

𝑋𝑖)} Hdef. #𝜚I
= ⋃

𝑖∈Δ
({⟨𝑥, �⟩ ∣ ⟨𝑥, �⟩ ∈ 𝑟} ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑧 ∈ Σ . ⟨𝑥, 𝑧⟩ ∈ 𝑟 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝑋𝑖}) Hdef. ∪I

= ⋃
𝑖∈Δ
(𝑟 #𝜚 𝑋𝑖) Hdef. #𝜚 , Q.E.D.I

If Δ = ∅ then 𝑟 #𝜚 (⋃𝑖∈Δ𝑋𝑖) = 𝑟 #𝜚 ∅ = {⟨𝑥, �⟩ ∣ ⟨𝑥, �⟩ ∈ 𝑟} which, in general is not empty, while
⋃𝑖∈Δ(𝑟 #𝜚 𝑋𝑖) = ∅.

The following counter example shows that if ⟨𝑋 𝑖 ∈ ℘(Σ × Σ), 𝑖 ∈ N⟩ is a decreasing chain and
𝑟 ∈ ℘(Σ × Σ), we may have 𝑟 #𝜚 (⋂𝑖∈N𝑋

𝑖) ≠ ⋂𝑖∈N(𝑟 #𝜚 𝑋 𝑖).
Take 𝑟 ≜ {𝜎}× Σ and 𝑋 𝑖 = {⟨𝜎 𝑗 , 𝜎⟩ ∣ 𝑗 ⩾ 𝑖} (that is 𝑋 0 = {⟨𝜎0, 𝜎⟩, ⟨𝜎1, 𝜎⟩, ⟨𝜎2, 𝜎⟩, . . .}, 𝑋 1 = {⟨𝜎1,

𝜎⟩, ⟨𝜎2, 𝜎⟩, . . .}, 𝑋 2 = {⟨𝜎2, 𝜎⟩, . . .}, etc). Then 𝑟 #𝜚 (⋂𝑖∈N𝑋
𝑖) = 𝑟 #𝜚 ∅ = ∅ while ⋂𝑖∈N(𝑟 #𝜚 𝑋 𝑖) =

⋂𝑖∈N{⟨𝜎, 𝜎⟩} = {⟨𝜎, 𝜎⟩}. □

Example 5.1. Define S1 ≜ while (y!=0) y=y-1; with relational semanticsJS1K𝜚 = ⟨𝑒 ∶ {⟨𝜎, 𝜎[y← 0]⟩ ∣ 𝜎(y) ⩾ 0}, � ∶ {⟨𝜎, �⟩ ∣ 𝜎(y) < 0}, 𝑏𝑟 ∶ ∅⟩

meaning that S1 terminates with y = 0when y is initially positive and otherwise does not terminate.
Define S2 ≜ y=[-oo,oo]; S1 with relational semanticsJS2K𝜚 = ⟨𝑒 ∶ {⟨𝜎, 𝜎[y← 0]⟩ ∣ 𝜎 ∈ Σ}, � ∶ {⟨𝜎, �⟩ ∣ 𝜎 ∈ Σ}, 𝑏𝑟 ∶ ∅⟩

meaning that either S2 terminates with y=0 or does not terminate . ∎

PRoof of example 5.1.Jy!=0;y=y-1;K𝜚𝑒
= Jy!=0K𝜚𝑒 #𝜚 Jy=y-1;K𝜚𝑒 H(4)I
= {⟨𝜎, 𝜎⟩ ∣ 𝜎(y) ≠ 0} #𝜚 {⟨𝜎, 𝜎[y← 𝜎(y) − 1]⟩ ∣ 𝜎 ∈ Σ} H(3) and (23)I
= {⟨𝜎, 𝜎[y← 𝜎(y) − 1]⟩ ∣ 𝜎(y) ≠ 0} Hdef. (23) of #𝜚I
⃗𝐹𝜚𝑒 Hfor S1 = while (y!=0) y=y-1;I

≜ 𝝀𝑋 ∈ ℘(Σ × Σ) . init𝜚 ⊔𝜚+ (Jy!=0;y=y-1;K𝜚𝑒 #𝜚 𝑋) H(5)I
= 𝝀𝑋 ∈ ℘(Σ × Σ) .{⟨𝜎, 𝜎⟩ ∣ 𝜎 ∈ Σ} ∪ ({⟨𝜎, 𝜎[y← 𝜎(y) − 1]⟩ ∣ 𝜎(y) ≠ 0} #𝜚 𝑋) H(23)I
= 𝝀𝑋 ∈ ℘(Σ × Σ) .{⟨𝜎, 𝜎⟩ ∣ 𝜎 ∈ Σ} ∪ {⟨𝜎, 𝜎 ′⟩ ∣ 𝜎(y) ≠ 0 ∧ ⟨𝜎[y← 𝜎(y) − 1], 𝜎 ′⟩ ∈ 𝑋} H(23)I

By (24) and (5), ⃗𝐹𝜚𝑒 for S1 = while (y!=0) y=y-1; preserves nonempty joins ∪ so that the infinite
iterates ⟨𝑋 𝑖 , 𝑖 ⩽ 𝜔⟩ of lfp⊆ ⃗𝐹𝜚𝑒 are as follows
𝑋 0 = ∅
𝑋 1 = {⟨𝜎, 𝜎⟩ ∣ 𝜎 ∈ Σ}
𝑋 2 = {⟨𝜎, 𝜎⟩ ∣ 𝜎 ∈ Σ} ∪ {⟨𝜎, 𝜎 ′⟩ ∣ 𝜎(y) ≠ 0 ∧ ⟨𝜎[y← 𝜎(y) − 1], 𝜎 ′⟩ ∈ 𝑋 1} Hdef. iteratesI

= {⟨𝜎, 𝜎⟩ ∣ 𝜎 ∈ Σ} ∪ {⟨𝜎, 𝜎[y← 𝜎(y) − 1]⟩ ∣ 𝜎(y) ≠ 0} Hdef. 𝑋 1I
𝑋 3 = {⟨𝜎, 𝜎⟩ ∣ 𝜎 ∈ Σ} ∪ {⟨𝜎, 𝜎 ′⟩ ∣ 𝜎(y) ≠ 0 ∧ ⟨𝜎[y← 𝜎(y) − 1], 𝜎 ′⟩ ∈ 𝑋 2} Hdef. iteratesI
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= {⟨𝜎, 𝜎⟩ ∣ 𝜎 ∈ Σ} ∪ {⟨𝜎, 𝜎 ′⟩ ∣ 𝜎(y) ≠ 0 ∧ ⟨𝜎[y ← 𝜎(y) − 1], 𝜎 ′⟩ ∈ ({⟨𝜎 ′, 𝜎 ′⟩ ∣ 𝜎 ′ ∈ Σ} ∪ {⟨𝜎 ′,
𝜎 ′[y← 𝜎 ′(y) − 1]⟩ ∣ 𝜎 ′(y) ≠ 0})} Hdef. 𝑋 2I

= {⟨𝜎, 𝜎⟩ ∣ 𝜎 ∈ Σ}∪{⟨𝜎, 𝜎[y← 𝜎(y)−1]⟩ ∣ 𝜎(y) ≠ 0}∪{⟨𝜎, 𝜎 ′′⟩ ∣ 𝜎(y) ≠ 0∧⟨𝜎[y← 𝜎(y)−1],
𝜎 ′′⟩ ∈ {⟨𝜎 ′, 𝜎 ′[y← 𝜎 ′(y) − 1]⟩ ∣ 𝜎 ′(y) ≠ 0}} Hdef. ∪I

= {⟨𝜎, 𝜎⟩ ∣ 𝜎 ∈ Σ} ∪ {⟨𝜎, 𝜎[y ← 𝜎(y) − 1]⟩ ∣ 𝜎(y) ≠ 0} ∪ {⟨𝜎, 𝜎 ′′⟩ ∣ 𝜎(y) ≠ 0 ∧ ⟨𝜎[y ←
𝜎(y) − 1], 𝜎 ′′⟩ ∈ {⟨𝜎[y← 𝜎(y) − 1], 𝜎[y← 𝜎(y) − 1][y ← 𝜎[y← 𝜎(y) − 1](y) − 1]⟩ ∣
𝜎[y← 𝜎(y) − 1](y) ≠ 0}} Hdef. ∈I

= {⟨𝜎, 𝜎⟩ ∣ 𝜎 ∈ Σ} ∪ {⟨𝜎, 𝜎[y ← 𝜎(y) − 1]⟩ ∣ 𝜎(y) ≠ 0} ∪ {⟨𝜎, 𝜎[y← 𝜎(y) − 1][y ←
𝜎[y← 𝜎(y) − 1](y) − 1]⟩ ∣ 𝜎(y) ≠ 0 ∧ 𝜎[y← 𝜎(y) − 1](y) ≠ 0} Hdef. ∈I

= {⟨𝜎, 𝜎⟩ ∣ 𝜎 ∈ Σ} ∪ {⟨𝜎, 𝜎[y ← 𝜎(y) − 1]⟩ ∣ 𝜎(y) ≠ 0} ∪ {⟨𝜎, 𝜎[y← 𝜎(y) − 2]⟩ ∣ 𝜎(y) ≠
0 ∧ 𝜎(y) ≠ 1} HsimplificationI

𝑋𝑛 = {⟨𝜎, 𝜎⟩ ∣ 𝜎 ∈ Σ} ∪
𝑛−1
⋃
𝑖=1
{⟨𝜎, 𝜎[y← 𝜎(y) − 𝑖]⟩ ∣

𝑖−1
⋀
𝑗=0

𝜎(y) ≠ 𝑗} Hinduction hypothesisI
𝑋𝑛+1 = {⟨𝜎, 𝜎⟩ ∣ 𝜎 ∈ Σ} ∪ {⟨𝜎, 𝜎 ′⟩ ∣ 𝜎(y) ≠ 0 ∧ ⟨𝜎[y← 𝜎(y) − 1], 𝜎 ′⟩ ∈ 𝑋𝑛} Hdef. iteratesI

= {⟨𝜎, 𝜎⟩ ∣ 𝜎 ∈ Σ} ∪ {⟨𝜎, 𝜎 ′⟩ ∣ 𝜎(y) ≠ 0 ∧ ⟨𝜎[y ← 𝜎(y) − 1], 𝜎 ′⟩ ∈ ({⟨𝜎, 𝜎⟩ ∣ 𝜎 ∈ Σ} ∪
𝑛−1
⋃
𝑖=1
{⟨𝜎,

𝜎[y← 𝜎(y) − 𝑖]⟩ ∣
𝑖−1
⋀
𝑗=0

𝜎(y) ≠ 𝑗})} Hdef. 𝑋𝑛I
= {⟨𝜎, 𝜎⟩ ∣ 𝜎 ∈ Σ}∪{⟨𝜎, 𝜎[y← 𝜎(y)−1]⟩ ∣ 𝜎(y) ≠ 0}∪{⟨𝜎, 𝜎 ′⟩ ∣ 𝜎(y) ≠ 0∧ ⟨𝜎[y← 𝜎(y)−1],

𝜎 ′⟩ ∈
𝑛−1
⋃
𝑖=1
{⟨𝜎 ′′, 𝜎 ′′[y← 𝜎 ′′(y) − 𝑖]⟩ ∣

𝑖−1
⋀
𝑗=0

𝜎 ′′(y) ≠ 𝑗}} Hdef. ∪, renamingI
= {⟨𝜎, 𝜎⟩ ∣ 𝜎 ∈ Σ}∪{⟨𝜎, 𝜎[y← 𝜎(y)−1]⟩ ∣ 𝜎(y) ≠ 0}∪

𝑛−1
⋃
𝑖=1
{⟨𝜎, 𝜎 ′⟩ ∣ 𝜎(y) ≠ 0∧⟨𝜎[y← 𝜎(y)−1],

𝜎 ′⟩ ∈ {⟨𝜎 ′′, 𝜎 ′′[y← 𝜎 ′′(y) − 𝑖]⟩ ∣
𝑖−1
⋀
𝑗=0

𝜎 ′′(y) ≠ 𝑗}} Hdef. ∪I
= {⟨𝜎, 𝜎⟩ ∣ 𝜎 ∈ Σ} ∪ {⟨𝜎, 𝜎[y ← 𝜎(y) − 1]⟩ ∣ 𝜎(y) ≠ 0} ∪

𝑛−1
⋃
𝑖=1
{⟨𝜎, 𝜎[y ← 𝜎(y) − (𝑖 + 1)]⟩ ∣

𝜎(y) ≠ 0 ∧
𝑖−1
⋀
𝑗=0

𝜎[y← 𝜎(y) − 1](y) ≠ 𝑗}

Hdef. ∈ so 𝜎 ′′ = 𝜎[y← 𝜎(y) − 1] and 𝜎 ′ = 𝜎 ′′[y← 𝜎 ′′(y) − 𝑖] =
𝜎[y← 𝜎(y) − 1][y← 𝜎[y← 𝜎(y) − 1](y) − 𝑖] = 𝜎[y← 𝜎(y) − (𝑖 + 1)]I

= {⟨𝜎, 𝜎⟩ ∣ 𝜎 ∈ Σ} ∪ {⟨𝜎, 𝜎[y ← 𝜎(y) − 1]⟩ ∣ 𝜎(y) ≠ 0} ∪
𝑛−1
⋃
𝑖=1
{⟨𝜎, 𝜎[y ← 𝜎(y) − (𝑖 + 1)]⟩ ∣

𝜎(y) ≠ 0 ∧
𝑖−1
⋀
𝑗=0

𝜎(y) ≠ 𝑗 + 1} HsimplificationI
= {⟨𝜎, 𝜎⟩ ∣ 𝜎 ∈ Σ} ∪ {⟨𝜎, 𝜎[y ← 𝜎(y) − 1]⟩ ∣ 𝜎(y) ≠ 0} ∪

𝑛−1
⋃
𝑖=1
{⟨𝜎, 𝜎[y ← 𝜎(y) − (𝑖 + 1)]⟩ ∣

𝑖

⋀
𝑗=0

𝜎(y) ≠ 𝑗}

Hchange of dummy variable and incorporation of 𝜎(y) ≠ 0 in the conjunction for 𝑗 = 0I
= {⟨𝜎, 𝜎⟩ ∣ 𝜎 ∈ Σ} ∪

𝑛−1
⋃
𝑖=0
{⟨𝜎, 𝜎[y← 𝜎(y) − (𝑖 + 1)]⟩ ∣

𝑖

⋀
𝑗=0

𝜎(y) ≠ 𝑗}}

Hincorporation of {⟨𝜎, 𝜎[y← 𝜎(y) − 1]⟩ ∣ 𝜎(y) ≠ 0} in the union for 𝑖 = 0I
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= {⟨𝜎, 𝜎⟩ ∣ 𝜎 ∈ Σ} ∪
(𝑛+1)−1
⋃
𝑖=1
{⟨𝜎, 𝜎[y← 𝜎(y) − 𝑖]⟩ ∣

𝑖−1
⋀
𝑗=0

𝜎(y) ≠ 𝑗}Hchange of dummy variablesI
By recurrence, 𝑋𝑛 = {⟨𝜎, 𝜎⟩ ∣ 𝜎 ∈ Σ} ∪⋃𝑛−1

𝑖=1 {⟨𝜎, 𝜎[y← 𝜎(y) − 𝑖]⟩ ∣ ⋀𝑖−1
𝑗=0 𝜎(y) ≠ 𝑗}, so that the

least fixpoint of ⃗𝐹𝜚𝑒 for S1 = while (y!=0) y=y-1; is
lfp⊆ ⃗𝐹𝜚𝑒

= ⋃
𝑛∈N

𝑋𝑛 Hdef. iteratesI
= {⟨𝜎, 𝜎⟩ ∣ 𝜎 ∈ Σ} ∪ ⋃

𝑛∈N

𝑛

⋃
𝑖=1
{⟨𝜎, 𝜎[y← 𝜎(y) − 𝑖]⟩ ∣

𝑖−1
⋀
𝑗=0

𝜎(y) ≠ 𝑗}

= {⟨𝜎, 𝜎⟩ ∣ 𝜎 ∈ Σ} ∪⋃
𝑖>0
{⟨𝜎, 𝜎[y← 𝜎(y) − 𝑖]⟩ ∣ 𝜎(y) /∈ [0, 𝑖 − 1]}

It follows that for S1 ≜ while (y!=0) y=y-1;, we haveJS1K𝜚𝑒
= lfp⊆ ⃗𝐹𝜚𝑒 #𝜚 (J¬BK𝜚𝑒 ∪ JB;SK𝜚𝑏 ) Hby (9) with B = (y!=0), ¬B = (y=0), and S = y=y-1;I
= ({⟨𝜎, 𝜎⟩ ∣ 𝜎 ∈ Σ} ∪⋃

𝑖>0
{⟨𝜎, 𝜎[y← 𝜎(y) − 𝑖]⟩ ∣ 𝜎(y) /∈ [0, 𝑖 − 1]}) #𝜚 ({⟨𝜎, 𝜎⟩ ∣ 𝜎(y) = 0} ∪ ∅)

= {⟨𝜎, 𝜎⟩ ∣ 𝜎(y) = 0} ∪⋃
𝑖>0
{⟨𝜎, 𝜎[y← 𝜎(y)− 𝑖]⟩ ∣ 𝜎(y) /∈ [0, 𝑖 − 1]∧𝜎[y← 𝜎(y) − 𝑖](y) = 0}H(23)I

= {⟨𝜎, 𝜎⟩ ∣ 𝜎(y) = 0} ∪⋃
𝑖>0
{⟨𝜎, 𝜎[y← 𝜎(y) − 𝑖]⟩ ∣ 𝜎(y) /∈ [0, 𝑖 − 1] ∧ 𝜎(y) = 𝑖}

Hfunction applicationI
= {⟨𝜎, 𝜎[y← 0]⟩ ∣ 𝜎(y) = 0} ∪⋃

𝑖>0
{⟨𝜎, 𝜎[y← 0]⟩ ∣ 𝜎(y) = 𝑖}

Hsubstitution 𝜎(y) = 𝑖I
= {⟨𝜎, 𝜎[y← 0]⟩ ∣ 𝜎(y) ⩾ 0} Hjoining casesI

It follows that for S2 = y=[-oo,oo]; S1, we haveJS2K𝜚𝑒
= Jy=[-oo,oo];K𝜚𝑒 #𝜚 JS1K𝜚𝑒 H(4)I
= {⟨𝜎, 𝜎[y← 𝑛]⟩ ∣ 𝑛 ∈ N} #𝜚 {⟨𝜎, 𝜎[y← 0]⟩ ∣ 𝜎(y) ⩾ 0} H(3) and as previously shownI
= {⟨𝜎, 𝜎[y← 𝑛][y← 0]⟩ ∣ 𝑛 ∈ N ∧ 𝜎[y← 𝑛](y) ⩾ 0} H(23)I
= {⟨𝜎, 𝜎[y← 0]⟩ ∣ 𝜎 ∈ Σ} HsimplificationI

By (7), we have
𝐹𝜚� Hfor S1 = while (y!=0) y=y-1;I

= 𝝀𝑋 ∈ L𝜚∞ . Jy!=0;y=y-1;K𝜚𝑒 #𝜚 𝑋
= 𝝀𝑋 ∈ ℘(Σ × {�}) .{⟨𝜎, 𝜎[y← 𝜎(y) − 1]⟩ ∣ 𝜎(y) ≠ 0} #𝜚 𝑋
= {⟨𝑥, 𝑦⟩ ∣ ∃𝑧 ∈ Σ . ⟨𝑥, 𝑧⟩ ∈ {⟨𝜎, 𝜎[y← 𝜎(y) − 1]⟩ ∣ 𝜎(y) ≠ 0} ∧ ⟨𝑧, 𝑦⟩ ∈ 𝑋} H(23)I
= {⟨𝜎, 𝑦⟩ ∣ 𝜎(y) ≠ 0 ∧ ⟨𝜎[y← 𝜎(y) − 1], 𝑦⟩ ∈ 𝑋} Hdef. ∈I
= {⟨𝜎, �⟩ ∣ 𝜎(y) ≠ 0 ∧ ⟨𝜎[y← 𝜎(y) − 1], �⟩ ∈ 𝑋} H𝑋 ∈ ℘(Σ × {�})I
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By (24) and (5), 𝐹𝜚� for S1 = while (y!=0) y=y-1; converges at 𝜔 so that the infinite iterates
⟨𝑋 𝑖 , 𝑖 ⩽ 𝜔⟩ of JS1K𝜚𝑙𝑖 = gfp⊆ 𝐹𝜚� are as follows
𝑋 0 = Σ × {�}
𝑋 1 = {⟨𝜎, �⟩ ∣ 𝜎(y) ≠ 0 ∧ ⟨𝜎[y← 𝜎(y) − 1], �⟩ ∈ Σ × {�}} Hdef. iteratesI

= {⟨𝜎, �⟩ ∣ 𝜎(y) ≠ 0} HsimplificationI
𝑋 2 = {⟨𝜎, �⟩ ∣ 𝜎(y) ≠ 0 ∧ ⟨𝜎[y← 𝜎(y) − 1], �⟩ ∈ {⟨𝜎 ′, �⟩ ∣ 𝜎 ′(y) ≠ 0}} Hdef. iteratesI

= {⟨𝜎, �⟩ ∣ 𝜎(y) ≠ 0 ∧ 𝜎[y← 𝜎(y) − 1](y) ≠ 0} Hdef. ∈I
= {⟨𝜎, �⟩ ∣ 𝜎(y) ≠ 0 ∧ 𝜎(y) ≠ 1} Hfunction applicationI

𝑋𝑛 = {⟨𝜎, �⟩ ∣
𝑛−1
⋀
𝑖=0

𝜎(y) ≠ 𝑖} Hinduction hypothesisI
𝑋𝑛+1 = {⟨𝜎, �⟩ ∣ 𝜎(y) ≠ 0 ∧ ⟨𝜎[y← 𝜎(y) − 1], �⟩ ∈ {⟨𝜎, �⟩ ∣

𝑛−1
⋀
𝑖=0

𝜎(y) ≠ 𝑖}} Hdef. iteratesI
= {⟨𝜎, �⟩ ∣ 𝜎(y) ≠ 0 ∧

𝑛−1
⋀
𝑖=0

𝜎[y← 𝜎(y) − 1](y) ≠ 𝑖} Hdef. ∈I
= {⟨𝜎, �⟩ ∣ 𝜎(y) ≠ 0 ∧

𝑛−1
⋀
𝑖=0

𝜎(y) ≠ 𝑖 + 1} Hfunction applicationI
= {⟨𝜎, �⟩ ∣ 𝜎(y) ≠ 0 ∧

𝑛

⋀
𝑗=1

𝜎(y) ≠ 𝑗} Hchange of dummy variables 𝑗 = 𝑖 + 1I
= {⟨𝜎, �⟩ ∣

(𝑛+1)−1
⋀
𝑖=0

𝜎(y) ≠ 𝑖} Hgrouping terms and renamingI
By recurrence,𝑋𝑛 = {⟨𝜎, �⟩ ∣ ⋀𝑛−1

𝑖=0 𝜎(y) ≠ 𝑖}, so that, by convergence at𝜔 , the greatest fixpoint
is JS1K𝜚𝑙𝑖 = gfp⊆ 𝐹𝜚�
= ⋂

𝑛∈N
𝑋𝑛 Hdef. iteratesI

= ⋂
𝑛∈N
{⟨𝜎, �⟩ ∣

𝑛−1
⋀
𝑖=0

𝜎(y) ≠ 𝑖}

= {⟨𝜎, �⟩ ∣ 𝜎(y) < 0} HΣ = {x, y}→ ZI
Obviously J(y!=0); y=y-1;K𝜚� = ∅ since the body always terminates, so that, by (10), we haveJwhile (y!=0) y=y-1;K𝜚𝑏𝑖 ≜ lfp⊑𝜚+ ⃗𝐹𝜚𝑒 #𝜚 J(y!=0); y=y-1;K𝜚� = lfp⊆ ⃗𝐹𝜚𝑒 #𝜚 ∅ = ∅. By (11), we haveJwhile (y!=0) y=y-1;K𝜚� ≜ Jwhile (y!=0) y=y-1;K𝜚𝑏𝑖∪Jwhile (y!=0) y=y-1;K𝜚𝑙𝑖 = {⟨𝜎, �⟩ ∣ 𝜎(y) <

0}.
It follows thatJS2K𝜚�

= Jy=[-oo,oo]; S1K𝜚�
= Jy=[-oo,oo];K𝜚� ∪ (Jy=[-oo,oo];K𝜚𝑒 #𝜚 JS1K𝜚�) H(4)I
= ∅ ∪ ({⟨𝜎, 𝜎[y← 𝑖]⟩ ∣ 𝜎 ∈ Σ ∧ 𝑖 ∈ N} #𝜚 {⟨𝜎, �⟩ ∣ 𝜎(y) < 0}) H(4), (3) and (23)I
= {⟨𝑥, �⟩ ∣ ⟨𝑥, �⟩ ∈ {⟨𝜎, 𝜎[y← 𝑖]⟩ ∣ 𝜎 ∈ Σ ∧ 𝑖 ∈ N}} ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑧 ∈ Σ . ⟨𝑥, 𝑧⟩ ∈ {⟨𝜎, 𝜎[y← 𝑖]⟩ ∣ 𝜎 ∈

Σ ∧ 𝑖 ∈ N} ∧ ⟨𝑧, 𝑦⟩ ∈ {⟨𝜎 ′, �⟩ ∣ 𝜎 ′(y) < 0}} H(23)I
= {⟨𝜎, �⟩ ∣ ∃𝑖 . 𝜎 ∈ Σ ∧ 𝑖 ∈ N ∧ 𝜎[y← 𝑖](y) < 0} Hdef. ∈I
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= {⟨𝜎, �⟩ ∣ ∃𝑖 . 𝜎 ∈ Σ ∧ 𝑖 ∈ N ∧ 𝑖 < 0} Hfunction applicationI
= {⟨𝜎, �⟩ ∣ 𝜎 ∈ Σ} HsimplificationI

By (12) and (10), we get JS1K𝜚 = ⟨𝑒 ∶ {⟨𝜎, 𝜎[y← 0]⟩ ∣ 𝜎(y) ⩾ 0}, � ∶ {⟨𝜎, �⟩ ∣ 𝜎(y) < 0}, 𝑏𝑟 ∶ ∅⟩
and JS2K𝜚 ≜ ⟨𝑒 ∶ {⟨𝜎, 𝜎[y← 0]⟩ ∣ 𝜎 ∈ Σ}, � ∶ {⟨𝜎, �⟩ ∣ 𝜎 ∈ Σ}, 𝑏𝑟 ∶ ∅⟩. □

Example 5.2. Define S3 ≜ while (x!=0) { S2 x=x-1; } with relational semantics

JS3K♯ = ⟨𝑒 ∶ {⟨𝜎, 𝜎⟩ ∣ 𝜎(x) = 0} ∪ {⟨𝜎, 𝜎[y← 0][x← 0]⟩ ∣ 𝜎(x) > 0}, � ∶ {⟨𝜎, �⟩ ∣ 𝜎(x) ≠ 0}, 𝑏𝑟 ∶ ∅⟩

meaning that S3 terminates because either the loop is not entered or it is entered with x > 0 and
S2 terminates at each iteration setting y to 0. S3 does not terminate when the loop is entered and
either its body does not terminate or x < 0.
Define S4 ≜ x=[-oo,oo]; S3 with relational semantics

JS4K♯ = ⟨𝑒 ∶ {⟨𝜎, 𝜎[x← 0]⟩ ∣ 𝜎 ∈ Σ} ∪ {⟨𝜎, 𝜎[y← 0][x← 0]⟩ ∣ 𝜎 ∈ Σ}, � ∶ {⟨𝜎, �⟩ ∣ 𝜎 ∈ Σ}, 𝑏𝑟 ∶ ∅⟩

meaning either termination with x=0 (when x is randomly assigned 0) or with x=0 and y=0 (when
x is randomly assigned a positive number while x is randomly assigned a positive number or zero)
or nontermination (when x is randomly assigned a negative number or x is randomly assigned a
positive number and y are randomly assigned a negative number). . In this example, the fixpoint
iterations are infinite but would be transfinite for a transition semantics (corresponding to the
lexicographic ordering for the nested loops) [18]. ∎

PRoof of example 5.2.Jx!=0; S2 x=x-1;K𝜚𝑒
= Jx!=0K𝜚𝑒 #𝜚 JS2K𝜚𝑒 #𝜚 Jx=x-1;K𝜚𝑒 H(4)I
= {⟨𝜎, 𝜎⟩ ∣ 𝜎(x) ≠ 0} #𝜚 {⟨𝜎, 𝜎[y← 0]⟩ ∣ 𝜎 ∈ Σ} #𝜚 {⟨𝜎, 𝜎[x← 𝜎(x) − 1]⟩ ∣ 𝜎 ∈ Σ} H(3) and (23)I
= {⟨𝜎, 𝜎[y← 0][x← 𝜎[y← 0](x) − 1]⟩ ∣ 𝜎(x) ≠ 0} Hdef. (23) of #𝜚I
= {⟨𝜎, 𝜎[y← 0][x← 𝜎(x) − 1]⟩ ∣ 𝜎(x) ≠ 0} Hx ≠ yI
⃗𝐹𝜚𝑒 Hfor S3 = while (x!=0) { S2 x=x-1; }I

≜ 𝝀𝑋 ∈ ℘(Σ × Σ) . init𝜚 ⊔𝜚+ (Jx!=0; S2 x=x-1;K𝜚𝑒 #𝜚 𝑋) H(5)I
= 𝝀𝑋 ∈ ℘(Σ × Σ) .{⟨𝜎, 𝜎⟩ ∣ 𝜎 ∈ Σ} ∪ ({⟨𝜎, 𝜎[y← 0][x← 𝜎(x) − 1]⟩ ∣ 𝜎(x) ≠ 0} #𝜚 𝑋) H(23)I
= 𝝀𝑋 ∈ ℘(Σ × Σ) .{⟨𝜎, 𝜎⟩ ∣ 𝜎 ∈ Σ} ∪ {⟨𝜎, 𝜎 ′⟩ ∣ 𝜎(x) ≠ 0 ∧ ⟨𝜎[y← 0][x← 𝜎(x) − 1], 𝜎 ′⟩ ∈ 𝑋}H(23)I

By (24) and (5), ⃗𝐹𝜚𝑒 for S3 = while (x!=0) { S2 x=x-1; } preserves nonempty joins ∪ so that
the infinite iterates ⟨𝑋 𝑖 , 𝑖 ⩽ 𝜔⟩ of lfp⊆ ⃗𝐹𝜚𝑒 are as follows
𝑋 0 = ∅
𝑋 1 = {⟨𝜎, 𝜎⟩ ∣ 𝜎 ∈ Σ}
𝑋 2 = {⟨𝜎, 𝜎⟩ ∣ 𝜎 ∈ Σ} ∪ {⟨𝜎, 𝜎 ′⟩ ∣ 𝜎(x) ≠ 0 ∧ ⟨𝜎[y← 0][x← 𝜎(x) − 1], 𝜎 ′⟩ ∈ 𝑋 1} Hdef. iteratesI

= {⟨𝜎, 𝜎⟩ ∣ 𝜎 ∈ Σ} ∪ {⟨𝜎, 𝜎[y← 0][x← 𝜎(x) − 1]⟩ ∣ 𝜎(x) ≠ 0} Hdef. 𝑋 1I
𝑋𝑛 = {⟨𝜎, 𝜎⟩ ∣ 𝜎 ∈ Σ} ∪

𝑛−1
⋃
𝑖=1
{⟨𝜎, 𝜎[y← 0][x← 𝜎(x) − 𝑖]⟩ ∣

𝑖−1
⋀
𝑗=0

𝜎(x) ≠ 𝑗} Hinduction hypothesisI
𝑋𝑛+1 = {⟨𝜎, 𝜎⟩ ∣ 𝜎 ∈ Σ} ∪ {⟨𝜎, 𝜎 ′⟩ ∣ 𝜎(x) ≠ 0 ∧ ⟨𝜎[y← 0][x← 𝜎(x) − 1], 𝜎 ′⟩ ∈ 𝑋𝑛} Hdef. iteratesI
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= {⟨𝜎, 𝜎⟩ ∣ 𝜎 ∈ Σ} ∪ {⟨𝜎, 𝜎 ′⟩ ∣ 𝜎(x) ≠ 0 ∧ ⟨𝜎[y ← 0][x ← 𝜎(x) − 1], 𝜎 ′⟩ ∈ ({⟨𝜎, 𝜎⟩ ∣ 𝜎 ∈

Σ} ∪
𝑛−1
⋃
𝑖=1
{⟨𝜎, 𝜎[y← 0][x← 𝜎(x) − 𝑖]⟩ ∣

𝑖−1
⋀
𝑗=0

𝜎(x) ≠ 𝑗})} Hdef. 𝑋𝑛I
= {⟨𝜎, 𝜎⟩ ∣ 𝜎 ∈ Σ}∪{⟨𝜎, 𝜎 ′⟩ ∣ 𝜎(x) ≠ 0∧⟨𝜎[y← 0][x← 𝜎(x)−1], 𝜎 ′⟩ ∈ {⟨𝜎 ′′, 𝜎 ′′⟩ ∣ 𝜎 ′′ ∈ Σ}}∪

𝑛−1
⋃
𝑖=1
{⟨𝜎, 𝜎 ′⟩ ∣ 𝜎(x) ≠ 0 ∧ ⟨𝜎[y ← 0][x ← 𝜎(x) − 1], 𝜎 ′⟩ ∈ {⟨𝜎 ′′, 𝜎 ′′[y← 0][x← 𝜎 ′′(x) − 𝑖]⟩ ∣

𝑖−1
⋀
𝑗=0

𝜎 ′′(x) ≠ 𝑗})} Hdef. ∈ and ∪, renamingI
= {⟨𝜎, 𝜎⟩ ∣ 𝜎 ∈ Σ} ∪ {⟨𝜎, 𝜎[y ← 0][x ← 𝜎(x) − 1]⟩ ∣ 𝜎(x) ≠ 0} ∪

𝑛−1
⋃
𝑖=1
{⟨𝜎, 𝜎 ′⟩ ∣ ∃𝜎 ′′ . 𝜎 ′′ =

𝜎[y← 0][x← 𝜎(x) − 1] ∧ 𝜎 ′′[y← 0][x← 𝜎 ′′(x) − 𝑖] = 𝜎 ′ ∧
𝑖−1
⋀
𝑗=0

𝜎 ′′(x) ≠ 𝑗)} Hdef. ∈I
= {⟨𝜎, 𝜎⟩ ∣ 𝜎 ∈ Σ} ∪ {⟨𝜎, 𝜎[y ← 0][x ← 𝜎(x) − 1]⟩ ∣ 𝜎(x) ≠ 0} ∪

𝑛−1
⋃
𝑖=1
{⟨𝜎, 𝜎 ′⟩ ∣ ∃𝜎 ′′ . 𝜎 ′′ =

𝜎[y← 0][x← 𝜎(x) − 1] ∧ 𝜎[y← 0][x← 𝜎(x) − (𝑖 + 1)] = 𝜎 ′ ∧
𝑖−1
⋀
𝑗=0

𝜎(x) ≠ ( 𝑗 + 1))}

Hfunction application with 𝜎 ′′(x) = 𝜎(x) − 1 and 𝜎 ′′[y← 0][x← 𝜎(x) − (𝑖 + 1)] =
𝜎[y← 0][x← 𝜎(x) − (𝑖 + 1)]I

= {⟨𝜎, 𝜎⟩ ∣ 𝜎 ∈ Σ} ∪ {⟨𝜎, 𝜎[y ← 0][x ← 𝜎(x) − 1]⟩ ∣ 𝜎(x) ≠ 0} ∪
𝑛−1
⋃
𝑖=1
{⟨𝜎,

𝜎[y← 0][x← 𝜎(x) − (𝑖 + 1)]⟩ ∣
𝑖−1
⋀
𝑗=0

𝜎(x) ≠ ( 𝑗 + 1) 𝑗)} HsimplificationI
= {⟨𝜎, 𝜎⟩ ∣ 𝜎 ∈ Σ} ∪ {⟨𝜎, 𝜎[y ← 0][x ← 𝜎(x) − 1]⟩ ∣ 𝜎(x) ≠ 0} ∪

𝑛

⋃
𝑖′=2
{⟨𝜎,

𝜎[y← 0][x← 𝜎(x) − 𝑖′]⟩ ∣
𝑖′−2
⋀
𝑗=0

𝜎(x) ≠ ( 𝑗 + 1))} Hchange of variable 𝑖′ = 𝑖 + 1I
= {⟨𝜎, 𝜎⟩ ∣ 𝜎 ∈ Σ} ∪ {⟨𝜎, 𝜎[y ← 0][x ← 𝜎(x) − 1]⟩ ∣ 𝜎(x) ≠ 0} ∪

𝑛

⋃
𝑖′=2
{⟨𝜎,

𝜎[y← 0][x← 𝜎(x) − 𝑖′]⟩ ∣
𝑖′−1
⋀
𝑗 ′=1

𝜎(x) ≠ 𝑗 ′)} Hchange of variable 𝑗 ′ = 𝑗 + 1I
= {⟨𝜎, 𝜎⟩ ∣ 𝜎 ∈ Σ} ∪

(𝑛+1)−1
⋃
𝑖=1
{⟨𝜎, 𝜎[y← 0][x← 𝜎(x) − 𝑖]⟩ ∣

𝑖−1
⋀
𝑗=0

𝜎(x) ≠ 𝑗})}

Hgrouping terms for 𝑖 = 1I
which is the induction hypothesis for 𝑛 + 1.

By recurrence, 𝑋𝑛 = {⟨𝜎, 𝜎⟩ ∣ 𝜎 ∈ Σ} ∪⋃𝑛−1
𝑖=1 {⟨𝜎, 𝜎[y← 0][x← 𝜎(x) − 𝑖]⟩ ∣ ⋀𝑖−1

𝑗=0 𝜎(x) ≠ 𝑗}, so
that the least fixpoint of ⃗𝐹𝜚𝑒 for S3 = while (x!=0) { S2 x=x-1; } is

lfp⊆ ⃗𝐹𝜚𝑒 Hfor S3 = while (x!=0) { S2 x=x-1; }I
= ⋃

𝑛∈N
𝑋𝑛 Hdef. iteratesI

= {⟨𝜎, 𝜎⟩ ∣ 𝜎 ∈ Σ} ∪ ⋃
𝑛∈N

𝑛−1
⋃
𝑖=1
{⟨𝜎, 𝜎[y← 0][x← 𝜎(x) − 𝑖]⟩ ∣

𝑖−1
⋀
𝑗=0

𝜎(x) ≠ 𝑗} Hdef. ∪I
= {⟨𝜎, 𝜎⟩ ∣ 𝜎 ∈ Σ} ∪⋃

𝑖>0
{⟨𝜎, 𝜎[y← 0][x← 𝜎(x) − 𝑖]⟩ ∣ 𝜎(x) /∈ [0, 𝑖 − 1]}
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It follows that for S3 ≜ while (x!=0) { S2 x=x-1; }, we haveJS3K𝜚𝑒
= lfp⊆ ⃗𝐹𝜚𝑒 #𝜚 (J¬BK𝜚𝑒 ∪ JB;SK𝜚𝑏 ) Hby (9) with B = (x!=0), ¬B = (x=0), and S = S2 x=x-1;I
= ({⟨𝜎, 𝜎⟩ ∣ 𝜎 ∈ Σ}∪⋃

𝑖>0
{⟨𝜎, 𝜎[y← 0][x← 𝜎(x) − 𝑖]⟩ ∣ 𝜎(x) /∈ [0, 𝑖−1]})#𝜚 ({⟨𝜎, 𝜎⟩ ∣ 𝜎(x) = 0}∪∅)

= ({⟨𝜎, 𝜎⟩ ∣ 𝜎 ∈ Σ} #𝜚 {⟨𝜎, 𝜎⟩ ∣ 𝜎(x) = 0})∪ (⋃
𝑖>0
{⟨𝜎, 𝜎[y← 0][x← 𝜎(x) − 𝑖]⟩ ∣ 𝜎(x) /∈ [0, 𝑖 − 1]} #𝜚

({⟨𝜎, 𝜎⟩ ∣ 𝜎(x) = 0})) Hby (24), #𝜚 left preserves joinsI
= {⟨𝜎, 𝜎⟩ ∣ 𝜎(x) = 0} ∪ (⋃

𝑖>0
{⟨𝜎, 𝜎[y← 0][x← 𝜎(x) − 𝑖]⟩ ∣ 𝜎(x) /∈ [0, 𝑖 − 1] ∧ 𝜎(x) − 𝑖 = 0})Hdef. (23) of #𝜚I

= {⟨𝜎, 𝜎⟩ ∣ 𝜎(x) = 0} ∪ {⟨𝜎, 𝜎[y← 0][x← 0]⟩ ∣ 𝜎(x) > 0} HsimplificationI
Then, for S4 = x=[-oo,oo]; S3, we haveJS4K𝜚𝑒

= Jx=[-oo,oo];K𝜚𝑒 #𝜚 JS3K𝜚𝑒 H(4)I
= {⟨𝜎, 𝜎[x← 𝑛]⟩ ∣ 𝑛 ∈ N} #𝜚 ({⟨𝜎, 𝜎⟩ ∣ 𝜎(x) = 0} ∪ {⟨𝜎, 𝜎[y← 0][x← 0]⟩ ∣ 𝜎(x) > 0})H(3) and as previously shownI
= {⟨𝜎, 𝜎[x← 𝑛]⟩ ∣ 𝑛 ∈ N} #𝜚 {⟨𝜎, 𝜎⟩ ∣ 𝜎(x) = 0}∪{⟨𝜎, 𝜎[x← 𝑛]⟩ ∣ 𝑛 ∈ N} #𝜚 {⟨𝜎, 𝜎[y← 0][x← 0]⟩ ∣

𝜎(x) > 0} Hby (24), #𝜚 left preserves joinsI
= {⟨𝜎, 𝜎[x← 𝑛]⟩ ∣ 𝜎[x← 𝑛](x) = 0} ∪ {⟨𝜎, 𝜎[x← 𝑛][y← 0][x← 0]⟩ ∣ 𝜎[x← 𝑛](x) > 0}Hdef. (23) of #𝜚I
= {⟨𝜎, 𝜎[x← 𝑛]⟩ ∣ 𝑛 = 0} ∪ {⟨𝜎, 𝜎[y← 0][x← 0]⟩ ∣ 𝑛 > 0} Hfunction applicationI
= {⟨𝜎, 𝜎[x← 0]⟩ ∣ 𝜎 ∈ Σ} ∪ {⟨𝜎, 𝜎[y← 0][x← 0]⟩ ∣ 𝜎 ∈ Σ} HsimplificationI

The iteration S3 = while (x!=0) { S2 x=x-1; } may iterate for ever. To show this, we have,
by (7), that

𝐹𝜚� Hfor S3 = while (x!=0) { S2 x=x-1; }I
= 𝝀𝑋 ∈ L𝜚∞ . Jx!=0;S2 x=x-1;K𝜚𝑒 #𝜚 𝑋
= 𝝀𝑋 ∈ L𝜚∞ .{⟨𝜎, 𝜎⟩ ∣ 𝜎(x) ≠ 0} #𝜚 {⟨𝜎, 𝜎[y← 0]⟩ ∣ 𝜎 ∈ Σ} #𝜚 {⟨𝜎, 𝜎[x← 𝜎(x) − 1]⟩ ∣ 𝜎 ∈ Σ} #𝜚 𝑋H(4), (3), def. JS2K𝜚𝑒 in ex. 5.1I
= 𝝀𝑋 ∈ L𝜚∞ .{⟨𝜎, 𝜎[y← 0][x← 𝜎[y← 0](x) − 1]⟩ ∣ 𝜎(x) ≠ 0} #𝜚 𝑋 Hdef. (23) of #𝜚I
= 𝝀𝑋 ∈ L𝜚∞ .{⟨𝜎, 𝜎[y← 0][x← 𝜎(x) − 1]⟩ ∣ 𝜎(x) ≠ 0} #𝜚 𝑋 Hsimplification since x ≠ yI

By (24) and (5), 𝐹𝜚� for S3 = while (x!=0) { S2 x=x-1; } converges at 𝜔 so that the infinite
iterates ⟨𝑋 𝑖 , 𝑖 ⩽ 𝜔⟩ of JS3K𝜚𝑙𝑖 = gfp⊆ 𝐹𝜚� are as follows
𝑋 0 = Σ × {�}
𝑋 1 = {⟨𝜎, 𝜎[y← 0][x← 𝜎(x) − 1]⟩ ∣ 𝜎(x) ≠ 0} #𝜚 𝑋 0 Hdef. iterates and 𝐹𝜚�I

= {⟨𝜎, �⟩ ∣ 𝜎(x) ≠ 0} Hdef. (23) of #𝜚 and 𝑋 0I
𝑋 2 = {⟨𝜎, 𝜎[y← 0][x← 𝜎(x) − 1]⟩ ∣ 𝜎(x) ≠ 0} #𝜚 𝑋 1 Hdef. iterates and 𝐹𝜚�I

= {⟨𝜎, �⟩ ∣ 𝜎(x) ≠ 0 ∧ 𝜎[y← 0][x← 𝜎(x) − 1](x) ≠ 0} Hdef. (23) of #𝜚 and 𝑋 1I
= {⟨𝜎, �⟩ ∣ 𝜎(x) ≠ 0 ∧ 𝜎(x) ≠ 1} Hfunction application and simplificationI
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𝑋𝑛 = {⟨𝜎, �⟩ ∣
𝑛−1
⋀
𝑖=0

𝜎(x) ≠ 𝑖} Hinduction hypothesisI
𝑋𝑛+1 = {⟨𝜎, 𝜎[y← 0][x← 𝜎(x) − 1]⟩ ∣ 𝜎(x) ≠ 0} #𝜚 𝑋𝑛 Hdef. iterates and 𝐹𝜚�I

= {⟨𝜎, �⟩ ∣ 𝜎(x) ≠ 0 ∧
𝑛−1
⋀
𝑖=0

𝜎[y← 0][x← 𝜎(x) − 1](x) ≠ 𝑖} Hdef. (23) of #𝜚 and 𝑋𝑛I
= {⟨𝜎, �⟩ ∣

(𝑛+1)−1
⋀
𝑖=0

𝜎(x) ≠ 𝑖} HsimplificationI
By recurrence,𝑋𝑛 = {⟨𝜎, �⟩ ∣ ⋀𝑛−1

𝑖=0 𝜎(x) ≠ 𝑖}, so that, by convergence at𝜔 , the greatest fixpoint
is JS3K𝜚𝑙𝑖 = gfp⊆ 𝐹𝜚�
= ⋂

𝑛∈N
𝑋𝑛 Hdef. iteratesI

= ⋂
𝑛∈N
{⟨𝜎, �⟩ ∣

𝑛−1
⋀
𝑖=0

𝜎(x) ≠ 𝑖}

= {⟨𝜎, �⟩ ∣ 𝜎(x) < 0} HΣ = {x, y}→ ZI
The iteration S3 = while (x!=0) { S2 x=x-1; } may also not terminate because of the non-

termination of S2 in its body. The loop body S2 x=x-1; may not terminate, as follows.JS2 x=x-1;K𝜚�
= JS2K𝜚� ∪ (JS2K𝜚𝑒 #𝜚 Jx=x-1;K𝜚�) H(4)I
= JS2K𝜚� Hdef. (23) of #𝜚 and (3) so that Jx=x-1;K𝜚� = ∅I
= {⟨𝜎, �⟩ ∣ 𝜎 ∈ Σ} Hby example 5.1I
This implies thatJx!=0; S2 x=x-1;K𝜚�
= {⟨𝑥, �⟩ ∣ ⟨𝑥, �⟩ ∈ Jx!=0;K𝜚�} ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑧 ∈ Σ . ⟨𝑥, 𝑧⟩ ∈ Jx!=0;K𝜚𝑒 ∧ ⟨𝑧, 𝑦⟩ ∈ JS2 x=x-1;K𝜚�}H(4) and def. of (23)I
= {⟨𝜎, �⟩ ∣ 𝜎(x) ≠ 0} H(3)I
It follows thatJS3K♯𝑏𝑖
≜ (lfp⊑♯+ ⃗𝐹 ♯𝑒) #♯ JB;SK� H(10) with B = x!=0 and S = S2 x=x-1;I
= ({⟨𝜎, 𝜎⟩ ∣ 𝜎 ∈ Σ} ∪⋃

𝑖>0
{⟨𝜎, 𝜎[y← 0][x← 𝜎(x) − 𝑖]⟩ ∣ 𝜎(x) /∈ [0, 𝑖 − 1]}) #♯ {⟨𝜎, �⟩ ∣ 𝜎(x) ≠ 0}Hprevious evaluation of lfp⊑♯+ ⃗𝐹 ♯𝑒 and Jx!=0; S2 x=x-1;K𝜚�I

= ({⟨𝜎, 𝜎⟩ ∣ 𝜎 ∈ Σ} #♯ {⟨𝜎, �⟩ ∣ 𝜎(x) ≠ 0}) ∪⋃
𝑖>0
({⟨𝜎, 𝜎[y← 0][x← 𝜎(x) − 𝑖]⟩ ∣ 𝜎(x) /∈ [0, 𝑖 − 1]} #♯

{⟨𝜎, �⟩ ∣ 𝜎(x) ≠ 0}) H#𝜚 left preserves joins ∪ on ℘(Σ × Σ�)I
= {⟨𝜎, �⟩ ∣ 𝜎(x) ≠ 0} ∪⋃

𝑖>0
({⟨𝜎, �⟩ ∣ 𝜎(x) /∈ [0, 𝑖 − 1] ∧ 𝜎[y← 0][x← 𝜎(x) − 𝑖](x) ≠ 0})Hdef. (23) of #𝜚I

= {⟨𝜎, �⟩ ∣ 𝜎(x) ≠ 0} ∪⋃
𝑖>0
({⟨𝜎, �⟩ ∣ 𝜎(x) /∈ [0, 𝑖 − 1] ∧ 𝜎(x) ≠ 𝑖}) Hfunction applicationI

= {⟨𝜎, �⟩ ∣ 𝜎(x) ≠ 0} HsimplificationI
, Vol. 1, No. 1, Article . Publication date: November 2024.



24 P. Cousot and J. Wang

The nonterminating behavior JS3K♯� of the iteration S3 = while (x!=0) { S2 x=x-1; } is de-
fined, by (11), to be either due to the nontermination JS3K♯𝑏𝑖 of its body or infinite iteration JS3K♯𝑙𝑖 .JS3K♯�
≜ JS3K♯𝑏𝑖 ∪ JS3K♯𝑙𝑖 H(11) and ⊔♯∞ = ∪I
= {⟨𝜎, �⟩ ∣ 𝜎(x) ≠ 0} ∪ {⟨𝜎, �⟩ ∣ 𝜎(x) < 0} Has previously shownI
= {⟨𝜎, �⟩ ∣ 𝜎(x) ≠ 0} HsimplificationI

The nonterminating behavior JS4K♯� of the iteration S4 = ≜ x=[-oo,oo]; S3 is nowJS4K♯�
= Jx=[-oo,oo];K♯� ∪ (Jx=[-oo,oo];K♯𝑒 #♯ JS3K♯�) H(4)I
= {⟨𝜎, 𝜎[x← 𝑛]⟩ ∣ 𝑛 ∈ N} #♯ {⟨𝜎, �⟩ ∣ 𝜎(x) ≠ 0} H(3)I
= {⟨𝑥, 𝑦⟩ ∣ ∃𝑧 ∈ Σ . ⟨𝑥, 𝑧⟩ ∈ {⟨𝜎, 𝜎[x← 𝑛]⟩ ∣ 𝑛 ∈ N} ∧ ⟨𝑧, 𝑦⟩ ∈ {⟨𝜎 ′, �⟩ ∣ 𝜎 ′(x) ≠ 0}}Hdef. (23) of #𝜚I
= {⟨𝜎, �⟩ ∣ ∃𝑛 ∈ N . 𝜎[x← 𝑛](x) ≠ 0} H𝑧 = 𝜎[x← 𝑛]I
= {⟨𝜎, �⟩ ∣ 𝜎 ∈ Σ} HsimplificationI

Grouping all cases together according to (12), we get JS3K♯ = ⟨𝑒 ∶ JS3K♯𝑒 , � ∶ JS3K♯�, 𝑏𝑟 ∶ JS3K♯𝑏⟩ = ⟨𝑒 ∶
{⟨𝜎, 𝜎⟩ ∣ 𝜎(x) = 0} ∪ {⟨𝜎, 𝜎[y← 0][x← 0]⟩ ∣ 𝜎(x) > 0}, � ∶ {⟨𝜎, �⟩ ∣ 𝜎(x) ≠ 0}, 𝑏𝑟 ∶ ∅⟩ and JS4K♯
= ⟨𝑒 ∶ JS4K♯𝑒 , � ∶ JS4K♯�, 𝑏𝑟 ∶ JS4K♯𝑏⟩ = ⟨𝑒 ∶ {⟨𝜎, 𝜎[x← 0]⟩ ∣ 𝜎 ∈ Σ} ∪ {⟨𝜎, 𝜎[y← 0][x← 0]⟩ ∣ 𝜎 ∈ Σ},
� ∶ {⟨𝜎, �⟩ ∣ 𝜎 ∈ Σ}, 𝑏𝑟 ∶ ∅⟩, proving example 5.2. □

6 Algebraic Program Execution Properties
6.1 Algebraic Execution Properties
Traditionally, logics involve two formal languages, one to express programs and another one to
express properties of the program executions. The syntax and semantics of these programming
and logic languages are considered to be different. Therefore, in addition to the program syntax
and semantics, this traditional approach requires to define the syntax and semantics of the logic
expressing program properties.

A semantics JSK♯ ∈ L♯ in (12) is an abstraction of a property of the executions of the statement
S. Therefore L♯ will be the domain of execution properties whether used to describe the semantics
or logic properties of programs executions. This will avoid us the necessary traditional distinction
between programs semantics and program properties.

This idea follows [52–54]’s slogan that “Programs are predicates” and define properties of pro-
gram executions as programs (which semantics is already defined). It is also found in Dexter
Kozen’s Kleene algebra with tests [62, 63, 82]. Therefore, from an abstract point of view, program
execution specification and verification need nothing more than programs and an associated cal-
culus post♯ on programs.

6.2 The Algebraic Program Execution Property Transformer
Let us define the transformer post♯ ∈ L♯ ↗Ð→L♯ ↗Ð→L♯ such that

post♯(𝑆)𝑃 ≜ 𝑃 #♯ 𝑆 (25)

where 𝑆 is a semantics in L♯ as defined by (12) and #♯ is defined by (15). If 𝑃 is a precondition when
at S then post♯JSK♯𝑃 is the postcondition after S (including when breaking out of S).

For example, using the shorthand (14), post♯(𝑆)init♯ = 𝑆 by 3.2.D.a and post♯(𝑆)𝑃 = 𝑃 for all
𝑃 ∈ L♯∞ by 3.2.D.c.
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In definition (25) of “predicate transformers” the meaning of “predicates” about programs exe-
cutions is abstracted away as programs specifying executions. Further abstractions will yield the
classic understanding of “predicates”, “abstract property”, etc.The classic Galois connections post–
p̃re [20, (12.22)] and post–post−1 [20, (12.6)] are still valid with this different definition of post.

The following lemmas show that the post transformer inherits the properties of sequential com-
position. It applies e.g. to ⟨L♯+, ⊑♯+⟩ in 3.2.A, ⟨L♯∞, ⊑♯∞⟩ in 3.2.C, or ⟨L♯, ⊑♯⟩ in (12).

Lemma 6.1. Let ⟨𝐿, ⊑, ⊔⟩ be a poset with partially defined join ⊔. Let # be the sequential compo-
sition on 𝐿. If # left-satisfies any one of the properties of definition 2.2 or their dual then for all 𝑆 ∈ L,
post(𝑆) satisfies the same property.

PRoof of lemma 6.1. Let ⟨𝑃𝑖 , 𝑖 ∈ Δ⟩ be a family of elements of 𝐿 such that Δ = {0, 1}with 𝑃0 ⊑ 𝑃1
for the left-increasingness hypothesis (def. 2.2.i), Δ is finite for the existing finite ⊔ left preserving
hypothesis (def. 2.2.ii), Δ ∈ O and ⟨𝑃𝑖 , 𝑖 ∈ Δ⟩ is an increasing chain for the left upper-continuity
hypothesis (def. 2.2.iii), Δ is an arbitrary set for the existing join left preservation property (def.
2.2.iv), possibly empty in case of left strictness (def. 2.2.vi). The proof is similar in all of these cases,
as follows

post(𝑆)(⊔𝑖∈Δ 𝑃𝑖)
⇔ (⊔𝑖∈Δ 𝑃𝑖) # 𝑆 Hdef. (25) of postI
⇔ ⊔𝑖∈Δ(𝑃𝑖 # 𝑆) Hby the left preservation hypothesis for #I
⇔ ⊔𝑖∈Δ post(𝑆)𝑃𝑖 Hdef. (25) of postI □

The following Galois connection shows the equivalence of forward/deductive and backward/ab-
ductive reasonings on the program semantics.

Lemma 6.2. If ⟨𝐿, ⊑, ⊔⟩ is a poset and the sequential composition # is existing ⊔ left preserving
then we have the Galois connection

∀𝑆 ∈ L . ⟨L, ⊑⟩ −−−−−−−−→←−−−−−−−−
post(𝑆)

p̃re(𝑆)
⟨L, ⊑⟩ where p̃re(𝑆)𝑄 ≜ ⊔{𝑃 ∈ L ∣ post(𝑆)𝑃 ⊑ 𝑄}). (26)

PRoof of lemma 26. By lemma 6.1, post(𝑆) preserves existing joins. It is the therefore the lower
adjoint of a Galois connection [20, exercise 11.39]. p̃re(𝑆) is its unique upper adjoint [20, exercise
11.39]. □

Lemma 6.3. Let ⟨𝐿, ⊑, ⊔⟩ be a poset with partially defined join ⊔. Let # be the sequential composi-
tion on 𝐿. If # right-satisfies any one of the properties of definition 2.2 or their dual then post satisfies
the same property.

PRoof of lemma 6.3. Let ⟨𝑃𝑖 , 𝑖 ∈ Δ⟩ be a family of elements of 𝐿 such that Δ = {0, 1} with
𝑃0 ⊑ 𝑃1 for the right-increasingness hypothesis (def. 2.2.i), Δ is finite for the existing finite ⊔ right
preserving hypothesis (def. 2.2.ii), Δ ∈ O and ⟨𝑃𝑖 , 𝑖 ∈ Δ⟩ is an increasing chain for the right upper-
continuity hypothesis (def. 2.2.iii), Δ is an arbitrary set for the existing join right preservation
property (def. 2.2.iv), possibly empty in case of right strictness (def. 2.2.vi). The proof is similar in
all of these cases, as follows

post(⊔𝑖∈Δ 𝑆𝑖)
= 𝝀𝑃 .post(⊔𝑖∈Δ 𝑆𝑖)𝑃 Hfunction applicationI
= 𝝀𝑃 .𝑃 # (⊔𝑖∈Δ 𝑆𝑖) Hdef. (25) of postI
= 𝝀𝑃 . ⊔𝑖∈Δ(𝑃 # 𝑆𝑖) Hby the right preservation hypothesis for #I
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= 𝝀𝑃 . ⊔𝑖∈Δ post(𝑆𝑖)𝑃 Hdef. (25) of postI
= ⊔𝑖∈Δ post(𝑆𝑖) Hpointwise def. of ⊔I □

The following Galois connection formalizes Dijkstra’s program inversion [36].
Lemma 6.4. If ⟨𝐿, ⊑, ⊔⟩ is a poset and the sequential composition # is existing ⊔ right preserving

then we have the following Galois connection (L ⊔Ð→ L is the set of existing join preserving operators
on L and ⊑ is the pointwise extension of ⊑)

⟨L, ⊑⟩ −−−−−−−→←−−−−−−−
post

post−1

⟨L ⊔Ð→ L, ⊑⟩ where post−1(𝑇 ) = ⊔{𝑆 ∈ L ∣ post(𝑆) ⊑ 𝑇}. (27)

PRoof of lemma 6.4. By lemma 6.3, post preserves existing joins. It is the therefore the lower
adjoint of a Galois connection [20, exercise 11.39]. post is its unique upper adjoint [20, exercise
11.39]. □

6.3 A Calculus of Algebraic Program Execution Properties
We derive the sound and complete post♯ calculus by calculational design, as follows.

TheoRem 6.5 (PRogRam execution pRopeRty calculus). If D♯ is a well-defined increasing
and decreasing chain-complete join semilattice with right upper continuous sequential composition #♯
then

post♯Jx = AK♯𝑃 = ⟨𝑒 ∶ 𝑃+ #♯ assign♯Jx, AK, � ∶ 𝑃∞, 𝑏𝑟 ∶ 𝑃𝑏𝑟 ⟩ (28)
post♯Jx = [𝑎, 𝑏]K♯𝑃 = ⟨𝑒 ∶ 𝑃+ #♯ rassign♯Jx, 𝑎,𝑏K, � ∶ 𝑃∞, 𝑏𝑟 ∶ 𝑃𝑏𝑟 ⟩ (29)

post♯JskipK♯𝑃 = ⟨𝑒 ∶ 𝑃+ #♯ skip♯, � ∶ 𝑃∞, 𝑏𝑟 ∶ 𝑃𝑏𝑟 ⟩ (30)
post♯JBK♯𝑃 = ⟨𝑒 ∶ 𝑃+ #♯ test♯JBK, � ∶ 𝑃∞, 𝑏𝑟 ∶ 𝑃𝑏𝑟 ⟩ (31)

post♯JbreakK♯𝑃 = ⟨𝑒 ∶ �♯+, � ∶ 𝑃∞, 𝑏𝑟 ∶ 𝑃𝑏𝑟 ⊔♯+ (𝑃𝑒 #♯ break♯)⟩ (32)
post♯JS1;S2K♯𝑃 = post♯JS2K♯(post♯JS1K♯𝑃) (33)

post♯Jif (B) S1 else S2K♯𝑃 = post♯JB;S1K♯𝑃 ⊔♯ post♯J¬B;S2K♯𝑃 (34)
𝐹 ♯𝑝𝑒 ≜ 𝝀𝑃 .𝝀𝑋 .post♯(init♯)𝑃 ⊔♯+ post♯(JB;SK♯𝑒)(𝑋) (35)

𝐹 ♯𝑝� ≜ 𝝀𝑋 .post♯(𝑋)(JB;SK♯𝑒) (36)

post♯Jwhile (B) SK♯𝑃 = ⟨𝑜𝑘 ∶ ⟨𝑒 ∶ post♯(J¬BK♯𝑒 ⊔♯𝑒 JB;SK♯𝑏)(lfp⊑♯+ (𝐹 ♯𝑝𝑒(𝑃))), (37)

� ∶ post♯(JB;SK♯�)(lfp⊑♯+ (𝐹 ♯𝑝𝑒(𝑃))) ⊔♯∞
post♯(gfp⊑♯∞ 𝐹 ♯𝑝�)𝑃 ⟩,

𝑏𝑟 ∶ 𝑃𝑏𝑟 ⟩
is sound and complete.

To prove theorem 6.5, we need preliminary lemmas.
Lemma 6.6. If D♯+ is a well-defined increasing chain-complete join semilattice with sequential

composition #♯ that is existing ⊔ right preserving and upper continuous in both arguments then
post♯(lfp⊑♯+ 𝐹 ♯𝑒 )𝑃 = lfp

⊑♯+ (𝐹 ♯𝑝𝑒(𝑃)).

PRoof of 6.6. By lemma 3.6, 𝐹 ♯𝑒 is increasing so that the transfinite iterates ⟨𝑋𝛿 , 𝛿 ∈ O⟩ of 𝐹 ♯𝑒
from �♯+ from an increasing chain which is ultimately stationary at rank 𝜖 so that lfp⊑♯+ 𝐹 ♯𝑒 = 𝑋𝜖

[23].
We have post♯(𝑋 0) = post♯(�♯+) = 𝝀𝑃 .𝑃 #♯�♯+ = 𝝀𝑃 .�♯+ by def. (25) of post♯ and∀𝑆 ∈ L♯+ . 𝑆 #♯�♯+ =

�♯+ in definition 3.2.D.a.
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Let us prove commutation of 𝐹 ♯𝑒 and 𝝀𝑃 . 𝐹 ♯𝑝𝑒(𝑃) for the abstraction post♯ of the iterates.
post♯(𝐹 ♯𝑒 (𝑋𝛿))

= 𝝀𝑃 .post♯(𝐹 ♯𝑒 (𝑋𝛿))𝑃 Hdef. function applicationI
= 𝝀𝑃 .post♯(init♯ ⊔♯+ (𝑋𝛿 #♯ JB;SK♯𝑒))𝑃 Hdef. (6) of 𝐹 ♯𝑒 I
= 𝝀𝑃 .post♯(init♯)𝑃 ⊔♯+ post♯(JB;SK♯𝑒)(post♯(𝑋𝛿)𝑃)Hpost♯ is existing join preserving by hypothesis on #♯ and lemma 6.1I
= 𝝀𝑃 . 𝐹 ♯𝑝𝑒(𝑃)(post♯(𝑋𝛿)) Hdef. (35) of 𝐹 ♯𝑝𝑒I
We conclude by continuity and [20, th. 18.26]. □

Note that if post♯ is simply increasing, we have an over approximation.

Lemma 6.7. If D♯ is well-defined decreasing chain-complete lattice and the sequential composition#♯ is right lower continuous then post♯(gfp⊑♯∞ 𝐹 ♯�) = post♯(gfp⊑♯∞ 𝐹 ♯𝑝�).

PRoof of (6.7). Let us prove commutation for the iterates ⟨𝑋𝛿 , 𝛿 ∈ O⟩ of gfp⊑♯∞ 𝐹 ♯�.
post♯(𝐹 ♯�(𝑋𝛿))

= 𝝀𝑃 .post♯(𝐹 ♯�(𝑋𝛿))𝑃 Hfunction applicationI
= 𝝀𝑃 .post♯(JB;SK♯𝑒 #♯ 𝑋𝛿)𝑃 Hdef. (7) of 𝐹 ♯�I
= 𝝀𝑃 .𝑃 #♯ (JB;SK♯𝑒 #♯ 𝑋𝛿) Hdef. (25) of post♯I
= 𝝀𝑃 . (𝑃 #♯ JB;SK♯𝑒) #♯ 𝑋𝛿 H#♯ associative by definition 3.2.DI
= 𝝀𝑃 .post♯(𝑋𝛿)(𝑃 #♯ JB;SK♯𝑒) Hdef. (25) of post♯I
= 𝝀𝑃 .post♯(𝑋𝛿)(post♯(JB;SK♯𝑒)𝑃) Hdef. (25) of post♯I
= 𝝀𝑃 . 𝐹 ♯𝑝�(post♯(𝑋𝛿))𝑃 Hdef. (36) of 𝐹 ♯𝑝�I
= 𝐹 ♯𝑝�(post♯(𝑋𝛿)) Hfunction applicationI
By hypothesis, the sequential composition #♯ is right lower continuous, so that by lemma 6.4, post♯
is lower continuous. By commutativity, we conclude by the dual of [20, th. 18.26]. □

PRoof of theoRem 6.5. The proof is by structural induction on the statement syntax.
post♯Jx = AK♯𝑃

= 𝑃 #♯ Jx = AK♯ Hdef. (25) of post♯I
= 𝑃 #♯ ⟨𝑒 ∶ assign♯Jx, AK, � ∶ �♯∞, 𝑏𝑟 ∶ �♯+⟩ H(12) and (3)I
= ⟨𝑒 ∶ 𝑃+ #♯ assign♯Jx, AK, � ∶ 𝑃∞ ⊔♯∞ (𝑃+ #♯ �♯∞), 𝑏𝑟 ∶ 𝑃𝑏𝑟 ⊔♯+ (𝑃+ #♯ �♯+)⟩ Hdef. (15) of #♯I
= ⟨𝑒 ∶ 𝑃+ #♯ assign♯Jx, AK, � ∶ 𝑃∞ ⊔♯∞ �♯∞, 𝑏𝑟 ∶ 𝑃𝑏𝑟 ⊔♯+ �♯+⟩H�♯∞ and �♯+ absorbent for #♯ by definition 3.2.D.c I
= ⟨𝑒 ∶ 𝑃+ #♯ assign♯Jx, AK, � ∶ 𝑃∞, 𝑏𝑟 ∶ 𝑃𝑏𝑟 ⟩ Hdef. lubI

The post♯ transformers (29) for x = [𝑎, 𝑏], (30) for x = skip, and (31) for B are similar.

post♯JbreakK♯𝑃
= 𝑃 #♯ JbreakK♯ Hdef. (25) of post♯I
= 𝑃 #♯ ⟨𝑒 ∶ �♯+, � ∶ �♯∞, 𝑏𝑟 ∶ break♯⟩ H(12) and (3)I
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= ⟨𝑒 ∶ 𝑃+ #♯ �♯+, � ∶ 𝑃∞ #♯ �♯∞, 𝑏𝑟 ∶ 𝑃𝑏𝑟 ⊔♯+ (𝑃𝑒 #♯ break♯)⟩ Hdef. (15) of #♯I
= ⟨𝑒 ∶ �♯+, � ∶ 𝑃∞, 𝑏𝑟 ∶ 𝑃𝑏𝑟 ⊔♯+ (𝑃𝑒 #♯ break♯)⟩ Hdefinitions 3.2.D.c and 3.2.D.aI

post♯JS1;S2K♯𝑃
= 𝑃 #♯ (JS1;S2K♯) Hdef. (25) of post♯I
= 𝑃 #♯ (JS1K♯ #♯ JS2K♯) Hdef. (15) of #♯I
= (𝑃 #♯ JS1K♯) #♯ JS2K♯ H#♯ associative by definition 3.23.2.DI
= post♯JS2K♯(𝑃 #♯ JS1K♯) Hdef. (25) of post♯JS2K♯𝑄 ≜ 𝑄 #♯ JS2K♯I
= post♯JS2K♯(post♯JS1K♯𝑃) Hdef. (25) of post♯JS1K♯𝑃 ≜ 𝑃 #♯ JS1K♯I

post♯Jif (B) S1 else S2K♯𝑃
= 𝑃 #♯ Jif (B) S1 else S2K♯ Hdef. (25) of post♯I
= 𝑃 #♯ (JB;S1K♯ ⊔♯ J¬B;S2K♯) H(4) and (12)I
= (𝑃 #♯ JB;S1K♯) ⊔♯ (𝑃 #♯ J¬B;S2K♯)Hbinary (hence finite) join preservation is definition 3.2.D.d, lemma 6.2, and (12)I
= post♯JB;S1K♯𝑃 ⊔♯ post♯J¬B;S2K♯𝑃 Hdef. (25) of post♯I

For post♯Jwhile (B) SK♯𝑃 , we proceed by cases.

post♯Jwhile (B) SK♯𝑒𝑃
= post♯(lfp⊑♯+ ⃗𝐹 ♯𝑒 #♯ (J¬BK♯𝑒 ⊔♯𝑒 JB;SK♯𝑏)𝑃) H(9)I
= post♯(J¬BK♯𝑒 ⊔♯𝑒 JB;SK♯𝑏)(post♯(lfp⊑♯+ ⃗𝐹 ♯𝑒 #♯)𝑃) H(33)I
= post♯(J¬BK♯𝑒 ⊔♯𝑒 JB;SK♯𝑏)(lfp⊑♯+ (𝐹 ♯𝑝𝑒(𝑃))) Hlemma 6.6I (38)

Similarly, for case (10), we get
post♯Jwhile (B) SK♯𝑏𝑖 𝑃

= post♯(JB;SK♯�)(lfp⊑♯+ (𝐹 ♯𝑝𝑒(𝑃)))
post♯Jwhile (B) SK♯𝑏𝑃

= 𝑃 #♯ Jwhile (B) SK♯𝑏 Hdef. (25) of post♯I
= 𝑃 #♯ �♯+ H(9)I
= �♯+ H�♯+ absorbent for #♯ in definition 3.2.D.aI

post♯Jwhile (B) SK♯𝑙𝑖
= post♯(gfp⊑♯∞ 𝐹 ♯�) H(10)I
= post♯(gfp⊑♯∞ 𝐹 ♯𝑝�) Hlemma 6.7I (39)

post♯(Jwhile (B) SK♯�)
= post♯(Jwhile (B) SK♯𝑏𝑖 ⊔♯∞ Jwhile (B) SK♯𝑙𝑖) H(11)I
= post♯(Jwhile (B) SK♯𝑏𝑖) ⊔♯∞ post♯(Jwhile (B) SK♯𝑙𝑖) Hbinary (hence finite) join preservation

and (6.2)I
= 𝝀𝑃 .post♯(Jwhile (B) SK♯𝑏𝑖)𝑃 ⊔♯∞ post♯(Jwhile (B) SK♯𝑙𝑖)𝑃 Hpointwise def. ⊓∞I
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= 𝝀𝑃 .post♯(JB;SK♯�)(lfp⊑♯+ 𝐹 ♯𝑝𝑒(𝑃)) ⊔♯∞ post♯(gfp⊑♯∞ 𝐹 ♯𝑝�)𝑃 Has proved in (38) and (39)I
Grouping all cases together, we get
post♯Jwhile (B) SK♯𝑃

= 𝑃 #♯ Jwhile (B) SK♯ Hdef. (25) of post♯I
= 𝑃 #♯ ⟨𝑒 ∶ Jwhile (B) SK♯𝑒 , � ∶ Jwhile (B) SK♯�, 𝑏𝑟 ∶ Jwhile (B) SK♯𝑏⟩ H(12)I
= ⟨𝑒 ∶ 𝑃+𝑜𝑘 #♯ Jwhile (B) SK♯𝑒 , � ∶ 𝑃∞𝑜𝑘 ⊔♯∞ 𝑃+𝑜𝑘 #♯ Jwhile (B) SK♯�, 𝑏𝑟 ∶ 𝑃𝑏𝑟 ⊔♯+ 𝑃+𝑜𝑘 #♯ Jwhile (B) SK♯𝑏⟩Hdef. (15) of #♯I
= ⟨𝑒 ∶ post♯Jwhile (B) SK♯𝑒𝑃, � ∶ post♯Jwhile (B) SK♯�𝑃, 𝑏𝑟 ∶ 𝑃𝑏𝑟 ⟩Hdef. (25) of post♯, Jwhile (B) SK♯𝑏 ≜ �♯+ by (9), 𝑃+𝑜𝑘 #♯ �♯+ = �♯+ by 3.2.D.b, and �♯+ infimum by

3.2.AI
= ⟨𝑒 ∶ post♯(J¬BK♯𝑒 ⊔♯𝑒 JB;SK♯𝑏)(lfp⊑♯+ 𝐹 ♯𝑝𝑒(𝑃)), � ∶ post♯(JB;SK♯�)(lfp⊑♯+ 𝐹 ♯𝑝𝑒(𝑃)) ⊓♯∞

post♯(gfp⊑♯∞ 𝐹 ♯𝑝�)𝑃, 𝑏𝑟 ∶ 𝑃𝑏𝑟 ⟩ Has previously proved for each case, proving (37).I □

RemaRK 6.8. By defining the appropriate primitives, the post program execution calculus (28)
— (37) of theorem 6.5 is an instance of the generic abstract semantics (12). ∎

Example 6.9 (Finitary powerset deterministic calculational domain). In [5], the while language is
deterministic and has no breaks so the random assignment and breaks have to be eliminated in (3).
The denotational semantics is JSK ∈ (Σ×Σ)� → (Σ×Σ)� where (Σ×Σ)� is the domain of relations
between states extended by � to denote nontermination with Scott flat ordering ⊑.

Anticipating on the abstractions of part II, this is an abstraction [18, sect. 8.2] of the trace se-
mantics of sect. 4. Then a semantic abstraction 9.1 gets rid of nontermination [18, sect. 8.1.6] and
another one [18, sect. 9.1] abstracts relations to transformers to yield the collecting semantics [5,
p. 876].

Skipping these abstractions of the trace semantics, we can directly instantiate the generic ab-
stract semantics of sect. 3 to a finitary relational semantics such as J𝑆K𝑒 in [21]. Then post♯ in (25)
becomes post♯(𝑆)𝑃 = {⟨𝜎, 𝜎 ′′⟩ ∣ ∃𝜎 ′ ∈ Σ . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑃 ∧ ⟨𝜎 ′, 𝜎 ′′⟩ ∈ 𝑆}, which is a specification
of the collecting semantics postulated in [5, p. 876]. post♯(𝑆) preserves arbitrary unions so, in ab-
sence of breaks and ignoring nontermination, together with JBK♯𝑒 ○ JBK♯𝑒 = JBK♯𝑒 , JBK♯𝑒 ○ J¬BK♯𝑒 = ∅,
andJskipK♯𝑒 = init♯ by 3.2.D.a, (37) in theorem 6.5 simplifies to

post♯Jwhile (B) SK♯𝑃 = post♯(J¬BK♯𝑒)(lfp⊆ 𝝀𝑋 .𝑃 ∪ post♯(Jif (B) S else skipK♯𝑒)(𝑋)
which is precisely the data-independent abstraction of the collecting semantics of [5, p. 876]. ∎

6.4 Algebraic Logics of Program Execution Properties

By defining {𝑃 } S{𝑄 } ≜ (⟨𝑃, 𝑄⟩ ∈ ▴𝛼(JSK♯)) with ▴𝛼(𝑆) ≜ {⟨𝑃, 𝑄⟩ ∣ post♯(𝑆)𝑃 ⊑♯ 𝑄} and dually
{𝑃 } S{𝑄 } ≜ (⟨𝑃, 𝑄⟩ ∈ ▾𝛼(JSK♯)) with ▾𝛼(𝑆) ≜ {⟨𝑃, 𝑄⟩ ∣ 𝑄 ⊑♯ post♯(𝑆)𝑃}, we respectively get the
abstract version [20, chapter 26] of Hoare logic [55] and that of reverse/incorrectness logic [32, 75]
(extended to loops breaks and nontermination [21, 65]). This is now classic and will be used but
not be further detailled.

7 A Calculus of Algebraic Program Semantic (Hyper) Properties
We now study proof methods for semantic properties, that is properties of the semantics, that we
define in extension. This is called hyperproperties when the semantics is a set of traces [13, 14],
and by extension, for their abstractions, in particular to relational semantics.
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7.1 Algebraic Semantic (Hyper) Properties
Defined in extension, program semantic properties are in ℘(L♯).

Example 7.1 (Algebraic noninterference). Noninterference [46], can be generalized to semantic
(hyper) properties of algebraic semantics, as follows.The precondition 𝑅𝑖 ∈ ℘(L♯+×L♯+) is a relation
between prelude executions extended to L♯ by (14). The postcondition 𝑅𝑓 ∈ ℘(L♯×L♯) is a relation
between terminated or infinite executions. Then algebraic noninterference is ANI ≜ {P ∈ ℘(L♯) ∣
∀𝑆1, 𝑆2 ∈ P . ∀𝑃1, 𝑃2 ∈ L♯+ . ⟨𝑃1, 𝑃2⟩ ∈ 𝑅𝑖 Ô⇒ ⟨post♯(𝑆1)𝑃1, post♯(𝑆2)𝑃2⟩ ∈ 𝑅𝑓 }. An instance
is algebraic abstract noninterference AANI ≜ {P ∈ ℘(L♯) ∣ ∀𝑆1, 𝑆2 ∈ P . ∀𝑃1, 𝑃2 ∈ L♯+ . 𝛼1(𝑃1) =
𝛼1(𝑃2) Ô⇒ 𝛼2(post♯(𝑆1)𝑃1) = 𝛼2(post♯(𝑆2)𝑃2)} for abstractions 𝛼1 ∈ L♯ → 𝐴1 and 𝛼2 ∈ L♯ → 𝐴2

with special case 𝛼1 = 𝛼2 to characterize abstract domain completeness in abstract interpretation
[42, 43, 68]. After [14], the generalized algebraic noninterference is GANI ≜ {P ∈ ℘(L♯) ∣ ∀𝑆1, 𝑆2 ∈
P . ∃𝑆 ∈ P . ∀𝑃1, 𝑃2 ∈ L♯+ . ∀𝑃 ∈ 𝑆 . ⟨𝑃, 𝑃1⟩ ∈ 𝑅𝑖 Ô⇒ ⟨post♯(𝑆1)𝑃, post♯(𝑆2)𝑃2⟩ ∈ 𝑅𝑓 }. ∎

7.2 The Algebraic Program Semantic (Hyper) Properties Transformer
When considering semantic properties in extension, the traditional view of transformers is that
they now belong to ℘(L♯)→ ℘(L♯) with

Post♯ ∈ L♯ → ℘(L♯) ↗Ð→℘(L♯)
Post♯(𝑆)P ≜ {post♯(𝑆)𝑃 ∣ 𝑃 ∈ P} (40)

[5, 29, 30, 67] are all instances of this definition. The advantage is that logical implication is the
traditional ⊆. But the classic structural definition (see sect. 3.2) of the transformer Post♯ fails (unless
restrictions are placed on the considered hyperproperties). For the conditional

Post♯Jif (B) S1 else S2K♯P
= {post♯Jif (B) S1 else S2K♯𝑃 ∣ 𝑃 ∈ P} Hdef. (40) of Post♯(𝑆)I
= {post♯JB;S1K♯𝑃 ⊔♯ post♯J¬B;S2K♯𝑃 ∣ 𝑃 ∈ P} H(34)I (41)
⊆ {post♯JB;S1K♯𝑃1 ⊔♯ post♯J¬B;S2K♯𝑃2 ∣ 𝑃1 ∈ P ∧ 𝑃2 ∈ P} Hdef. ⊆I (42)
= {𝑄1 ⊔♯ 𝑄2 ∣ 𝑄1 ∈{post♯JB;S1K♯𝑃1 ∣ 𝑃1 ∈P} ∧𝑄2 ∈{post♯J¬B;S2K♯𝑃2 ∣ 𝑃2 ∈P}} Hdef. ∈I
= {𝑄1 ⊔♯ 𝑄2 ∣ 𝑄1 ∈Post♯JB;S1K♯P ∧𝑄2 ∈Post♯J¬B;S2K♯P} Hdef. (40) of Post♯(𝑆)I
The problem is that in (41) the two possible executions of the conditional are tight together,
whereas, by necessity of traditional independent structural induction on both branches of the
conditional, this link is lost in (42). So the hypercollecting semantics of [5, p. 877] is incomplete
(the inclusion (42) may be strict).

A solution to preserve structurality is to observe that
{post♯(𝑆)𝑃} = Post♯(𝑆){𝑃} (43)

so that the calculation goes on at (41)
= {𝑄1 ⊔♯ 𝑄2 ∣ 𝑄1 ∈ {post♯JB;S1K♯𝑃} ∧𝑄2 ∈ {post♯J¬B;S2K♯𝑃} ∧ 𝑃 ∈ P} Hdef. singleton and ∈I
= {𝑄1 ⊔♯ 𝑄2 ∣ 𝑄1 ∈ Post♯JB;S1K♯{𝑃} ∧𝑄2 ∈ Post♯J¬B;S2K♯{𝑃} ∧ 𝑃 ∈ P} Hdef. (40) of Post♯(𝑆)I
so that Post♯Jif (B) S1 else S2K♯ is exactly defined structurally as a function of the components
Post♯JB;S1K♯ and Post♯J¬B;S2K♯.
Of course, this element wise reasoning may be considered inelegant. Its necessity becomes more

clear when considering the trace semantics of sect. 4. When reasoning on paths e.g. in an iteration
statement, the same paths must be considered consistently at each iteration.This requirement may
be lifted after abstraction, for example with invariants which forget about computation history.

, Vol. 1, No. 1, Article . Publication date: November 2024.



Calculational Design of Hyperlogics by Abstract Interpretation 31

For backward reasonings, we define Pre such that for all 𝑆 ∈ L♯, we have

Pre(𝑆)Q ≜ {𝑃 ∣ post♯(𝑆)𝑃 ∈ Q} (44) ⟨℘(L♯), ⊆⟩ −−−−−−−−−→←−−−−−−−−−
Post♯(𝑆)

Pre(𝑆)
⟨℘(L♯), ⊆⟩ (45)

PRoof of (45).
Post♯(𝑆)P ⊆ Q

⇔ {post♯(𝑆)𝑃 ∣ 𝑃 ∈ P} ⊆ Q Hdef. (40) of Post♯I
⇔ ∀𝑃 ∈ P . post♯(𝑆)𝑃 ∈ Q Hdef. ⊆I
⇔ P ⊆ {𝑃 ∣ post♯(𝑆)𝑃 ∈ Q} Hdef. ⊆I
⇔ P ⊆ Pre(𝑆)Q Hdef. 45) of PreI □

If D♯ is a well-defined chain-complete lattice with right finite 𝑥⊔ preservation composition #♯
then we have ( 𝑥⊔, 𝑥 ∈ {+,∞}, stands for ⊔♯+ in definition 3.2.A when 𝑥 = + and for ⊔♯∞ in definition
3.2.C when 𝑥 =∞)

Post♯(𝑆1 𝑥⊔ 𝑆2)P = (Post♯(𝑆1) 𝑥⊔ Post♯(𝑆2))P (46)
where (𝑆1 𝑥⊔ 𝑆2)P ≜ {𝑄1 𝑥⊔𝑄2 ∣ 𝑄1 ∈ 𝑆1{𝑃} ∧𝑄2 ∈ 𝑆2{𝑃} ∧ 𝑃 ∈ P}

PRoof of (46).
Post♯(𝑆1 𝑥⊔ 𝑆2)P

= {post♯(𝑆1 𝑥⊔ 𝑆2)𝑃 ∣ 𝑃 ∈ P} H(43)I
= {𝑃 #♯ (𝑆1 𝑥⊔ 𝑆2) ∣ 𝑃 ∈ P} Hdef. (25) of post♯I
= {(𝑃 #♯ 𝑆1) 𝑥⊔ (𝑃 #♯ 𝑆2) ∣ 𝑃 ∈ P} Hright finite 𝑥⊔ preservation in definition 3.2.D.dI
= {post♯(𝑆1)𝑃 𝑥⊔ post♯(𝑆2)𝑃 ∣ 𝑃 ∈ P} Hdef. (25) of post♯I
= {𝑄1 𝑥⊔𝑄2 ∣ 𝑄1 ∈ {post♯(𝑆1)𝑃} ∧𝑄2 ∈ {post♯(𝑆2)𝑃} ∧ 𝑃 ∈ P} Hdef. ∈ and singletonI
= {𝑄1 𝑥⊔𝑄2 ∣ 𝑄1 ∈ Post♯(𝑆1){𝑃} ∧𝑄2 ∈ Post♯(𝑆2){𝑃} ∧ 𝑃 ∈ P} H(43)I
= Post♯(𝑆1) 𝑥⊔ Post♯(𝑆2)P Hdef. 𝑥⊔ in (46)I □

RemaRK 7.2. Contrary to join preservation lemma 6.1 for post, Post may not preserve existing
joins and meets so that, in general, ⊔

𝑖∈Δ
Post♯(𝑆𝑖) ≠ Post♯(⊔

𝑖∈Δ
𝑆𝑖) and dually. For example, let P be

a semantic property. By (40), ⊔♯+
𝑛∈N

Post♯((JB # SK♯)𝑛)P = ⊔♯+
𝑛∈N
{post♯((JB # SK♯)𝑛)𝑃 ∣ 𝑃 ∈ P} is the set

of finite executions, for every precondition 𝑃 ∈ P , reaching the entry of the iteration while(B) S

after exactly 𝑛 terminating body iterations, for all 𝑛 ∈ N. On the contrary Post♯(⊔♯+
𝑛∈N
(JB # SK♯)𝑛)P =

{post♯(⊔♯+
𝑛∈N
(JB # SK♯)𝑛)𝑃 ∣ 𝑃 ∈ P} = {⊔♯+

𝑛∈N
post♯((JB # SK♯)𝑛)𝑃 ∣ 𝑃 ∈ P} is the set of finite executions,

for every precondition 𝑃 ∈ P , reaching the entry of the iteration while(B) S after any number of
terminating body iterations. ∎

7.3 A Calculus of Algebraic Semantic (Hyper) Properties
In the calculational design of the Post♯, we will need the following trivial proposition.

PRoposition 7.3 (Singleton fixpoint). There is an obvious isomorphism between a poset ⟨𝐿, ⊑, �,
⊔⟩ and its singletons ⟨𝐿̆, ⊑̆, �̆, ⊔̆⟩with 𝐿̆ ≜ {{𝑥} ∣ 𝑥 ∈ 𝐿}, {𝑥}⊑̆{𝑦} ≜ 𝑥 ⊑ 𝑦, �̆ ≜ {�}, {𝑥}⊔̆{𝑦} ≜ {𝑥⊔𝑦},
so that, for a increasing chain complete poset we have {lfp⊑ 𝐹} = {⊔𝛿∈O 𝐹

𝛿} = ⊔̆𝛿∈O{𝐹𝛿} = lfp ⊑̆ 𝐹
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where ⟨𝐹𝛿 , 𝛿 ∈ O⟩ are the transfinite iterates of 𝐹 from � and 𝐹({𝑥}) ≜ {𝐹(𝑥)}. Dually for greatest
fixpoints.

We derive the sound and complete Post♯ calculus by calculational design, as follows.

TheoRem 7.4 (PRogRam semantic (hypeR) pRopeRty calculus). If D♯ is a well-defined in-
creasing and decreasing chain-complete join semilattice with right upper continuous sequential com-
position #♯ then

Post♯Jx = AK♯P = {⟨𝑒 ∶ 𝑃+ #♯ assign♯Jx, AK, � ∶ 𝑃∞, 𝑏𝑟 ∶ 𝑃𝑏𝑟 ⟩ ∣ 𝑃 ∈ P} (47)

Post♯Jx = [𝑎, 𝑏]K♯P = {⟨𝑒 ∶ 𝑃+ #♯ rassign♯Jx, 𝑎,𝑏K, � ∶ 𝑃∞, 𝑏𝑟 ∶ 𝑃𝑏𝑟 ⟩ ∣ 𝑃 ∈ P} (48)

Post♯JskipKP = {⟨𝑒 ∶ 𝑃+ #♯ skip♯, � ∶ 𝑃∞, 𝑏𝑟 ∶ 𝑃𝑏𝑟 ⟩ ∣ 𝑃 ∈ P} (49)

Post♯JBK♯P = {⟨𝑒 ∶ 𝑃+ #♯ test♯JBK, � ∶ 𝑃∞, 𝑏𝑟 ∶ 𝑃𝑏𝑟 ⟩ ∣ 𝑃 ∈ P} (50)

Post♯JbreakK♯P = {⟨𝑒 ∶ �♯+, � ∶ 𝑃∞, 𝑏𝑟 ∶ 𝑃𝑏𝑟 ⊔♯+ (𝑃𝑒 #♯ break♯)⟩ ∣ 𝑃 ∈ P} (51)

Post♯JS1;S2K♯P = Post♯JS2K♯(Post♯JS1K♯P) (52)

Post♯Jif(B) S1 else S2K♯P = (Post♯JB;S1K♯ ⊔♯ Post♯J¬B;S2K♯)P (53)
˘⃗𝐹 ♯𝑝𝑒 ≜ 𝝀𝑃 .𝝀𝑋 .Post♯(init♯){𝑃} ⊔̆♯+ Post♯(JB;SK♯𝑒)(𝑋) (54)
𝐹 ♯𝑝� ≜ 𝝀𝑋 .⋃{Post♯(𝑆)(JB;SK♯𝑒) ∣ 𝑆 ∈ 𝑋} (55)

Post♯Jwhile(B) SK♯P = {⟨𝑒 ∶ 𝑄𝑒 , � ∶ 𝑄�ℓ ⊔♯∞ 𝑄�𝑏, 𝑏𝑟 ∶ 𝑃𝑏𝑟 ⟩ ∣ (56)

𝑄𝑒 ∈ Post♯(J¬BK♯𝑒 ⊔♯𝑒 JB;SK♯𝑏)(lfp ⊑̆♯+ ˘⃗𝐹 ♯𝑝𝑒(𝑃)) ∧

𝑄�ℓ ∈ Post♯(JB;SK♯�)(lfp ⊑̆♯+ ( ˘⃗𝐹 ♯𝑝𝑒(𝑃))) ∧
∃𝑄�𝑏 . 𝑄�𝑏 ∈ Post♯(𝑄𝑝�){𝑃} ∧𝑄𝑝� ∈ gfp ⊑̆

♯
∞ 𝐹 ♯𝑝� ∧ 𝑃 ∈ P}

(where 𝑆1 𝑥⊔ 𝑆2 is defined in (46)) is sound and complete.

PRoof of theoRem 7.4.
We need two preliminary results.

˘⃗𝐹 ♯𝑝𝑒(𝑃){𝑋}
= Post♯(init♯){𝑃} ⊔̆♯+ Post♯(JB;SK♯𝑒){𝑋} H(54)I
= {post♯(init♯)𝑃 ′ ∣ 𝑃 ′ ∈ {𝑃}} ⊔̆♯+ {post♯(JB;SK♯𝑒)𝑋} H(40) and (43)I
= {post♯(init♯)𝑃} ⊔̆♯+ {post♯(JB;SK♯𝑒)𝑋} Hdef. ∈I
= {post♯(init♯)𝑃 ⊔♯+ post♯(JB;SK♯𝑒)𝑋} Hdef. ⊔̆♯+ in proposition 7.3I
= {𝐹 ♯𝑝𝑒(𝑃)𝑋} H(35)I (57)

˘⃗𝐹 ♯𝑝�({𝑋})
= ⋃{Post♯(𝑆)(JB;SK♯𝑒) ∣ 𝑆 ∈ {𝑋}} Hdef. (55) of ˘⃗𝐹 ♯𝑝�I
= ⋃{Post♯(𝑋)(JB;SK♯𝑒)} Hdef. ∈I
= ⋃{{post♯(𝑋)(JB;SK♯𝑒)}} H(43)I
= {post♯(𝑋)(JB;SK♯𝑒)} Hdef. ⋃I
= {𝐹 ♯𝑝�(𝑋)} H(36)I (58)
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The proof is by structural induction on the statement syntax.
Post♯Jx = AK♯P

= {post♯Jx = AK♯𝑃 ∣ 𝑃 ∈ P} Hdef. (40) of Post♯I
= {𝑃 #♯ Jx = AK♯ ∣ 𝑃 ∈ P} Hdef. (40) of post♯I
= {𝑃 #♯ ⟨𝑒 ∶ assign♯Jx, AK, � ∶ �♯∞, 𝑏𝑟 ∶ 𝑃𝑏𝑟 ⟩ ∣ 𝑃 ∈ P} H(12) and (3)I
= {⟨𝑒 ∶ 𝑃+ #♯ assign♯Jx, AK, � ∶ 𝑃∞ #♯ �♯∞, 𝑏𝑟 ∶ 𝑃𝑏𝑟 ⟩ ∣ 𝑃 ∈ P} Hdef. (15) of #♯I
= {⟨𝑒 ∶ 𝑃+ #♯ assign♯Jx, AK, � ∶ 𝑃∞ #♯ �♯∞, 𝑏𝑟 ∶ 𝑃𝑏𝑟 ⟩ ∣ 𝑃 ∈ P} H�♯+ absorbent by definition 3.2.D.aI
= {⟨𝑒 ∶ 𝑃+ #♯ assign♯Jx, AK, � ∶ 𝑃∞, 𝑏𝑟 ∶ 𝑃𝑏𝑟 ⟩ ∣ 𝑃 ∈ P} H𝑃∞ absorbent by definition 3.2.D.cI

The Post♯ characterizations (48) for x = [𝑎, 𝑏], (49) for x = skip, and (50) for B are similar.

Post♯JbreakK♯P
= {post♯JbreakK♯𝑃 ∣ 𝑃 ∈ P} Hdef. (40) of Post♯I
= {𝑃 #♯ JbreakK♯ ∣ 𝑃 ∈ P} Hdef. (40) of post♯I
= {𝑃 #♯ ⟨𝑒 ∶ �♯+, � ∶ �♯∞, 𝑏𝑟 ∶ break♯⟩ ∣ 𝑃 ∈ P} H(12) and (3)I
= {⟨𝑒 ∶ 𝑃+ #♯ �♯+, � ∶ 𝑃∞ #♯ �♯∞, 𝑏𝑟 ∶ 𝑃𝑏𝑟 ⊔♯+ (𝑃𝑒 #♯ break♯)⟩ ∣ 𝑃 ∈ P} Hdef. (15) of #♯I
= {⟨𝑒 ∶ �♯+, � ∶ 𝑃∞, 𝑏𝑟 ∶ 𝑃𝑏𝑟 ⊔♯+ (𝑃𝑒 #♯ break♯)⟩ ∣ 𝑃 ∈ P} Hdefinitions 3.2.D.c and 3.2.D.aI

Post♯JS1;S2K♯P
= {post♯JS1;S2K♯𝑃 ∣ 𝑃 ∈ P} Hdef. (40) of Post♯I
= {𝑃 #♯ (JS1;S2K♯) ∣ 𝑃 ∈ P} Hdef. (40) of post♯I
= {𝑃 #♯ (JS1K♯ #♯ JS2K♯) ∣ 𝑃 ∈ P} Hdef. (15) of #♯I
= {(𝑃 #♯ JS1K♯) #♯ JS2K♯ ∣ 𝑃 ∈ P} H#♯ associative by definition 3.23.2.DI
= {post♯JS2K♯(𝑃 #♯ JS1K♯) ∣ 𝑃 ∈ P} Hdef. (40) of post♯JS2K♯𝑄 ≜ 𝑄 #♯ JS2K♯I
= {post♯JS2K♯(post♯JS1K♯𝑃) ∣ 𝑃 ∈ P} Hdef. (40) of post♯JS1K♯𝑃 ≜ 𝑃 #♯ JS1K♯I
= {post♯JS2K♯𝑄 ∣ 𝑄 ∈ {post♯JS1K♯𝑃 ∣ 𝑃 ∈ P}} Hdef. ∈I
= Post♯JS2K♯(Post♯JS1K♯P) Hdef. (40) of Post♯I

Post♯Jif (B) S1 else S2K♯P
= {𝑄1 ⊔♯ 𝑄2 ∣ 𝑄1 ∈ Post♯JB;S1K♯{𝑃} ∧𝑄2 ∈ Post♯J¬B;S2K♯{𝑃} ∧ 𝑃 ∈ P} Has shown aboveI
= (Post♯JB;S1K♯ ⊔♯ Post♯J¬B;S2K♯)P Hby def. (46) of ⊔♯I

Post♯Jwhile (B) SK♯P
= {post♯Jwhile (B) SK♯𝑃 ∣ 𝑃 ∈ P} Hdef. (40) of Post♯I
= {⟨𝑜𝑘 ∶ ⟨𝑒 ∶ post♯(J¬BK♯𝑒 ⊔♯𝑒 JB;SK♯𝑏)(lfp⊑♯+ (𝐹 ♯𝑝𝑒(𝑃))), � ∶ post♯(JB;SK♯�)(lfp⊑♯+ (𝐹 ♯𝑝𝑒(𝑃))) ⊔♯∞

post♯(gfp⊑♯∞ 𝐹 ♯𝑝�)𝑃⟩, 𝑏𝑟 ∶ 𝑃𝑏𝑟 ⟩ ∣ 𝑃 ∈ P} H(37)I
= {⟨𝑒 ∶ 𝑄𝑒 , � ∶ 𝑄�ℓ ⊔♯∞ 𝑄�𝑏, 𝑏𝑟 ∶ 𝑃𝑏𝑟 ⟩ ∣ 𝑄𝑒 ∈ {post♯(J¬BK♯𝑒 ⊔♯𝑒 JB;SK♯𝑏)(lfp⊑♯+ (𝐹 ♯𝑝𝑒(𝑃)))} ∧ 𝑄�ℓ ∈
{post♯(JB;SK♯�)(lfp⊑♯+ (𝐹 ♯𝑝𝑒(𝑃)))} ∧ ∃𝑄𝑝� . 𝑄�𝑏 ∈ {post♯(𝑄𝑝�)𝑃} ∧𝑄𝑝� ∈ {gfp⊑

♯
∞ 𝐹 ♯𝑝�} ∧ 𝑃 ∈ P}
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Hdef. singleton and ∈I
= {⟨𝑒 ∶ 𝑄𝑒 , � ∶ 𝑄�ℓ ⊔♯∞ 𝑄�𝑏, 𝑏𝑟 ∶ 𝑃𝑏𝑟 ⟩ ∣ 𝑄𝑒 ∈ Post♯(J¬BK♯𝑒 ⊔♯𝑒 JB;SK♯𝑏){lfp⊑♯+ (𝐹 ♯𝑝𝑒(𝑃))} ∧ 𝑄�ℓ ∈

Post♯(JB;SK♯�){lfp⊑♯+ (𝐹 ♯𝑝𝑒(𝑃))} ∧ ∃𝑄�𝑏 . 𝑄�𝑏 ∈ Post♯(𝑄𝑝�){𝑃} ∧𝑄𝑝� ∈ {gfp⊑
♯
∞ 𝐹 ♯𝑝�} ∧ 𝑃 ∈ P}H(43)I

= {⟨𝑒 ∶ 𝑄𝑒 , � ∶ 𝑄�ℓ ⊔♯∞ 𝑄�𝑏, 𝑏𝑟 ∶ 𝑃𝑏𝑟 ⟩ ∣ 𝑄𝑒 ∈ Post♯(J¬BK♯𝑒 ⊔♯𝑒 JB;SK♯𝑏)(lfp ⊑̆♯+ ˘⃗𝐹 ♯𝑝𝑒(𝑃)) ∧ 𝑄�ℓ ∈
Post♯(JB;SK♯�)(lfp ⊑̆♯+ ˘⃗𝐹 ♯𝑝𝑒(𝑃)) ∧ ∃𝑄�𝑏 . 𝑄�𝑏 ∈ Post♯(𝑄𝑝�){𝑃} ∧𝑄𝑝� ∈ {gfp⊑

♯
∞ 𝐹 ♯𝑝�} ∧ 𝑃 ∈ P}Hsince {lfp⊑♯+ 𝐹 ♯𝑝𝑒(𝑃)} = lfp ⊑̆♯+ ˘⃗𝐹 ♯𝑝𝑒(𝑃) by (57) and proposition 7.3I

= {⟨𝑒 ∶ 𝑄𝑒 , � ∶ 𝑄�ℓ ⊔♯∞ 𝑄�𝑏, 𝑏𝑟 ∶ 𝑃𝑏𝑟 ⟩ ∣ 𝑄𝑒 ∈ Post♯(J¬BK♯𝑒 ⊔♯𝑒 JB;SK♯𝑏)(lfp ⊑̆♯+ ˘⃗𝐹 ♯𝑝𝑒(𝑃)) ∧ 𝑄�ℓ ∈
Post♯(JB;SK♯�)(lfp ⊑̆♯+ ˘⃗𝐹 ♯𝑝𝑒(𝑃)) ∧ ∃𝑄�𝑏 . 𝑄�𝑏 ∈ Post♯(𝑄𝑝�){𝑃} ∧𝑄𝑝� ∈ gfp ⊑̆

♯
∞ 𝐹 ♯𝑝� ∧ 𝑃 ∈ P}Hsince {gfp⊑♯∞ 𝐹 ♯𝑝�} = gfp

⊑̆♯∞ 𝐹 ♯𝑝� by (58) and proposition 7.3I □

Example 7.5 (Finitary powerset calculational domain). Continuing example 6.9 ignoring breaks
and nontermination, the hypercollecting semantics of [5, p. 877] is

Post♯(J¬BK♯𝑒)(lfp⊆ 𝝀𝑋 .P ∪ Post♯(Jif (B) S else skipK♯𝑒)(𝑋)) (59)
= {Post♯(J¬BK♯𝑒)(Post♯(Jif (B) S else skipK♯𝑒)𝑛P) ∣ 𝑛 ∈ N}
= {Post♯(J¬BK♯𝑒)(Post♯(Jif (B) S else skipK♯𝑒)𝑛{𝑃}) ∣ 𝑛 ∈ N ∧ 𝑃 ∈ P}

≠ ⋃{Post♯(J¬BK♯𝑒)(lfp⊆ ˘⃗𝐹 ♯𝑝𝑒(𝑃)) ∣ 𝑃 ∈ P}

By remark 7.2, this is different from (56) (even when ignoring nontermination and breaks) so that
[5, p. 877] is incomplete and cannot be used as a hypercollecting semantics for general hyperprop-
erties, as further discussed in sect. 21. Moreover (59) is unsound, invalidating [5, th. 1]. This will
be fixed by the weak hypercollecting semantics defined in (108). ∎

8 Abstract Logic of Semantic (Hyper) Properties
8.1 Definition of the Upper and Lower Abstract Logics

The upper (respectively lower) logic L♯ (resp. L♯) maps the semantics 𝑆 of a statement into a pair
of a precondition and postcondition that is L♯,L♯ ∈ L♯ → (℘(L♯) × ℘(L♯)) ordered pointwise by ⊆
(the larger the precondition, the larger is the postcondition). We have

L♯(𝑆) ≜ {⟨P, Q⟩ ∣ Post♯(𝑆)P ⊆ Q} (60)

where ⟨P, Q⟩ ∈ L♯JSK♯ is traditionally written {∣P ∣} S{∣Q ∣}. The ⊆-dual holds for the lower abstract
logic. As was the case in sect. 6.4 for execution properties, this is an abstraction ▴𝛼(P) ≜ 𝝀𝑆 .{⟨P,
Q⟩ ∣ P(𝑆)P ⊆ Q}

⟨L♯ → ℘(L♯) ↗Ð→℘(L♯), ⊆⟩ −−−→Ð→←−−−−−
▴
𝛼

▴
𝛾

⟨L♯ → (℘(L♯) × ℘(L♯)), ⊆⟩ (61)

where L♯(𝑆) = ▴𝛼(Post♯)𝑆 .
Defining the upper and lower logic triples

{∣P ∣} S{∣Q ∣} ≜ ⟨P, Q⟩ ∈ L♯JSK♯ = Post♯JSK♯P ⊆ Q = ∀𝑃 ∈ P . post♯JSK♯𝑃 ∈ Q (62)
{∣P ∣} S{∣Q ∣} ≜ ⟨P, Q⟩ ∈ L♯JSK♯ = Q ⊆ Post♯JSK♯P = ∀𝑄 ∈ Q . ∃𝑃 ∈ P . post♯JSK♯𝑃 = 𝑄
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(where for symmetry, we can write {∣P ∣} S{∣Q ∣} ≜ ∀𝑃 ∈ P . ∃𝑄 ∈ Q . post♯(𝑆)𝑃 = 𝑄 .) We get
generalizations of Hoare logic [55] and incorrectness logic [32, 75] from execution to semantic
properties.

Example 8.1 (Finitary powerset nondeterministic calculational domain). In [29, 30], the relational
semantics is identical to that of [5] in example 6.9 but for a nondeterministic language. Nonter-
mination is abstracted away. The extended semantics [29, 30, Definition 4] is post♯(𝑆)𝑃 = {⟨𝜎,
𝜎 ′′⟩ ∣ ∃𝜎 ′ ∈ Σ . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑃 ∧ ⟨𝜎 ′, 𝜎 ′′⟩ ∈ 𝑆}, the same as in example 6.9. Hyper-triples {∣P ∣} S{∣Q ∣}
are defined in [29, 30, Definition 5] to be the powerset instance of (62), the same instance used in
example 6.9. ∎

The upper and lower abstract logics can always be expressed in terms of singleton (although the
equivalent formula is not part of the logic).

Lemma 8.2. {∣P ∣} S{∣Q ∣} ⇔ ∀𝑃 ∈ P . ∃𝑄 ∈ Q . {∣ {𝑃} ∣} S{∣ {𝑄} ∣} (a)
{∣P ∣} S{∣Q ∣} ⇔ ∀𝑄 ∈ Q . ∃𝑃 ∈ P . {∣ {𝑃} ∣} S{∣ {𝑄} ∣} (b)

PRoof of lemma 8.2.
{∣P ∣} S{∣Q ∣}

= Post♯JSK♯P ⊆ Q Hdef. (62) of the logic triplesI
= {post♯(𝑆)𝑃 ∣ 𝑃 ∈ P} ⊆ Q Hdef. (40) of Post♯I
= ∀𝑃 ∈ P . post♯(𝑆)𝑃 ∈ Q Hdef. ⊆I
= ∀𝑃 ∈ P . ∃𝑄 ∈ Q . post♯(𝑆)𝑃 = 𝑄 Hdef. ∃I
= ∀𝑃 ∈ P . ∃𝑄 ∈ Q . {post♯(𝑆)𝑃} ⊆ {𝑄} Hdef. ⊆I
= ∀𝑃 ∈ P . ∃𝑄 ∈ Q . {post♯(𝑆)𝑃 ′ ∣ 𝑃 ′ ∈ {𝑃}} ⊆ {𝑄} Hdef. ∈I
= ∀𝑃 ∈ P . ∃𝑄 ∈ Q . Post♯JSK♯{𝑃} ⊆ {𝑄} Hdef. (40) of Post♯I
= ∀𝑃 ∈ P . ∃𝑄 ∈ Q . {∣ {𝑃} ∣} S{∣ {𝑄} ∣} Hdef. (62) of the logic triplesI

(b) is the ⊆-dual of (a). □

CoRollaRy 8.3. (∃𝑃 ∈ P . {∣ {𝑃} ∣} S{∣ {𝑄} ∣})⇔ {∣P ∣} S{∣ {𝑄} ∣}.

PRoof of coRollaRy 8.3.
{∣P ∣} S{∣ {𝑄} ∣}

⇔ ∀𝑄 ′ ∈ {𝑄} . ∃𝑃 ∈ P . {∣ {𝑃} ∣} S{∣ {𝑄 ′} ∣} Hlemma 8.2.bI
⇔ ∃𝑃 ∈ P . {∣ {𝑃} ∣} S{∣ {𝑄} ∣} Hdef. ∈I □

For singletons, the two logics are equivalent.

Lemma 8.4. For all 𝑃,𝑄 ∈ L♯, {∣ {𝑃} ∣} S{∣ {𝑄} ∣} = {∣ {𝑃} ∣} S{∣ {𝑄} ∣}.

PRoof of lemma 8.4.
{∣ {𝑃} ∣} S{∣ {𝑄} ∣}

= Post♯JSK♯{𝑃} ⊆ {𝑄} Hdef. (62) of logic triplesI
= {post♯(𝑆)𝑃 ′ ∣ 𝑃 ′ ∈ {𝑃}} ⊆ {𝑄} Hdef. (40) of Post♯I
= {post♯(𝑆)𝑃} ⊆ {𝑄} Hdef. ∈I
= post♯(𝑆)𝑃 = 𝑄 Hdef. ⊆I
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= {𝑄} ⊆ {post♯(𝑆)𝑃} Hdef. ⊆I
= {𝑄} ⊆ {post♯(𝑆)𝑃 ′ ∣ 𝑃 ′ ∈ {𝑃}} Hdef. ∈I
= {𝑄} ⊆ Post♯JSK♯{𝑃} Hdef. (40) of Post♯I
= {∣ {𝑃} ∣} S{∣ {𝑄} ∣} Hdef. (62) of logic triplesI □

8.2 The Proof Systems of the Upper and Lower Abstract Logics
Since the definition (47)—(56) of Post♯JSK♯ by a Hilbert proof system is structural, it is the same for
the logics. Following [21], this is obtained by Aczel correspondance between set-based fixpoints
and proof rules [2]. For iteration fixpoint, over-approximation is provided by [21, th. II.3.4] gen-
eralizing Park fixpoint induction [77], whereas under-approximation can be handled by [21, th.
II.3.6] generalizing Scott’s induction or [21, th. II.3.8] generalizing Turing/Floyd variant functions.
Therefore the sound and complete Hilbert deductive system can be designed calculationally to

be the following (where P,Q ∈ ℘(L♯), & and {∣P ∣} S{∣Q ∣} are respectively ⊆ and {∣P ∣} S{∣Q ∣} for
the Upper Abstract Logic and ⊇ and {∣P ∣} S{∣Q ∣} for the Lower Abstract Logic and the calculational
design proving theorem 8.5 follows in sect. 8.3).

TheoRem 8.5 (UppeR abstRact logic pRoof system). If D♯ is a well-defined increasing and
decreasing chain-complete join semilattice with right upper continuous sequential composition #♯ then

{⟨𝑒 ∶ 𝑃+ #♯ assign♯Jx, AK, � ∶ 𝑃∞, 𝑏𝑟 ∶ 𝑃𝑏𝑟 ⟩ ∣ 𝑃 ∈ P} &Q
{∣P ∣} x = A{∣Q ∣}

(63)

{⟨𝑒 ∶ 𝑃+ #♯ rassign♯Jx, 𝑎,𝑏K, � ∶ 𝑃∞, 𝑏𝑟 ∶ 𝑃𝑏𝑟 ⟩ ∣ 𝑃 ∈ P} &Q
{∣P ∣} x = [𝑎, 𝑏]{∣𝑄 ∣}

(64)

{⟨𝑒 ∶ 𝑃+ #♯ skip♯, � ∶ 𝑃∞, 𝑏𝑟 ∶ 𝑃𝑏𝑟 ⟩ ∣ 𝑃 ∈ P} &Q
{∣P ∣} skip{∣Q ∣}

(65)

{⟨𝑒 ∶ 𝑃+ #♯ test♯JBK, � ∶ 𝑃∞, 𝑏𝑟 ∶ 𝑃𝑏𝑟 ⟩ ∣ 𝑃 ∈ P} &Q
{∣P ∣} B{∣Q ∣}

(66)

{⟨𝑒 ∶ �♯+, � ∶ 𝑃∞, 𝑏𝑟 ∶ 𝑃𝑏𝑟 ⊔♯+ (𝑃𝑒 #♯ break♯)⟩ ∣ 𝑃 ∈ P} &Q
{∣P ∣} break{∣Q ∣}

(67)

{∣P ∣} S1 {∣Q ∣}, {∣Q ∣} S2 {∣R ∣}
{∣P ∣} S1;S2 {∣R ∣}

(68)

∀𝑃 ∈ P, ({∣ {𝑃} ∣} B;S1 {∣ {𝑄1} ∣} ∧ {∣ {𝑃} ∣}¬B;S2 {∣ {𝑄2} ∣})⇒ (𝑄1 ⊔♯ 𝑄2 ∈ Q)
{∣P ∣} if (B) S1 else S2 {∣Q ∣}

(69)

(𝑃𝑒 = lfp⊑
♯
+ 𝐹 ♯𝑝𝑒(𝑃 ′) ∧ {∣ {𝑃𝑒} ∣}¬B{∣ {𝑄𝑒} ∣} ∧ {∣ {𝑃𝑒} ∣} B;S{∣ {𝑄𝑏} ∣} ∧

{∣ {𝑃𝑒} ∣} B;S{∣ {𝑄�ℓ} ∣} ∧ 𝑄�𝑏 = gfp⊑
♯
∞ 𝐹 ♯𝑝� ∧ 𝑃 ′ ∈ P) ⇒

(⟨𝑒 ∶ 𝑄𝑒 ⊔♯𝑒 𝑄𝑏, � ∶ 𝑄�ℓ ⊔♯∞ 𝑄�𝑏, 𝑏𝑟 ∶ 𝑃𝑏𝑟 ⟩ ∈ Q)
{∣I ∣} while (B) S{∣Q ∣}

(70)

is sound and complete.

Remarkably in (69) and (70), we have to consider all possible over approximations, and in (70)
𝑃𝑒 and𝑄�𝑏 must be exact fixpoints. This is because, for completeness and in full generality, hyper-
logics cannot make any approximation of the program semantics defined by post♯ in (40) hence
prohibiting approximations in (62).
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Notice that no consequence rule is required for completeness, although they are sound.

P ⊆ P ′, {∣P ′ ∣} S{∣Q′ ∣}, Q′ ⊆ Q
{∣P ∣} S{∣Q ∣}

P ′ ⊆ P, {∣P ′ ∣} S{∣Q′ ∣}, Q ⊆ Q′

{∣P ∣} S{∣Q ∣}
(71)

PRoof of (71).
P ⊆ P ′ ∧ {∣P ′ ∣} S{∣Q′ ∣} ∧Q′ ⊆ Q

⇒ P ⊆ P ′ ∧ Post♯JSK♯P ′ ⊆ Q′ ∧Q′ ⊆ Q Hdef. (62) of the logic triplesI
⇒ P ⊆ P ′ ∧ Post♯JSK♯P ′ ⊆ Q H⊆ transitiveI
⇒ Post♯JSK♯P ⊆ Post♯JSK♯P ′ ∧ Post♯JSK♯P ′ ⊆ Q HPost♯JSK♯ increasing by (45)I
⇒ Post♯JSK♯P ⊆ Q H⊆ transitiveI
⇒ {∣P ∣} S{∣Q ∣} Hdef. (62) of the logic triplesI
The converse follows immediately by choosing P = P ′ andQ′ = Q since ⊆ is reflexive. The conse-
quence rule for the lower abstract logic is ⊆-dual. □

Example 8.6 (Choice). Let us define the choice S1 + S2 ≜ c = [0,1]; if (c) S1 else S2 where
auxiliary variable c does not appear in S1 nor in S2. The proof rule can be derived as follows
{∣P ∣} S1 + S2 {∣Q ∣}

⇔ {∣P ∣} c = [0,1]; if (c) S1 else S2 {∣Q ∣} Hdef. choice +I
⇔ ∃R . {∣P ∣} c = [0,1]{∣R ∣} ∧ {∣R ∣} if (c) S1 else S2 {∣Q ∣} Hsequential composition (68)I
⇔ ∃R . {𝑃 #♯ rassign♯Jc,0,1K ∣ 𝑃 ∈ P} ⊆R ∧ {∣R ∣} if (c) S1 else S2 {∣Q ∣} H(64)I
⇔ {∣ {𝑃 #♯ rassign♯Jc,0,1K ∣ 𝑃 ∈ P} ∣} if (c) S1 else S2 {∣Q ∣}HtakingR = {𝑃 #♯ rassign♯Jc,0,1K ∣ 𝑃 ∈ P}I
⇔ ∀𝑃 ∈ {𝑃 ′ #♯ rassign♯Jc,0,1K ∣ 𝑃 ′ ∈ P},𝑄1,𝑄2 . ({∣ {𝑃} ∣} B;S1 {∣ {𝑄1} ∣}∧{∣ {𝑃} ∣}¬B;S2 {∣ {𝑄2} ∣})⇒
(𝑄1 ⊔♯ 𝑄2 ∈ Q) H(69)I

⇔ ∀𝑃 ∈ P,𝑄1,𝑄2 . ({∣ {𝑃} ∣} S1 {∣ {𝑄1} ∣} ∧ {∣ {𝑃} ∣} S2 {∣ {𝑄2} ∣})⇒ (𝑄1 ⊔♯ 𝑄2 ∈ Q) (72)Hassuming states where c is assigned 0 or 1, B is true for 0 and ¬B is true for 1 (or
conversely)I

so that we get the sound and complete rule
∀𝑃 ∈ P,𝑄1,𝑄2 . ({∣ {𝑃} ∣} S1 {∣ {𝑄1} ∣} ∧ {∣ {𝑃} ∣} S2 {∣ {𝑄2} ∣})⇒ (𝑄1 ⊔♯ 𝑄2 ∈ Q)

{∣P ∣} S1 + S2 {∣Q ∣}
(73)

Let us now consider the particular case post♯(𝑆)𝑃 = {⟨𝜎, 𝜎 ′′⟩ ∣ ∃𝜎 ′ ∈ Σ . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑃 ∧ ⟨𝜎 ′, 𝜎 ′′⟩ ∈ 𝑆}
as in example 6.9 (but this time with unbounded nondeterminism) so that ⊔♯ is ∪ in (73). Then (73)
is implied, but not conversely, by the proof rule

{∣P ∣} S1 {∣Q1 ∣}, {∣P ∣} S2 {∣Q2 ∣}
{∣P ∣} S1 + S2 {∣ {𝑄1 ∪𝑄2 ∣ 𝑄1 ∈ Q1 ∧𝑄2 ∈ Q2}∣}

(Choice)

of [29], which is sound but incomplete. For completeness, [29, p. 207:9] has to introduce an (Exist)
proof rule which amounts to the case by case analysis of rule (73). ∎

Example 8.7 (Finitary powerset nondeterministic calculational domain). Continuing example 8.1,
the iteration rule postulated in [29, 30, Fig. 2] is (70), ignoring nontermination and breaks, and
applying proposition 2.4 to reason on the fixpoint iterates. ∎
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8.3 Calculational Design of the Proof System of the Upper Abstract Logic
PRoof of (63) — (70). The proof of soundness and completeness is by structural induction. We

show the calculational design for the iteration (70). The other cases are in the appendix.

PRoof of (63), (64), (65), and (66). The characterization (47) of Post♯Jx = AK♯P yields, by
(62), the axiom (63) for {∣P ∣} x = A{∣Q ∣} (where the side condition is written as a premiss). The
rule for {∣P ∣} x = A{∣Q ∣} is ⊆-order dual. The rule (64) for x = [𝑎, 𝑏], (65) for x = skip, and (66)
for B and their duals are similar.

PRoof of (67). The characterization (62) of Post♯JbreakK♯P yields the axiom (67) for
{∣P ∣} break{∣Q ∣} (where the side condition is written as a premiss). The rule for {∣P ∣} break{∣Q ∣}
is ⊆-order dual.

PRoof of (68). For sequential composition, we have
{∣P ∣} S1;S2 {∣R ∣}

⇔ Post♯JS1;S2K♯P ⊆R Hdef. (62) of the logic triplesI
⇔ Post♯JS2K♯(Post♯JS1K♯P) ⊆R H(52)I
⇔ ∃Q . Post♯JS1K♯P ⊆ Q ∧ Post♯JS2K♯Q ⊆RH(soundness, ⇒) By (40), Post♯JSK♯ is ⊆-increasing so Post♯JS1K♯P ⊆ Q implies

Post♯JS2K♯(Post♯JS1K♯P) ⊆ Post♯JS2K♯Q and ⊆ is transitive;
(completeness,⇐) take Q = Post♯JS1K♯P and reflexivityI

⇔ ∃Q . {∣P ∣} S1 {∣Q ∣} ∧ {∣Q ∣} S2 {∣R ∣}Hdef. (62) of the logic triples and dually for under approximationI
PRoof of (69). For the conditional, we have
{∣P ∣} if (B) S1 else S2 {∣R ∣}

⇔ Post♯Jif (B) S1 else S2K♯P ⊆R Hdef. (62) of the logic triplesI
⇔ (Post♯JB;S1K♯ ⊔♯ Post♯J¬B;S2K♯)P ⊆R H(53)I
⇔ {𝑄1 ⊔♯ 𝑄2 ∣ 𝑄1 ∈ Post♯JB;S1K♯{𝑃} ∧𝑄2 ∈ Post♯J¬B;S2K♯{𝑃} ∧ 𝑃 ∈ P} ⊆R Hdef. (46) of ⊔♯ I
⇔ ∀𝑃,𝑄1,𝑄2 . (𝑃 ∈ P ∧𝑄1 ∈ Post♯JB;S1K♯{𝑃} ∧𝑄2 ∈ Post♯J¬B;S2K♯{𝑃})⇒ (𝑄1 ⊔♯ 𝑄2 ∈R)Hdef. ⊆, ∧ commutativeI
⇔ ∀𝑃,𝑄1,𝑄2 . (𝑃 ∈ P ∧ {𝑄1} ⊆ Post♯JB;S1K♯{𝑃} ∧ {𝑄2} ⊆ Post♯J¬B;S2K♯{𝑃})⇒ (𝑄1 ⊔♯ 𝑄2 ∈R)Hdef. ⊆I
⇔ ∀𝑃,𝑄1,𝑄2 . (𝑃 ∈ P ∧ {∣ {𝑃} ∣} B;S1 {∣ {𝑄1} ∣} ∧ {∣ {𝑃} ∣}¬B;S2 {∣ {𝑄2} ∣})⇒ (𝑄1 ⊔♯ 𝑄2 ∈R)Hdef. (62) of the lower abstract logicI
{∣P ∣} while (B) S{∣R ∣}

⇔ Post♯Jwhile (B) SK♯P ⊆R Hdef. (62) of the logic triplesI
⇔ {⟨𝑒 ∶ 𝑄𝑒 , � ∶ 𝑄�ℓ ⊔♯∞ 𝑄�𝑏, 𝑏𝑟 ∶ 𝑃𝑏𝑟 ⟩ ∣ 𝑄𝑒 ∈ Post♯(J¬BK♯𝑒 ⊔♯𝑒 JB;SK♯𝑏)(lfp ⊑̆♯+ ˘⃗𝐹 ♯𝑝𝑒(𝑃)) ∧ 𝑄�ℓ ∈

Post♯(JB;SK♯�)(lfp ⊑̆♯+ ˘⃗𝐹 ♯𝑝𝑒(𝑃)) ∧ ∃𝑄�𝑏 . 𝑄�𝑏 ∈ Post♯(𝑄𝑝�){𝑃} ∧𝑄𝑝� ∈ gfp ⊑̆
♯
∞ 𝐹 ♯𝑝� ∧ 𝑃 ∈ P} ⊆RH(56)I

⇔ {⟨𝑒 ∶ 𝑄𝑒 , � ∶ 𝑄�ℓ ⊔♯∞𝑄�𝑏, 𝑏𝑟 ∶ 𝑃𝑏𝑟 ⟩ ∣ ∃𝐼𝑒 . 𝐼𝑒 ⊆ lfp ⊑̆
♯
+ ˘⃗𝐹 ♯𝑝𝑒(𝑃)∧𝑄𝑒 ∈ Post♯(J¬BK♯𝑒⊔♯𝑒 JB;SK♯𝑏)𝐼𝑒∧𝑄�ℓ ∈

Post♯(JB;SK♯�)(𝐼𝑒) ∧ ∃𝐼� . 𝐼� ⊆ gfp ⊑̆♯∞ 𝐹 ♯𝑝� ∧𝑄�𝑏 ∈ 𝐼� ∧ 𝑃 ∈ P} ⊆R
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H(⇒) Take 𝐼𝑒 = lfp ⊑̆
♯
+ ˘⃗𝐹 ♯𝑝𝑒(𝑃), 𝐼� = gfp

⊑̆♯∞ 𝐹 ♯𝑝�, and ⊆ reflexive
(⇐) by (45), Post♯(𝑆) is ⊆-increasingI

⇔ {⟨𝑒 ∶ 𝑄𝑒 , � ∶ 𝑄�ℓ⊔♯∞𝑄�𝑏, 𝑏𝑟 ∶ 𝑃𝑏𝑟 ⟩ ∣ ∃𝑃𝑒 . {𝑃𝑒} = lfp
⊑̆♯+ ˘⃗𝐹 ♯𝑝𝑒(𝑃)∧𝑄𝑒 ∈ Post♯(J¬BK♯𝑒⊔♯𝑒 JB;SK♯𝑏){𝑃𝑒}∧

𝑄�ℓ ∈ Post♯(JB;SK♯�){𝑃𝑒} ∧ ∃𝑃� . {𝑃�} = gfp ⊑̆♯∞ 𝐹 ♯𝑝� ∧𝑄�𝑏 ∈ {𝑃�} ∧ 𝑃 ∈ P} ⊆RHIf 𝐼𝑒 is empty then Post♯(J¬BK♯𝑒 ⊔♯𝑒 JB;SK♯𝑏)𝐼𝑒 is empty by (40), contrary to 𝑄𝑒 ∈
Post♯(J¬BK♯𝑒 ⊔♯𝑒 JB;SK♯𝑏)𝐼𝑒 proving that 𝐼𝑒 cannot be empty. By (54), lfp ⊑̆♯+ ˘⃗𝐹 ♯𝑝𝑒(𝑃) is a sin-
gleton, say {𝑃𝑒}. For 𝐼𝑒 to be non-empty and included in a singleton, it must be equal to
that singleton so 𝐼𝑒 = {𝑃𝑒}. The reasoning is the same for 𝐼� = {𝑃�}I

⇔ {⟨𝑒 ∶ 𝑄𝑒 , � ∶ 𝑄�ℓ⊔♯∞𝑄�𝑏, 𝑏𝑟 ∶ 𝑃𝑏𝑟 ⟩ ∣ ∃𝑃𝑒 . {𝑃𝑒} = lfp
⊑̆♯+ ˘⃗𝐹 ♯𝑝𝑒(𝑃)∧𝑄𝑒 ∈ Post♯(J¬BK♯𝑒⊔♯𝑒 JB;SK♯𝑏){𝑃𝑒}∧

𝑄�ℓ ∈ Post♯(JB;SK♯�){𝑃𝑒} ∧ {𝑄�𝑏} = gfp ⊑̆♯∞ 𝐹 ♯𝑝� ∧ 𝑃 ∈ P} ⊆RH𝑄�𝑏 ∈ {𝑃�} if and only if 𝑄�𝑏 = 𝑃�𝑏I
⇔ {⟨𝑒 ∶ 𝑄𝑒 , � ∶ 𝑄�ℓ ⊔♯∞ 𝑄�𝑏, 𝑏𝑟 ∶ 𝑃𝑏𝑟 ⟩ ∣ ∃𝑃𝑒 . {𝑃𝑒} = {lfp⊑

♯
+ 𝐹 ♯𝑝𝑒(𝑃)} ∧ 𝑄𝑒 ∈ Post♯(J¬BK♯𝑒 ⊔♯𝑒JB;SK♯𝑏){𝑃𝑒} ∧𝑄�ℓ ∈ Post♯(JB;SK♯�){𝑃𝑒} ∧ {𝑄�𝑏} = {gfp⊑♯∞ 𝐹 ♯𝑝�} ∧ 𝑃 ∈ P} ⊆RHsince lfp ⊑̆

♯
+ ˘⃗𝐹 ♯𝑝𝑒(𝑃) = {lfp⊑♯+ 𝐹 ♯𝑝𝑒(𝑃)} by (54), proposition 7.3, and gfp ⊑̆

♯
∞ (𝐹 ♯𝑝�) =

{gfp⊑♯∞ 𝐹 ♯𝑝�} by (36) and proposition 7.3I
⇔ {⟨𝑒 ∶ 𝑄𝑒 , � ∶ 𝑄�ℓ ⊔♯∞𝑄�𝑏, 𝑏𝑟 ∶ 𝑃𝑏𝑟 ⟩ ∣ ∃𝑃𝑒 . 𝑃𝑒 = lfp⊑

♯
+ 𝐹 ♯𝑝𝑒(𝑃)∧𝑄𝑒 ∈ Post♯(J¬BK♯𝑒 ⊔♯𝑒 JB;SK♯𝑏){𝑃𝑒}∧

𝑄�ℓ ∈ Post♯(JB;SK♯�){𝑃𝑒} ∧𝑄�𝑏 = gfp⊑♯∞ 𝐹 ♯𝑝� ∧ 𝑃 ∈ P} ⊆R Hdef. set equalityI
⇔ {⟨𝑒 ∶ 𝑄𝑒 , � ∶ 𝑄�ℓ⊔♯∞𝑄�𝑏, 𝑏𝑟 ∶ 𝑃𝑏𝑟 ⟩ ∣ ∃𝑃𝑒 . 𝑃𝑒 = lfp

⊑♯+ 𝐹 ♯𝑝𝑒(𝑃)∧{𝑄𝑒} ⊆ Post♯(J¬BK♯𝑒⊔♯𝑒 JB;SK♯𝑏){𝑃𝑒}∧
{𝑄�ℓ} ⊆ Post♯(JB;SK♯�){𝑃𝑒} ∧𝑄�𝑏 = gfp⊑♯∞ 𝐹 ♯𝑝� ∧ 𝑃 ∈ P} ⊆R Hdef. ∈ and ⊆I

⇔ {⟨𝑒 ∶ 𝑄𝑒 , � ∶ 𝑄�ℓ⊔♯∞𝑄�𝑏, 𝑏𝑟 ∶ 𝑃𝑏𝑟 ⟩ ∣ ∃𝑃𝑒 . 𝑃𝑒 = lfp
⊑♯+ 𝐹 ♯𝑝𝑒(𝑃)∧{𝑄𝑒} ⊆ Post♯(J¬BK♯𝑒⊔♯𝑒 JB;SK♯𝑏){𝑃𝑒}∧

{∣ {𝑃𝑒} ∣} B;S{∣ {𝑄�ℓ} ∣} ∧𝑄�𝑏 = gfp⊑
♯
∞ 𝐹 ♯𝑝� ∧ 𝑃 ∈ P} ⊆RHdef. (62) of {∣P ∣} S{∣Q ∣} ≜ (Q ⊆ Post♯JSK♯P)I

⇔ {⟨𝑒 ∶ 𝑄𝑒 , � ∶ 𝑄�ℓ ⊔♯∞ 𝑄�𝑏, 𝑏𝑟 ∶ 𝑃𝑏𝑟 ⟩ ∣ ∃𝑃𝑒 . 𝑃𝑒 = lfp⊑
♯
+ 𝐹 ♯𝑝𝑒(𝑃) ∧ {𝑄𝑒} ⊆ Post♯(J¬BK♯𝑒){𝑃𝑒} ⊔♯𝑒

Post♯(JB;SK♯𝑏){𝑃𝑒} ∧ {∣ {𝑃𝑒} ∣} B;S{∣ {𝑄�ℓ} ∣} ∧𝑄�𝑏 = gfp⊑♯∞ 𝐹 ♯𝑝� ∧ 𝑃 ∈ P} ⊆R H(46)I
⇔ {⟨𝑒 ∶ 𝑄 ′𝑒 , � ∶ 𝑄�ℓ ⊔♯∞ 𝑄�𝑏, 𝑏𝑟 ∶ 𝑃𝑏𝑟 ⟩ ∣ ∃𝑃𝑒 . 𝑃𝑒 = lfp⊑

♯
+ 𝐹 ♯𝑝𝑒(𝑃) ∧ {𝑄 ′𝑒} ⊆ {𝑄𝑒 ⊔♯𝑒 𝑄𝑏 ∣ {𝑄𝑒} ⊆

Post♯(J¬BK♯𝑒){𝑃} ∧ {𝑄𝑏} ⊆ Post♯(JB;SK♯𝑏){𝑃} ∧ 𝑃 ∈ {𝑃𝑒}} ∧ {∣ {𝑃𝑒} ∣} B;S{∣ {𝑄�ℓ} ∣} ∧ 𝑄�𝑏 =
gfp⊑

♯
∞ 𝐹 ♯𝑝� ∧ 𝑃 ∈ P} ⊆R Hdef. (46) of ⊔♯𝑒 I

⇔ {⟨𝑒 ∶ 𝑄 ′𝑒 , � ∶ 𝑄�ℓ ⊔♯∞ 𝑄�𝑏, 𝑏𝑟 ∶ 𝑃𝑏𝑟 ⟩ ∣ ∃𝑃𝑒 . 𝑃𝑒 = lfp⊑
♯
+ 𝐹 ♯𝑝𝑒(𝑃 ′) ∧ ∃𝑄𝑒 ,𝑄𝑏, 𝑃 . 𝑄 ′𝑒 = 𝑄𝑒 ⊔♯𝑒 𝑄𝑏 ∧

{𝑄𝑒} ⊆ Post♯(J¬BK♯𝑒){𝑃}∧{𝑄𝑏} ⊆ Post♯(JB;SK♯𝑏){𝑃}∧𝑃 ∈ {𝑃𝑒}∧{∣ {𝑃𝑒} ∣} B;S{∣ {𝑄�ℓ} ∣}∧𝑄�𝑏 =
gfp⊑

♯
∞ 𝐹 ♯𝑝� ∧ 𝑃 ′ ∈ P} ⊆R Hdef. singleton and ⊆, renamingI

⇔ {⟨𝑒 ∶ 𝑄𝑒 ⊔♯𝑒 𝑄𝑏, � ∶ 𝑄�ℓ ⊔♯∞ 𝑄�𝑏, 𝑏𝑟 ∶ 𝑃𝑏𝑟 ⟩ ∣ ∃𝑃𝑒 . 𝑃𝑒 = lfp⊑
♯
+ 𝐹 ♯𝑝𝑒(𝑃 ′) ∧ ∃𝑃 . {𝑄𝑒} ⊆

Post♯(J¬BK♯𝑒){𝑃} ∧ {𝑄𝑏} ⊆ Post♯(JB;SK♯𝑏){𝑃} ∧ 𝑃 ∈ {𝑃𝑒} ∧ {∣ {𝑃𝑒} ∣} B;S{∣ {𝑄�ℓ} ∣} ∧ 𝑄�𝑏 =
gfp⊑

♯
∞ 𝐹 ♯𝑝� ∧ 𝑃 ′ ∈ P} ⊆R Hreplacing 𝑄 ′𝑒 by its valueI

⇔ {⟨𝑒 ∶ 𝑄𝑒 ⊔♯𝑒 𝑄𝑏, � ∶ 𝑄�ℓ ⊔♯∞𝑄�𝑏, 𝑏𝑟 ∶ 𝑃𝑏𝑟 ⟩ ∣ ∃𝑃𝑒 . 𝑃𝑒 = lfp⊑
♯
+ 𝐹 ♯𝑝𝑒(𝑃 ′)∧{𝑄𝑒} ⊆ Post♯(J¬BK♯𝑒){𝑃𝑒}∧

{𝑄𝑏} ⊆ Post♯(JB;SK♯𝑏){𝑃𝑒} ∧ {∣ {𝑃𝑒} ∣} B;S{∣ {𝑄�ℓ} ∣} ∧𝑄�𝑏 = gfp⊑♯∞ 𝐹 ♯𝑝� ∧ 𝑃 ′ ∈ P} ⊆RHcorollary 8.3I
⇔ {⟨𝑒 ∶ 𝑄𝑒 ⊔♯𝑒 𝑄𝑏, � ∶ 𝑄�ℓ ⊔♯∞ 𝑄�𝑏, 𝑏𝑟 ∶ 𝑃𝑏𝑟 ⟩ ∣ ∃𝑃𝑒 . 𝑃𝑒 = lfp⊑

♯
+ 𝐹 ♯𝑝𝑒(𝑃 ′) ∧ {∣ {𝑃𝑒} ∣}¬B{∣ {𝑄𝑒} ∣} ∧

{∣ {𝑃𝑒} ∣} B;S{∣ {𝑄𝑏} ∣} ∧ {∣ {𝑃𝑒} ∣} B;S{∣ {𝑄�ℓ} ∣} ∧𝑄�𝑏 = gfp⊑
♯
∞ 𝐹 ♯𝑝� ∧ 𝑃 ′ ∈ P} ⊆R
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Hdef. (62) of {∣P ∣} S{∣Q ∣} ≜ (Q ⊆ Post♯JSK♯P)I
⇔ (𝑃𝑒 = lfp⊑

♯
+ 𝐹 ♯𝑝𝑒(𝑃 ′)∧{∣ {𝑃𝑒} ∣}¬B{∣ {𝑄𝑒} ∣}∧{∣ {𝑃𝑒} ∣} B;S{∣ {𝑄𝑏} ∣}∧{∣ {𝑃𝑒} ∣} B;S{∣ {𝑄�ℓ} ∣}∧𝑄�𝑏 =

gfp⊑
♯
∞ 𝐹 ♯𝑝� ∧ 𝑃 ′ ∈ P)⇒ ⟨𝑒 ∶ 𝑄𝑒 ⊔♯𝑒 𝑄𝑏, � ∶ 𝑄�ℓ ⊔♯∞ 𝑄�𝑏, 𝑏𝑟 ∶ 𝑃𝑏𝑟 ⟩ ∈R Hdef. ⊆I

⇔ (𝑃𝑒 = lfp⊑
♯
+ 𝐹 ♯𝑝𝑒(𝑃 ′)∧{∣ {𝑃𝑒} ∣}¬B{∣ {𝑄𝑒} ∣}∧{∣ {𝑃𝑒} ∣} B;S{∣ {𝑄𝑏} ∣}∧{∣ {𝑃𝑒} ∣} B;S{∣ {𝑄�ℓ} ∣}∧𝑄�𝑏 =

gfp⊑
♯
∞ 𝐹 ♯𝑝� ∧ 𝑃 ′ ∈ P)⇒ ⟨𝑒 ∶ 𝑄𝑒 ⊔♯𝑒 𝑄𝑏, � ∶ 𝑄�ℓ ⊔♯∞ 𝑄�𝑏, 𝑏𝑟 ∶ 𝑃𝑏𝑟 ⟩ ∈R Hlemma 8.4I □

Propositions 2.3 and 2.4 can be used to characterize the fixpoints of increasing functions in (70).

8.4 Calculational Design of the Proof System of the Lower Abstract Logic
Apart from (63)—(68), the sound and complete induction rules for the lower abstract logic are
constructed by calculational design as follows.

TheoRem 8.8 (LoweR abstRact logic pRoof system). If D♯ is a well-defined increasing and
decreasing chain-complete join semilattice with right upper continuous sequential composition #♯ then

∀𝑄 ∈ Q . ∃𝑃 ∈ P,𝑄1,𝑄2 . {∣ {𝑃} ∣} B;S1 {∣ {𝑄1} ∣}∧{∣ {𝑃} ∣}¬B;S2 {∣ {𝑄2} ∣}∧𝑄 = 𝑄1 ⊔♯ 𝑄2

{∣P ∣} if (B) S1 else S2 {∣Q ∣}
(74)

∀⟨𝑒 ∶ 𝑄 ′𝑒 , � ∶ 𝑄 ′�, 𝑏𝑟 ∶ 𝑄 ′𝑏𝑟 ⟩ ∈ Q . ∃𝑄𝑒 ,𝑄𝑏,𝑄�ℓ ,𝑄�𝑏, 𝑃𝑒 . 𝑄
′
𝑒 = 𝑄𝑒 ⊔♯𝑒 𝑄𝑏 ∧𝑄 ′� =

𝑄�ℓ ⊔♯∞ 𝑄�𝑏 ∧𝑄 ′𝑏𝑟 = 𝑃
′
𝑏𝑟 ∧ 𝑃𝑒 = lfp⊑

♯
+ 𝐹 ♯𝑝𝑒(𝑃 ′) ∧ {∣ {𝑃𝑒} ∣}¬B{∣ {𝑄𝑒} ∣} ∧

{∣ {𝑃𝑒} ∣} B;S{∣ {𝑄𝑏} ∣} ∧ {∣ {𝑃𝑒} ∣} B;S{∣ {𝑄�ℓ} ∣} ∧𝑄�𝑏 = gfp⊑
♯
∞ 𝐹 ♯𝑝� ∧ 𝑃 ′ ∈ P

{∣P ∣} while (B) S{∣Q ∣}
(75)

PRoof of theoRem 8.8.
{∣P ∣} if (B) S1 else S2 {∣Q ∣}

⇔ Q ⊆ Post♯Jif (B) S1 else S2K♯P Hdef. (62) of the logic triplesI
⇔ Q ⊆ (Post♯JB;S1K♯ ⊔♯ Post♯J¬B;S2K♯)P H(53)I
⇔ Q ⊆ {𝑄1 ⊔♯ 𝑄2 ∣ 𝑄1 ∈ Post♯JB;S1K♯{𝑃} ∧𝑄2 ∈ Post♯J¬B;S2K♯{𝑃} ∧ 𝑃 ∈ P} Hdef. (46) of ⊔♯ I
⇔ ∀𝑄 ∈ Q . ∃𝑄1,𝑄2, 𝑃 . 𝑄1 ∈ Post♯JB;S1K♯{𝑃} ∧𝑄2 ∈ Post♯J¬B;S2K♯{𝑃} ∧ 𝑃 ∈ P ∧𝑄 = 𝑄1 ⊔♯ 𝑄2Hdef. ⊆I
⇔ ∀𝑄 ∈ Q . ∃𝑄1,𝑄2, 𝑃 . {𝑄1} ⊆ Post♯JB;S1K♯{𝑃} ∧ {𝑄2} ⊆ Post♯J¬B;S2K♯{𝑃} ∧ 𝑃 ∈ P ∧ 𝑄 =

𝑄1 ⊔♯ 𝑄2 Hdef. ⊆ for singletonI
⇔ ∀𝑄 ∈ Q . ∃𝑄1,𝑄2, 𝑃 . {∣ {𝑃} ∣} B;S1 {∣ {𝑄1} ∣} ∧ {∣ {𝑃} ∣}¬B;S2 {∣ {𝑄2} ∣} ∧ 𝑃 ∈ P ∧𝑄 = 𝑄1 ⊔♯ 𝑄2Hdef. (62) of the logic triplesI
{∣P ∣} while (B) S{∣Q ∣}

⇔ Q ⊆ Post♯Jwhile (B) SK♯P Hdef. (62) of the logic triplesI
⇔ Q ⊆ {⟨𝑒 ∶ 𝑄𝑒 , � ∶ 𝑄�ℓ ⊔♯∞ 𝑄�𝑏, 𝑏𝑟 ∶ 𝑃𝑏𝑟 ⟩ ∣ 𝑄𝑒 ∈ Post♯(J¬BK♯𝑒 ⊔♯𝑒 JB;SK♯𝑏)(lfp ⊑̆♯+ ˘⃗𝐹 ♯𝑝𝑒(𝑃)) ∧ 𝑄�ℓ ∈

Post♯(JB;SK♯�)(lfp ⊑̆♯+ ˘⃗𝐹 ♯𝑝𝑒(𝑃)) ∧𝑄�𝑏 ∈ gfp
⊑̆♯∞ (𝐹 ♯𝑝�) ∧ 𝑃 ∈ P} H(56)I

⇔ Q ⊆ {⟨𝑒 ∶ 𝑄𝑒 ⊔♯𝑒 𝑄𝑏, � ∶ 𝑄�ℓ ⊔♯∞𝑄�𝑏, 𝑏𝑟 ∶ 𝑃𝑏𝑟 ⟩ ∣ ∃𝑃𝑒 . 𝑃𝑒 = lfp⊑
♯
+ 𝐹 ♯𝑝𝑒(𝑃 ′)∧ {∣ {𝑃𝑒} ∣}¬B{∣ {𝑄𝑒} ∣}∧

{∣ {𝑃𝑒} ∣} B;S{∣ {𝑄𝑏} ∣} ∧ {∣ {𝑃𝑒} ∣} B;S{∣ {𝑄�ℓ} ∣} ∧𝑄�𝑏 = gfp⊑
♯
∞ 𝐹 ♯𝑝� ∧ 𝑃 ′ ∈ P}Hfollowing the same development as for the previous proof of (70)I
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⇔ ∀⟨𝑒 ∶ 𝑄 ′𝑒 , � ∶ 𝑄 ′�, 𝑏𝑟 ∶ 𝑄 ′𝑏𝑟 ⟩ ∈ Q . ∃𝑄𝑒 ,𝑄𝑏,𝑄�ℓ ,𝑄�𝑏, 𝑃𝑒 . 𝑄
′
𝑒 = 𝑄𝑒 ⊔♯𝑒 𝑄𝑏∧𝑄 ′� = 𝑄�ℓ ⊔♯∞ 𝑄�𝑏∧𝑄 ′𝑏𝑟 =

𝑃 ′𝑏𝑟 ∧𝑃𝑒 = lfp
⊑♯+ 𝐹 ♯𝑝𝑒(𝑃 ′)∧{∣ {𝑃𝑒} ∣}¬B{∣ {𝑄𝑒} ∣}∧{∣ {𝑃𝑒} ∣} B;S{∣ {𝑄𝑏} ∣}∧{∣ {𝑃𝑒} ∣} B;S{∣ {𝑄�ℓ} ∣}∧

𝑄�𝑏 = gfp⊑
♯
∞ 𝐹 ♯𝑝� ∧ 𝑃 ′ ∈ P Hdef. ⊆I □

PaRt II: AbstRaction of Semantics, Execution PRopeRties, Semantic
(HypeR) PRopeRties, Calculi, and Logics

Since hyperlogics deal with properties of semantics, there are four levels at which an abstraction
can be applied.

(1) The first level is that of the program semantics considered in appendix sect. 9 and illus-
trated by the relational semantics in example 9.4 abstracting the trace semantics of sect.
4. This abstraction is common in transformational logics [21] such as Hoare logic [55]
but also in hyperlogics [29, 30];

(2) The second level is that of program properties of sect. 6.1;
(3) The third level is that of program hyperproperties of sect. 7;
(4) The fourth level is that of the abstract logics of sect. 8.

(76)

Because logics are required to be sound and complete, abstractions should be exact so that any
proof of abstract properties in the concrete should be doable in the abstract. This relies on Ga-
lois retractions in sect. 2.5. The main result is that the abstraction of a logic of semantic (hyper)
properties of sect. 8 is a a logic of semantic (hyper) properties.

9 Abstraction of the Abstract Semantics
We show that the abstraction of an instance of the abstract semantics is itself an instance of the
abstract semantics.

Definition 9.1 (Semantic abstraction). We say that D̄♯ ≜ ⟨D̄♯+, D̄♯∞⟩ is an exact (respectively ap-
proximate) abstraction of an abstract domain D♯ ≜ ⟨D♯+, D♯∞⟩ if and only if

A. There exists a Galois retraction ⟨L♯+, ⊑♯+⟩ −−−−→Ð→←−−−−−−
𝛼+

𝛾+
⟨L̄♯+, ⊑̄♯+⟩;

B. 𝛼+(init♯) = init
♯,𝛼+ ○ assign♯Jx, AK = assign♯Jx, AK ○ 𝛼+,𝛼+ ○ rassign♯Jx, 𝑎,𝑏K = rassign♯Jx, 𝑎,𝑏K

○ 𝛼+, 𝛼+ ○ test♯JBK = test♯JBK ○ 𝛼+, 𝛼+(break♯) = break♯, and 𝛼+(skip♯) = skip♯;
C. There exists a Galois retraction ⟨L♯∞, ⊒♯∞⟩ −−−−−→Ð→←−−−−−−

𝛼∞

𝛾∞
⟨L̄♯∞, ⊒̄♯∞⟩ (i.e. 𝛼∞ preserves existing ⊓♯∞);

D. For 𝑆 ∈ L♯+, 𝛼+(𝑆 #♯ 𝑆 ′) = 𝛼+(𝑆) #̄♯ 𝛼+(𝑆 ′) when 𝑆 ′ ∈ L♯+ and 𝛼∞(𝑆 #♯ 𝑆 ′) = 𝛼∞(𝑆) #̄♯ 𝛼∞(𝑆 ′)
when 𝑆 ′ ∈ L♯∞.

(respectively “⊑̄♯+” or “⊒̄♯∞” instead of “=” and −−→←−− instead of −−→Ð→←−−−− for approximate abstractions);

Following (12), the abstraction of the semantic domain and semantics are

L̄♯ ≜ (𝑒 ∶ L̄♯+ × � ∶ L̄♯∞ ×𝑏𝑟 ∶ L̄♯+) (77)
𝛼(⟨𝑒 ∶ 𝑆+, � ∶ 𝑆∞, 𝑏𝑟 ∶ 𝑆𝑏𝑟 ⟩) ≜ ⟨𝑒 ∶ 𝛼+(𝑆+), � ∶ 𝛼∞(𝑆∞), 𝑏𝑟 ∶ 𝛼+(𝑆𝑏𝑟 )⟩

are well-defined such that
⟨L♯, ⊑♯⟩ −−−→Ð→←−−−−−

𝛼

𝛾
⟨L̄♯, ⊑̄♯⟩. (78)
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Lemma 9.2. An exact abstraction D̄♯ ≜ ⟨D̄♯+, D̄♯∞⟩ of a well-defined concrete domain D♯ ≜ ⟨D♯+,
D♯∞⟩ satisfying any one of the hypotheses 3.2.D.a to 3.2.D.d.i to 3.2.D.d.iv of definition 3.2 is a well-
defined abstract domain of the same nature.

PRoof of lemma 9.2. Lemma 9.2 follows from the fact that in Galois connections the abstrac-
tion preserves existing joins [20, lemma 11.38]. and in Galois retractions 𝛼 ○ 𝛾 is the identity [20,
exercise 11.50]. □

TheoRem 9.3. If D̄♯ is an exact (respectively approximate) abstraction of D♯ then∀S ∈ S . J̄SK̄♯ =
𝛼(JSK♯) (respectively “ ⊑̄♯” instead of “=” for approximate abstractions).

PRoof of theoRem 9.3. The proof of theorem 9.3 is an easy generalization of that of theorem
27.8 and corollary 27.20 of [20]. □

Example 9.4 (Relational semantics). The relational semantics JSK𝜚 of [21] is the following abstrac-
tion of the trace semantics JSK𝜋 .
𝛼+(𝑆) ≜ {⟨𝜎, 𝜎 ′⟩ ∣ ∃𝜋 . 𝜎𝜋𝜎 ′ ∈ 𝑆 ∩ Σ+} 𝛼∞(𝑆) ≜ {⟨𝜎, �⟩ ∣ ∃𝜋 . 𝜎𝜋 ∈ 𝑆 ∩ Σ∞}

It follows, by theorem 9.3, that ∀S ∈ S . JSK𝜚 = 𝛼(JSK𝜋) and by a classic calculational design, we
would get the relational semantics of [21, sect. I.1] (recalled in sect. 5 as a specific instance of the
algebraic semantics of sect. 3). ∎

10 Induced Abstraction of the Execution Transformer
We have defined properties of program executions as program semantics in L♯ (12).This formalizes
the observation that program semantics specify exactly the properties of all possible executions
of any program of the language. An abstraction (77) of the semantics in definition 9.1 induces an
execution transformer post♯ ∈ L̄♯ ↗Ð→ L̄♯ ↗Ð→ L̄♯ (25) for this abstract semantics

𝛼(p) ≜ 𝝀𝑆 .𝝀𝑃 .𝛼(p(𝛾(𝑆))𝛾(𝑃))
post♯(𝑆)𝑃 ≜ 𝛼(post♯)(𝑆)𝑃 = 𝛼(post♯(𝛾(𝑆))𝛾(𝑃)) = 𝑃 #̄♯ 𝑆 (79)

PRoof of (79).
𝛼(post♯(𝛾(𝑆))𝛾(𝑃))

= 𝛼(𝛾(𝑃) #♯ 𝛾(𝑆)) Hdef. (25) of post♯I
= 𝛼(𝛾(𝑃)) #̄♯ 𝛼(𝛾(𝑆)) Hcase 9.1.D of definition 9.1 applied component wiseI
= 𝑃 #̄♯ 𝑆 Hcomponent wise Galois retractionI □

Notice that defining 𝛾(p̄) ≜ 𝝀𝑆 .𝝀𝑃 .𝛾(p̄(𝛼(𝑆))𝛼(𝑃)), we have a Galois retraction
⟨L♯ ↗Ð→L♯ ↗Ð→L♯, ⊑♯⟩ −−−→Ð→←−−−−−

𝛼

𝛾
⟨L̄♯ ↗Ð→ L̄♯ ↗Ð→ L̄♯, ⊑̄♯⟩ (80)

PRoof of (80). By [20, th. 11.78], we have a Galois connection. The retraction follows from
𝛼(𝛾(p̄))

= 𝝀𝑆 .𝝀𝑃 .𝛼(𝛾(p̄)(𝛾(𝑆))𝛾(𝑃)) Hdef. (79) of 𝛼I
= 𝝀𝑆 .𝝀𝑃 .𝛼(𝛾(p̄(𝛼(𝛾(𝑆)))𝛼(𝛾(𝑃)))) Hdef. 𝛾(p̄) ≜ 𝝀𝑆 .𝝀𝑃 .𝛾(p̄(𝛼(𝑆))𝛼(𝑃))I
= 𝝀𝑆 .𝝀𝑃 . p̄(𝑆)𝑃 HGalois retraction (78) and [20, exercise 11.50]I
= p̄ Hdef. lambda-notation and [20, exercise 11.50]I □
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such that post♯ = 𝛼(post) in (79). Observe that if an abstraction D̄♯ ≜ ⟨D̄♯+, D̄♯∞⟩ of an abstract
domain D♯ ≜ ⟨D♯+, D♯∞⟩ is commuting (82) then

𝛼(post♯(𝛾(𝑆))𝑃) = post♯(𝑆)(𝛼(𝑃)) (81)

PRoof of (81).
𝛼(post♯(𝛾(𝑆))𝑃)

= 𝛼(𝑃 #♯ 𝛾(𝑆)) Hdef. (25) of post♯I
= 𝛼(𝑃) #̄♯ 𝑆 Hcommutation (82)I
= post♯(𝑆)(𝛼(𝑃)) Hcharacterization (79) of post♯I □

Lemma 10.1 (Commutation). If the abstraction D̄♯ ≜ ⟨D̄♯+, D̄♯∞⟩ of an abstract domainD♯ ≜ ⟨D♯+,
D♯∞⟩ is exact then

𝛼(𝑃 #♯ 𝛾(𝑆)) = 𝛼(𝑃) #̄♯ 𝑆 and 𝛼(post(𝛾(𝑆))𝑃) = post(𝑆)(𝛼(𝑃)) (82)

Lemma 10.1 shows that doing the computation in the concrete and then abstracting is equivalent
to doing the computation in the abstract. Relative to the abstraction, no information is lost.

PRoof of lemma 10.1.
𝛼(𝑃 #♯ 𝛾(𝑆))

= 𝛼(𝑃) #̄♯ 𝛼(𝛾(𝑆)) Hcommutation 9.1.DI
= 𝛼(𝑃) #̄♯ 𝑆 HGalois retraction (78). Q.E.D.I

𝛼(post(𝛾(𝑆))𝑃)
= 𝛼(𝑃 #♯ (𝛾(𝑆))) Hdef. (25) of post♯I
= 𝛼(𝑃) #̄♯ 𝑆 Has previously shownI
= post(𝑆)(𝛼(𝑃)) H(79I □

□

Moreover, instead of deriving the Galois connection (80) from that (78), we can start directly
from an abstraction of post given by (80). The abstract semantics is then 𝑆 = post♯(𝑆)skip proving
the equivalence of (76.1) and (76.2).

11 Induced Abstraction of the Semantic Transformer
The semantics transformer Post♯ ∈ L̄♯ → ℘(L̄♯)→ ℘(L̄♯) for this abstract semantics is

¯̄𝛼(P) ≜ 𝝀𝑆 .𝝀P̄ .{𝛼(𝑅) ∣ 𝑅 ∈ P(𝛾(𝑆))({𝛾(𝑃) ∣ 𝑃 ∈ P̄})} (83)
Post

♯(𝑆)P̄ ≜ ¯̄𝛼(Post♯)(𝑆)P̄ = {post♯(𝑆)𝑃 ∣ 𝑃 ∈ P̄} (84)

PRoof of (84).
Post

♯(𝑆)P̄
≜ ¯̄𝛼(Post♯)(𝑆)P̄ Hdef. (84) of Post♯I
= {𝛼(𝑅) ∣ 𝑅 ∈ Post♯(𝛾(𝑆))({𝛾(𝑃) ∣ 𝑃 ∈ P̄})} Hdef. (83) of ¯̄𝛼I
= {𝛼(𝑅) ∣ 𝑅 ∈ {post♯(𝛾(𝑆))𝑃 ∣ 𝑃 ∈ ({𝛾(𝑃) ∣ 𝑃 ∈ P̄})} Hdef. (40) of Post♯I
= {𝛼(post♯(𝛾(𝑆))(𝛾(𝑃))) ∣ 𝑃 ∈ P̄} Hdef. ∈I
= {post♯(𝑆)𝑃 ∣ 𝑃 ∈ P̄} H(79)I □
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Example 11.1 (Transformers for the relational semantics). For the relational semantics of example
9.4, the composition is 𝑆 #̄𝜚 𝑆 ′ = (𝑆 ∩ (Σ × {�})) ∪ (𝑆 ∩ (Σ × Σ) ○ 𝑆 ′) (intuitively S1;S2 does not
terminate if S1 does not terminate or S1 terminates but S2 doesn’t and terminates if both S1 and
S2 terminate with the composition of their effects). Then Post

𝜚 JSK𝜚P = {𝑃 #̄𝜚 JSK𝜚 ∣ 𝑃 ∈ P} so that
if P is a precondition relating the initial states of the command S to those of the program then
Post

𝜚 JSK𝜚 relates the final states of the command S or nontermination to the initial states of the
program. ∎

We have the Galois retraction

⟨L♯ → ℘(L♯) ↗Ð→℘(L♯), ⊆⟩ −−−→Ð→←−−−−−
¯̄𝛼

¯̄𝛾
⟨L̄♯ → ℘(L̄♯) ↗Ð→℘(L̄♯), ⊆⟩ (85)

PRoof of (85). ¯̄𝛼 preserves arbitrary point wise union ∪. □

Observe that instead of deriving (85) from (80), it is equivalent to start from a Galois retraction
(85) since we can recover post from Post by (43).

12 Induced Abstraction of the Abstract Logics

Writing 𝑓 (𝑋) ≜ {𝑓 (𝑥) ∣ 𝑥 ∈ 𝑋}, the abstract logic L♯ ∈ L̄♯ → (℘(L̄♯) × ℘(L̄♯)) is
¯̄̄𝛼(L) ≜ 𝝀𝑆 .{⟨P̄, Q̄⟩ ∣ 𝛼(⋂{Q ∣ ⟨𝛾(P̄), Q⟩ ∈ L(𝛾(𝑆))}) ⊆ Q̄} (86)

L
♯
(𝑆) ≜ ¯̄̄𝛼(L♯)(𝑆) L

♯(𝑆) ≜ ¯̄̄𝛼(L♯)(𝑆) (87)

TheoRem 12.1. If D̄♯ is an exact abstraction of D♯ then L
♯
(𝑆) = {⟨P̄, Q̄⟩ ∣ Post♯(𝑆)P̄ ⊆ Q̄}

(and L♯(𝑆) = {⟨P̄, Q̄⟩ ∣ Q̄ ⊆ Post♯(𝑆)P̄}).

PRoof of theoRem 12.1.
L
♯
(𝑆) = ¯̄̄𝛼(L♯)(𝑆) H(87)I

= {⟨P̄, Q̄⟩ ∣ 𝛼(⋂{Q ∣ ⟨𝛾(P̄), Q⟩ ∈ L(𝛾(𝑆))}) ⊆ Q̄} H(86)I
= {⟨P̄, Q̄⟩ ∣ 𝛼(⋂{Q ∣ ⟨𝛾(P̄), Q⟩ ∈ {⟨P, Q⟩ ∣ Post♯(𝛾(𝑆))P ⊆ Q}}) ⊆ Q̄} Hdef. (60) of L♯I
= {⟨P̄, Q̄⟩ ∣ 𝛼(⋂{Q ∣ Post♯(𝛾(𝑆))𝛾(P̄) ⊆ Q}) ⊆ Q̄} Hdef. ∈I
= {⟨P̄, Q̄⟩ ∣ 𝛼({Post♯(𝛾(𝑆))𝛾(P̄)}) ⊆ Q̄} Hdef. ⋂ and ⊆I
= {⟨P̄, Q̄⟩ ∣ 𝛼({post♯(𝛾(𝑆))𝑃 ∣ 𝑃 ∈ 𝛾(P̄)}) ⊆ Q̄} Hdef. (40) of Post♯I
= {⟨P̄, Q̄⟩ ∣ {𝛼(post♯(𝛾(𝑆))𝑃) ∣ 𝑃 ∈ 𝛾(P̄)} ⊆ Q̄} Hdef. imageI
= {⟨P̄, Q̄⟩ ∣ ∀𝑃 ∈ P̄ . 𝛼(post♯(𝛾(𝑆))𝛾(𝑃)) ∈ Q̄} Hdef. ⊆I
= {⟨P̄, Q̄⟩ ∣ ∀𝑃 ∈ P̄ . post♯(𝑆)𝑃 ∈ Q̄} Hdef. (79) of post♯I
= {⟨P̄, Q̄⟩ ∣ {post♯(𝑆)𝑃 ∣ 𝑃 ∈ P̄} ⊆ Q̄} Hdef. ⊆I
= {⟨P̄, Q̄⟩ ∣ Post♯(𝑆)P̄ ⊆ Q̄} Hdef. (84) of Post♯I
The proof for L♯ is ⊆-dual. □

It follows from theorem 12.1 that the logic proof system of theorem 8.5 is applicable to the upper
abstract logic L

♯
(𝑆) (and dually theorem 8.8 for the lower abstract logic).

In conclusion of this part II, although the abstractions of the semantics, post, Post, and logics
have been shown to be equally expressible for exact abstractions, they do not really solve the
problem of the complexity of the resulting logic (although hyperproperties may be simpler). The
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logics still have to handle exactly the (abstract) semantics occurring in the (hyper) properties.
So our proposed proof system has rules (63)—(70) plus simplified rules applicable to less general
classes of properties defined by the abstractions studied in the following part III.

PaRt III: AbstRactions foR Semantic (HypeR) Logics
The problem with (hyper) logics studied in part I (and their abstractions in part II) is that for a

program to satisfy a semantic (hyper) property, its semantics must exactly occur in this (hyper)
property and therefore the proof must exactly characterize the program semantics. So, contrary to
Hoare logic or its dual, (hyper) proof rules cannot make over or under approximations of the pro-
gram semantics in semantic properties. In this part III, we study abstractions of semantic properties
that yield simpler sound and complete proof rules for the less general semantic (hyper) properties
defined by the abstraction. Such abstractions can also provide representations of abstract semantic
(hyper) properties3.

13 Semantic to Execution Property Abstraction
13.1 Join Abstraction
13.1.1 Definition of the Join Abstraction. In a complete lattice, the abstraction 𝛼⊔(P) ≜ ⊔P and
𝛾⊔(𝑄) ≜ {𝑃 ∣ 𝑃 ⊑ 𝑄} yields a Galois retraction.

⟨℘(L), ⊆⟩ −−−−→Ð→←−−−−−−
𝛼⊔

𝛾⊔
⟨L, ⊑⟩ and so ⟨℘(L), ⊆⟩ −−−−−−−−→Ð→←−−−−−−−−−−

𝛾⊔ ○ 𝛼⊔

1 ⟨𝛾⊔ ○ 𝛼⊔(℘(L)), ⊆⟩ (88)

PRoof of (88).
𝛼⊔(P) ⊑ 𝑄

⇔ ⊔P ⊑ 𝑄 Hdef. 𝛼⊔I
⇔ ∀𝑃 ∈ P . 𝑃 ⊑ 𝑄 Hdef. least upper boundI
⇔ P ⊆ {𝑃 ∣ 𝑃 ⊑ 𝑄} Hdef. ⊆I
⇔ P ⊆ 𝛾⊔(𝑄) Hdef. 𝛾⊔I
It follows that 𝛾⊔ ○ 𝛼⊔ is an upper closure operator hence the second Galois retraction. □

The properties in 𝛾⊔ ○ 𝛼⊔(℘(L)) are called execution properties as opposed to semantic (hyper)
properties in ℘(L). If the abstract domains D♯ of definition 3.2 or their abstractions by definition
9.1 are complete lattices, this abstraction approximates abstracts semantic properties in ℘(L♯) into
executions in L♯.

Example 13.1 (Trace property abstraction). The trace hyperproperties in ℘(℘(Σ+∞)) can be ab-
stracted to trace properties in ℘(Σ+∞) by ⟨℘(℘(Σ+∞), ⊆⟩ −−−−→Ð→←−−−−−−

𝛼∪

𝛾∪
⟨℘(Σ+∞)), ⊆⟩with 𝛼∪(𝑃) = ⋃𝑃

and 𝛾∪(𝑄) = ℘(𝑄) as done e.g. in [27, section 5, p. 246] which is the starting point of [21] to
recover Hoare logic and its variants. 𝛾∪(𝑃) is called the lift of trace property 𝑃 ∈ ℘(Σ+∞) in [14,
page 1162]. ∎

Example 13.2 (Hyperlogic to execution logic abstraction). Applied to Post♯(𝑆) in (40) this join ab-
straction yields post♯(𝑆) in (25), so that the hyperproperty calculus of theorem 7.4 is abstracted
into the execution property calculus of theorem 6.5 and therefore the hyperlogic of theorem 8.5 is
abstracted in the classic program logic of execution properties (as considered in [21], after appro-
priate generalization to the algebraic semantics of section 3). ∎
3Another example is the possible representation of semantic properties satisfying the decreasing chain condition by join
irreducibles [11, theorem 4.8].
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13.1.2 Proof Rule Simplification. By correspondence (88), the abstract logical ordering (abstract-
ing the implication ⊆) is also the computational ordering in lemma 3.14 whereas, in general, for the
generic algebraic abstract semantics the computational ordering ⊑♯ and the logical ordering and
⊆ are not directly related, which is at the origin of complications in proofs. Therefore, the while

rule (70) can be simplified since fixpoints can be over approximated (or under approximated) hence
handled by fixpoint induction such as Park induction [21, theorem II.3.1] or Scott-Kleene induction
[21, theorem II.3.6].

14 Homomorphic Semantic Abstraction
Given an execution property abstraction 𝛼 ∈ L♯ → A, it can be extended elementwise to ⟨℘(L♯),
⊆⟩ −−−→←−−−𝛼

𝛾
⟨℘(A), ⊆⟩ by 𝛼(P) ≜ {𝛼(𝑃) ∣ 𝑃 ∈ P} and 𝛾(Q) ≜ {𝑃 ∣ 𝛼(𝑃) ∈ Q}.

Example 14.1 (Partial hypercorrectness). Partial hypercorrectness consists in ignoring one com-
ponent D♯+ or D♯∞ of the abstract domain and preserving only the other, that is 𝛼+(⟨𝑒 ∶ 𝑃+, � ∶ 𝑃∞,
𝑏𝑟 ∶ 𝑃𝑏⟩) ≜ ⟨𝑜𝑘 ∶ 𝑃+, 𝑏𝑟 ∶ 𝑃𝑏⟩ or 𝛼∞(⟨𝑒 ∶ 𝑃+, � ∶ 𝑃∞, 𝑏𝑟 ∶ 𝑃𝑏⟩) ≜ 𝑃∞ in (12). This execution property
abstraction 𝛼 is extended to semantic properties by the homomorphic abstraction 𝛼(P) ≜ {𝛼(𝑃) ∣
𝑃 ∈ P}. This yields a Galois retraction ⟨℘(L♯), ⊆⟩ −−−→Ð→←−−−−−

𝛼

𝛾
⟨𝛼(℘(L♯)), ⊆⟩ hence a closure ⟨℘(L♯),

⊆⟩ −−−−−−→Ð→←−−−−−−−−
𝛾 ○ 𝛼

1 ⟨𝛾 ○ 𝛼(℘(L♯)), ⊆⟩. This is an extension of partial correctness or termination to seman-
tic (hyper) properties. The while rule (70) can be simplified by ignoring one of the two fixpoints.
However, the other fixpoint must still be calculated exactly. ∎

Example 14.2 (Trace safety hyperproperties). The safety abstraction 𝛼 by prefix and limit abstrac-
tion of trace properties [27, section 6.1] can be applied to the trace semantic (hyper) properties of
section 4 so that 𝛼(℘(𝑜𝑘 ∶ ℘(Σ+∞)×𝑏𝑟 ∶ ℘(Σ+))) yields safety semantic (hyper) properties of [14].
This consists in replacing each semantics in the semantic property by its safety approximation by
prefixes (in L♯+) and limits (in L♯∞). ∎

Example 14.3 (Algebraic safety hyperproperties). The trace safety hyperproperties of example
14.2 can be generalized to the algebraic semantics by requiring that, under the hypotheses of lem-
mas 3.8 and 3.11, algebraic safety propertiesP do satisfy that JS1;S2K♯ ∈ P implies JS1K♯𝑒∪JS1K♯𝑏𝑟 ∈ P
(prefix closure), that ∀𝛿 ∈ O . (JB;SK♯𝑒)𝛿 ∈ P implies lfp⊑♯+ ⃗𝐹 ♯𝑒 ∈ P (limit closure for finite execu-
tions), and that ∀𝛿 ∈ O . ((JB;SK♯𝑒)𝛿 #♯ ⊺♯∞) ∈ P implies gfp⊑♯∞ 𝐹 ♯� ∈ P (limit closure for infinite
executions).Then 𝛼safety(P) ≜ {𝛼safety(𝑃) ∣ 𝑃 ∈ P} thus generalizing the classic definition of safety
property 𝛼safety(𝑃) = 𝑃 as prefix closed and limit closed sets of traces [21, Definition 14.11]. Then
the proof rule (70) can be simplified since the passage to the limit need not be checked since it is
guaranteed by the safety hypothesis. ∎

15 Execution Property Elimination
Given a set I ∈ ℘(℘(L♯)) of semantic properties of interest, the Galois retraction

⟨℘(L♯), ⊆⟩ −−−−−−−−−−→Ð→←−−−−−−−−−−−−
𝝀P .P ∩ I

𝝀Q .Q∪ I
⟨I, ⊆⟩

[20, exercise 11.5] eliminates the semantics of no interest. We have used this abstraction𝝀P .P ∩ I
implicitly in examples 6.9 and 7.5 when saying that we ignored nontermination. The logics of
section 8.2 are simplified by intersection with I but this still requires the restricted fixpoints in the
while rules (70) and (75) to be computed exactly, which, mechanically, does not scale up.

Example 15.1 (𝑘-semantic properties). If L = ℘(𝐿) is a powerset (which is the case for the trace
semantics of section 4.3), I ≜ {P ∈ ℘(℘(𝐿)) ∣ ∣P ∣ ⩽ 𝑘}, 𝑘 ⩾ 1, where ∣𝑆 ∣ is the cardinality of set 𝑆 ,
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restricts the trace properties to be considered in the semantic properties to those of cardinality at
most 𝑘 . An instance of this abstraction is the 𝑘-hypersafety of [14, page 1170]. ∎

16 Principal Order Ideal Abstraction
16.1 Definition of the Principal Order Ideal Abstraction
Subject to the existence of the least upper bound, the principal ideal abstraction is

𝛼'(P) ≜ {𝑃 ∣ 𝑃 ⊑⊔P} (89)

Lemma 16.1. 𝛼' is an upper closure operator and ⟨𝛼'(℘(L)), ⊆, {�}, L, 𝝀𝑋 .𝛼'(∪𝑋), ∩⟩ is a
complete lattice.

PRoof of lemma 16.1. By definition, 𝛼' is increasing and extensive. For idempotence, we have
𝛼'(𝛼'(P))

= 𝛼'({𝑃 ∣ 𝑃 ⊑⊔P}) Hdef. (89) of 𝛼'I
= {𝑃 ∣ 𝑃 ⊑⊔{𝑃 ′ ∣ 𝑃 ′ ⊑⊔P}} Hdef. (89) of 𝛼'I
= {𝑃 ∣ 𝑃 ⊑⊔P} Hdef. lub ⊔I
= 𝛼'(P) Hdef. (89) of 𝛼'I
By Morgan Ward’s [83, theorem 4.1], ⟨𝛼'(℘(L)), ⊆, {�}, L, 𝝀𝑋 .𝛼'(∪𝑋), ∩⟩ is a complete lattice.

□

16.2 Proof Rule Simplification
If ⟨L, ⊑⟩ is a complete lattice and the composition preserves arbitrary existing limits in definition
3.2.D.d then proofs in the upper abstract semantic logic can be based on the classic upper abstract
execution property logic of section 6.4 for principal ideal closed properties and their dual .

{⊔P} S{⊔Q}
{∣P ∣} S{∣Q ∣}

, 𝛼'(Q) = Q ∀𝑃 ∈ P . {𝑃} S{⊓Q}

{∣P ∣} S{∣Q ∣}
, 𝛼/(Q) = Q (90)

Soundness and completeness pRoof of Rule (90).
{∣P ∣} S{∣Q ∣}

⇔ Post♯(𝑆)P ⊆ Q Hdef. (60) of {∣P ∣} S{∣Q ∣}I
⇔ {post♯(𝑆)𝑃 ∣ 𝑃 ∈ P} ⊆ Q Hdef. (40) of Post♯I
⇔ {post♯(𝑆)𝑃 ∣ 𝑃 ∈ P} ⊆ {𝑃 ′ ∣ 𝑃 ′ ⊑⊔Q} Hhypothesis 𝛼'(Q) = Q and def. (89) of 𝛼'I
⇔ ∀𝑃 ∈ P . post♯(𝑆)𝑃 ⊑⊔Q Hdef. ⊆I
⇔ ⊔

𝑃∈P
post♯(𝑆)𝑃 ⊑⊔Q Hdef. lub ⊔I

⇔ post♯(𝑆)(⊔
𝑃∈P

𝑃) ⊑⊔Q

Hby hypothesis, the composition preserves arbitrary existing limits in definition 3.2.D.d
and (26)I

⇔ post♯JSK♯(⊔P) ⊑♯⊔Q Hdef. ⊔I
= {⊔P} S{⊔Q} Hdef. {𝑃 } S{𝑄 } in section 6.4I
{∣P ∣} S{∣Q ∣}

⇔ Post♯(𝑆)P ⊆ Q Hdef. (60) of {∣P ∣} S{∣Q ∣}I
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⇔ {post♯(𝑆)𝑃 ∣ 𝑃 ∈ P} ⊆ Q Hdef. (40) of Post♯I
⇔ {post♯(𝑆)𝑃 ∣ 𝑃 ∈ P} ⊆ {𝑃 ′ ∣⊓Q ⊑ 𝑃 ′} Hhypothesis 𝛼/(Q) = Q and dual def. (89) of 𝛼/I
⇔ ∀𝑃 ∈ P . post♯(𝑆)𝑃 ∈ {𝑃 ′ ∣⊓Q ⊑ 𝑃 ′} Hdef. ⊆I
⇔ ∀𝑃 ∈ P .⊓Q ⊑ post♯(𝑆)𝑃 Hdef. ∈I
⇔ ∀𝑃 ∈ P . {𝑃} S{⊓Q} Hdef. {𝑃 } S{𝑄 } in section 6.4I □

Example 16.2 (Proof reduction for principal ideal hyperproperties). Consider the instantiation for
the natural relational semantics in section 5 with no break. Define the assertional execution post-
condition 𝑄1 ≜ {𝜎 ∈ Σ ∣ 𝜎(𝑥) ≤ 10} with relational equivalent 𝑄2 ≜ Σ ×𝑄1 and hyperpropertyQ ≜
𝛼'(𝑄2) = 𝛼'(Σ×{𝜎 ∈ Σ ∣ 𝜎(𝑥) ≤ 10}) and similarlyP ≜ {(Σ×{𝜎 ∈ Σ ∣ 𝜎(𝑥) = 𝑛}) ∣ 𝑛 ∈ N∧𝑛 > 10}.
To prove the following hyperlogic triple {∣P ∣} while(x>10) x=x-1{∣Q ∣}, it is equivalent to prove
the following.
{∣P ∣} while(x>10) x=x-1{∣Q ∣}

⇔ {⋃P } while(x>10) x=x-1{⋃Q } HBy rule of (90)I
⇔ {Σ × {𝜎 ∈ Σ ∣ 𝜎(𝑥) > 10}} while(x>10) x=x-1{Σ × {𝜎 ∈ Σ ∣ 𝜎(𝑥) ≤ 10}}
Then one can use the over-approximation logic with termination proof in [22]. ∎

17 Order Ideal Abstraction
17.1 Definition of the Order Ideal Abstraction
The order ideal abstraction on ⟨℘(L), ⊆⟩ is

𝛼⊑(P) ≜ {𝑃 ′ ∈ L ∣ ∃𝑃 ∈ P . 𝑃 ′ ⊑ 𝑃} ⟨℘(L), ⊆⟩ −−−−→Ð→←−−−−−−
𝛼⊑

1 ⟨𝛼⊑(℘(L)), ⊆⟩ (91)

𝛼⊑ is an upper closure operator and ⟨𝛼⊑(℘(L)), ⊆, ∅, L, 𝝀𝑋 .𝛼⊑(∪𝑋), ∩⟩ is a complete lattice [83,
theorem 4.1]. The order filter abstraction 𝛼⊒ is defined dually. Note that 𝛼'(P) = 𝛼⊑({⊔P}). As
observed by [66, page 239] for subset-closed hyperproperties, all execution properties are order-
ideal closed for trace properties (where ⊑ is ⊆), but not conversely, citing observational determinism
[86] as a counterexample.

17.2 Proof Rule Simplification
The main interest of the order ideal/filter abstraction is the substantial simplification of the while
rules (70) and (75). To show this consider properties in 𝛼⊒

♯(℘(L♯) where ⊒♯ is defined component
wise on L♯ in (12) with ⊒♯+ on the exit and break components and ⊑♯∞ on the infinite component.
We abstract Post♯ in (40) to Post⊒

♯
∈ L♯ → 𝛼⊒

♯(℘(L♯)) ↗Ð→𝛼⊒
♯(℘(L♯)) by (P ∈ 𝛼⊒♯(℘(L♯)))

Post⊒
♯
(𝑆)P ≜ 𝛼⊒

♯
(Post♯(𝑆)P) = {𝑃 ′ ∈ L♯ ∣ ∃𝑃 ∈ Post♯(𝑆)P . 𝑃 ′ ⊒♯ 𝑃} Hdef. (91) of 𝛼⊒♯I

= {𝑃 ′ ∈ L♯ ∣ ∃𝑃 ∈ {post♯(𝑆)𝑃 ∣ 𝑃 ∈ P} . 𝑃 ⊑♯ 𝑃 ′}Hdef. (40) of Post and inversion of ⊒♯I
= {𝑃 ′ ∈ L♯ ∣ ∃𝑃 ∈ P . post♯(𝑆)𝑃 ∈ P ⊑♯ 𝑃 ′} Hdef. ∈I

The consequence is that the while loop verification condition (70) simplifies to lfp⊑♯+ 𝐹 ♯𝑝𝑒(𝑃 ′) ⊑♯+ 𝑃𝑒
and gfp⊑

♯
∞ 𝐹 ♯𝑝� ⊑♯∞ 𝑄�𝑏 which can respectively be handled by Park induction [21, theorem II.3.1]

and greatest fixpoint over apppoximation by transfinite iterates using the dual of [21, theorem
II.3.6] as is the case, for classic execution properties, in Hoare logic and termination proofs. The
reasoning is dual for (75).

Example 17.1 (Proof reduction for the order ideal abstraction: bounded nondeterminism). Let us
consider proofs of programs with bounded nondeterminism, assuming that the value of variables
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could only be integers. Consider the instantiation of relational natural semantics in section 5 with
no break and no nontermination where V = Z. Let ∣𝑆 ∣ be the cardinality of a set 𝑆 and consider
the semantic (hyper) property F ≜ ℘fin(L) ≜ {𝑃 ∈ ℘(L) ∣ ∣𝑃 ∣ ∈ N} to be the set of finite execution
semantics i.e. programs satisfying F cannot have infinitely many different executions although L
has an infinite cardinality.

Now, suppose we want prove that {∣F ∣} S{∣F ∣}, where S ≜ x = [0, ∞]; while(x>0) x=x-1.
Since F is an order ideal abstraction (subset-closed), we need to find a function I ∈ F → F such
that for arbitrary 𝑃 ∈ P , we have postJSK ⊆ I(𝑃), and, at the same time, the image of I is a subset
of F . Let𝑚 and 𝑛 to be any integer such that𝑚 < 0 < 𝑛, we can set this I to be
I = 𝝀𝑃 .{⟨𝜎, 𝜎 ′⟩ ∈ Σ × Σ ∣𝑚 <𝜎 ′(𝑥)≤𝑛 ∧ ∃⟨𝜎1, 𝜎 ′1⟩ ∈ 𝑃 . (𝜎1 =𝜎 ∧ ∀𝑣 ∈ V . 𝑣 ≠ 𝑥 ⇒ 𝜎 ′1(𝑥)=𝜎 ′(𝑥))}
We notice that this program component eventually assigns the value 0 to 𝑥 while keeping the value
of the other variables unchanged. As a result, for arbitrary 𝑃 ∈ P

postJSK(𝑃) = {⟨𝜎, 𝜎 ′⟩ ∈ Σ × Σ ∣ 𝜎 ′(𝑥) = 0 ∧ ∃⟨𝜎1, 𝜎 ′1⟩ ∈ 𝑃 . (𝜎1 = 𝜎 ∧ ∀𝑣 ∈ V . 𝑣 ≠ 𝑥 ⇒
𝜎 ′1(𝑥) = 𝜎 ′(𝑥))} ⊆ I(𝑃)

For the cardinality of I(𝑃), we let the sequence ⟨𝑋 𝑖 , 𝑛 < 𝑖 ≤𝑚⟩ such that 𝑋 𝑖 = {⟨𝜎, 𝜎 ′⟩ ∈ Σ × Σ ∣
𝜎 ′(𝑥) = 𝑖 ∧ ∃⟨𝜎1, 𝜎 ′1⟩ ∈ 𝑃 . (𝜎1 = 𝜎 ∧∀𝑣 ∈ V . 𝑣 ≠ 𝑥 ⇒ 𝜎 ′1(𝑥) = 𝜎 ′(𝑥))}. The cardinality of 𝑋 𝑖 in this
case will be smaller than that of 𝑃 , meaning ∣𝑋 𝑖 ∣ ∈ N. Thus, the finite union of 𝑋 𝑖 , ⋃

𝑚<𝑖≤𝑛
𝑋 𝑖 also has

finite cardinality. ∎

18 Frontiers Abstractions
Another solution to represent order ideal abstractions as proposed by [66, proposition 1] is to con-
sider themaximal elements of the order ideal closed semantic (hyper) property only. Unfortunately,
this is not the same abstraction.

Counter example 18.1. Consider the hyperproperty F ≜ ℘fin(L) ≜ {𝑃 ∈ ℘(L) ∣ ∣𝑃 ∣ ∈ N} in
example 17.1 i.e. programs satisfyingF cannot have infinitely many different executions although
L has an infinite cardinality. Then the order ideal abstraction is 𝛼⊑(F) = F which has no maximal
elements so the maximal elements abstraction of this order ideal abstraction 𝛼⊑(F) = F is the
empty set which is definitely different from this order ideal abstraction 𝛼⊑(F) = F . ∎

Let us study this abstraction in more detail.

18.1 Lower Frontier Abstraction
The lower frontier abstraction abstracts a subset of a poset to its mimimal elements

𝛼𝐹 (P) ≜ {𝑃 ∈ P ∣ ∀𝑃 ′ ∈ P . 𝑃 ′ ⊑ 𝑃 ⇒ 𝑃 ′ = 𝑃} (92)
𝛼𝐹 is reductive and idempotent by not necessarily increasing (and so does not necessarily preserve
existing joins) hence may not be the lower adjoint of a Galois connection.

Counter example 18.2. Consider the complete lattice {�, 0, 1,⊺} with � ⊑ � ⊑ 0 ⊑ 0 ⊑
⊺ ⊑ ⊺ and � ⊑ 1 ⊑ 1 ⊑ ⊺. We have P1 = {⊺} ⊆ {0, 1,⊺} = P2 but 𝛼𝐹 (P1) = {⊺} ⊈
{0, 1} = 𝛼𝐹 (P2) proving that 𝛼𝐹 is not increasing hence does not preserve existing
joins hence is not the lower adjoint of a Galois connection. By duality, neither is 𝛼𝐹 .

0 1⊤

⊤

∎

18.2 Frontier Order Ideal Abstraction
The frontier order ideal abstraction

𝛼⊒𝐹 ≜ 𝛼⊒ ○ 𝛼𝐹 (93)
closes the frontier by its over approximations, as shown by the following
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Lemma 18.3. 𝛼⊒𝐹 (P) = {𝑃 ∈ L ∣ ∃𝐹 ∈ 𝛼𝐹 (P) . 𝐹 ⊑ 𝑃} = {𝑃 ∈ L ∣ ∃𝐹 ∈ P . ∀𝑃 ′ ∈ P . 𝑃 ′ ⊑ 𝐹 ⇒
𝑃 ′ = 𝐹 ∧ 𝐹 ⊑ 𝑃}.

PRoof of lemma 18.3.
𝛼⊒ ○ 𝛼𝐹 (P)

= {𝑃 ∈ L ∣ ∃𝐹 ∈ 𝛼𝐹 (P) . 𝐹 ⊑ 𝑃} Hdef. function composition ○ and (91) of the dual 𝛼⊑I
= {𝑃 ∈ L ∣ ∃𝐹 ∈ {𝑃 ∈ P ∣ ∀𝑃 ′ ∈ P . 𝑃 ′ ⊑ 𝑃 ⇒ 𝑃 ′ = 𝑃} . 𝐹 ⊑ 𝑃} Hdef. (92) of 𝛼𝐹 I
= {𝑃 ∈ L ∣ ∃𝐹 ∈ P . ∀𝑃 ′ ∈ P . 𝑃 ′ ⊑ 𝐹 ⇒ 𝑃 ′ = 𝐹 ∧ 𝐹 ⊑ 𝑃} Hdef. ∈I □

Observe that 𝛼⊒𝐹 is idempotent but not necessarily increasing or extensive.

Counter example 18.4. Consider L = {⟨𝑎, 𝑛⟩ ∣ 𝑛 ∈ N} ∪ {⟨𝑏, 𝑚⟩ ∣ 𝑚 ∈ N} with ⟨𝑥, 𝑛⟩ ⊑ ⟨𝑦,
𝑚⟩ ≜ 𝑥 = 𝑦 ∧𝑛 ⩾𝑚 be two incomparable infinite decreasing chains. L /⊆ 𝛼⊒𝐹 (L) = ∅. Take P = {⟨𝑎,
𝑛⟩ ∣ 𝑛 ∈ N} ∪ {⟨𝑏, 0⟩} so that P ⊆ L but 𝛼⊒𝐹 (P) = {⟨𝑏, 𝑚⟩ ∣𝑚 ∈ N} /⊆ 𝛼⊒𝐹 (L) = ∅. ∎

𝛼⊒𝐹 (℘(L)) is not closed by intersection.

Counter example 18.5. Consider the lattice on the right. Let P1 =
{𝑍 𝑖 ∣ 𝑖 ∈ N∗} ∪ {𝑋 𝑖 ∣ 𝑖 ∈ N∗} with frontier F1 = {𝑋 𝑖 ∣ 𝑖 ∈ N∗} and
P2 = {𝑍 𝑖 ∣ 𝑖 ∈ N∗} ∪ {𝑌 𝑖 ∣ 𝑖 ∈ N∗} with frontier F2 = {𝑌 𝑖 ∣ 𝑖 ∈ N∗}.
There is no largest set smaller than P1 and P2 with an existing
frontier. ∎

Lemma 18.6. ⟨𝛼⊒𝐹 (℘(L)), ⊆, ∅, L, ∪⟩ is a join semilattice.

PRoof of lemma 18.6. Given P1, P2 ∈ 𝛼⊒𝐹 (℘(L)), we have to prove that P1 ∪P2 ∈ 𝛼⊒𝐹 (℘(L))
that is the existence of a frontier F ∈ 𝛼𝐹 (℘(L)) such that P1 ∪ P2 = 𝛼⊒(F). Let F1, F2 be the
frontiers such that P1 = 𝛼⊒(F1) and P2 = 𝛼⊒(F2). Define the frontier

F ≜ 𝛼𝐹 (F1 ∪F2) = {𝑃 ∈ F1 ∪F2 ∣ ∀𝑃 ′ ∈ F1 ∪F2 . 𝑃
′ ⊑ 𝑃 ⇒ 𝑃 ′ = 𝑃} (94)

To prove P1 ∪ P2 ⊆ 𝛼⊒(F), given any 𝑋 ∈ P1 ∪ P2, let us show the existence of 𝐹 ∈ F such
that 𝑋 ∈ 𝛼⊒(𝑃) that is 𝐹 ⊑ 𝑋 . There are two cases.
(1) If 𝑋 ∈ P1 and 𝑋 /∈ P2 then ∃𝐹1 ∈ F1 . 𝐹1 ⊑ 𝑋 and ∀𝐹2 ∈ F2 . 𝐹2 /⊑ 𝑋 so taking 𝑃 = 𝐹1 in (94), we

have 𝑃 = 𝐹1 ∈ F1 ∪F2 and ∀𝑃 ′ ∈ F1 ∪F2, if 𝑃 ′ ⊑ 𝑃 = 𝐹1 then 𝑃 ′ ⊑ 𝑋 by transitivity so 𝑃 ′ /∈ F2

proving 𝑃 ′ ∈ F1 and so 𝑃 ′ = 𝐹1 = 𝑃 by 𝐹1 ∈ 𝛼𝐹 (F1);
(2) The case 𝑋 /∈ P1 and 𝑋 ∈ P2 is symmetric;
(3) Otherwise 𝑋 ∈ P1 ∩ P2. In that case ∃𝐹1 ∈ F1 . 𝐹1 ⊑ 𝑋 . LetM = F2 ∩ 𝛼⊒(𝑋). There are two

subcases.
(a) ∀𝐹2 ∈M . 𝐹2 ⊏̸ 𝐹1. This is similar to case 1;
(b) ∃𝐹2 ∈ M . 𝐹2 ⊏ 𝐹1. No element 𝐹 ′1 of F1 ∖ {𝐹1} is comparable to 𝐹2 since otherwise

𝐹 ′1 ⊑ 𝐹2 ⊏ 𝐹1 would contradict that 𝐹1 is in the frontier of P1. Therefore, taking 𝑃 = 𝐹2,
we have 𝑃 = 𝐹2 ∈ F1 ∪ F2 and if 𝑃 ′ ∈ F1 ∪ F2 then 𝑃 ′ ∈ F2 is impossible so 𝑃 ′ ∈ F1 so
𝑃 ′ = 𝐹1 = 𝑃 by 𝐹1 ∈ 𝛼𝐹 (F1);

Conversely, to proveP1∪P2 ⊇ 𝛼⊒(F), assume𝑋 ∈ 𝛼⊒(F) so that there exists 𝐹 ∈ 𝛼𝐹 (F1∪F2)
such that 𝐹 ⊑ 𝑋 . By (94), either 𝐹 ∈ F1 and 𝑋 ∈ P1 or 𝐹 ∈ F2 and 𝑋 ∈ P2 proving 𝑋 ∈ P1 ∪P2. □

18.3 A Frontier Characterization of the Order Ideal Abstraction

Lemma 18.7. There is a Galois isomorphism ⟨𝛼⊑𝐹 (℘(L)),⊆⟩ −−−−→Ð→←←Ð−−−−
𝛼𝐹

𝛼⊑ ⟨𝛼𝐹 (℘(L)),⪯𝐹 ⟩ and ⟨𝛼𝐹 (℘(L)),

⪯𝐹 , ⋎𝐹 ⟩ is a join semi lattice with 𝑃 ⪯𝐹 𝑄 ≜ (𝛼⊑(𝑃) ⊆ 𝛼⊑(𝑄)) and 𝑃 ⋎𝐹 𝑄 ≜ 𝛼𝐹 (𝛼⊑(𝑃) ∪ 𝛼⊑(𝑄)).
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PRoof of lemma 18.7. We first show that 𝛼𝐹 ○ 𝛼⊑ ○ 𝛼𝐹 = 𝛼𝐹 . Consider P ∈ 𝛼𝐹 (℘(L)). Then
𝛼𝐹 ○ 𝛼⊑(P)

= {𝑃 ∈ 𝛼⊑(P) ∣ ∀𝑃 ′ ∈ 𝛼⊑(P) . 𝑃 ⊑ 𝑃 ′ ⇒ 𝑃 = 𝑃 ′} HBy def. (92) of 𝛼𝐹 I
= {𝑃 ∈ {𝑃 ′ ∈ L ∣ ∃𝐹 ∈ P . 𝑃 ′ ⊑ 𝐹} ∣ ∀𝑃 ′ ∈ {𝑃 ′ ∈ L ∣ ∃𝐹 ′ ∈ P . 𝑃 ′ ⊑ 𝐹 ′} . 𝑃 ⊑ 𝑃 ′ ⇒ 𝑃 = 𝑃 ′}Hby def. (91) of 𝛼⊑I
= {𝑃 ∣ ∃𝐹 ∈ P . 𝑃 ⊑ 𝐹 ∧ ∀𝑃 ′ ∈ {𝑃 ′ ∈ L ∣ ∃𝐹 ′ ∈ P . 𝑃 ′ ⊑ 𝐹 ′} . 𝑃 ⊑ 𝑃 ′ ⇒ 𝑃 = 𝑃 ′} Hdef. ∈I
= {𝑃 ∣ ∃𝐹 ∈ P . 𝑃 ⊑ 𝐹 ∧ ∀𝑃 ′ ∈ L . (∃𝐹 ′ ∈ P . 𝑃 ′ ⊑ 𝐹 ′)⇒ (𝑃 ⊑ 𝑃 ′ ⇒ 𝑃 = 𝑃 ′)} Hdef. ∈I
= {𝑃 ∈ L ∣ ∃𝐹 ∈ P . 𝑃 ⊑ 𝐹 ∧ ∀𝑃 ′ ∈ L . (∃𝐹 ′ ∈ P . 𝑃 ⊑ 𝑃 ′ ⊑ 𝐹 ′)⇒ 𝑃 = 𝑃 ′} Hdef.⇒ and transitivityI
= {𝑃 ∈ L ∣ 𝑃 ∈ P}H(⊆) Let 𝑃 ′ = 𝐹 , so that ∃𝐹 ′ ∈ P . 𝑃 ⊑ 𝑃 ′ ⊑ 𝐹 ′ holds by choosing 𝐹 ′ = 𝐹 which implies

𝑃 = 𝑃 ′ = 𝐹 ∈ P so 𝑃 ∈ P ;
(⊇) Let 𝑃 ∈ P and choose 𝐹 = 𝑃 so that 𝑃 ⊑ 𝐹 . Consider any 𝑃 ′ ∈ L. Then, by choosing
𝐹 ′ = 𝑃 ′, (∃𝐹 ′ ∈ P . 𝑃 ⊑ 𝑃 ′ ⊑ 𝐹 ′) if and only if 𝑃 ⊑ 𝑃 ′. But 𝑃 = 𝐹 ∈ P and P ∈ 𝛼𝐹 (℘(L)) is a
frontier so 𝑃 = 𝑃 ′I

= P Hdef. set in extensionI
If P ∈ 𝛼⊑𝐹 (℘(L)) then there exists P ′ ∈ ℘(L)) such that P = 𝛼⊑𝐹 (P ′) and then

𝛼⊑ ○ 𝛼𝐹 (P)
= 𝛼⊑ ○ 𝛼𝐹 ○ 𝛼⊑𝐹 (P ′) HP = 𝛼⊑𝐹 (P ′)I
= 𝛼⊑ ○ 𝛼𝐹 ○ 𝛼⊑ ○ 𝛼𝐹 (P ′) Hdual def. (93) of 𝛼⊑𝐹 I
= 𝛼⊑ ○ 𝛼𝐹 (P ′) Hsince 𝛼𝐹 ○ 𝛼⊑ ○ 𝛼𝐹 = 𝛼𝐹 I
= 𝛼⊑𝐹 (P ′) Hdual def. (93) of 𝛼⊑𝐹 I
= P Hby definition P = 𝛼⊑𝐹 (P ′)I

If Q ∈ 𝛼𝐹 (℘(L)) then there exists Q′ ∈ ℘(L)) such that Q = 𝛼𝐹 (Q′) and then
𝛼𝐹 ○ 𝛼⊑(Q)

= 𝛼𝐹 ○ 𝛼⊑ ○ 𝛼𝐹 (Q′) HQ = 𝛼𝐹 (Q′)I
= 𝛼𝐹 (Q′) Hsince 𝛼𝐹 ○ 𝛼⊑ ○ 𝛼𝐹 = 𝛼𝐹 I
= Q HQ = 𝛼𝐹 (Q′)I

It follows that there is a bijection 𝛼𝐹 with inverse 𝛼⊑ between 𝛼⊑𝐹 (℘(L)) and 𝛼𝐹 (℘(L)).

Defining 𝑃 ⪯𝐹 𝑄 ≜ (𝛼⊑(𝑃) ⊆ 𝛼⊑(𝑄)) this yields the Galois retraction ⟨𝛼⊑𝐹 (℘(L)), ⊆⟩ −−−−→Ð→←←Ð−−−−
𝛼𝐹

𝛼⊑

⟨𝛼𝐹 (℘(L)), ⪯𝐹 ⟩. By the dual of lemma 18.6, ⟨𝛼⊑𝐹 (℘(L)), ⊆, ∅, L, ∪⟩ is a join semilattice. There-
fore the finite joins are preserved by the Galois connection so that ⟨𝛼𝐹 (℘(L)), ⪯𝐹 , ⋎𝐹 ⟩ is a join
semilattice with 𝑃 ⪯𝐹 𝑄 ≜ 𝛼⊑(𝑃) ⊆ 𝛼⊑(𝑄) and 𝑃 ⋎𝐹 𝑄 ≜ 𝛼𝐹 (𝛼⊑(𝑃) ∪ 𝛼⊑(𝑄)). □

Define the principal ideal ↓⊑(𝑃) ≜ {𝑃 ′ ∈ L ∣ 𝑃 ′ ⊑ 𝑃}. The following lemma 18.8 is a characteriza-
tion of 𝛼⊑𝐹 (℘(L)) that corrects and generalizes [66, Proposition 1].

Lemma 18.8. If P ∈ 𝛼⊑𝐹 (℘(L)) then P = ⋃
𝑃 ∈𝛼𝐹 (P)

↓⊑(𝑃).

PRoof of lemma 18.8.
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P
= 𝛼⊑𝐹 (P) HP ∈ 𝛼⊑𝐹 (℘(L)) and lemma 18.7I
= 𝛼⊑(𝛼𝐹 (P)) Hdual def. (93) of 𝛼⊑𝐹 and composition ○I
= {𝑃 ′ ∈ L ∣ ∃𝑃 ∈ 𝛼𝐹 (P) . 𝑃 ′ ⊑ 𝑃} Hdef. (91) of 𝛼⊑I
= ⋃

𝑃 ∈𝛼𝐹 (P)
{𝑃 ′ ∈ L ∣ 𝑃 ′ ⊑ 𝑃} Hdef. ∪I

= ⋃
𝑃 ∈𝛼𝐹 (P)

↓⊑(𝑃) Hdef. ↓⊑(𝑃) ≜ {𝑃 ′ ∈ L ∣ 𝑃 ′ ⊑ 𝑃}I □

19 Chain Limit Abstraction
19.1 Chain Limit Abstraction Definition and Properties
Another possible representation of order ideal abstractions would be by limits of chains. Define

𝛼↓(P) ≜ {⊓
𝑖∈N

𝑃𝑖 ∣ ⟨𝑃𝑖 , 𝑖 ∈ N⟩ ∈ P is a decreasing chain with existing glb} (95)

𝛼↓ is ⊆ increasing and extensive but not necessarily idempotent as shown by counter example 19.1
below. The iteration of 𝛼↓ (possibly transfinitely)

∗
𝛼↓(P) ≜ lfp⊆ 𝝀𝑋 .P ∪ 𝛼↓(𝑋) (96)

yields an upper closure operator [20, lemma 29.1].

Counter example 19.1. Consider the complete lattice L on the right.
LetP = {𝑋 𝑖 𝑗 ∣ 𝑖, 𝑗 > 0}. We have 𝛼↓(P) = {𝑋 𝑖 𝑗 ∣ 𝑖, 𝑗 > 0}∪{𝑌 𝑖 ∣ 𝑖 > 0}.
We have ⊓{𝑌 𝑖 ∣ 𝑖 > 0} = � so 𝛼↓(𝛼↓(P)) = {𝑋 𝑖 𝑗 ∣ 𝑖, 𝑗 > 0} ∪ {𝑌 𝑖 ∣ 𝑖 >
0} ∪ {�} ≠ 𝛼↓(P).
Moreover ∗𝛼↓(Q𝑖) ∈ ∗𝛼↓(℘(L)), 𝑖 > 0 but ⋃𝑖>0

∗
𝛼↓(Q𝑖) /∈ ∗𝛼↓(℘(L)). ∎

2

d↓ � let 5↓ � ,% .{
l

�- 8 , 8 ∈ N� � �- 8 , 8 ∈ N� is descending chain in % }in lfp
.⊆ .
5↓ (7)

TJd↓K � ,P .∀�- 8 , 8 ∈ N�, (∀8 ∈ N . - 8
� - 8+1

)→

l

�- 8 , 8 ∈ N� ∈ P (8)

OJd↓K � �TJd↓K, ⊆, �, ℘(L), ∪↓, ∩� (9)

A hyperproperty P is a ↑-CPO hyperproperty when the upper-bounds for all �-ascending chain
in P is also in % .

L���� 1.3. d↓ is closure operator and TJd↓K is a well-de�ned complete lattice, where �↓8∈�-8 �

d↓(�8∈�-8). For �nite join �↓ = � holds.

Fig. 1. The La�ice of counterexamples for
Remark 1.4 and 1.5. The circles represent
the elements in the la�ice while the ↓ is the
partial order �, indicating the descending
chains. The do�ed line with P , 5↓(P), and
5 2↓ (P) are the counterexample for Remark
1.4. The red line with shadowedQ is the one
for Remark 1.5.

R����� 1.4. Intuitively one may think 5↓ is a closure by its
nature. However, it is increasing, extensive, but not idem-
potent. Consider the counterexample in �gure (1) where a
complete lattice is de�ned as L � {- 8 9

� 8, 9 > 0} ∪ {. 8
� 8 >

0}∪ {�,�} with � and � being top and bottom of the lattice.
For all other elements, �� {�- 8 9 ,- 8 9 ′

� � 8 > 0∧ 9 ≤ 9 ′}∪{�- 8 9 ,
. 8
� � 8, 9 > 0}∪{�. 8 ,. 8′

� � 8′ > 8}. Now let % � {- 8 9
� 8, 9 > 0}.

We have 5↓(%) = {- 8 9
� 8, 9 > 0} ∪ {. 8

� 8 > 0}. We notice
that �.8 , 8 > 0� is also a descending chain with the glb

d
�.8 ,

8 > 0� = �. Thus, 5 2↓ (%) = {- 8 9
� 8, 9 > 0} ∪ {. 8

� 8 >

0} ∪ {�} ≠ 5↓(%). As a result, it is necessary to de�ne d↓ to
be the �xpoint of 5↓.
R����� 1.5. Notice that TJd↓K may not be closed under
in�nite union. The counterexample uses the same lattice
as Remark 1.4 in �gure 1. We Let Q � {Q8 � 8 ∈ N} where
Q8 � {- 8 9

� 9 ∈ N} ∪ {. 8
} is CPO. However, �Q = {- 8 9

�

8, 9 ∈ N} ∪ {. 8
� 8 ∈ N} is not a CPO as the glb descending

chain �. 8 , 8 ∈ N� is � which is not in �Q. For this reason,
another application of d↓ would be necessary.

1.1.4 Frontiers abstraction and frontiers existent hyperproperties. We can construct a class hyper-
properties called lower-frontiers existent hyperproperties even weaker than ↓-CPO hyperproperties.
Let us �rst clarify what it means by frontiers. P is called frontiers when where distinct elements
are mutually incomparable.

UF � ,P .{% ∈ P � ∀% ′ ∈ P . % � % ′ → % = % ′}
TJUF K � ,P .∀%,% ′ ∈ P . % � % ′ → % = % ′ (10)

A hyperproperty P is lower-frontiers existent if for all element % in it, there exist some lower-
frontier � in UF(P) such that � � % .

TJU∃F K � ,P .∀% ∈ P . ∃� ∈ UF(P) . � � %
OJU∃F K � �TJUF K, ⊆, �, L, ∪, ∩� (11)

L���� 1.6. OJU∃F K is a well-de�ned semi-lattice that is closed under �nite union
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Observe that 𝛼⊒𝐹 idempotent but not necessarily increasing or extensive.
Counter example 13.9. Consider L = {⟨𝑎, 𝑛⟩ ∣ 𝑛 ∈ N} ∪ {⟨𝑏, 𝑚⟩ ∣ 𝑚 ∈ N} with ⟨𝑥, 𝑛⟩ ⊑ ⟨𝑦,

𝑚⟩ ≜ 𝑥 = 𝑦 ∧𝑛 ⩾𝑚 be two incomparable infinite decreasing chains. L /⊆ 𝛼⊒𝐹 (L) = ∅. Take P = {⟨𝑎,
𝑛⟩ ∣ 𝑛 ∈ N} ∪ {⟨𝑏, 0⟩} to that P ⊆ L but 𝛼⊒𝐹 (P) = {⟨𝑏, 𝑚⟩ ∣𝑚 ∈ N} /⊆ 𝛼⊒𝐹 (L) = ∅. ∎

𝛼⊒𝐹 (℘(L)) is not closed by intersection.

Counter example 13.10. Consider the complete lattice on the
right. Let P1 = {𝑍 𝑖 ∣ 𝑖 ∈ N∗} ∪ {𝑋 𝑖 ∣ 𝑖 ∈ N∗} with frontierF1 = {𝑋 𝑖 ∣ 𝑖 ∈ N∗} and P2 = {𝑍 𝑖 ∣ 𝑖 ∈ N∗} ∪ {𝑌 𝑖 ∣ 𝑖 ∈ N∗} with
frontier F2 = {𝑌 𝑖 ∣ 𝑖 ∈ N∗}. P1 ∩P2 = {𝑍 𝑖 ∣ 𝑖 ∈ N∗} has frontier{𝑍 𝑖 ∣ 𝑖 ∈ N∗} whereas F1 ∩F2 is empty. ∎

3

P���� �� L���� (1.6). For P and Q in TJU∃F K. Let the frontier FP and FQ be the corre-
spendent existent lower-frontier. Let us de�ne F = UF(FP ∪FQ), and unfold its de�nition.

F = {% ∈ FP ∪FQ � ∀% ′ ∈ FP ∪FQ . % ′ � % → % ′ = %} (12)

F is a frontier hyperproperties. We claim that F is the existent lower-frontier for P ∪Q
For an arbitrary element - in P ∪Q, supposed it is in P without loss of generality, then there

exists �% in FP such that �% � - . Now consider two cases
(a) - not in Q: then that no �& in FQ such that �& � �% , which means that �% is in F
(b) - also in Q, then consider the non empty setM � FQ ∩ U�(-), which is the set of existent

frontiers in FQ that is smaller than -
i) ∀�& ∈M . �& �� �% : this is similar to the case (a)
ii) ∃�& ∈M . �& � �% . In this case, every distinct element in FQ is incomparable to �& . This

is no element in FP which is smaller than �& :(suppose for the sake of contradiction, some
element � ′ ∈ FP such that � ′ � �& , then we would have � ′ � �% which contradict that fact
that FP is a frontier.) Thus, �& would in F .

As a result, P ∪Q is also lower frontiers existent ⇤

R����� 1.7. We notice that OJU∃F K is not
closed under �nite intersection. Consider the
following example in �gure 2. Let P = {/ 8

�

8 ∈ N} ∪ {- 8
� 8 ∈ N} and Q = {/ 8

� 8 ∈
N} ∪ {. 8

� 8 ∈ N}. Both P and Q are frontier
existent as the lower-frontiers are {- 8

� 8 ∈ N}
and {. 8

� 8 ∈ N} respectively. However, the
intersection P ∩Q = {/ 8

� 8 ∈ N} is a non-
noetherian chain without frontier. Fig. 2. Counterexample for the remark 1.7.

L���� 1.8. All ↓-CPO hyperproperties are lower-frontier existent: TJU∃F K ⊆ TJd↓K
P���� �� L���� (1.8). This is directly implied by Zorn Lemma. ⇤

We realize that the lower-frontiers existent properties are all constructed sets, and it is not
a complete lattice as the join for arbitrary subset may not exist. UF is contractive, idempotent
but not increasing, meaning that it is not a closure operator. Therefore, it is impossible to have
a Galois connection from generic hyperproperties ℘(L), as the best approximation doesn’t exist.
However, it is possible to abstract any lower-frontiers existent hyproperperties to other stronger
hyperproperties, e.g. ↓-CPO closure and �-closure.

1.2 Dual of closures
Figure 3 shows a set of Galois connections of closure domains we have introduced. Now, let us
de�ne their dual closures. We de�ne dual closure in (1.1), the domain is de�ned respectively in
appendix �.1.

1.3 Refining Hyper-domains by merging
It turned out that some interesting hyperproperties can be seen as strengthening/weakening forms
of the combination of two or more dual properties.
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Lemma 13.11. A◯ ⟨𝛼⊒𝐹 (℘(L)), ⊆, ∅, L, ∪⟩ is a join semilattice.

13.6.3 A Frontier Characterization of the Order Ideal Abstraction.

Lemma 13.12. A◯ There is a Galois isomorphism ⟨𝛼⊑𝐹 (℘(L)), ⊆⟩ −−−−→"→←←"−−−−
𝛼𝐹

𝛼⊑ ⟨𝛼𝐹 (℘(L)), ⪯𝐹 ⟩ and
⟨𝛼𝐹 (℘(L)), ⪯𝐹 , ⋎𝐹 ⟩ is a join semi lattice with 𝑃 ⪯𝐹 𝑄 ≜ (𝛼⊑(𝑃) ⊆ 𝛼⊑(𝑄)) and 𝑃 ⋎𝐹 𝑄 ≜ 𝛼𝐹 (𝛼⊑(𝑃)∪
𝛼⊑(𝑄)).

Define ↓⊑(𝑃) ≜ {𝑃 ′ ∈ L ∣ 𝑃 ′ ⊑ 𝑃}. The following lemma 13.13 is a characterization of 𝛼⊑𝐹 (℘(L))
that correctly generalizes [46, Proposition 1].

Lemma 13.13. A◯ If P ∈ 𝛼⊑𝐹 (℘(L)) then P = ⋃
𝑃 ∈𝛼𝐹 (P)

↓⊑(𝑃).
13.7 Chain Limit Abstraction
13.7.1 Chain Limit Abstraction Definition and Properties. Another possible representation of order
ideal abstractions would be by limits of chains. Define

𝛼↓(P) ≜ {⊓
𝑖∈N𝑃𝑖 ∣ ⟨𝑃𝑖 , 𝑖 ∈ N⟩ ∈ P is a decreasing chain with existing glb} (84)

𝛼↓ in ⊆ increasing and extensive but not necessarily idempotent.
Counter example 13.14. Consider the complete lattice on the
right. Let P be the set of elements of all decreasing chains{⟨𝑋 𝑖 𝑗 , 𝑖 ∈ N∗⟩ ∣ 𝑗 ∈ N∗}. 𝛼↓(P) includes P and their great-
est lower bounds ⟨𝑌 𝑖 , 𝑖 ∈ N∗⟩ but not the infimum *. The next
iteration includes P , the greatest lower bounds 𝛼↓(P) of its
decreasing chains, and the greatest lower bound * of all the de-
creasing chains {⟨𝑋 𝑖 𝑗 , 𝑖 ∈ N∗⟩ ⋅ ⟨𝑌𝑘 , 𝑘 ⩾ 𝑖⟩ ∣ 𝑗 ∈ N∗} of 𝛼↓(P).
This is the least fixpoint of 𝝀𝑋 .P ∪ 𝛼↓(𝑋). ∎

28 Anonymous 1 and Anonymous 2

It follows from theorem 12.1 that the logic proof system of theorem 8.5 is applicable to the upper
abstract logic L

♯(𝑆) (and dually theorem 8.8 for the lower abstract logic).
In conclusion of this part II, although the abstractions of the semantics, post, Post, and logics

have been show to be equally expressible for exact abstractions, they do not solve the problem
of the complexity of the resulting logic, which still has to handle exactly the (abstract) semantics
occuring in the (hyper) properties.

PaRt III: A HieRaRcHy of Semantic (HypeR) Logics
The problem with (hyper) logics studied in parts I and II is that for a program to satisfy a (hyper)

property, its semantics must exactly occur in the property. So (hyper) proofs cannot make over or
under approximations of the semantics, whereas this can and must be done in Hoare logic or its
dual to get simple proofs. In this part III, we study abstractions to derive simpler logics for less
general properties but still with sound and complete proof systems.

13 Execution Property Abstraction
In abstract domains D♯ of definition 3.2 which are complete lattices, or their abstractions by def-
inition 9.1, which are also complete latiices, the execution property abstraction 𝛼⊔♯(P) ≜ ⊔♯P
abstracts semantic properties in ℘(L♯) into executions in L♯. Defining the concretization 𝛾⊔♯(𝑄) ≜{𝑃 ∣ 𝑃 ⊑♯ 𝑄}, we get a Galois retraction

⟨℘(L♯), ⊆⟩ −−−−−→"→←−−−−−−−
𝛼⊔♯
𝛾⊔♯ ⟨L♯, ⊑♯⟩ (82)

With this abstraction, the logical ordering (implication) is also the computational ordering in
lemma 3.9 whereas, in general, for the generic algebraic abstract semantics the computational
ordering ⊑♯ and the logical ordering and ⊆ are not related.

PRoof of (82).
𝛼⊔♯(P) ⊑♯ 𝑄

⇔ ⊔♯P ⊑♯ 𝑄 !def. 𝛼⊔♯"
⇔ ∀𝑃 ∈ P . 𝑃 ⊑♯ 𝑄 !def. least upper bound"
⇔ P ⊆ {𝑃 ∣ 𝑃 ⊑♯ 𝑄} !def. ⊆"
⇔ P ⊆ 𝛾⊔♯(𝑄) !def. 𝛾⊔♯" !

Example 13.1. The hyper trace properties in ℘(℘(Σ+∞)) can be abstracted to trace properties
in ℘(Σ+∞) by ⟨℘(℘(Σ+∞), ⊆⟩ −−−−→"→←−−−−−−

𝛼∪
𝛾∪ ⟨℘(Σ+∞)), ⊆⟩with 𝛼∪(𝑃) = ⋃𝑃 and 𝛾∪(𝑄) = ℘(𝑄) as done

in [14, section 5, p. 246] which is the starting point of [9] to recover Hoare logic and its variants. ∎
14 Closure Abstractions
Let ⟨𝐿, ⊑⟩ be a poset. The ⊑-closure abstraction on ⟨℘(𝐿), ⊆⟩ is

𝛼⊑(P) ≜ {𝑃 ∈ 𝐿 ∣ ∃𝑃 ′ ∈ P , 𝑃 ′ ⊑ 𝑃} ⟨℘(𝐿), ⊆⟩ −−−−→"→←−−−−−−
𝛼⊑
1 ⟨℘(𝐿), ⊆⟩

where 1 is the identity function. 𝛼⊑ is an upper closure operator (increasing, extensif, and idem-
potent) and Morgan Ward’s [40, theorem 4.1], ⟨𝛼⊑(℘(𝐿)), ⊆, ∅, 𝐿, ∪, ∩⟩ is a complete lattice. 𝛼⊒
is defined dually.

Let ⟨𝐿, ⊑⟩ be a poset with partially defined greatest lower bound (glb) ⊓. Define
𝛼↓(P) ≜ {⊓

𝑖∈N𝑃𝑖 ∣ ⟨𝑃𝑖 , 𝑖 ∈ N⟩ ∈ P is a decreasing chain with well-defined glb}
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𝛼↓ in ⊆ increasing and extensive but not necessarily idempotent. By [8, lemma 29.1],
𝛼↓(P) ≜ lfp⊆ 𝝀𝑋 .P ∪ 𝛼↓(𝑋)

is the smallest upper closure operator pointwise greater than or equal to 𝛼↓. By Morgan Ward’s
[40, theorem 4.1], ⟨𝛼↓(℘(𝐿)), ⊆, ∅, 𝐿, ∪, ∩⟩ is a complete lattice. 𝛼↑ and 𝛼↑ are defined dually.

TO DO
TO DO

𝛼↑(P) ≜ {Q ∣ P ⊆ Q} (83)
𝛼↓(P) ≜ {Q ∣ Q ⊆ P} (84)
𝛼↑(P) ≜ {𝑄 ∣ ∃𝑃 ∈ P . 𝑃 ⊑♯ 𝑄} (85)
𝛼↓(P) ≜ {𝑄 ∣ ∃𝑃 ∈ P . 𝑄 ⊑♯ 𝑃}

Post♯↑(𝑆)P ≜ 𝛼↑(Post♯(𝑆)P) = {𝑄 ∣ ∃𝑃 ∈ P ∧ post♯(𝑆)𝑃 ⊑♯ 𝑄} = {𝑄 ∣ ∃𝑃 ∈ P ∧ {⃗𝑃 }⃗ S {⃗𝑄 }⃗}
Post♯↓(𝑆)P ≜ 𝛼↓(Post♯(𝑆)P) = {𝑄 ∣ ∃𝑃 ∈ P ∧𝑄 ⊑♯ post♯(𝑆)𝑃} = {𝑄 ∣ ∃𝑃 ∈ P ∧ ⃗{𝑃 ⃗} S ⃗{𝑄 ⃗}}

(86)
(36)

15 Related Work
The idea of handling logics algebraically goes back to [15, section 5] itself rooted in the idea of
program schemes [4, 22, 35]

This necessary distinction between computational and logical orderings first appeared in strict-
ness analysis (using Scott partial order for computational ordering and inclusion for logical order-
ing [34]) and is common in abstract interpretation since then.

16 Conclusion
Transformational (hyper) logics have traditionally be based on transformers themselves equivalent
to an operational semantics. When considering nontermination, other semantics like denotational
semantics are relevant, but the corresponding logics are a separate world [1]. In an attempt to
design (hyper) logics valid for various (abstract) semantics, we have defined an algebraic semantics
its collecting semantics, its hyper collecting semantics and the various corresponding logics
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Iteration of 𝛼↓ (possibly transfinitely)
∗𝛼↓(P) ≜ lfp⊆ 𝝀𝑋 .P ∪ 𝛼↓(𝑋) (85)

yields an upper closure operator.
Lemma 13.15. A◯ ⟨℘(L), ⊆⟩ −−−−→"→←−−−−−−∗𝛼↓

1 ⟨∗𝛼↓(℘(L)), ⊆⟩ and ⟨∗𝛼↓(℘(L)), ⊆, ∅, L, 𝝀𝑋 . ∗𝛼↓(⋃𝑋), ⋂⟩
is a complete lattice.

Lemma 13.16. A◯ ∀P ∈ ℘(L) . 𝛼↓(∗𝛼↓(P)) = ∗𝛼↓(P).
, Vol. 1, No. 1, Article . Publication date: July 2024.
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Observe that 𝛼⊒𝐹 idempotent but not necessarily increasing or extensive.
Counter example 13.9. Consider L = {⟨𝑎, 𝑛⟩ ∣ 𝑛 ∈ N} ∪ {⟨𝑏, 𝑚⟩ ∣ 𝑚 ∈ N} with ⟨𝑥, 𝑛⟩ ⊑ ⟨𝑦,

𝑚⟩ ≜ 𝑥 = 𝑦 ∧𝑛 ⩾𝑚 be two incomparable infinite decreasing chains. L /⊆ 𝛼⊒𝐹 (L) = ∅. Take P = {⟨𝑎,
𝑛⟩ ∣ 𝑛 ∈ N} ∪ {⟨𝑏, 0⟩} to that P ⊆ L but 𝛼⊒𝐹 (P) = {⟨𝑏, 𝑚⟩ ∣𝑚 ∈ N} /⊆ 𝛼⊒𝐹 (L) = ∅. ∎

𝛼⊒𝐹 (℘(L)) is not closed by intersection.

Counter example 13.10. Consider the complete lattice on the
right. Let P1 = {𝑍 𝑖 ∣ 𝑖 ∈ N∗} ∪ {𝑋 𝑖 ∣ 𝑖 ∈ N∗} with frontierF1 = {𝑋 𝑖 ∣ 𝑖 ∈ N∗} and P2 = {𝑍 𝑖 ∣ 𝑖 ∈ N∗} ∪ {𝑌 𝑖 ∣ 𝑖 ∈ N∗} with
frontier F2 = {𝑌 𝑖 ∣ 𝑖 ∈ N∗}. P1 ∩P2 = {𝑍 𝑖 ∣ 𝑖 ∈ N∗} has frontier{𝑍 𝑖 ∣ 𝑖 ∈ N∗} whereas F1 ∩F2 is empty. ∎

3

P���� �� L���� (1.6). For P and Q in TJU∃F K. Let the frontier FP and FQ be the corre-
spendent existent lower-frontier. Let us de�ne F = UF(FP ∪FQ), and unfold its de�nition.

F = {% ∈ FP ∪FQ � ∀% ′ ∈ FP ∪FQ . % ′ � % → % ′ = %} (12)

F is a frontier hyperproperties. We claim that F is the existent lower-frontier for P ∪Q
For an arbitrary element - in P ∪Q, supposed it is in P without loss of generality, then there

exists �% in FP such that �% � - . Now consider two cases
(a) - not in Q: then that no �& in FQ such that �& � �% , which means that �% is in F
(b) - also in Q, then consider the non empty setM � FQ ∩ U�(-), which is the set of existent

frontiers in FQ that is smaller than -
i) ∀�& ∈M . �& �� �% : this is similar to the case (a)
ii) ∃�& ∈M . �& � �% . In this case, every distinct element in FQ is incomparable to �& . This

is no element in FP which is smaller than �& :(suppose for the sake of contradiction, some
element � ′ ∈ FP such that � ′ � �& , then we would have � ′ � �% which contradict that fact
that FP is a frontier.) Thus, �& would in F .

As a result, P ∪Q is also lower frontiers existent ⇤

R����� 1.7. We notice that OJU∃F K is not
closed under �nite intersection. Consider the
following example in �gure 2. Let P = {/ 8

�

8 ∈ N} ∪ {- 8
� 8 ∈ N} and Q = {/ 8

� 8 ∈
N} ∪ {. 8

� 8 ∈ N}. Both P and Q are frontier
existent as the lower-frontiers are {- 8

� 8 ∈ N}
and {. 8

� 8 ∈ N} respectively. However, the
intersection P ∩Q = {/ 8

� 8 ∈ N} is a non-
noetherian chain without frontier. Fig. 2. Counterexample for the remark 1.7.

L���� 1.8. All ↓-CPO hyperproperties are lower-frontier existent: TJU∃F K ⊆ TJd↓K
P���� �� L���� (1.8). This is directly implied by Zorn Lemma. ⇤

We realize that the lower-frontiers existent properties are all constructed sets, and it is not
a complete lattice as the join for arbitrary subset may not exist. UF is contractive, idempotent
but not increasing, meaning that it is not a closure operator. Therefore, it is impossible to have
a Galois connection from generic hyperproperties ℘(L), as the best approximation doesn’t exist.
However, it is possible to abstract any lower-frontiers existent hyproperperties to other stronger
hyperproperties, e.g. ↓-CPO closure and �-closure.

1.2 Dual of closures
Figure 3 shows a set of Galois connections of closure domains we have introduced. Now, let us
de�ne their dual closures. We de�ne dual closure in (1.1), the domain is de�ned respectively in
appendix �.1.

1.3 Refining Hyper-domains by merging
It turned out that some interesting hyperproperties can be seen as strengthening/weakening forms
of the combination of two or more dual properties.
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Lemma 13.11. A◯ ⟨𝛼⊒𝐹 (℘(L)), ⊆, ∅, L, ∪⟩ is a join semilattice.

13.6.3 A Frontier Characterization of the Order Ideal Abstraction.

Lemma 13.12. A◯ There is a Galois isomorphism ⟨𝛼⊑𝐹 (℘(L)), ⊆⟩ −−−−→"→←←"−−−−
𝛼𝐹

𝛼⊑ ⟨𝛼𝐹 (℘(L)), ⪯𝐹 ⟩ and
⟨𝛼𝐹 (℘(L)), ⪯𝐹 , ⋎𝐹 ⟩ is a join semi lattice with 𝑃 ⪯𝐹 𝑄 ≜ (𝛼⊑(𝑃) ⊆ 𝛼⊑(𝑄)) and 𝑃 ⋎𝐹 𝑄 ≜ 𝛼𝐹 (𝛼⊑(𝑃)∪
𝛼⊑(𝑄)).

Define ↓⊑(𝑃) ≜ {𝑃 ′ ∈ L ∣ 𝑃 ′ ⊑ 𝑃}. The following lemma 13.13 is a characterization of 𝛼⊑𝐹 (℘(L))
that correctly generalizes [46, Proposition 1].

Lemma 13.13. A◯ If P ∈ 𝛼⊑𝐹 (℘(L)) then P = ⋃
𝑃 ∈𝛼𝐹 (P)

↓⊑(𝑃).
13.7 Chain Limit Abstraction
13.7.1 Chain Limit Abstraction Definition and Properties. Another possible representation of order
ideal abstractions would be by limits of chains. Define

𝛼↓(P) ≜ {⊓
𝑖∈N𝑃𝑖 ∣ ⟨𝑃𝑖 , 𝑖 ∈ N⟩ ∈ P is a decreasing chain with existing glb} (84)

𝛼↓ in ⊆ increasing and extensive but not necessarily idempotent.
Counter example 13.14. Consider the complete lattice on the
right. Let P be the set of elements of all decreasing chains{⟨𝑋 𝑖 𝑗 , 𝑖 ∈ N∗⟩ ∣ 𝑗 ∈ N∗}. 𝛼↓(P) includes P and their great-
est lower bounds ⟨𝑌 𝑖 , 𝑖 ∈ N∗⟩ but not the infimum *. The next
iteration includes P , the greatest lower bounds 𝛼↓(P) of its
decreasing chains, and the greatest lower bound * of all the de-
creasing chains {⟨𝑋 𝑖 𝑗 , 𝑖 ∈ N∗⟩ ⋅ ⟨𝑌𝑘 , 𝑘 ⩾ 𝑖⟩ ∣ 𝑗 ∈ N∗} of 𝛼↓(P).
This is the least fixpoint of 𝝀𝑋 .P ∪ 𝛼↓(𝑋). ∎

28 Anonymous 1 and Anonymous 2

It follows from theorem 12.1 that the logic proof system of theorem 8.5 is applicable to the upper
abstract logic L

♯(𝑆) (and dually theorem 8.8 for the lower abstract logic).
In conclusion of this part II, although the abstractions of the semantics, post, Post, and logics

have been show to be equally expressible for exact abstractions, they do not solve the problem
of the complexity of the resulting logic, which still has to handle exactly the (abstract) semantics
occuring in the (hyper) properties.

PaRt III: A HieRaRcHy of Semantic (HypeR) Logics
The problem with (hyper) logics studied in parts I and II is that for a program to satisfy a (hyper)

property, its semantics must exactly occur in the property. So (hyper) proofs cannot make over or
under approximations of the semantics, whereas this can and must be done in Hoare logic or its
dual to get simple proofs. In this part III, we study abstractions to derive simpler logics for less
general properties but still with sound and complete proof systems.

13 Execution Property Abstraction
In abstract domains D♯ of definition 3.2 which are complete lattices, or their abstractions by def-
inition 9.1, which are also complete latiices, the execution property abstraction 𝛼⊔♯(P) ≜ ⊔♯P
abstracts semantic properties in ℘(L♯) into executions in L♯. Defining the concretization 𝛾⊔♯(𝑄) ≜{𝑃 ∣ 𝑃 ⊑♯ 𝑄}, we get a Galois retraction

⟨℘(L♯), ⊆⟩ −−−−−→"→←−−−−−−−
𝛼⊔♯
𝛾⊔♯ ⟨L♯, ⊑♯⟩ (82)

With this abstraction, the logical ordering (implication) is also the computational ordering in
lemma 3.9 whereas, in general, for the generic algebraic abstract semantics the computational
ordering ⊑♯ and the logical ordering and ⊆ are not related.

PRoof of (82).
𝛼⊔♯(P) ⊑♯ 𝑄

⇔ ⊔♯P ⊑♯ 𝑄 !def. 𝛼⊔♯"
⇔ ∀𝑃 ∈ P . 𝑃 ⊑♯ 𝑄 !def. least upper bound"
⇔ P ⊆ {𝑃 ∣ 𝑃 ⊑♯ 𝑄} !def. ⊆"
⇔ P ⊆ 𝛾⊔♯(𝑄) !def. 𝛾⊔♯" !

Example 13.1. The hyper trace properties in ℘(℘(Σ+∞)) can be abstracted to trace properties
in ℘(Σ+∞) by ⟨℘(℘(Σ+∞), ⊆⟩ −−−−→"→←−−−−−−

𝛼∪
𝛾∪ ⟨℘(Σ+∞)), ⊆⟩with 𝛼∪(𝑃) = ⋃𝑃 and 𝛾∪(𝑄) = ℘(𝑄) as done

in [14, section 5, p. 246] which is the starting point of [9] to recover Hoare logic and its variants. ∎
14 Closure Abstractions
Let ⟨𝐿, ⊑⟩ be a poset. The ⊑-closure abstraction on ⟨℘(𝐿), ⊆⟩ is

𝛼⊑(P) ≜ {𝑃 ∈ 𝐿 ∣ ∃𝑃 ′ ∈ P , 𝑃 ′ ⊑ 𝑃} ⟨℘(𝐿), ⊆⟩ −−−−→"→←−−−−−−
𝛼⊑
1 ⟨℘(𝐿), ⊆⟩

where 1 is the identity function. 𝛼⊑ is an upper closure operator (increasing, extensif, and idem-
potent) and Morgan Ward’s [40, theorem 4.1], ⟨𝛼⊑(℘(𝐿)), ⊆, ∅, 𝐿, ∪, ∩⟩ is a complete lattice. 𝛼⊒
is defined dually.

Let ⟨𝐿, ⊑⟩ be a poset with partially defined greatest lower bound (glb) ⊓. Define
𝛼↓(P) ≜ {⊓

𝑖∈N𝑃𝑖 ∣ ⟨𝑃𝑖 , 𝑖 ∈ N⟩ ∈ P is a decreasing chain with well-defined glb}
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𝛼↓ in ⊆ increasing and extensive but not necessarily idempotent. By [8, lemma 29.1],
𝛼↓(P) ≜ lfp⊆ 𝝀𝑋 .P ∪ 𝛼↓(𝑋)

is the smallest upper closure operator pointwise greater than or equal to 𝛼↓. By Morgan Ward’s
[40, theorem 4.1], ⟨𝛼↓(℘(𝐿)), ⊆, ∅, 𝐿, ∪, ∩⟩ is a complete lattice. 𝛼↑ and 𝛼↑ are defined dually.

TO DO
TO DO

𝛼↑(P) ≜ {Q ∣ P ⊆ Q} (83)
𝛼↓(P) ≜ {Q ∣ Q ⊆ P} (84)
𝛼↑(P) ≜ {𝑄 ∣ ∃𝑃 ∈ P . 𝑃 ⊑♯ 𝑄} (85)
𝛼↓(P) ≜ {𝑄 ∣ ∃𝑃 ∈ P . 𝑄 ⊑♯ 𝑃}

Post♯↑(𝑆)P ≜ 𝛼↑(Post♯(𝑆)P) = {𝑄 ∣ ∃𝑃 ∈ P ∧ post♯(𝑆)𝑃 ⊑♯ 𝑄} = {𝑄 ∣ ∃𝑃 ∈ P ∧ {⃗𝑃 }⃗ S {⃗𝑄 }⃗}
Post♯↓(𝑆)P ≜ 𝛼↓(Post♯(𝑆)P) = {𝑄 ∣ ∃𝑃 ∈ P ∧𝑄 ⊑♯ post♯(𝑆)𝑃} = {𝑄 ∣ ∃𝑃 ∈ P ∧ ⃗{𝑃 ⃗} S ⃗{𝑄 ⃗}}

(86)
(36)

15 Related Work
The idea of handling logics algebraically goes back to [15, section 5] itself rooted in the idea of
program schemes [4, 22, 35]

This necessary distinction between computational and logical orderings first appeared in strict-
ness analysis (using Scott partial order for computational ordering and inclusion for logical order-
ing [34]) and is common in abstract interpretation since then.

16 Conclusion
Transformational (hyper) logics have traditionally be based on transformers themselves equivalent
to an operational semantics. When considering nontermination, other semantics like denotational
semantics are relevant, but the corresponding logics are a separate world [1]. In an attempt to
design (hyper) logics valid for various (abstract) semantics, we have defined an algebraic semantics
its collecting semantics, its hyper collecting semantics and the various corresponding logics
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𝛼↓ in ⊆ increasing and extensive but not necessarily idempotent. By [8, lemma 29.1],
𝛼↓(P) ≜ lfp⊆ 𝝀𝑋 .P ∪ 𝛼↓(𝑋)

is the smallest upper closure operator pointwise greater than or equal to 𝛼↓. By Morgan Ward’s
[40, theorem 4.1], ⟨𝛼↓(℘(𝐿)), ⊆, ∅, 𝐿, ∪, ∩⟩ is a complete lattice. 𝛼↑ and 𝛼↑ are defined dually.

TO DO
TO DO

𝛼↑(P) ≜ {Q ∣ P ⊆ Q} (83)
𝛼↓(P) ≜ {Q ∣ Q ⊆ P} (84)
𝛼↑(P) ≜ {𝑄 ∣ ∃𝑃 ∈ P . 𝑃 ⊑♯ 𝑄} (85)
𝛼↓(P) ≜ {𝑄 ∣ ∃𝑃 ∈ P . 𝑄 ⊑♯ 𝑃}

Post♯↑(𝑆)P ≜ 𝛼↑(Post♯(𝑆)P) = {𝑄 ∣ ∃𝑃 ∈ P ∧ post♯(𝑆)𝑃 ⊑♯ 𝑄} = {𝑄 ∣ ∃𝑃 ∈ P ∧ {⃗𝑃 }⃗ S {⃗𝑄 }⃗}
Post♯↓(𝑆)P ≜ 𝛼↓(Post♯(𝑆)P) = {𝑄 ∣ ∃𝑃 ∈ P ∧𝑄 ⊑♯ post♯(𝑆)𝑃} = {𝑄 ∣ ∃𝑃 ∈ P ∧ ⃗{𝑃 ⃗} S ⃗{𝑄 ⃗}}

(86)
(36)

15 Related Work
The idea of handling logics algebraically goes back to [15, section 5] itself rooted in the idea of
program schemes [4, 22, 35]

This necessary distinction between computational and logical orderings first appeared in strict-
ness analysis (using Scott partial order for computational ordering and inclusion for logical order-
ing [34]) and is common in abstract interpretation since then.

16 Conclusion
Transformational (hyper) logics have traditionally be based on transformers themselves equivalent
to an operational semantics. When considering nontermination, other semantics like denotational
semantics are relevant, but the corresponding logics are a separate world [1]. In an attempt to
design (hyper) logics valid for various (abstract) semantics, we have defined an algebraic semantics
its collecting semantics, its hyper collecting semantics and the various corresponding logics
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Iteration of 𝛼↓ (possibly transfinitely)
∗𝛼↓(P) ≜ lfp⊆ 𝝀𝑋 .P ∪ 𝛼↓(𝑋) (85)

yields an upper closure operator.
Lemma 13.15. A◯ ⟨℘(L), ⊆⟩ −−−−→"→←−−−−−−∗𝛼↓

1 ⟨∗𝛼↓(℘(L)), ⊆⟩ and ⟨∗𝛼↓(℘(L)), ⊆, ∅, L, 𝝀𝑋 . ∗𝛼↓(⋃𝑋), ⋂⟩
is a complete lattice.

Lemma 13.16. A◯ ∀P ∈ ℘(L) . 𝛼↓(∗𝛼↓(P)) = ∗𝛼↓(P).
, Vol. 1, No. 1, Article . Publication date: July 2024.
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Observe that 𝛼⊒𝐹 idempotent but not necessarily increasing or extensive.
Counter example 13.9. Consider L = {⟨𝑎, 𝑛⟩ ∣ 𝑛 ∈ N} ∪ {⟨𝑏, 𝑚⟩ ∣ 𝑚 ∈ N} with ⟨𝑥, 𝑛⟩ ⊑ ⟨𝑦,

𝑚⟩ ≜ 𝑥 = 𝑦 ∧𝑛 ⩾𝑚 be two incomparable infinite decreasing chains. L /⊆ 𝛼⊒𝐹 (L) = ∅. Take P = {⟨𝑎,
𝑛⟩ ∣ 𝑛 ∈ N} ∪ {⟨𝑏, 0⟩} to that P ⊆ L but 𝛼⊒𝐹 (P) = {⟨𝑏, 𝑚⟩ ∣𝑚 ∈ N} /⊆ 𝛼⊒𝐹 (L) = ∅. ∎

𝛼⊒𝐹 (℘(L)) is not closed by intersection.

Counter example 13.10. Consider the complete lattice on the
right. Let P1 = {𝑍 𝑖 ∣ 𝑖 ∈ N∗} ∪ {𝑋 𝑖 ∣ 𝑖 ∈ N∗} with frontierF1 = {𝑋 𝑖 ∣ 𝑖 ∈ N∗} and P2 = {𝑍 𝑖 ∣ 𝑖 ∈ N∗} ∪ {𝑌 𝑖 ∣ 𝑖 ∈ N∗} with
frontier F2 = {𝑌 𝑖 ∣ 𝑖 ∈ N∗}. P1 ∩P2 = {𝑍 𝑖 ∣ 𝑖 ∈ N∗} has frontier{𝑍 𝑖 ∣ 𝑖 ∈ N∗} whereas F1 ∩F2 is empty. ∎

3

P���� �� L���� (1.6). For P and Q in TJU∃F K. Let the frontier FP and FQ be the corre-
spendent existent lower-frontier. Let us de�ne F = UF(FP ∪FQ), and unfold its de�nition.

F = {% ∈ FP ∪FQ � ∀% ′ ∈ FP ∪FQ . % ′ � % → % ′ = %} (12)

F is a frontier hyperproperties. We claim that F is the existent lower-frontier for P ∪Q
For an arbitrary element - in P ∪Q, supposed it is in P without loss of generality, then there

exists �% in FP such that �% � - . Now consider two cases
(a) - not in Q: then that no �& in FQ such that �& � �% , which means that �% is in F
(b) - also in Q, then consider the non empty setM � FQ ∩ U�(-), which is the set of existent

frontiers in FQ that is smaller than -
i) ∀�& ∈M . �& �� �% : this is similar to the case (a)
ii) ∃�& ∈M . �& � �% . In this case, every distinct element in FQ is incomparable to �& . This

is no element in FP which is smaller than �& :(suppose for the sake of contradiction, some
element � ′ ∈ FP such that � ′ � �& , then we would have � ′ � �% which contradict that fact
that FP is a frontier.) Thus, �& would in F .

As a result, P ∪Q is also lower frontiers existent ⇤

R����� 1.7. We notice that OJU∃F K is not
closed under �nite intersection. Consider the
following example in �gure 2. Let P = {/ 8

�

8 ∈ N} ∪ {- 8
� 8 ∈ N} and Q = {/ 8

� 8 ∈
N} ∪ {. 8

� 8 ∈ N}. Both P and Q are frontier
existent as the lower-frontiers are {- 8

� 8 ∈ N}
and {. 8

� 8 ∈ N} respectively. However, the
intersection P ∩Q = {/ 8

� 8 ∈ N} is a non-
noetherian chain without frontier. Fig. 2. Counterexample for the remark 1.7.

L���� 1.8. All ↓-CPO hyperproperties are lower-frontier existent: TJU∃F K ⊆ TJd↓K
P���� �� L���� (1.8). This is directly implied by Zorn Lemma. ⇤

We realize that the lower-frontiers existent properties are all constructed sets, and it is not
a complete lattice as the join for arbitrary subset may not exist. UF is contractive, idempotent
but not increasing, meaning that it is not a closure operator. Therefore, it is impossible to have
a Galois connection from generic hyperproperties ℘(L), as the best approximation doesn’t exist.
However, it is possible to abstract any lower-frontiers existent hyproperperties to other stronger
hyperproperties, e.g. ↓-CPO closure and �-closure.

1.2 Dual of closures
Figure 3 shows a set of Galois connections of closure domains we have introduced. Now, let us
de�ne their dual closures. We de�ne dual closure in (1.1), the domain is de�ned respectively in
appendix �.1.

1.3 Refining Hyper-domains by merging
It turned out that some interesting hyperproperties can be seen as strengthening/weakening forms
of the combination of two or more dual properties.
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Lemma 13.11. A◯ ⟨𝛼⊒𝐹 (℘(L)), ⊆, ∅, L, ∪⟩ is a join semilattice.

13.6.3 A Frontier Characterization of the Order Ideal Abstraction.

Lemma 13.12. A◯ There is a Galois isomorphism ⟨𝛼⊑𝐹 (℘(L)), ⊆⟩ −−−−→"→←←"−−−−
𝛼𝐹

𝛼⊑ ⟨𝛼𝐹 (℘(L)), ⪯𝐹 ⟩ and
⟨𝛼𝐹 (℘(L)), ⪯𝐹 , ⋎𝐹 ⟩ is a join semi lattice with 𝑃 ⪯𝐹 𝑄 ≜ (𝛼⊑(𝑃) ⊆ 𝛼⊑(𝑄)) and 𝑃 ⋎𝐹 𝑄 ≜ 𝛼𝐹 (𝛼⊑(𝑃)∪
𝛼⊑(𝑄)).

Define ↓⊑(𝑃) ≜ {𝑃 ′ ∈ L ∣ 𝑃 ′ ⊑ 𝑃}. The following lemma 13.13 is a characterization of 𝛼⊑𝐹 (℘(L))
that correctly generalizes [46, Proposition 1].

Lemma 13.13. A◯ If P ∈ 𝛼⊑𝐹 (℘(L)) then P = ⋃
𝑃 ∈𝛼𝐹 (P)

↓⊑(𝑃).
13.7 Chain Limit Abstraction
13.7.1 Chain Limit Abstraction Definition and Properties. Another possible representation of order
ideal abstractions would be by limits of chains. Define

𝛼↓(P) ≜ {⊓
𝑖∈N𝑃𝑖 ∣ ⟨𝑃𝑖 , 𝑖 ∈ N⟩ ∈ P is a decreasing chain with existing glb} (84)

𝛼↓ in ⊆ increasing and extensive but not necessarily idempotent.
Counter example 13.14. Consider the complete lattice on the
right. Let P be the set of elements of all decreasing chains{⟨𝑋 𝑖 𝑗 , 𝑖 ∈ N∗⟩ ∣ 𝑗 ∈ N∗}. 𝛼↓(P) includes P and their great-
est lower bounds ⟨𝑌 𝑖 , 𝑖 ∈ N∗⟩ but not the infimum *. The next
iteration includes P , the greatest lower bounds 𝛼↓(P) of its
decreasing chains, and the greatest lower bound * of all the de-
creasing chains {⟨𝑋 𝑖 𝑗 , 𝑖 ∈ N∗⟩ ⋅ ⟨𝑌𝑘 , 𝑘 ⩾ 𝑖⟩ ∣ 𝑗 ∈ N∗} of 𝛼↓(P).
This is the least fixpoint of 𝝀𝑋 .P ∪ 𝛼↓(𝑋). ∎

28 Anonymous 1 and Anonymous 2

It follows from theorem 12.1 that the logic proof system of theorem 8.5 is applicable to the upper
abstract logic L

♯(𝑆) (and dually theorem 8.8 for the lower abstract logic).
In conclusion of this part II, although the abstractions of the semantics, post, Post, and logics

have been show to be equally expressible for exact abstractions, they do not solve the problem
of the complexity of the resulting logic, which still has to handle exactly the (abstract) semantics
occuring in the (hyper) properties.

PaRt III: A HieRaRcHy of Semantic (HypeR) Logics
The problem with (hyper) logics studied in parts I and II is that for a program to satisfy a (hyper)

property, its semantics must exactly occur in the property. So (hyper) proofs cannot make over or
under approximations of the semantics, whereas this can and must be done in Hoare logic or its
dual to get simple proofs. In this part III, we study abstractions to derive simpler logics for less
general properties but still with sound and complete proof systems.

13 Execution Property Abstraction
In abstract domains D♯ of definition 3.2 which are complete lattices, or their abstractions by def-
inition 9.1, which are also complete latiices, the execution property abstraction 𝛼⊔♯(P) ≜ ⊔♯P
abstracts semantic properties in ℘(L♯) into executions in L♯. Defining the concretization 𝛾⊔♯(𝑄) ≜{𝑃 ∣ 𝑃 ⊑♯ 𝑄}, we get a Galois retraction

⟨℘(L♯), ⊆⟩ −−−−−→"→←−−−−−−−
𝛼⊔♯
𝛾⊔♯ ⟨L♯, ⊑♯⟩ (82)

With this abstraction, the logical ordering (implication) is also the computational ordering in
lemma 3.9 whereas, in general, for the generic algebraic abstract semantics the computational
ordering ⊑♯ and the logical ordering and ⊆ are not related.

PRoof of (82).
𝛼⊔♯(P) ⊑♯ 𝑄

⇔ ⊔♯P ⊑♯ 𝑄 !def. 𝛼⊔♯"
⇔ ∀𝑃 ∈ P . 𝑃 ⊑♯ 𝑄 !def. least upper bound"
⇔ P ⊆ {𝑃 ∣ 𝑃 ⊑♯ 𝑄} !def. ⊆"
⇔ P ⊆ 𝛾⊔♯(𝑄) !def. 𝛾⊔♯" !

Example 13.1. The hyper trace properties in ℘(℘(Σ+∞)) can be abstracted to trace properties
in ℘(Σ+∞) by ⟨℘(℘(Σ+∞), ⊆⟩ −−−−→"→←−−−−−−

𝛼∪
𝛾∪ ⟨℘(Σ+∞)), ⊆⟩with 𝛼∪(𝑃) = ⋃𝑃 and 𝛾∪(𝑄) = ℘(𝑄) as done

in [14, section 5, p. 246] which is the starting point of [9] to recover Hoare logic and its variants. ∎
14 Closure Abstractions
Let ⟨𝐿, ⊑⟩ be a poset. The ⊑-closure abstraction on ⟨℘(𝐿), ⊆⟩ is

𝛼⊑(P) ≜ {𝑃 ∈ 𝐿 ∣ ∃𝑃 ′ ∈ P , 𝑃 ′ ⊑ 𝑃} ⟨℘(𝐿), ⊆⟩ −−−−→"→←−−−−−−
𝛼⊑
1 ⟨℘(𝐿), ⊆⟩

where 1 is the identity function. 𝛼⊑ is an upper closure operator (increasing, extensif, and idem-
potent) and Morgan Ward’s [40, theorem 4.1], ⟨𝛼⊑(℘(𝐿)), ⊆, ∅, 𝐿, ∪, ∩⟩ is a complete lattice. 𝛼⊒
is defined dually.

Let ⟨𝐿, ⊑⟩ be a poset with partially defined greatest lower bound (glb) ⊓. Define
𝛼↓(P) ≜ {⊓

𝑖∈N𝑃𝑖 ∣ ⟨𝑃𝑖 , 𝑖 ∈ N⟩ ∈ P is a decreasing chain with well-defined glb}
, Vol. 1, No. 1, Article . Publication date: June 2024.
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𝛼↓ in ⊆ increasing and extensive but not necessarily idempotent. By [8, lemma 29.1],
𝛼↓(P) ≜ lfp⊆ 𝝀𝑋 .P ∪ 𝛼↓(𝑋)

is the smallest upper closure operator pointwise greater than or equal to 𝛼↓. By Morgan Ward’s
[40, theorem 4.1], ⟨𝛼↓(℘(𝐿)), ⊆, ∅, 𝐿, ∪, ∩⟩ is a complete lattice. 𝛼↑ and 𝛼↑ are defined dually.

TO DO
TO DO

𝛼↑(P) ≜ {Q ∣ P ⊆ Q} (83)
𝛼↓(P) ≜ {Q ∣ Q ⊆ P} (84)
𝛼↑(P) ≜ {𝑄 ∣ ∃𝑃 ∈ P . 𝑃 ⊑♯ 𝑄} (85)
𝛼↓(P) ≜ {𝑄 ∣ ∃𝑃 ∈ P . 𝑄 ⊑♯ 𝑃}

Post♯↑(𝑆)P ≜ 𝛼↑(Post♯(𝑆)P) = {𝑄 ∣ ∃𝑃 ∈ P ∧ post♯(𝑆)𝑃 ⊑♯ 𝑄} = {𝑄 ∣ ∃𝑃 ∈ P ∧ {⃗𝑃 }⃗ S {⃗𝑄 }⃗}
Post♯↓(𝑆)P ≜ 𝛼↓(Post♯(𝑆)P) = {𝑄 ∣ ∃𝑃 ∈ P ∧𝑄 ⊑♯ post♯(𝑆)𝑃} = {𝑄 ∣ ∃𝑃 ∈ P ∧ ⃗{𝑃 ⃗} S ⃗{𝑄 ⃗}}

(86)
(36)

15 Related Work
The idea of handling logics algebraically goes back to [15, section 5] itself rooted in the idea of
program schemes [4, 22, 35]

This necessary distinction between computational and logical orderings first appeared in strict-
ness analysis (using Scott partial order for computational ordering and inclusion for logical order-
ing [34]) and is common in abstract interpretation since then.

16 Conclusion
Transformational (hyper) logics have traditionally be based on transformers themselves equivalent
to an operational semantics. When considering nontermination, other semantics like denotational
semantics are relevant, but the corresponding logics are a separate world [1]. In an attempt to
design (hyper) logics valid for various (abstract) semantics, we have defined an algebraic semantics
its collecting semantics, its hyper collecting semantics and the various corresponding logics
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𝛼↓ in ⊆ increasing and extensive but not necessarily idempotent. By [8, lemma 29.1],
𝛼↓(P) ≜ lfp⊆ 𝝀𝑋 .P ∪ 𝛼↓(𝑋)

is the smallest upper closure operator pointwise greater than or equal to 𝛼↓. By Morgan Ward’s
[40, theorem 4.1], ⟨𝛼↓(℘(𝐿)), ⊆, ∅, 𝐿, ∪, ∩⟩ is a complete lattice. 𝛼↑ and 𝛼↑ are defined dually.
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ness analysis (using Scott partial order for computational ordering and inclusion for logical order-
ing [34]) and is common in abstract interpretation since then.
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to an operational semantics. When considering nontermination, other semantics like denotational
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Iteration of 𝛼↓ (possibly transfinitely)
∗𝛼↓(P) ≜ lfp⊆ 𝝀𝑋 .P ∪ 𝛼↓(𝑋) (85)

yields an upper closure operator.
Lemma 13.15. A◯ ⟨℘(L), ⊆⟩ −−−−→"→←−−−−−−∗𝛼↓

1 ⟨∗𝛼↓(℘(L)), ⊆⟩ and ⟨∗𝛼↓(℘(L)), ⊆, ∅, L, 𝝀𝑋 . ∗𝛼↓(⋃𝑋), ⋂⟩
is a complete lattice.

Lemma 13.16. A◯ ∀P ∈ ℘(L) . 𝛼↓(∗𝛼↓(P)) = ∗𝛼↓(P).
, Vol. 1, No. 1, Article . Publication date: July 2024.

Lemma 19.2. ⟨℘(L), ⊆⟩ −−−−→Ð→←−−−−−−
∗
𝛼↓

1 ⟨∗𝛼↓(℘(L)), ⊆⟩ and ⟨∗𝛼↓(℘(L)), ⊆, ∅, L, 𝝀𝑋 . ∗𝛼↓(⋃𝑋), ⋂⟩ is a
complete lattice.

PRoof of lemma 19.2. By [20, lemma 29.1], ∗𝛼↓ is the smallest upper closure operator pointwise
greater than or equal to 𝛼↓. By Morgan Ward’s [83, theorem 4.1], ⟨∗𝛼↓(℘(L)), ⊆⟩ is a complete
lattice with infimum ∗

𝛼↓({�}) = {�} and join 𝝀𝑋 . ∗𝛼↓(⋃𝑋). □

Lemma 19.3. ∀P ∈ ℘(L) . 𝛼↓(∗𝛼↓(P)) = ∗𝛼↓(P).

PRoof of lemma 19.3. By the fixpoint definition (96) of ∗𝛼↓, we have ∗𝛼↓(P) = lfp⊆ 𝝀𝑋 .P∪𝛼↓(𝑋)
so ∗𝛼↓(P) = P ∪ 𝛼↓(∗𝛼↓(P)). Since 𝛼↓ and ∗𝛼↓ are extensive, we have P ⊆ ∗𝛼↓(P) ⊆ 𝛼↓(∗𝛼↓(P)) so
P ∪ 𝛼↓(∗𝛼↓(P)) = 𝛼↓(∗𝛼↓(P)) proving ∗𝛼↓(P) = 𝛼↓(∗𝛼↓(P)) by transitivity. □

Lemma 19.4. For all P ∈ ℘(L), 𝛼↓(P) = P implies ∗𝛼↓(P) = P .

PRoof of lemma 19.4. Consider the iterates of lfp⊆ 𝝀𝑋 .P ∪ 𝛼↓(𝑋) from 𝑋 0 = ∅. 𝑋 1 = P ∪
𝛼↓(𝑋 0) = P ∪ 𝛼↓(∅) = P since 𝛼↓(∅) = ∅ by definition (95). We have 𝑋 2 = P ∪ 𝛼↓(𝑋 1) =
P ∪ 𝛼↓(P) = P ∪ P = P = 𝑋 1 by hypothesis 𝛼↓(P) = P . By (96), we conclude that ∗𝛼↓(P) =
lfp⊆ 𝝀𝑋 .P ∪ 𝛼↓(𝑋) = P . □

𝛼↑ is defined ⊑ dually, and ∗𝛼↑(P) ≜ lfp⊆ 𝝀𝑋 .P ∪ 𝛼↑(𝑋) is an upper closure operator.
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19.2 Forall Exists Hyperproperties
Assuming that ⟨L, ⊑⟩ = ⟨℘(Π), ⊆⟩ (where e.g. Π = Σ+∞ is a set of traces) ∀∃ hyperproperties have
the form

AEH ≜ {{𝑃 ∈ ℘(Π) ∣ ∀𝜋1 ∈ 𝑃 . ∃𝜋2 ∈ 𝑃 . ⟨𝜋1, 𝜋2⟩ ∈ 𝐴} ∣ 𝐴 ∈ ℘(Π × Π)} (97)
(this easily generalizes to ∀𝜋1, . . . , 𝜋𝑛 ∈ 𝑃 . ∃𝜋 ′1, . . . , 𝜋 ′𝑚 ∈ 𝑃 . ⟨𝜋1, . . . , 𝜋𝑛, 𝜋 ′1, . . . , 𝜋 ′𝑚⟩ ∈ 𝐴 [40]).

Example 19.5 (Generalized non-interference). A typical forall exists hyperproperty is generalized
non interference [35, 69, 70] for the trace semantics of appendix 4. Let L ∈ X be a low variable and
H ∈ X be a high variable, we have

GNI ≜ {𝑃 ∈ ℘(Σ+) ∣ ∀𝜎1𝜋1𝜎 ′1, 𝜎2𝜋2𝜎 ′2 ∈ 𝑃 . ∃𝜎3𝜋3𝜎 ′3 ∈ 𝑃 . (𝜎1(L) = 𝜎2(L))⇒ (98)
(𝜎3(L) = 𝜎1(L) ∧ 𝜎3(H) = 𝜎2(H) ∧ 𝜎 ′3(L) = 𝜎 ′1(L))} ∎

Assuming chain-complete lattices in 3.2.A and 3.2.C, chain limit closed semantic properties in
∗
𝛼↑(℘(℘(Π))) subsume ∀∃ hyperproperties in AEH in that

AEH ⊆ ∗
𝛼↑(℘(℘(Π))) (99)

PRoof of (99). We must prove that ∀P ∈ AEH .
∗
𝛼↑(P) ∈ AEH. By the dual of lemma 19.4, it

is sufficient to assume that P ∈ AEH and prove that 𝛼↑(P) ∈ AEH.
𝛼↑(P)

= {⋃
𝑖∈N

𝑃𝑖 ∣ ⟨𝑃𝑖 , 𝑖 ∈ N⟩ ∈ P is an increasing chain with existing lub} Hdual def. (95) of 𝛼↑I
= {⋃

𝑖∈N
𝑃𝑖 ∣ ⟨𝑃𝑖 , 𝑖 ∈ N⟩ ∈ P is an increasing chain} Hchain completeness hypothesisI

= {⋃
𝑖∈N

𝑃𝑖 ∣ ⟨𝑃𝑖 , 𝑖 ∈ N⟩ ∈ P is an increasing chain ∧ ∀𝑖 ∈ N . ∀𝜋1 ∈ 𝑃𝑖 . ∃𝜋2 ∈ 𝑃𝑖 . ⟨𝜋1, 𝜋2⟩ ∈ 𝐴}HP ∈ AEH and def. AEHI
= {𝑃 ∈ P ∣ ∀𝜋1 ∈ 𝑃 . ∃𝜋2 ∈ 𝑃 . ⟨𝜋1, 𝜋2⟩ ∈ 𝐴}H(⊆) if 𝜋1 ∈ ⋃𝑖∈N 𝑃𝑖 then there exists 𝑖 ∈ N such that 𝜋1 ∈ 𝑃𝑖 so that, by hypothesis, ∃𝜋2 ∈

𝑃𝑖 . ⟨𝜋1, 𝜋2⟩ ∈ 𝐴, proving ∃𝜋2 ∈ ⋃𝑖∈N 𝑃𝑖 . ⟨𝜋1, 𝜋2⟩ ∈ 𝐴;
(⊇) conversely, consider the chain ⟨𝑃, 𝑖 ∈ N⟩ so that ⋃𝑖∈N 𝑃 = 𝑃 .I

= P Hsince P ∈ AEH so that by (97) the condition holds for all elements of PI □

20 Chain Limit Order Ideal Abstraction
20.1 Chain Limit Order Ideal Abstraction Definition and Properties
Define

𝛼⊑↑ ≜ 𝛼⊑ ○ 𝛼↑ and ∗
𝛼⊑↑(P) ≜ lfp⊆ 𝝀𝑋 .P ∪ 𝛼⊑↑(𝑋) (100)

to get an upper closure operator (since 𝛼⊑↑ is increasing and expansive although not idempotent).
Counter example 20.1. Define ⟨L, ⊑⟩ = ⟨℘(N), ⊆⟩ andN ≜ {N∖{𝑛} ∣ 𝑛 ∈ N} ∈ ℘(N) to be the set

of all sets Nwith one missing element. Since any two different elements ofN are ⊆- incomparable,
N is both a lower and upper frontier so chains are reduced to one element. Therefore ∗𝛼↓(N ) =
∗
𝛼↑(N ) = N . By (100), it follows that 𝛼⊑↑(N ) = 𝛼⊑(N ) = ℘(N) ∖ {N}. Consider the increasing
chain C = ⟨{𝑖 ∣ 𝑖 < 𝑗}, 𝑗 ∈ N⟩ of elements of ∗𝛼↑(N ). Its limit is ⋃𝑗∈N {𝑖 ∣ 𝑖 < 𝑗} = N /∈ 𝛼⊑↑(N ) =
℘(N) ∖ {N} proving that 𝛼⊑↑ is not idempotent. ∎
Lemma 20.2. ⟨℘(L), ⊆⟩ −−−−−→Ð→←−−−−−−−

∗
𝛼⊑↑

1 ⟨∗𝛼⊑↑(℘(L)), ⊆⟩ and ⟨∗𝛼⊑↑(℘(L)), ⊆, ∅, L, 𝝀𝑋 . ∗𝛼⊑↑(⋃𝑋), ⋂⟩
is a complete lattice.

PRoof of lemma 20.2. By [20, lemma 29.1], ∗𝛼⊑↑ is the smallest upper closure operator pointwise
greater than or equal to 𝛼⊑↑. By Morgan Ward’s [83, theorem 4.1], ⟨∗𝛼⊑↑(℘(L)), ⊆⟩ is a complete
lattice with infimum ∗

𝛼↑({�}) = {�} and join 𝝀𝑋 . ∗𝛼⊑↑(⋃𝑋). □
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20.2 Forall Hyperproperties
∀ hyperproperties are usually defined in the context of trace semantics of section 4, for which, in
absence of breaks, ⟨L, ⊑⟩ = ⟨℘(Σ+∞), ⊆⟩) as in section 4.3. In this case, by definition of ⊆, we get

AAH ≜ {{𝑃 ∈ ℘(Σ+∞) ∣ ∀𝜋1, 𝜋2 ∈ 𝑃 . ⟨𝜋1, 𝜋2⟩ ∈ 𝐴} ∣ 𝐴 ∈ ℘(Σ+∞ × Σ+∞)} (101)

Example 20.3 (Non-interference). A typical forall hyperproperty is non interference NI ∈ AAH
for the trace semantics of section 4 [16, 47, 48]. Let L ∈ X be a low variable, we have

NI ≜ {𝑃 ∈ ℘(Σ+) ∣ ∀𝜎1𝜋1𝜎 ′1, 𝜎2𝜋2𝜎 ′2 ∈ 𝑃 . (𝜎1(L) = 𝜎2(L))⇒ (𝜎 ′1(L) = 𝜎 ′2(L))} (102)

We have NI ∈ AAH by defining 𝐴 ≜ {⟨𝜎1𝜋1𝜎 ′1, 𝜎2𝜋2𝜎 ′2⟩ ∣ (𝜎1(L) = 𝜎2(L))⇒ (𝜎 ′1(L) = 𝜎 ′2(L))}. ∎

21 Logic Rule for Chain Limit Order Ideal Abstract Semantic Properties
[30, sect. 5.3] have introduced a sound but incomplete logic for proving ∀∗∃∗ hyperproperties.
We generalize the rule in our algebraic lattice-theoretic framework for the chain limit abstract
semantic properties in ∗𝛼↑(℘(L)).

21.1 A Sound and Incomplete Rule
[30] does not consider breaks and nontermination so that the fields � and 𝑏 of ⟨𝑒 ∶ 𝐹, � ∶ 𝐼 , 𝑏 ∶ 𝐵⟩ in
(12) can be ignored and the tuple reduces to the value 𝐹 of the field 𝑒 . In this section, 3.2.A is a lattice
which is increasing chain complete, 3.2.C and 3.2.D.c are omitted, and limits of increasing chains
are assumed to be preserved in 3.2.D.d. We also assume that J¬BK♯𝑒 #♯ J¬BK♯𝑒 = J¬BK♯𝑒 , J¬BK♯𝑒 #♯ JBK♯𝑒 =JBK♯𝑒 #♯ J¬BK♯𝑒 = �♯+, and JskipK♯𝑒 ≜ skip♯ = init♯ in (3), which does not hold for traces but holds e.g.
for a relational semantics.

The rule of [30] generalizes to
P ⊆ I, {∣I ∣} if (B) else skip{∣I ∣}, {∣I ∣}¬B{∣Q ∣}

{∣P ∣} while (B) S{∣Q ∣}
, Q ∈ ∗𝛼↑(℘(L♯)) (103)

The key idea to prove that for any 𝑃 ∈ P ∈ ℘(L♯+), the exact postcondition𝑄 = post♯Jwhile (B) SK♯𝑒 𝑃
will be in Q is to exhibit an increasing chain in Q with least upper bound 𝑄 , also in Q by the hy-
pothesis that Q is a chain limit order ideal abstract semantic property.

21.2 A Soundness Proof of (103)
Let 𝑃 ∈ ℘(L♯+). The iterates ⟨𝑋 𝑖 , 𝑖 ∈ N∪ {𝜔}⟩ of 𝝀𝑋 .𝑃 ⊔♯+ post♯Jif(B) S else skipK♯𝑒(𝑋) from �♯+
are defined as

𝑋 0 ≜ 𝑃

𝑋𝑛+1 ≜ post♯Jif (B) S else skipK♯𝑒 𝑋𝑛 (104)
𝑋𝜔 ≜ ⊔♯+

𝑛∈N
𝑋𝑛

Since the iterates are a function of 𝑃 , we write 𝑋 𝑖(𝑃), 𝑖 ∈ N ∪ {𝜔} when this dependency must be
made clear.

Lemma 21.1.

∀𝑛 ∈ N . 𝑋𝑛 = (
𝑛−1

⊔♯+
𝑖=0

post♯J¬BK♯𝑒((post♯JB;SK♯𝑒)𝑖𝑃) ⊔♯+ ((post♯JB;SK♯𝑒)𝑛𝑃) (105)

𝑋𝜔 = ⊔♯+
𝑛∈N

post♯J¬BK♯𝑒((post♯JB;SK♯𝑒)𝑛𝑃) ⊔♯+⊔♯+
𝑛∈N
(post♯JB;SK♯𝑒)𝑛𝑃

PRoof of lemma 21.1. The proof is by recurrence on 𝑛.
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For the basis, this is �♯+ ⊔♯+ (𝑃 #♯ skip) = 𝑃 #♯ init = 𝑃 = 𝑋 0 by hypothesis JskipK♯𝑒 = init♯, 3.2.A,
and 3.2.D.a.

For the induction step, we observe that ⟨𝑋 𝑖 , 𝑖 ⩽ 𝑛⟩ is a ⊑♯+-increasing chain, by definition of
the lub ⊔♯+. Then

𝑋𝑛+1

= post♯Jif (B) S else skipK♯𝑒 𝑋𝑛 Hdef. 𝑋𝑛+1I
= post♯JB;SK♯𝑒 𝑋𝑛 ⊔♯+ post♯J¬B;skipK♯𝑒 𝑋𝑛 H(34)I
= (𝑋𝑛 #♯ JB;SK♯𝑒) ⊔♯+ (𝑋𝑛 #♯ J¬BK♯𝑒) Hby def. (25) of post, JskipK♯𝑒 = init♯, and 3.2.D.aI
= ((

𝑛−1

⊔♯+
𝑖=0

𝑃 #♯ (JB;SK♯𝑒)𝑖 #♯ J¬BK♯𝑒)⊔♯+ (𝑃 #♯ (JB;SK♯𝑒)𝑛) #♯ JB;SK♯𝑒) ⊔♯+ ((𝑛−1⊔♯+
𝑖=0

𝑃 #♯ (JB;SK♯𝑒)𝑖 #♯ J¬BK♯𝑒)⊔♯+
(𝑃 #♯ (JB;SK♯𝑒)𝑛) #♯ J¬BK♯𝑒) Hinduction hypothesisI

= ((
𝑛−1

⊔♯+
𝑖=0

𝑃 #♯ (JB;SK♯𝑒)𝑖 #♯ J¬BK♯𝑒) ⊔♯+ (𝑃 #♯ (JB;SK♯𝑒)𝑛+1)) ⊔♯+ ( 𝑛

⊔♯+
𝑖=0

𝑃 #♯ (JB;SK♯𝑒)𝑖 #♯ J¬BK♯𝑒)Hintegrating the term 𝑃 #♯ (JB;SK♯𝑒)𝑛) #♯ J¬BK♯𝑒 in the join and JB;SK♯𝑒 in 𝑃 #♯ (JB;SK♯𝑒)𝑛)I
= (

𝑛

⊔♯+
𝑖=0

𝑃 #♯ (JB;SK♯𝑒)𝑖 #♯ J¬BK♯𝑒) ⊔♯+ (𝑃 #♯ (JB;SK♯𝑒)𝑛+1) Hidempotence of ⊔♯+I
= (

𝑛

⊔♯+
𝑖=0

post♯J¬BK♯𝑒(post♯JB;SK♯𝑒)𝑖𝑃) ⊔♯+ ((post♯JB;SK♯𝑒)𝑛+1𝑃) Hdef. (25) of postI
For the limit, we have

𝑋𝜔

= ⊔♯+
𝑛∈N
((

𝑛−1

⊔♯+
𝑖=0

post♯J¬BK♯𝑒(post♯JB;SK♯𝑒)𝑖𝑃) ⊔♯+ ((post♯JB;SK♯𝑒)𝑛𝑃)) H(104) and (105)I
= ⊔♯+

𝑛∈N
post♯J¬BK♯𝑒((post♯JB;SK♯𝑒)𝑛𝑃) ⊔♯+⊔♯+

𝑛∈N
(post♯JB;SK♯𝑒)𝑛𝑃 H⊔♯+ associativeI □

Lemma 21.2. For all 𝑃 ∈ ℘(L♯+),

lfp⊑ 𝝀𝑋 .𝑃 ⊔♯+ post♯Jif(B) S else skipK♯𝑒(𝑋) = 𝑋𝜔 (106)

PRoof of lemma 21.2. The iterates ⟨𝑋 𝑖 , 𝑖 ∈ N ∪ {𝜔}⟩ are characterized in lemma 21.1. Let use
prove that 𝑋𝜔 = 𝑃 ⊔♯+ post♯Jif (B) S else skipK♯𝑒 𝑋𝜔 is a fixpoint.

𝑃 ⊔♯+ post♯Jif (B) S else skipK♯𝑒 𝑋𝜔

= 𝑃 ⊔♯+ post♯JB;SK♯𝑒 𝑋𝜔 ⊔♯+ post♯J¬B;skipK♯𝑒 𝑋𝜔 H(34)I
= 𝑃 ⊔♯+ (𝑋𝜔 #♯ JB;SK♯𝑒) ⊔♯+ (𝑋𝜔 #♯ J¬BK♯𝑒) Hby def. (25) of post, JskipK♯𝑒 = init♯, and 3.2.D.aI
= 𝑃 ⊔♯+ ((⊔

♯
+

𝑛∈N
post♯J¬BK♯𝑒((post♯JB;SK♯𝑒)𝑛𝑃) ⊔♯+⊔♯+

𝑛∈N
(post♯JB;SK♯𝑒)𝑛𝑃) #♯ JB;SK♯𝑒)

⊔♯+
((⊔♯+

𝑛∈N
post♯J¬BK♯𝑒((post♯JB;SK♯𝑒)𝑛𝑃) ⊔♯+⊔♯+

𝑛∈N
(post♯JB;SK♯𝑒)𝑛𝑃) #♯ J¬BK♯𝑒)Hcharacterization (105) of 𝑋𝜔I
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= 𝑃 ⊔♯+ (post♯JB;SK♯𝑒(⊔♯+
𝑛∈N

post♯J¬BK♯𝑒((post♯JB;SK♯𝑒)𝑛𝑃) ⊔♯+⊔♯+
𝑛∈N
(post♯JB;SK♯𝑒)𝑛𝑃))

⊔♯+
(post♯J¬BK♯𝑒(⊔♯+

𝑛∈N
post♯J¬BK♯𝑒((post♯JB;SK♯𝑒)𝑛𝑃) ⊔♯+⊔♯+

𝑛∈N
(post♯JB;SK♯𝑒)𝑛𝑃)) Hdef. (25) of postI

= 𝑃 ⊔♯+ (⊔
♯
+

𝑛∈N
post♯JB;SK♯𝑒(post♯J¬BK♯𝑒((post♯JB;SK♯𝑒)𝑛𝑃)) ⊔♯+⊔♯+

𝑛∈N
post♯JB;SK♯𝑒(post♯JB;SK♯𝑒)𝑛)𝑃)

⊔♯+
(=⊔♯+

𝑛∈N
post♯J¬BK♯𝑒(post♯J¬BK♯𝑒((post♯JB;SK♯𝑒)𝑛𝑃)) ⊔♯+⊔♯+

𝑛∈N
post♯J¬BK♯𝑒((post♯JB;SK♯𝑒)𝑛𝑃))Hpost♯(𝑆) preserve joins of increasing chains by (3.2.D.d)I

= (𝑃 ⊔♯+⊔
♯
+

𝑛∈N
(post♯JB;SK♯𝑒)𝑛+1𝑃) ⊔♯+ (⊔♯+

𝑛∈N
post♯J¬BK♯𝑒((post♯JB;SK♯𝑒)𝑛𝑃))Hdef. (25) of post and hypotheses J¬BK♯𝑒 #♯ J¬BK♯𝑒 = J¬BK♯𝑒 and J¬BK♯𝑒 #♯ JBK♯𝑒 = JBK♯𝑒 #♯ J¬BK♯𝑒 I

= 𝑋𝜔 Hintegrating 𝑃 in the join with post♯(𝑆)0 = 1 and commutativityI
It follows that the sequence ⟨𝑋 𝑖 , 𝑖 ∈ N ∪ {𝜔}⟩ is increasing and stationary at 𝜔 which is therefore
the least fixpoint (106). □

Lemma 21.3.
post♯Jwhile (B) SK♯𝑒𝑃 = post♯J¬BK♯𝑒 𝑋𝜔 = ⊔♯+

𝑛∈N
post♯J¬BK♯𝑒((post♯JB;SK♯𝑒)𝑛𝑃) (107)

PRoof of lemma 21.3.
post♯Jwhile (B) SK♯𝑒𝑃

= ⟨𝑜𝑘 ∶ ⟨𝑒 ∶ post♯(J¬BK♯𝑒 ⊔♯𝑒 JB;SK♯𝑏)(lfp⊑♯+ (𝐹 ♯𝑝𝑒(𝑃))),� ∶ post♯(JB;SK♯�)(lfp⊑♯+ (𝐹 ♯𝑝𝑒(𝑃))) ⊔♯∞
post♯(gfp⊑♯∞ 𝐹 ♯𝑝�)𝑃⟩, 𝑏𝑟 ∶ 𝑃𝑏𝑟 ⟩𝑒 Hby (37)I

= post♯(J¬BK♯𝑒)(lfp⊑♯+ (𝝀𝑋 .post♯(init♯)𝑃 ⊔♯+ post♯(JB;SK♯𝑒)(𝑋)))Hin absence of breaks and ignoring non terminationI
= post♯(J¬BK♯𝑒)(lfp⊑♯+ (𝝀𝑋 .post♯(init♯)𝑃 ⊔♯+ post♯(JB;SK♯𝑒)(𝑋))) Hdef. (35) of 𝐹 ♯𝑝𝑒I
= post♯(J¬BK♯𝑒)(lfp⊑♯+ (𝝀𝑋 .𝑃 ⊔♯+ post♯(JB;SK♯𝑒)(𝑋))) Hdef. (25) of post♯ and 3.2.D.aI
= post♯(J¬BK♯𝑒)(𝑋𝜔) Hlemma 21.2I
= post♯(J¬BK♯𝑒)(⊔♯+

𝑛∈N
post♯J¬BK♯𝑒((post♯JB;SK♯𝑒)𝑛𝑃) ⊔♯+⊔♯+

𝑛∈N
(post♯JB;SK♯𝑒)𝑛𝑃) Hlemma 21.2I

= ⊔♯+
𝑛∈N

post♯J¬BK♯𝑒(post♯J¬BK♯𝑒((post♯JB;SK♯𝑒)𝑛𝑃)) ⊔♯+⊔♯+
𝑛∈N

post♯J¬BK♯𝑒(post♯JB;SK♯𝑒)𝑛𝑃)Hpost♯(𝑆) preserves joins ⊔♯+ by def. (25) of post and 3.2.D.dI
= ⊔♯+

𝑛∈N
post♯J¬BK♯𝑒((post♯JB;SK♯𝑒)𝑛𝑃)H(33), def. (25) of post♯, hypotheses JBK♯𝑒 #♯J¬BK♯𝑒 = �♯+ and J¬BK♯𝑒 #♯J¬BK♯𝑒 = J¬BK♯𝑒 , def. function
powers, and def. lubI □

TheoRem 21.4. Proof rule (103) is sound.

PRoof of theoRem 21.4. Observe that if 𝑃 ∈ P then 𝑋 0 = 𝑃 ∈ I by P ⊆ I by the premise of
the rule (103). Assume 𝑋𝑛 ∈ I then, by (62), {∣I ∣} if (B) else skip{∣I ∣} if and only if ∀𝑃 ∈ I .
post♯Jif (B) else skipK♯𝑃 ∈ I if and only if ∀𝑃 ∈ I . post♯Jif (B) else skipK♯𝑒𝑃 ∈ I since
nontermination and breaks are ignored. By (104), this implies that 𝑋𝑛+1 ∈ I . By recurrence ∀𝑛 ∈
N . 𝑋𝑛 ∈ I .
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By (25) and 3.2.D.d, post♯J¬BK♯𝑒 is increasing so that the sequence ⟨post♯J¬BK♯𝑒 𝑋𝑛, 𝑛 ∈ N ∪ {𝜔}⟩
is increasing.

By (62), {∣I ∣}¬B{∣Q ∣}⇔ ∀𝑃 ∈ I . post♯J¬BK♯𝑃 ∈ Q⇔ ∀𝑃 ∈ I . post♯J¬BK♯𝑒𝑃 ∈ Q since nontermi-
nation and breaks are ignored. Since ∀𝑛 ∈ N . 𝑋𝑛 ∈ I , this implies that ∀𝑛 ∈ N . post♯J¬BK♯𝑒 𝑋𝑛 ∈ Q.
By hypothesis, Q ∈ ∗𝛼⊑↑(℘(L♯+)) so that by the dual of (95), post♯J¬BK♯𝑒 𝑋𝜔 ∈ Q. It follows by (107)
that post♯Jwhile (B) SK♯𝑒𝑃 ∈ Q.
We conclude that ∀𝑃 ∈ P . post♯Jwhile (B) SK♯𝑒 𝑃 = post♯J¬BK♯𝑒 𝑋𝜔 ∈ Q which, by (62), implies

that {∣P ∣} while (B) S{∣Q ∣}, proving soundness of the rule (103). □

Lemma 21.5. Proof rule (103) is incomplete.

PRoof of lemma (21.5). Consider {∣ {𝑃} ∣} while (B) S{∣ {post♯Jwhile (B) SK♯𝑒𝑃} ∣}which holds
by (62). Since ∗𝛼⊑↑({post♯Jwhile (B) SK♯𝑒𝑃}) = {post♯Jwhile (B) SK♯𝑒𝑃}, we can apply proof rule
(103). ByP ⊆ I , we should have 𝑃 ∈ I so𝑋 0(𝑃) ∈ I .The second condition {∣I ∣} if (B) else skip{∣I ∣}
of the premise implies, by (62), that ∀𝑃 ∈ I . post♯Jif (B) S else skipK♯𝑒 𝑃 . Therefore by (104)
and recurrence, ∀𝑛 ∈ N . 𝑋𝑛(𝑃) ∈ I . Then the third condition of the premiss, requires that
{∣I ∣}¬B{∣Q ∣}, equivalently, by (62), ∀𝑃 ∈ I . post♯J¬BK♯𝑃 ∈ {post♯Jwhile (B) SK♯𝑒𝑃} and therefore
∀𝑃 ∈ I . post♯J¬BK♯𝑃 = post♯Jwhile (B) SK♯𝑒𝑃 . In particular, wemust have∀𝑛 ∈ N . post♯J¬BK♯𝑋𝑛(𝑃)
= post♯Jwhile (B) SK♯𝑒𝑃 . By the characterization (107) of post♯Jwhile (B) SK♯𝑒𝑃 , this means that
∀𝑛 ∈ N . post♯J¬BK♯𝑋𝑛(𝑃) = ⊔♯+

𝑛∈N
post♯J¬BK♯𝑒((post♯JB;SK♯𝑒)𝑛𝑃). Otherwise stated the loop is never

entered, which, apart from the cas where B is false, is not the case in general. □

21.3 Completeness Relative to an Abstract Hypercollecting Semantics
Lemma 21.5 shows that proof rule (103) is incomplete relative to the hypercollecting semantics
(56) of section 7. We show that the rule is complete relative to the following abstraction of the
hypercollecting semantics (56).
Definition 21.6 (Weak structural hypercollecting semantics for iteration).

Post
♯Jwhile(B) SK♯𝑒P ≜ Post♯J¬𝐵K♯𝑒(lfp⊆ 𝝀X .P ∪ Post

♯Jif(B) S else skipK♯𝑒(X )) (108)

Post
♯Jwhile(B) SK♯𝑒 is an algebraic form of the hypercollecting semantics postulated by [5, p. 877].

TheoRem 21.7 (ChaRacteRization of the executions satisfying (108)).

lfp⊆ 𝝀X .P ∪ Post
♯Jif(B) S else skipK♯𝑒(X ) = {𝑋𝑛(𝑃) ∣ 𝑃 ∈ P ∧𝑛 ∈ N} (109)

PRoof of theoRem 21.7. the iterates of 𝝀X .P ∪ Post
♯Jif(B) S else skipK♯𝑒(X ) are

X 0 = ∅
X 1 = P
X 2 = P ∪ Post

♯Jif (B) S else skipK♯𝑒(P)
…

X𝑛 =
𝑛

⋃
𝑖=0
(Post♯Jif (B) S else skipK♯𝑒)𝑖(P) Hinduction hypothesisI

X𝑛+1 =P ∪ Post
♯Jif(B) S else skipK♯𝑒(X𝑛)

=P ∪ Post
♯Jif(B) S else skipK♯𝑒( 𝑛

⋃
𝑖=0
(Post♯Jif (B) S else skipK♯𝑒)𝑖(P))

=P ∪
𝑛+1
⋃
𝑖=1
(Post♯Jif (B) S else skipK♯𝑒)𝑖(P)
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=
𝑛+1
⋃
𝑖=0
(Post♯Jif (B) S else skipK♯𝑒)𝑖(P)

A similar calculation shows that X𝜔 = ⋃
𝑛∈N
(Post♯Jif (B) S else skipK♯𝑒)𝑛(P) is stable so is the

least fixpoint lfp⊑ 𝝀X .P ∪ Post
♯Jif (B) S else skipK♯𝑒(X ) = X𝜔 .

Observe that we have
(Post♯Jif (B) S else skipK♯𝑒)0(P)

= P Hdef. function powersI
= {𝑋 0(𝑃) ∣ 𝑃 ∈ P} Hdef. function powersI

for induction
(Post♯Jif (B) S else skipK♯𝑒)𝑛+1(P)

= Post
♯Jif (B) S else skipK♯𝑒((Post♯Jif (B) S else skipK♯𝑒)𝑛(P)) Hdef. powersI

= Post
♯Jif (B) S else skipK♯𝑒({𝑋𝑛(𝑃) ∣ 𝑃 ∈ P}) Hinduction hypothesisI

= Post♯Jif (B) S else skipK♯𝑒({𝑋𝑛(𝑃) ∣ 𝑃 ∈ P}) Hdef. Post♯ for conditionalI
= {post♯Jif (B) S else skipK♯𝑒 𝑋𝑛(𝑃) ∣ 𝑃 ∈ P} Hdef. (40) of Post♯I
= {𝑋𝑛+1(𝑃) ∣ 𝑃 ∈ P} Hdef. (104) of the iteratesI
We conclude, by recurrence, that ∀𝑛 ∈ N . (Post♯Jif (B) S else skipK♯𝑒)𝑛(P) = {𝑋𝑛(𝑃) ∣ 𝑃 ∈

P}. It follows that
lfp⊑ 𝝀X .P ∪ Post

♯Jif (B) S else skipK♯𝑒(X )
= X𝜔

= ⋃
𝑛∈N
(Post♯Jif (B) S else skipK♯𝑒)𝑛(P)

= ⋃
𝑛∈N
{𝑋𝑛(𝑃) ∣ 𝑃 ∈ P}

= {𝑋𝑛(𝑃) ∣ 𝑃 ∈ P ∧𝑛 ∈ N} □

The following lemma 21.8 shows the correspondance between Post
♯Jwhile(B) SK♯𝑒 and the hy-

percollecting semantics (56). It shows that Post♯Jwhile(B) SK♯𝑒 misses limits.

Lemma 21.8. ∀P ∈ ℘(L♯) . Post♯Jwhile(B) SK♯𝑒P ⊆ 𝛼↑(Post♯Jwhile(B) SK♯𝑒P).
PRoof of lemma 21.8.
Post♯Jwhile(B) SK♯𝑒P

= {post♯Jwhile (B) SK♯𝑒𝑃 ∣ 𝑃 ∈ P} H(40)I
= {post♯J¬BK♯𝑒 𝑋𝜔(𝑃) ∣ 𝑃 ∈ P} H(107)I
= {post♯J¬BK♯𝑒 (⊔♯+

𝑛∈N
𝑋𝑛(𝑃)) ∣ 𝑃 ∈ P} Hdef. (104) of 𝑋𝜔I

= {⊔♯+
𝑛∈N

post♯J¬BK♯𝑒 𝑋𝑛(𝑃) ∣ 𝑃 ∈ P} Hjoin preservation 3.2.D.dI
= {⊔♯+{post

♯J¬BK♯𝑒 𝑋𝑛(𝑃) ∣ 𝑛 ∈ N} ∣ 𝑃 ∈ P} Hdef. of ⊔♯+I
⊆ 𝛼↑({post♯J¬𝐵K♯𝑒 𝑋𝑛(𝑃) ∣ 𝑃 ∈ P ∧𝑛 ∈ N})
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HAny ⊔♯+{post♯J¬BK♯𝑒 𝑋𝑛(𝑃) ∣ 𝑛 ∈ N} is the least upper bound of the increasing chain
⟨post♯J¬BK♯𝑒 𝑋𝑛(𝑃), 𝑛 ∈ N⟩ of {post♯J¬𝐵K♯𝑒 𝑋𝑛(𝑃) ∣ 𝑃 ∈ P ∧ 𝑛 ∈ N} which, by the dual
def. (95) of 𝛼↑, belongs to 𝛼↑({post♯J¬𝐵K♯𝑒 𝑋𝑛(𝑃) ∣ 𝑃 ∈ P ∧𝑛 ∈ N})I

= 𝛼↑(Post♯J¬𝐵K♯𝑒({𝑋𝑛(𝑃) ∣ 𝑃 ∈ P ∧ 𝑛 ∈ N}) H(40)I
= 𝛼↑(Post♯J¬𝐵K♯𝑒(lfp⊆ 𝝀X .P ∪ Post

♯Jif(B) S else skipK♯𝑒(X ))) H(109I
= 𝛼↑(Post♯Jwhile(B) SK♯𝑒P) H(108I □

Notice that Post♯Jwhile(B) SK♯𝑒P may contain chains post♯J¬𝐵K♯𝑒 𝑋𝑛(𝑃0) ⊑♯+ post♯J¬𝐵K♯𝑒 𝑋𝑛(𝑃1)
⊑♯+ . . . ⊑♯+ post♯J¬𝐵K♯𝑒 𝑋𝑛(𝑃𝑘) ⊑♯+ . . . which limit will be in 𝛼↑(Post♯Jwhile(B) SK♯𝑒P) but not nec-
essarily in Post♯Jwhile(B) SK♯𝑒P . It follows that Post♯Jwhile(B) SK♯𝑒 may miss limits but also may
introduce chains with irrelevant limits of infeasible executions (which invalidates [5, theorem 1]
soundness claim).

The following theorem shows the soundness and completeness of rule (103) for the abstract hy-
percollecting semantics Post♯Jwhile(B) SK♯𝑒 , which by (109), requires the consequentQ to contain
the post condition of any number of iterations for any element 𝑃 of the antecedent P .

TheoRem 21.9. The proof rule (103) is sound and complete relative to (108).

PRoof of theoRem 21.9. The proof of soundness is similar to that of theorem 21.4.
For completeness, let

I ≜ {𝑋𝑛(𝑃) ∣ 𝑃 ∈ P ∧ 𝑛 ∈ N} (110)
The condition P ⊆ I of the premise holds for 𝑛 = 0;
The second condition {∣I ∣} if (B) else skip{∣I ∣} of the premise is equivalent, by (62), to

∀𝐼 ∈ I . post♯Jif (B) else skipK♯𝐼 ∈ I , which holds by definition (104) of the iterates.
The last condition {∣I ∣}¬B{∣Q ∣} of the premise follows from the hypothesis provided by the

conclusion of the rule (103).
Post

♯Jwhile(B) SK♯𝑒(P) ⊆ Q
⇒ Post♯J¬𝐵K♯𝑒(lfp⊆ 𝝀X .P ∪ Post

♯Jif(B) S else skipK♯𝑒(X )) ⊆ QHdef. (108) of Post♯Jwhile(B) SK♯𝑒PI
⇒ Post♯J¬𝐵K♯𝑒({𝑋𝑛(𝑃) ∣ 𝑃 ∈ P ∧ 𝑛 ∈ N}) ⊆ Q Hlemma 109I
⇒ {post♯J¬𝐵K♯𝑒(𝑋𝑛(𝑃)) ∣ 𝑃 ∈ P ∧𝑛 ∈ N} ⊆ Q H(40)I
⇒ ∀𝑃 ∈ P, 𝑛 ∈ N . post♯J¬𝐵K♯𝑒(𝑋𝑛(𝑃)) ∈ Q Hdef. ⊆I
⇒ ∀𝑃 ∈ I . post♯J¬BK♯𝑃 ∈ Q Hdef. (110) of II
⇒ {∣I ∣}¬B{∣Q ∣} H(62)I □

Theorem 21.9 illustrates the importance of the proper choice of the collecting semantics since
proof rule (103) is unsound ifQ /∈ ∗𝛼↑(℘(L♯)) and is complete for collecting semantics (108) but not
with respect to collecting semantics (56) hence not for the algebraic semantics of section 3.

By deriving the collecting semantics post for execution properties and hypercollecting seman-
tics Post for semantic properties by systematic abstraction of the algebraic semantics of section 3,
we guarantee, by composition of successive abstractions satisfying definition 9.1, that the proof
rules for these abstractions are sound with respect to any instance of the algebraic semantics satis-
fying definition 3.2. Moreover, the proof rules are guaranteed to be complete with respect to these
abstract properties, by construction.
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22 Sound and Complete Proof Rules for Generalized Exists Forall Hyperproperties
In section 22.1 of the appendix, we furthermore introduce conjunctive abstractions (i.e. conjunc-
tions in logics or reduced products in static analysis).

22.1 Conjunctive Abstraction
In this part III, we have introduced abstractions and their compositions. We now consider their
conjunctions by intersection. In static analysis with two different abstract domains this would
correspond to a reduced product.

22.1.1 Conjunctive Abstractions of Dual Operators. We define the conjunction of abstractions in-
troduced in previous sections of part III.
Definition 22.1 (Dual abstractions).

Op⊑ = {𝛼⊑, 𝛼⊑𝐹 , ∗𝛼⊑↑, 𝛼'} (111)
Op⊒ = {𝛼⊒, 𝛼⊒𝐹 , ∗𝛼⊒↓, 𝛼/} (112)

The conjunctive abstraction operator R takes two idempotent abstraction 𝛼1 ∈ Op⊑ and 𝛼2 ∈ Op⊒
and returns a new abstraction function that abstracts property P to the intersection of 𝛼1(P) and
𝛼2(P).

R⟨𝛼1, 𝛼2⟩ ≜ 𝝀P .𝛼1(P) ∩ 𝛼2(P) (113)

Lemma 22.2 (PRopeRties of the well-defined conjunctive abstRaction). For any 𝛼1 ∈ Op⊑,
𝛼2 ∈ Op⊒, and P ∈ R⟨𝛼1, 𝛼2⟩(℘(L)), we have (1) 𝛼1(℘(L)) ⊆ 𝛼

⊑(℘(L)) and 𝛼2(℘(L)) ⊆ 𝛼⊒(℘(L));
(2) 𝛼⊑(P) ∩ 𝛼⊒(P) = P ; and (3) if both 𝛼1 and 𝛼2 are upper-closures, then R⟨𝛼1, 𝛼2⟩ is also an upper-
closure.

PRoof of lemma 22.2. (1) directly follows from the definitions. Let us then prove (2). For an
arbitrary hyperproperty Q ∈ R⟨𝛼1, 𝛼2⟩, we have Q = R⟨𝛼1, 𝛼2⟩(P) for some P ∈ L. It follows that
𝛼⊑(Q) ∩ 𝛼⊒(Q)
= 𝛼⊑(𝛼1(P) ∩ 𝛼2(P)) ∩ 𝛼⊒(𝛼1(P) ∩ 𝛼2(P)) Hdef. of R⟨𝛼1, 𝛼2⟩I
⊆ 𝛼⊑ ○ 𝛼1(P) ∩ 𝛼⊑ ○ 𝛼2(P) ∩ 𝛼⊒ ○ 𝛼2(P) ∩ 𝛼⊒ ○ 𝛼1(P) Hdef. of 𝛼⊑ and 𝛼⊒ that are increasingI
= 𝛼⊑ ○ 𝛼1(P) ∩ 𝛼⊒ ○ 𝛼2(P)H𝛼⊒ ○ 𝛼1(P) = L for non-empty 𝛼1(P) since {�} ∈ 𝛼1(P). The equation trivially holds

when 𝛼1(P) = ∅I
= 𝛼1(P) ∩ 𝛼2(P) Hdef. of 𝛼1(P) ∈ 𝛼⊑(℘(L)) and 𝛼2(P) ∈ 𝛼⊒(℘(L))I
= R⟨𝛼1, 𝛼2⟩(P) = Q Hdef. of R⟨𝛼1, 𝛼2⟩I
The inverse holds because 𝛼⊑ ∩ 𝛼⊒ is extensive. Then we have 𝛼⊑(P) ∩ 𝛼⊒(P) = P .
Now let us now prove (3). R⟨𝛼1, 𝛼2⟩ is increasing and extensive by definition when 𝛼1 and 𝛼2 are

increasing and extensive. We now prove that it is idempotent, which amounts to showing that
R⟨𝛼1, 𝛼2⟩(P) ⊆ R⟨𝛼1, 𝛼2⟩ ○R⟨𝛼1, 𝛼2⟩(P) for any P ∈ ℘(L).

R⟨𝛼1, 𝛼2⟩ ○R⟨𝛼1, 𝛼2⟩(P)
= R⟨𝛼1, 𝛼2⟩(𝛼1(P) ∩ 𝛼2(P)) Hdef. of R⟨𝛼1, 𝛼2⟩I
= 𝛼1(𝛼1(P) ∩ 𝛼2(P)) ∩ 𝛼2(𝛼1(P) ∩ 𝛼2(P)) Hdef. of R⟨𝛼1, 𝛼2⟩I
⊆ 𝛼1 ○ 𝛼1(P) ∩ 𝛼1 ○ 𝛼2(P) ∩ 𝛼2 ○ 𝛼2(P) ∩ 𝛼2 ○ 𝛼1(P) Hdef. of 𝛼1 and 𝛼2 that are increasingI
= 𝛼1 ○ 𝛼1(P) ∩ 𝛼2 ○ 𝛼2(P)
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H𝛼1 ○𝛼1(∅) = ∅. For non-empty P , 𝛼2 ○𝛼1(P) = L, since � ∈ 𝛼1(P). The equation trivially
holds when 𝛼1(P) = ∅I

= 𝛼1(P) ∩ 𝛼2(P) Hdef. of 𝛼1 and 𝛼2 that are idempotentI
= R⟨𝛼1, 𝛼2⟩(P) Hdef. of R⟨𝛼1, 𝛼2⟩I
As a result, R⟨𝛼1, 𝛼2⟩(P) is idempotent since R⟨𝛼1, 𝛼2⟩(P) is extensive that implies R⟨𝛼1, 𝛼2⟩(P) ⊇
R⟨𝛼1, 𝛼2⟩ ○R⟨𝛼1, 𝛼2⟩(P). □

The domain conjunctive abstraction R⟨𝛼1, 𝛼2⟩ is more expressive than both both 𝛼1 and 𝛼2.

Lemma 22.3. For a well-defined conjunctive abstraction R⟨𝛼1, 𝛼2⟩, we have the Galois retractions

⟨R⟨𝛼1, 𝛼2⟩(℘(L)), ⊆⟩ −−−−→Ð→←−−−−−−
𝛼⊑

1 ⟨𝛼1(℘(L)), ⊆⟩ and ⟨R⟨𝛼1, 𝛼2⟩(℘(L)), ⊆⟩ −−−−→Ð→←−−−−−−
𝛼⊒

1 ⟨𝛼2(℘(L)), ⊆⟩.

PRoof of lemma 22.3. Without any loss of generality, let us prove the first Galois connection.
We first show that for an arbitrary P ∈ 𝛼1(℘(L)), 1(P) = P is in R⟨𝛼1, 𝛼2⟩(℘(L)). P can be

express by P = 𝛼1(Q) for some Q ∈ L. If P = ∅, then it’s trivially in R⟨𝛼1, 𝛼2⟩. If P ≠ ∅, then
P = 𝛼1(Q)
= 𝛼1 ○ 𝛼1(Q) ∩ 𝛼2 ○ 𝛼1(Q) H𝛼1 is idempotent and 𝛼2 ○ 𝛼1(Q) = L for non-empty 𝛼1(Q)I
= 𝛼1(P) ∩ 𝛼2(P) Hreplace 𝛼1(Q) by PI

Thus,P is inR⟨𝛼1, 𝛼2⟩(℘(L)). SinceP ∈ 𝛼
⊑(℘(L)) by (1) of lemma 22.2, we know that𝛼⊑○1(P) = P ,

proving the Galois retraction. □

Lemma 22.4. For a well-defined conjunctive abstraction operator R⟨𝛼1, 𝛼2⟩, if 𝛼1 and 𝛼2 are upper

closure operators, so is R⟨𝛼1, 𝛼2⟩, and ⟨℘(L), ⊆⟩ −−−−−−−−−→Ð→←−−−−−−−−−−
R⟨𝛼1, 𝛼2⟩

1 ⟨R⟨𝛼1, 𝛼2⟩(℘(L)), ⊆⟩.

PRoof. This follows from Lemma 22.2 implying that R⟨𝛼1, 𝛼2⟩ is an upper closure operator. □

22.1.2 Proof Rule Simplification. Applying the consequence rule {∣P ∣} S{∣Q ∣} {∣P ∣} S{∣R ∣}
{∣P ∣} S{∣Q∩R ∣}

, we get
the following sound and complete rule for the conjunctive abstraction.

{∣P ∣} S{∣𝛼⊑(Q) ∣} {∣P ∣} S{∣𝛼⊒(Q) ∣}
{∣P ∣} S{∣Q ∣}

, Q ∈ R⟨𝛼1, 𝛼2⟩(℘(L)) (114)

PRoof of (114).
{∣P ∣} S{∣Q ∣}

⇔ PostJSK♯(P) ⊆ Q Hdef. of {∣P ∣} S{∣Q ∣}I
⇔ PostJSK♯(P) ⊆ 𝛼⊑(Q) ∩ 𝛼⊒(Q) HBy lemma 22.2I
⇔ PostJSK♯(P) ⊆ 𝛼⊑(Q) ∧ PostJSK♯(P) ⊆ 𝛼⊒(Q) HBy consequence ruleI
⇔ {∣P ∣} S{∣𝛼⊑(Q) ∣} ∧ {∣P ∣} S{∣𝛼⊒(Q) ∣} Hdef. of {∣P ∣} S{∣Q ∣}I □

Lemma 22.3 shows that 𝛼⊑(Q) ∈ 𝛼1(℘(L)), and 𝛼⊒(Q) ∈ 𝛼2(℘(L)). Therefore we have similar
rules for the case when the post-condition is in 𝛼1(℘(L)) and 𝛼2(℘(L)) respectively. An example
is given in the next section.
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22.2 Lower ⊑-closed and frontier elimination
Let us define the ⊑-closed lower closure operator 𝜚⊑

𝜚⊑ ≜ 𝝀P .{𝑃 ∈ P ∣ ∀𝑃 ′ ∈ L . 𝑃 ′ ⊑ 𝑃 ⇒ 𝑃 ′ ∈ P} (115)

Lemma 22.5. 𝜚⊑ is a lower-closure that is increasing, reductive and idempotent, and ⟨℘(L),⊇⟩ −−−−→Ð→←−−−−−−
𝜚⊑

1

⟨𝛼⊑(℘(L)), ⊇⟩

PRoof of lemma 22.5. By definition of 𝜚⊑, it is trivially increasing and reductive. Let us first
prove that 𝜚⊑(P) ∈ 𝛼⊑(℘(L)) for arbitrary P ∈ ℘(P). We have
𝛼⊑ ○ 𝜚⊑(P)
= {𝑃 ∈ L ∣ ∃𝑃 ′ ∈ 𝜚⊑(P) . 𝑃 ⊑ 𝑃 ′} Hdef. of 𝛼⊑I
= {𝑃 ∈ L ∣ ∃𝑃 ′ ∈ P . (∀𝑃 ′′ ∈ L . 𝑃 ′′ ⊑ 𝑃 ′ ⇒ 𝑃 ′′ ∈ P) ∧ 𝑃 ⊑ 𝑃 ′} Hdef. of 𝜚⊑I
= {𝑃 ∈ L ∣ 𝑃 ∈ P ∧ (∀𝑃 ′′ ∈ L . 𝑃 ′′ ⊑ 𝑃 ⇒ 𝑃 ′′ ∈ P)}H(⊆) holds as 𝛼⊑ is extensive;

(⊇) choose 𝑃 ′ = 𝑃I
= 𝜚⊑(P) Hdef. of 𝜚⊑I
We then prove that 𝜚⊑ ○ 𝛼⊑(P) = 𝛼⊑(P)

𝜚⊑ ○ 𝛼⊑(P)
= {𝑃 ∈ 𝛼⊑(P) ∣ ∀𝑃 ′ ∈ L . 𝑃 ′ ⊑ 𝑃 ⇒ 𝑃 ′ ∈ 𝛼⊑(P)} Hdef. of 𝜚⊑I
= {𝑃 ∈ L ∣ (∃𝑄 ∈ P . 𝑃 ⊑ 𝑄) ∧ ∀𝑃 ′ ∈ L . 𝑃 ′ ⊑ 𝑃 ⇒ (∃𝑄 ′ ∈ Q . 𝑃 ′ ⊑ 𝑄 ′)} Hdef. of 𝛼⊑I
= {𝑃 ∈ L ∣ ∃𝑄 ∈ P . 𝑃 ⊑ 𝑄}H(⊇) as 𝜚⊑ is reductive;

(⊆) for all 𝑃 ′ ⊑ 𝑃 , simply let 𝑄 ′ = 𝑄 , then 𝑃 ′ ⊑ 𝑃 ⊑ 𝑄 = 𝑄 ′ holdsI
= 𝛼⊑(P) Hdef. of 𝛼⊑I

Thus, we have proved that 𝜚⊑(℘(L)) = 𝛼⊑(℘(L)). For any P ∈ P, we have 𝜚⊑ ○ 𝜚⊑(P) = 𝜚⊑(P),
since 𝜚⊑(P) is included in 𝛼⊑(℘(L)). □

22.3 Frontier 𝜚 -Elimination Abstraction
We define a new abstraction based on 𝛼𝐹 and 𝜚⊑

𝜚⊑𝐹 ≜ 𝝀P . ⋃
𝐹 ∈𝛼𝐹 (P)

𝜑⊑(𝐹)P (116)

where 𝜑⊑ ≜ 𝝀𝐹 ∈ L .𝝀X ∈ ℘(L) .{𝑃 ∈ X ∣ 𝐹 ⊑ 𝑃 ∧ ∀𝑃 ′ ∈ L . 𝐹 ⊑ 𝑃 ′ ⊑ 𝑃 ⇒ 𝑃 ′ ∈ X}

Lemma 22.6. 𝜚⊑𝐹 is reductive and idempotent

PRoof of lemma 22.6. For any P ∈ ℘(L) and 𝑃 ∈ 𝜚⊑𝐹 (P), we have 𝑃 ∈ 𝜑⊑(𝐹)P for some
𝐹 ∈ 𝛼𝐹 (P), meaning it is in P . Thus 𝜚⊑𝐹 is reductive. To prove idempotency, let us first prove that
𝜚⊑𝐹 preserve lower-frontiers, that is 𝛼𝐹 (P) = 𝛼𝐹 ○ 𝜚⊑𝐹 (P).

𝛼𝐹 ○ 𝜚⊑𝐹 (P)
= {𝑃 ∈ 𝜚⊑𝐹 (P) ∣ ∀𝑃 ′ ∈ 𝜚⊑𝐹 (P) . 𝑃 ′ ⊑ 𝑃 ⇒ 𝑃 = 𝑃 ′} Hdef. of 𝛼𝐹 I
= {𝑃 ∈ P ∣ (∃𝐹 ∈ 𝛼𝐹 (P) . 𝐹 ⊑ 𝑃 ∧ ∀𝑃 ′ ∈ L . 𝐹 ⊑ 𝑃 ′ ⊑ 𝑃 ⇒ 𝑃 ′ ∈ P) ∧
∀𝑃1 ∈ P . ((∃𝐹1 ∈ 𝛼𝐹 (P) . 𝐹1 ⊑ 𝑃1 ∧ ∀𝑃 ′1 ∈ L . 𝐹1 ⊑ 𝑃 ′1 ⊑ 𝑃1 ⇒ 𝑃 ′1 ∈ P) ∧ 𝑃1 ⊑ 𝑃)⇒ 𝑃 = 𝑃1}Hdef. of 𝜚⊑𝐹 I

= {𝑃 ∈ L ∣ ∃𝐺 ∈ 𝛼𝐹 (𝑃) . 𝐺 = 𝑃} = 𝛼𝐹 (P)
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H(⊇) When 𝐺 = 𝑃 , then for all 𝑃1 such that 𝑃1 ⊑ 𝑃 , 𝑃1 = 𝑃 holds trivially;
(⊆) Since ∃𝐹1 ∈ 𝛼𝐹 (P) . 𝐹1 ⊑ 𝑃1 ∧ ∀𝑃 ′1 ∈ L . 𝐹1 ⊑ 𝑃 ′1 ⊑ 𝑃1 ⇒ 𝑃 ′1 ∈ P holds if 𝑃1 is
instantiated to 𝐹 , then the equality 𝑃 = 𝐹 holds, where 𝐹 is a lower-frontier. Thus we can
simply let 𝐺 to be 𝐹 .I

We now prove idempotency. Since 𝛼𝐹 (P) = 𝛼𝐹 ○ 𝜚⊑𝐹 (P), it remains to prove that 𝜑⊑(𝐹)P =
𝜑⊑(𝐹)(𝜚⊑𝐹 (P)) for any 𝐹 ∈ 𝛼𝐹 (P).

𝜑⊑(𝐹)(𝜚⊑𝐹 (P))
= {𝑃 ∈ 𝜚⊑𝐹 (P) ∣ 𝐹 ⊑ 𝑃 ∧ ∀𝑃 ′ ∈ L . 𝐹 ⊑ 𝑃 ′ ⊑ 𝑃 ⇒ 𝑃 ′ ∈ 𝜚⊑𝐹 (P)} Hdef. of 𝜑⊑I
= {𝑃 ∈ P ∣ (∃𝐹1 ∈ 𝛼𝐹 (P) . 𝐹1 ⊑ 𝑃 ∧ ∀𝑃 ′ ∈ L . 𝐹1 ⊑ 𝑃 ′ ⊑ 𝑃 ⇒ 𝑃 ′ ∈ P) ∧ 𝐹 ⊑ 𝑃 ∧
∀𝑃2 ∈ L . 𝐹 ⊑ 𝑃2 ⊑ 𝑃 ⇒ (∃𝐹2 ∈ 𝛼𝐹 (P) . 𝐹2 ⊑ 𝑃2 ∧ (∀𝑃 ′2 ∈ L . 𝐹2 ⊑ 𝑃 ′2 ⊑ 𝑃2 ⇒ 𝑃 ′2 ∈ P))}Hdef. of 𝜚⊑𝐹 , replace 𝑃 ′ with 𝑃2I

= {𝑃 ∈ P ∣ 𝐹 ⊑ 𝑃 ∧ ∀𝑃 ′ ∈ L . 𝐹 ⊑ 𝑃 ′ ⊑ 𝑃 ⇒ 𝑃 ′ ∈ P}H(⊇) since we have assumed that 𝐹 is a lower frontier forP , we can simply let 𝐹1 = 𝐹2 = 𝐹 ,
and all the conditions do hold;
(⊆) To prove ∀𝑃 ′ ∈ L . 𝐹 ⊑ 𝑃 ′ ⊑ 𝑃 ⇒ 𝑃 ′ ∈ P . We are allowed to instantiate 𝑃2 = 𝑃 ′ in the
premise ∀𝑃2 ∈ L . 𝐹 ⊑ 𝑃2 ⊑ 𝑃 ⇒ ∃𝐹2 ∈ 𝛼𝐹 (P) . 𝐹2 ⊑ 𝑃2 ∧ (∀𝑃 ′2 ∈ L . 𝐹2 ⊑ 𝑃 ′2 ⊑ 𝑃2 ⇒ 𝑃 ′2 ∈ P).
Then we get ∀𝑃 ′2 ∈ L . 𝐹2 ⊑ 𝑃 ′2 ⊑ 𝑃 ′ ⇒ 𝑃 ′2 ∈ P for some frontier 𝐹2 where 𝐹2 ⊑ 𝑃 ′. We are
then allowed to instantiate 𝑃 ′2 to 𝑃 ′, which implies that 𝑃 ′ ∈ P holds.I

Therefore, we proved idempotency. □

22.4 Exist Forall Hyperproperties
Assuming that ⟨L, ⊑⟩ ≜ ⟨℘(Π), ⊆⟩. ∃∀ hyperproperties have the form

EAH ≜ {{𝑃 ∈ ℘(Π) ∣ ∃𝜋1 ∈ 𝑃 . ∀𝜋2 ∈ 𝑃 , ⟨𝜋1, 𝜋2⟩ ∈ 𝐴} ∣ 𝐴 ∈ ℘(Π × Π)} (117)

Example 22.7. The negation GD of the generalized non-interference properties GNI in (98) is a
∃∀ hyperproperty expressing generalized dependency. A set of executions satisfies the generalized
dependency when altering the initial values of high variables does change the set of possible final
values of any low variable.

GD ≜ {𝑃 ∈ L ∣ ∃𝜎1𝜋1𝜎 ′1, 𝜎2𝜋𝜎 ′2 ∈ 𝑃 . ∀𝜎3𝜋𝜎 ′3 ∈ 𝑃 . (118)
(𝜎1(L) = 𝜎2(L) = 𝜎3(L))⇒ (𝜎3(H) = 𝜎2(H)⇒ 𝜎 ′3(L) ≠ 𝜎 ′1(L))} ∎

The hyperproperties with 𝜚⊑𝐹 subsume ∃∀ hyperproperties.

EAH ⊆ 𝜚⊑𝐹 (℘(℘(Π))) (119)

PRoof of (119). We prove that ∀P ∈ EAH . P ∈ 𝜚⊑𝐹 (℘(℘(Π))). By Lemma 22.6, it is sufficient
to prove that P ⊆ 𝜚⊑𝐹 (P) due to the fact that 𝜚⊑𝐹 is reductive and idempotent. P is expressed as
P ≜ {𝑃 ∈ ℘(Π) ∣ ∃𝜋1 ∈ 𝑃 . ∀𝜋2 ∈ 𝑃 , ⟨𝜋1, 𝜋2⟩ ∈ 𝐴} for some 𝐴.

𝜚⊑𝐹 (P)
= ⋃

𝐹∈𝛼𝐹 (P)
𝜑⊑(𝐹)P Hdef. of 𝜚⊑𝐹 I

= ⋃
𝐹∈𝛼𝐹 (P)

{𝑃 ∈ P ∣ 𝐹 ⊆ 𝑃 ∧ ∀𝑃 ′ ∈ L . 𝐹 ⊆ 𝑃 ′ ⊆ 𝑃 ⇒ 𝑃 ′ ∈ P} Hdef. of 𝜑⊑I
= {𝑃 ∈ P ∣ ∃𝐹 ∈ 𝛼𝐹 (P) . 𝐹 ⊆ 𝑃 ∧ ∀𝑃 ′ ∈ L . 𝐹 ⊆ 𝑃 ′ ⊆ 𝑃 ⇒ 𝑃 ′ ∈ P} Hdef. of ⋃I
⊇ {𝑃 ∈ ℘(Π) ∣ ∃𝜋1 ∈ 𝑃 . ∀𝜋2 ∈ 𝑃 . ⟨𝜋1, 𝜋2⟩ ∈ 𝐴} = P
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HFor arbitrary 𝑃 ∈ P , there exists 𝜋 ∈ 𝑃 where for all ⟨𝜋, 𝜋 ′⟩ ∈ 𝐴 holds for all 𝜋 ′ ∈ 𝑃 . Let
𝐹 ≜ {𝜋}, which would be in 𝛼𝐹 (P) as ∅ ∉ P by definition. Then 𝐹 ⊆ 𝑃 holds trivially. For
all 𝑃 ′ such that 𝐹 = {𝜋} ⊆ 𝑃 ′ ⊆ 𝑃 . Let 𝜋 be the existent 𝜋1, then for all 𝜋2 ∈ 𝑃 ′, it is also in
𝑃 . Thus we have ⟨𝜋, 𝜋2⟩ ∈ 𝐴, meaning that 𝑃 ′ ∈ P I □

22.5 Proof Rule Simplification
Using the consequence rule, we introduce a sound and complete proof rule that splits an ab-
stract frontier-𝜚⊑ eliminated abstract hyperproperties into a conjunctive abstraction.This requires
manual efforts that partition the precondition P into frontier-indexed preconditions X where
X𝐹 ∈ ℘(L) for 𝐹 ∈ 𝛼𝐹 (Q). Then we can further use the consequence rule to prove the triple for the
correspondent conjunctive abstraction.

∃X ∈ 𝛼𝐹 (Q)→℘(L♯) .∀𝐹 ∈ 𝛼𝐹 (Q) . {∣X𝐹 ∣} S{∣𝜑⊑(𝐹)Q ∣}, P ⊆ ⋃
𝐹∈𝛼𝐹 (Q)

X𝐹

{∣P ∣} S{∣Q ∣}
, Q ∈ 𝜚⊑𝐹 (℘(℘(Π)))

(120)
PRoof of (120).
{∣P ∣} S{∣Q ∣}

⇔ PostJSK♯(P) ⊆ Q Hdef. of {∣P ∣} S{∣Q ∣}I
⇔ PostJSK♯(P) ⊆ ⋃

𝐹∈𝛼𝐹 (Q)
𝜑⊑(𝐹)Q Hlemma 22.6I

⇔ ∃X ∈ 𝛼𝐹 (Q)→℘(L♯) . PostJSK♯( ⋃
𝐹∈𝛼𝐹 (Q)

X𝐹 ) ⊆ ⋃
𝐹∈𝛼𝐹 (Q)

𝜑⊑(𝐹)Q ∧ P ⊆ ⋃
𝐹∈𝛼𝐹 (Q)

X𝐹

H(⇒) let X𝐹 = P for all 𝐹 . (⇐) PostJSK♯(P) is increasing.I
⇔ ∃X ∈ 𝛼𝐹 (Q)→℘(L♯) . ⋃

𝐹∈𝛼𝐹 (Q)
PostJSK♯(X𝐹 ) ⊆ ⋃

𝐹∈𝛼𝐹 (Q)
𝜑⊑(𝐹)Q ∧ P ⊆ ⋃

𝐹∈𝛼𝐹 (Q)
X𝐹

HPostJSK♯ is join preservingI
⇔ ∃X ∈ 𝛼𝐹 (Q)→℘(L♯) . ∀𝐹 ∈ 𝛼𝐹 (Q) . PostJSK♯(X𝐹 ) ⊆⊑ (𝐹)Q ∧ P ⊆ ⋃

𝐹∈𝛼𝐹 (Q)
X𝐹

Hconsequence ruleI
⇔ ∃X ∈ 𝛼𝐹 (Q)→℘(L♯) . ∀𝐹 ∈ 𝛼𝐹 (Q) . {∣X𝐹 ∣} S{∣𝜑⊑(𝐹)Q ∣} ∧ P ⊆ ⋃

𝐹∈𝛼𝐹 (Q)
X𝐹

Hdef. of {∣P ∣} S{∣Q ∣}I □

Now the problem is reduced to proving the premise {∣X𝐹 ∣} S{∣𝜑⊑(𝐹)Q ∣}. Interestingly, we are
able to apply the rule for conjunctive abstraction to 𝜑⊑(𝐹)Q.

Lemma 22.8. For arbitrary P ∈ ℘(L), and 𝐹 ∈ 𝛼𝐹 (P), 𝜑⊑(𝐹)P ∈ R⟨𝛼⊑, 𝛼/⟩(℘(L)).
PRoof. By lemma 22.4, it’s sufficient to prove that R⟨𝛼⊑, 𝛼/⟩ ○𝜑⊑(𝐹)P = 𝜑⊑(𝐹)P
R⟨𝛼⊑, 𝛼/⟩ ○𝜑⊑(𝐹)P

= 𝛼⊑ ○𝜑⊑(𝐹)P ∩ 𝛼/ ○𝜑⊑(𝐹)P Hdef. of R⟨𝛼⊑, 𝛼/⟩I
= {𝑃 ∈ L ∣ ∃𝑃 ′ ∈ 𝜑⊑(𝐹)P . 𝑃 ⊑ 𝑃 ′} ∩ {𝑃 ∈ L ∣ 𝑃 ⊒⊓𝜑⊑(𝐹)P} Hdef. of 𝛼⊑ and 𝛼/I
= {𝑃 ∈ L ∣ ∃𝑃 ′ ∈ P . (𝐹 ⊑ 𝑃 ′∧∀𝑃 ′′ ∈ L . 𝐹 ⊑ 𝑃 ′′ ⊑ 𝑃 ′ ⇒ 𝑃 ′′ ∈ P)∧𝑃 ⊑ 𝑃 ′}∩{𝑃 ∈ L ∣ 𝑃 ⊒⊓𝜑⊑(𝐹)P}Hdef. of 𝜑⊑I
= {𝑃 ∈ L ∣ ∃𝑃 ′ ∈ P . (𝐹 ⊑ 𝑃 ′ ∧ ∀𝑃 ′′ ∈ L . 𝐹 ⊑ 𝑃 ′′ ⊑ 𝑃 ′ ⇒ 𝑃 ′′ ∈ P) ∧ 𝑃 ⊑ 𝑃 ′ ∧ 𝐹 ⊑ 𝑃}H⊓𝜑⊑(𝐹)P = 𝐹I
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= {𝑃 ∈ L ∣ 𝐹 ⊑ 𝑃 ∧ ∀𝑃1 ∈ L . 𝐹 ⊑ 𝑃1 ⊑ 𝑃 ⇒ 𝑃1 ∈ P} = 𝜑⊑(𝐹)PH(⊇) let 𝑃 ′ = 𝑃 , then 𝐹 ⊑ 𝑃 ′∧∀𝑃 ′′ ∈ L . 𝐹 ⊑ 𝑃 ′′ ⊑ 𝑃 ′ ⇒ 𝑃 ′′ ∈ P holds by replacing 𝑃 ′′ with
𝑃1;
(⊆) For any 𝑃1 such that 𝐹 ⊑ 𝑃1 ⊑ 𝑃 holds, we have 𝐹 ⊑ 𝑃 ⊑ 𝑃 ′ for some 𝑃 ′ so that
𝐹 ⊑ 𝑃1 ⊑ 𝑃 ⊑ 𝑃 ′ also holds, which implies that 𝑃1 ∈ P . By the premise, we have ∀𝑃 ′′ ∈ L .
𝐹 ⊑ 𝑃 ′′ ⊑ 𝑃 ′ ⇒ 𝑃 ′′ ∈ P , we are allowed to instantiate 𝑃 ′′ to 𝑃1 and have 𝑃1 ∈ PI □

Lemma 22.9. We can equivalently rewrite the rule in (90) and (17) by the following.

∀𝑃 ∈ P . {𝑃} S{⊓Q}

{∣P ∣} S{∣𝛼⊒(Q) ∣}
, 𝛼⊑(Q) ∈ 𝛼'(℘(L)) ∀𝑃 ∈ P . ∃𝑄 ∈ Q . {𝑃} S{Q}

{∣P ∣} S{∣𝛼⊑(Q) ∣}

PRoof of lemma 22.9. Let us prove the first one: by rule (90), it is sufficient to show that⊓Q =
⊓𝛼⊒(Q). Since 𝛼⊒ is extensive, then ⊓Q ⊒ ⊓𝛼⊒(Q) holds trivially. For arbitrary 𝑃 in 𝛼⊑(Q),
there exists 𝑄 ∈ Q such that 𝑄 ⊑ 𝑃 and then ⊓Q ⊑ 𝑃 . Thus ⊓Q is a lower bound of 𝛼⊑(Q) and is
smaller than the greatest lower bound of it. Now let us prove the second one:
{∣P ∣} S{∣𝛼⊑(Q) ∣}

⇔ PostJSK♯(P) ⊆ 𝛼⊒(Q) Hdef. of {∣P ∣} S{∣Q ∣}I
⇔ ∀𝑃 ∈ P . postJSK♯(𝑃) ∈ 𝛼⊒(Q) Hdef. of ⊆I
⇔ ∀𝑃 ∈ P . ∃𝑄 ∈ Q . postJSK♯(𝑃) ⊑ 𝑄 Hdef. of 𝛼⊒I
⇔ ∀𝑃 ∈ P . ∃𝑄 ∈ Q . {𝑃} S{𝑄} Hdef. of {𝑃} S{𝑄} I

□

Lemma 22.8 implies that we can simplify the proof rule (120) by further applying (114), and
then Lemma 22.9, where its hypothesis is implied by 22.3. Since we have proved that all the in-
termediate rules are sound and complete, rule (⁇) is sound and complete for all postconditions
Q ∈ 𝜚⊑𝐹 (℘(L).

∃X ∈ 𝛼𝐹 (Q)→℘(L♯) .P ⊆ ⋃
𝐹∈𝛼𝐹 (Q)

X𝐹

∀𝐹 ∈ 𝛼𝐹 (Q) .

∀𝑃 ∈ X𝐹 . ∃𝑄 ∈ 𝜑⊑(𝐹)Q . {𝑃} S{𝑄}
{∣X𝐹 ∣} S{∣𝛼⊑ ○ 𝜑⊑(𝐹)Q ∣}

(22.9)
∀𝑃 ∈ X𝐹 . {𝑃} S{⊓𝜑⊑(𝐹)Q}

{∣X𝐹 ∣} S{∣𝛼⊒ ○𝜑⊑(𝐹)Q ∣}
(22.9)

{∣X𝐹 ∣} S{∣𝜑⊑(𝐹)Q ∣}
(114)

{∣P ∣} S{∣Q ∣} (120)

Removing the intermediate steps, the rule becomes

∃X ∈ 𝛼𝐹 (Q)→ ℘(L♯) .P ⊆ ⋃
𝐹∈𝛼𝐹 (Q)

X𝐹 ∧ (∀𝐹 ∈ 𝛼𝐹 (Q) .∀𝑃 ∈ X𝐹 .∃𝑄 ∈ 𝜑⊑(𝐹)Q . {𝑃}𝑆{𝑄}, {𝑃}𝑆{𝐹})

{∣P ∣} S{∣Q ∣} (⁇)

Example 22.10 (Proof reduction for frontier 𝜚 -elimination abstraction: bounded output). Consider
the reachability without break and nontermination. Let the hyperproperties P ≜ {𝑃 ∈ ℘(Σ) ∣
∃𝜎𝑚𝑎𝑥 , 𝜎𝑚𝑖𝑛 ∈ 𝑃 . ∀𝜎 ∈ 𝑃 . 𝜎𝑚𝑖𝑛(𝑥) ≤ 𝜎(𝑥) ≤ 𝜎𝑚𝑎𝑥(𝑥)}, and Q ≜ {𝑃 ∈ ℘(Σ) ∣ ∃𝜎𝑚𝑎𝑥 ∈ 𝑃 . ∀𝜎 ∈
𝑃 . 𝜎(𝑥) ≤ 𝜎𝑚𝑎𝑥(𝑥)}, and we want to prove {∣P ∣} S{∣Q ∣}where S ≜ if(x>0) x=x else x=-x using
the rule (⁇). In this case 𝛼𝐹 (Q) = {{𝜎} ∣ 𝜎 ∈ Σ} is a set of singleton states. We let the partition
variant X be
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X ≜ 𝝀{𝜎} .X{𝜎} ∪ X̄{𝜎}
where X{𝜎} ≜ {𝑃 ∈ ℘(Σ) ∣ 𝜎 ∈ 𝑃 ∧ ∀𝜎 ′ ∈ 𝑃 . 𝜎 ′(𝑥) ≤ 𝜎(𝑥) ∧ −𝜎 ′(𝑥) ≤ 𝜎(𝑥)}

and X̄{𝜎} ≜ {𝑃 ∈ ℘(Σ) ∣ 𝜎 ∈ 𝑃 ∧ ∀𝜎 ′ ∈ 𝑃 . 𝜎 ′(𝑥) ≤ 𝜎(𝑥) ∧ −𝜎 ′(𝑥) ≤ 𝜎(𝑥)}

where 𝜎 is a shorthand for 𝜎[x ← −𝜎(x)]. Now let us prove the case of {∣X{𝜎} ∣} S{∣𝜑⊑(𝐹)Q ∣} for
arbitrary 𝜎 , as the case for X̄{𝜎} is symmetrical and they can be combined by the consequence
rules. Then the rule application proof steps are the following (for an arbitrary 𝑃 ∈ X{𝜎})

let 𝑄 = {𝜎 ′ ∈ Σ ∣ 𝜎 ′(𝑥) ≤ 𝜎(𝑥)} .

by def of 𝑄
{𝜎} ∈ 𝑄

𝜎 ′′ ∈ 𝑄 ′ implies 𝜎 ′′ ∈ 𝑄
∀𝑄 ′ . {𝜎} ⊆ 𝑄 ′ ⊆ 𝑄 ⇒ 𝑄 ′ ∈ X{𝜎}

𝑄 ∈ 𝜑⊑(𝐹)Q

by def of X𝜎 and Q
∀𝜎 ′′ ∈ 𝑃 . 𝜎 ′′(𝑥) ≤ 𝜎(𝜎)

{𝑃} S{𝑄}
∃𝑄 ∈ 𝜑⊑(𝐹)Q . {𝑃} S{𝑄}

and
by def of of X𝜎 where 𝜎 ′ = 𝜎
∀𝜎 ′ ∈ 𝐹 = {𝜎} . 𝜎 ′ ∈ X{𝜎}

{𝑃} S{𝐹}

Now it only remains to show that P ⊆ ⋃
𝜎∈Σ
X{𝜎} ∪ X̄{𝜎}. For arbitrary 𝑃 ∈ P , there exists 𝜎𝑚𝑖𝑛

and 𝜎𝑚𝑎𝑥 in 𝑃 where 𝜎𝑚𝑖𝑛(𝑥) ≤ 𝜎 ′(𝑥)𝜎𝑚𝑎𝑥(𝑥) for all 𝜎 ′ in P with two possible cases:
(1) ∣𝜎𝑚𝑖𝑛(𝑥)∣ ≤ ∣𝜎𝑚𝑎𝑥(𝑥)∣: then we know that 𝑃 is in X{𝜎𝑚𝑎𝑥} by definition.
(2) ∣𝜎𝑚𝑖𝑛(𝑥)∣ > ∣𝜎𝑚𝑎𝑥(𝑥)∣: then 𝜎𝑚𝑖𝑛(𝑥) must be negative and 𝜎𝑚𝑎𝑥(𝑥) < −𝜎𝑚𝑖𝑛(𝑥). In this case,

𝑃 would be in X̄𝜎̄𝑚𝑖𝑛 because of the following: ¯̄𝜎 = 𝜎 has implied that ¯̄𝜎 ∈ 𝑃 . Moreover, for
arbitrary 𝜎 ′ in 𝑃 , 𝜎 ′(𝑥) ≤ 𝜎𝑚𝑎𝑥(𝑥) < −𝜎𝑚𝑖𝑛(𝑥) = 𝜎𝑚𝑖𝑛(𝑥), so as −𝜎 ′(𝑥) ≤ 𝜎𝑚𝑖𝑛(𝑥) holds as
𝜎𝑚𝑖𝑛(𝑥) is the lower bound. ∎

23 Hierarchy of hyperproperties abstractions
To compare these abstractions, we first show that chain limit order ideal abstract properties have
an equivalent frontier order ideal representation.

⟨𝛼⊑𝐹 (℘(L)), ⊆⟩ −−−−−→Ð→←−−−−−−−
∗
𝛼⊑↑

1 ⟨∗𝛼⊑↑(℘(L)), ⊆⟩ (121)

PRoof of (121). Let P ∈ 𝛼⊑𝐹 (℘(L)) so that there exists P ′ such that P = 𝛼⊑𝐹 (P ′). Let us
consider

𝛼⊑↑(P)
= 𝛼⊑↑(𝛼⊑𝐹 (P ′)) Hdef. P = 𝛼⊑𝐹 (P ′)I
= 𝛼⊑(𝛼↑(𝛼⊑(𝛼𝐹 (P ′)))) Hdef. (100 ) of 𝛼⊑↑ and dual def. (93) of 𝛼⊑𝐹 and composition ○I
= {𝑃 ′ ∈ L ∣ ∃𝑃 ∈ 𝛼↑(𝛼⊑(𝛼𝐹 (P ′))) . 𝑃 ′ ⊑ 𝑃} Hdef. (91) of 𝛼⊑I
= {𝑃 ′ ∈ L ∣ ∃𝑃 ∈ {⊔

𝑖∈N
𝑃𝑖 ∣ ⟨𝑃𝑖 , 𝑖 ∈ N⟩ ∈ 𝛼⊑(𝛼𝐹 (P ′)) is an increasing chain with existing lub} . 𝑃 ′ ⊑

𝑃} Hdual def. (95) of 𝛼↑I
= {𝑃 ′ ∈ L ∣ ∃ an increasing chain ⟨𝑃𝑖 , 𝑖 ∈ N⟩ with existing lub . ∀𝑖 ∈ N . 𝑃𝑖 ∈ 𝛼⊑(𝛼𝐹 (P ′)) ∧ 𝑃 ′ ⊑
⊔
𝑖∈N

𝑃𝑖} Hdef. ∈I
= {𝑃 ′ ∈ L ∣ ∃ an increasing chain ⟨𝑃𝑖 , 𝑖 ∈ N⟩ with existing lub . ∀𝑖 ∈ N . 𝑃𝑖 ∈ {𝑃 ′ ∈ L ∣ ∃𝑃 ′′ ∈

𝛼𝐹 (P ′) . 𝑃 ′ ⊑ 𝑃 ′′} ∧ 𝑃 ′ ⊑⊔
𝑖∈N

𝑃𝑖} Hdef. (91) of 𝛼⊑I
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= {𝑃 ′ ∈ L ∣ ∃ an increasing chain ⟨𝑃𝑖 , 𝑖 ∈ N⟩ with existing lub . ∀𝑖 ∈ N . ∃𝑃 ′′ ∈ 𝛼𝐹 (P ′) . 𝑃𝑖 ⊑
𝑃 ′′ ∧ 𝑃 ′ ⊑⊔

𝑖∈N
𝑃𝑖} Hdef. ∈I

= {𝑃 ′ ∈ L ∣ ∃𝑃 ′′ ∈ 𝛼𝐹 (P ′) . 𝑃 ′ ⊑ 𝑃 ′′}H(⇒) ∀𝑖 ∈ N . 𝑃𝑖 ⊑ 𝑃 ′′ implies ⊔𝑖∈N 𝑃𝑖 ⊑ 𝑃 ′′ by def. existing lub, so that 𝑃 ′ ⊑ 𝑃 ′′ by
transitivity;
(⇐) Conversely choose the constant hence increasing chain ⟨𝑃 ′, 𝑖 ∈ N⟩ with existing lub
𝑃 ′ so that ∀𝑖 ∈ N . 𝑃𝑖 = 𝑃 ⊑ 𝑃 ′′ ∧ 𝑃 ′ ⊑ ⊔𝑖∈N 𝑃𝑖 = 𝑃I

= 𝛼⊑(𝛼𝐹 (P ′)) Hdef. (91) of 𝛼⊑I
= P Hdef. PI
It follows by the fixpoint definition (100) of ∗𝛼⊑↑(P) ≜ lfp⊑ 𝝀𝑋 .P ∪ 𝛼⊑↑(𝑋) that ∗𝛼⊑↑(P) = P so
that the Galois retraction (121) follows immediately. □

Fig. 1. The hierarchy of hyperproperties by abstraction. The arrow is interpreted as “more general than”
where the double arrow represents Galois surjection. Dotted line indicated the hyperproperties subsumed
by our abstract in the related works.

Figure 1 shows a lattice of hyperproperties derived by our abstractions as well as the related
hyperproperties that they subsume.

PRoof of figuRe.1. By (121), ifP ∈ ∗𝛼⊑↑(℘(L)) then 1(P) = P ∈ 𝛼⊑𝐹 (℘(L)) proving ∗𝛼⊑↑(℘(L))
⊆ 𝛼⊑𝐹 (℘(L)).
If P ∈ 𝛼⊑𝐹 (℘(L)) then ∃Q ∈ ℘(L) . P = 𝛼⊑𝐹 (Q) so that, by idempotency in (91), 𝛼⊑(𝛼⊑𝐹 (Q)) =

𝛼⊑𝐹 (Q) = P , proving 𝛼⊑𝐹 (℘(L)) ⊆ 𝛼⊑(℘(L)).
For arbitrary non-empty P in 𝛼'(℘(L)) and consider then ⟨𝛼'(℘(L)), ⊑⟩ is a sublattice which

is complete, meaning that it is chain-closed. Thus, 𝛼⊑𝐹 (℘(L))(P) = P , and so 𝛼⊑𝐹 (℘(L)) ⊆
𝛼'(℘(L))

For arbitrary non-empty P in 𝛼⊒𝐹 , P = ⋃𝐹∈𝛼𝐹 (P){𝑃 ∈ L . 𝐹 ⊑ 𝑃} by lemma 18.8, then for
arbitrary 𝑃 inP , 𝐹 ⊑ 𝑃 for some 𝐹 in 𝛼𝐹 (P). 𝑃 would be in𝜑⊑(𝐹)P as for all 𝑃 ′ such that 𝐹 ⊑ 𝑃 ′ ⊑ 𝑃 ,
𝑃 ′ ∈ {𝑃 ′ ∈ L ∣ 𝐹 ⊑ 𝑃 ′} trivially. This implies that P ⊑ 𝜚⊑𝐹 (P), meaning that P = 𝜚⊑𝐹 (P) as the
inverse holds by the fact that 𝜚⊑𝐹 is reducive. This proves that 𝛼⊒𝐹 (℘(L)) ⊆ 𝜚⊑𝐹 (℘(L)).
For arbitrary non-emptyP in𝛼⊑(℘(L)),𝛼𝐹 = {�}.Then 𝜚⊒𝐹 (P) = 𝜚⊒(P) = P .The last equation

holds because 𝜚⊒ is closure operator on 𝛼⊑(℘(L)). This proves that 𝛼⊆(℘(L)) ⊑ 𝜚⊑𝐹 (℘(L)). □
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24 Related Work
Algebraic semantics [45, 49, 58, 71] is rooted in the previous concept of program schemes [12, 37,
44, 46, 74]. The idea of handling logics algebraically using an abstract domain goes back to [28, sec-
tion 5]. It requires a distinction between computational and logical orderings which first appeared
in strictness analysis (using Scott partial order for computational ordering and inclusion for logical
ordering [73]). It is not uncommon in abstract interpretation since then. The calculational method-
ology that we have used is based on [21]. Following the introduction of trace hyperproperties [14],
most semantics [5, 66] and verification methods for semantic (hyper) properties have been on sub-
classes of hyperproperties [6–10, 13, 15, 29, 30, 67], further reviewed in extreme great detail in [30,
section 6].

25 Conclusion and Future Work
Transformational (hyper) logics have traditionally been based on transformers themselves equiv-
alent to an operational semantics. When considering nontermination, other semantics like deno-
tational semantics are relevant, but the corresponding logics are in a separate world [1, 51].

In an attempt to design (hyper) logics valid for various (abstract) semantics, we have defined an
algebraic semantics (which can be instantiated to operational, denotational, or relational semantics,
and is also useful for deductive methods and static analysis).

We have designed, by calculus, a structural fixpoint collecting semantics post for execution
properties (e.g. sets of execution traces), its hypercollecting semantics Post for semantic properties
(e.g sets of sets of traces), and the various over or under approximation logics corresponding to
these transformers for correctness and incorrectness (part III is for over approximation only, but
the main reason to use the under approximation logic is to disprove over approximations which
is expressible as ¬{∣P ∣} S{∣Q ∣}⇔ ∃∅ ⊊ P ′ ⊆ P . {∣P ′ ∣} S{∣¬Q ∣} ).

PRoof of ¬{∣P ∣} S{∣Q ∣}⇔ ∃∅ ⊊ P ′ ⊆ P . {∣P ′ ∣} S{∣¬Q ∣}.
¬{∣P ∣} S{∣Q ∣}

⇔ ¬(Post♯JSK♯P ⊆ Q) H(62)I
⇔ ¬({post♯(𝑆)𝑃 ∣ 𝑃 ∈ P} ⊆ Q) H(40)I
⇔ ¬(∀𝑃 ∈ P . post♯(𝑆)𝑃 ∈ Q) Hdef. ⊆I
⇔ ∃𝑃 ∈ P . post♯(𝑆)𝑃 ∈ ¬Q Hdef. negationI
⇔ ∃∅ ⊊ P ′ ⊆ P . {post♯(𝑆)𝑃 ′ ∣ 𝑃 ′ ∈ P ′} ⊆ ¬QH(⇒) choose P ′ = {𝑃} and def. ⊆;

(⇐) since∅ ⊊ P ′ ⊆ P there exists a 𝑃 ∈ P ′ such that 𝑃 ∈ P and {post♯(𝑆)𝑃 ′ ∣ 𝑃 ′ ∈ {𝑃}}
⊆ {post♯(𝑆)𝑃 ′ ∣ 𝑃 ′ ∈ P ′} ⊆ ¬Q proving post♯(𝑆)𝑃 ∈ ¬Q. I

⇔ ∃∅ ⊊ P ′ ⊆ P . Post♯JSK♯P ′ ⊆ Q H(40)I
⇔ ∃∅ ⊊ P ′ ⊆ P . {∣P ′ ∣} S{∣¬Q ∣} H(62)I □

Since, and contrary to classic logics, proofs of general semantic (hyper) properties relative to a
program semantics requires the exact characterization of this semantics in the proof, an extreme
complication, we have considered abstractions of the semantic properties for which this constraint
can be relaxed. This has yielded to new sound and complete simplified proof rules, including for
algebraic generalizations of forall-forall, forall-exists, and exists-forall semantic (hyper) properties.

The verification of semantic (hyper) properties is still in its infancy and far from reaching the
simplicity observed in the verification of execution properties. Several compromises will be needed
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maybe by relaxing implication (e.g. using Egli-Milner order instead of inclusion), considering ab-
stract properties (for classes of properties of practical interest), and possibly by preserving sound-
ness but renouncing to completeness. However, in full generality, the sound and complete proof
methods introduced in this paper, will ultimately be, up to equivalence, the only one applicable.
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