
1 of 9Wind Energy, 2024; 0:e2958
https://doi.org/10.1002/we.2958

Wind Energy

SHORT COMMUNICATION OPEN ACCESS

Infrared Thermography of Turbulence Patterns of 
Operational Wind Turbine Rotor Blades Supported With 
High-Resolution Photography: KI-VISIR Dataset
Somsubhro Chaudhuri1   |  Michael Stamm1   |  Ivana Lapšanská1  |  Thibault Lançon1  |  Lars Osterbrink2  |  
Thomas Driebe2  |  Daniel Hein2  |  René Harendt3

18.3 Thermographic Methods, Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin, Germany  |  2LATODA (Adoxin UG), Hamburg/Marburg, 
Germany  |  3ROMOTIONCAM™ GmbH, Berlin, Germany

Correspondence: Somsubhro Chaudhuri (somsubhro.chaudhuri@bam.de)

Received: 23 August 2024  |  Revised: 20 September 2024  |  Accepted: 9 October 2024

Funding: This research has been supported by BAM QI-Digital initiative.

Keywords: AI | infrared thermography | inspection | leading edge erosion | rotor blades | thermal inspection | visual inspection

ABSTRACT
With increasing wind energy capacity and installation of wind turbines, new inspection techniques are being explored to ex-
amine wind turbine rotor blades, especially during operation. A common result of surface damage phenomena (such as leading 
edge erosion) is the premature transition of laminar to turbulent flow on the surface of rotor blades. In the KI-VISIR (Künstliche 
Intelligenz Visuell und Infrarot Thermografie—Artificial Intelligence-Visual and Infrared Thermography) project, infrared 
thermography is used as an inspection tool to capture so-called thermal turbulence patterns (TTPs) that result from such surface 
contamination or damage. To complement the thermographic inspections, high-resolution photography is performed to visual-
ise, in detail, the sites where these turbulence patterns initiate. A convolutional neural network (CNN) was developed and used 
to detect and localise turbulence patterns. A unique dataset combining the thermograms and visual images of operational wind 
turbine rotor blades has been provided, along with the simplified annotations for the turbulence patterns. Additional tools are 
available to allow users to use the data requiring only basic Python programming skills.

1   |   Introduction

To achieve global carbon neutrality goals, the number of wind 
turbines in operation and construction is exponentially in-
creasing, with a capacity of 906 GW worldwide in 2022 [1]. 
The rotor blades of wind turbines are aerodynamic structures 
that convert the kinetic energy of the wind into torque, which 
is then used to generate electricity. For efficient conversion, 
the blades are designed for optimal laminar flow in the given 
wind conditions. Based on the aerofoil shape (which changes 
along the blade length) and angle of attack (the angle at which 
the incoming flow meets the leading edge of the blade), there 

is an optimal transition line after which laminar flow tran-
sitions to turbulent flow. This has been extensively studied 
and simulated in literature [2–4]. However, because of surface 
dirt/irregularity/roughness/damage, especially at the leading 
edge of the blade, the laminar flow may prematurely transi-
tion to turbulent flow, effectively reducing the aerodynamic 
performance of the blade at that location [5]. Numerous stud-
ies investigate different phenomena that cause such damage, 
such as airborne particles and rain [6–9], and methods to pro-
tect blades against such damage [10]. Based on real damage 
profiles and simulation studies, it has been estimated that 
the loss of annual energy production (AEP) is approximately 
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2%–3.7%, depending on the extent of damage [11]. To detect 
leading edge erosion remotely, multiple techniques are being 
investigated, with a recent study on detecting far-field aerody-
namic noise (generated due to turbulent flow) [12]. Another 
non-contact technique that is frequently examined, and was 
employed in this study, is infrared thermography [6, 7, 13–15]. 
The nature of turbulent flow is that it increases the interac-
tion between the air flow and the surface of the rotating blade, 
which effectively increases the heat flux from the air into the 
blade and vice versa. If the temperature of the blade is differ-
ent from the air (because of the radiation from the sun and 
diurnal temperature variations), the increased convection will 
cause a local temperature change in the blade. This change 
in temperature can be detected using a suitable infrared ther-
mography camera that is sensitive to minute changes in tem-
perature. The sensitivity of the thermal camera, commonly 
referred to as Noise Equivalent Temperature Difference 
(NETD), should be low enough to detect the induced tempera-
ture contrast, commonly in the shape of a wedge. A study of 
the influence of defect characteristics and aerofoil geometry 
on the detectability of the resulting wedges was performed 
by Jensen et al. [13]. Parrey et al. performed an investigation 
where a model was developed to automate the detection of the 
turbulence patterns in thermographic inspection data [16].

In the KI-VISIR—‘Künstliche Intelligenz Visuell (Bilder) und 
Infrarot Thermografie’ or ‘Artificial Intelligence-Visual (images) 
and Infrared Thermography’—project, infrared thermography 
is used as a non-contact inspection technique to capture thermo-
grams of rotating wind turbine rotor blades from pressure and 
suction sides at different positions (dependent on wind speed, 
wind direction and feasibility at the site). In order to corroborate 
the findings in the thermograms and identify potential sources 
of premature laminar to turbulence transition, high-resolution 
visual photographs are captured of the same blades and per-
spective by ROMOTIONCAM. The paper is structured as fol-
lows: Section 2 describes the methodology adopted to perform 
the inspections; Section 3 provides a description of the publicly 
available dataset comprising of the thermal and visual images, 
along with some additional tools to aid in understanding how 
the data is provided. The article concludes with Sections 4 and 5 
that provide a discussion on the data and summarises the next 
steps, respectively.

2   |   Methodology

2.1   |   Field Inspection

In total, 30 onshore wind turbines were inspected both visually 
and with thermography from either suction or pressure side at 
various locations within Germany. The inspections were per-
formed from the ground while the turbines were in operation. For 
the thermal data acquisition, a long-wavelength infrared camera 
(specifications provided in Table 1), mounted on a pan-tilt (posi-
tional head) unit (PTU), is used to sequentially scan the blades. 
The camera was panned from the hub to the root of a blade of a 
given turbine capturing one section of each blade at a time.

In conjunction with the thermographic inspection, a visual 
inspection with a high-resolution RGB camera was performed 
by ROMOTIONCAM at the same relative positioning to the 
turbine. The technology (patented [17]) of ROMOTIONCAM 
uses a video camera, which is used for motion detection, and a 
high-resolution photo camera with a telephoto lens installed in 
a rotating pan-tilt head that follows the movement of the rotor 
blades. The movement of the rotor is constantly monitored by 
the video camera during the inspection; specially developed 
software evaluates the frames, recognises the blade tips and cre-
ates a virtual model that is compared and synchronised with the 
movement of the rotor. These data are passed on to the rotating 
pan-tilt head in the form of movement data and guide the photo 
camera to selectable sections and angular positions in synchro-
nisation with the movement of the rotor. With this technology, 
the rotor blade section is followed and captured visually, thus 
reducing motion blur and enabling the auto-focussing of the 
visual camera. The parameters of the camera are provided in 
Table 2. A schematic of both systems set up in the field is shown 
in Figure  1. Both systems are approximately 100–120 m away 
from the base of the wind turbine, with the distance depending 
on the length of the blade.

2.2   |   AI-Based Detection

A state-of-the-art convolutional neural network (CNN) was devel-
oped for the automatic detection and localisation of thermographic 
turbulence patterns (TTPs) in thermographic images. CNNs are a 

TABLE 1    |    Specifications of the infrared camera used for inspections.

Infrared 
camera model Detector Wavelength

Detector 
resolution NETD

Objective 
focal length

Maximum frame 
rate (at full frame)

InfraTec 
IR8800

Cooled Hg1-xCdxTe 
MCT Focal-Plane-Array

7.7–10.4 μm 512 × 640 pixel; 
pitch: 16 μm

< 
30 mK

200 mm 200 Hz

TABLE 2    |    ROMOTIONCAM camera parameters.

Photo camera sensor 
size Pixels Pixel pitch Objective focal length

Ground sample 
distance (GSD)a

35.9 mm × 23.9 mm 45.7 MP 
(8256 × 5504 pixel)

4.345 μm 500 mm 0.869 mm/px ± 0.2 mm/px

aThe GSD value varies because of the changes in distance during the movement of the rotor blades and recordings from different angular positions.
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class of deep learning models specifically designed for processing 
data with a grid-like topology, such as images. CNNs are particu-
larly well-suited for image detection tasks because of their ability 
to learn spatial hierarchies of features automatically and adap-
tively from input images. This characteristic enables CNNs to ef-
fectively identify and localise patterns within complex image data. 

In the KI-VISIR project, a state-of-the-art YOLOv9 architecture 
was used, which is exemplarily depicted in Figure 2.

YOLOv9 is a single-stage object detection algorithm that anal-
yses an image only once. It comprises a backbone for feature 
extraction, a neck that uses pyramid networks to combine fea-
tures from multiple layers and multiple heads to detect objects 
at different resolutions. YOLOv9 adds an auxiliary section to 
improve training reliability by linking input data to target out-
put, which counters information loss through deep learning 
layers. The code for YOLOv9 can be freely downloaded from 

FIGURE 1    |    Schematic of how the systems are set up on the field.

FIGURE 2    |    An example of a YOLOv9 architecture for image classification. Taken from [18].

FIGURE 3    |    Example thermal image with manual annotation 
(ground truth) shown in green and automated annotation in red.
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GitHub at [19] and for more information it is recommended to 
read the accompanying paper [20]. In the KI-VISIR project, the 
developed model was designed for polygon detection, a specific 

type of object detection where the model identifies and draws 
polygon around regions of interest—in this case, the TTP areas. 
The CNN was trained and evaluated using a dataset compris-
ing over 2000 thermographic images, each annotated by expe-
rienced annotators according to an internally determined and 
validated guideline. The training process involved feeding the 
CNN with these annotated images, allowing the model to learn 
the distinguishing features of TTP. Through iterative learning 
and optimisation, the CNN was able to generalise from the 
training data, thereby enhancing its ability to detect TTP in 
previously unseen images.

The annotations published within the dataset include not the 
polygons but strictly rectangular detection boxes identifying 
the TTP areas as determined by the CNN model. These de-
tection boxes serve as indicators, showcasing the locations of 
TTP within the thermographic images. The effectiveness of the 
CNN in detecting and localising TTP was assessed on datasets 
that were not used to train the CNN. This allows an evaluation 
of the so-called ground truth (manual annotation of TTPs) and 
the CNN prediction. An example is shown in Figure 3.FIGURE 4    |    Thermogram of a turbine captured from the suction 

side (SS). Filename: Turbine-3_Blade-B_Side-SS_Clock-9_No-1.

FIGURE 5    |    Thermogram of a turbine captured from the pressure 
side (PS). Filename: Turbine-6_Blade-B_Side-PS_Clock-9_No-1.

TABLE 3    |    Folders in the dataset.

Folder name Description

imagesa Contains all visual images taken with ROMOTIONCAM.

thermo_npyb Contains .npy files, which are thermograms with temperature values (64-bit floating point 
numbers) in an array format readable with the commonly used NumPy library in the Python 
programming language. These files provide thermal data that complement the visual images.

thermo_imagesb Contains the thermograms (arrays) converted to .png file format with greyscale 
colours. A corresponding Python function is provided, described in Section 3.3.2, 
which provides the possibility to also produce images with heatmap colours, apart 

from greyscale, as well as the possibility to add a temperature colour bar.

thermo_annotations/ Contains annotation files for the thermogram arrays (.npy format). The annotations are boxes 
in a .geojson format. The boxes indicate areas of thermographic turbulence patterns (TTPs).

thermo_images_annotated/ Contains the combination of thermo_images with the thermo_annotations. 
The corresponding function is provided, described in Section 3.3.

aIdentification markings have been masked in the visual images.
bIdentification markings have been changed to ‘NaN’ or ‘not a number’ values in the NumPy array and subsequently are also not visible in thermal images.

FIGURE 6    |    Overview schematic of the different folders in the 
dataset.
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The evaluation is based on how well the CNN prediction (red) 
fits the ground truth (green). Commonly used metrics for evalu-
ating AI performance were used, demonstrating its potential as 
a reliable tool for automatic thermographic analysis in various 
scientific and industrial applications:

•	 Precision: How much of the model predicted TTP pixels 
were actual TTP pixels: 71.87%.

•	 Recall: How much of the actual TTP pixels were predicted 
by the model: 71.84%.

•	 F1-Score: Harmonic mean of precision and recall: 71.86%.

•	 Intersection over Union (IoU): Measures the overlap be-
tween the prediction and ground truth in relation to their 
joint area: 53.15%.

Further details of the assessment results are beyond the scope of 
this publication.

3   |   Dataset

3.1   |   Overview

This dataset comprises visual images and thermograms acquired 
using an infrared thermographic camera (Bundesanstalt für 
Materialforschung und -prüfung, BAM) and a visual inspection 
camera (ROMOTIONCAM). Both visual and thermographic 
inspections were conducted simultaneously on the same wind 
turbines, during their operational phase in 2023 and 2024. This 
approach was employed to capture the influence of damage (possi-
bly leading edge erosion) on the transition of laminar to turbulent 

TABLE 4    |    Filename description.

Folder name Description

images/ ‘Turbine-<turbine_number>_Blade-<blade-sequence>_Side-<side of 
inspection>_<edge of the blade>_No-<blade section sequence>.jpg’

Example: Turbine-1_Blade-A_Side-SS_LE_No-1.jpg

thermo_npy/ Turbine-<turbine_number>_Blade-<blade-sequence>_Side-<side of 
inspection>_Clock-<position of blade>_No-<blade section sequence>.npy

Example: Turbine-1_Blade-A_Side-SS_Clock-3_No-1.npy

thermo_images/a Turbine-<turbine_number>_Blade-<blade-sequence>_Side-<side of 
inspection>_Clock-<position of blade>_No-<blade section sequence>.png

Example: Turbine-1_Blade-A_Side-SS_Clock-3_No-1.png

thermo_annotations/ Turbine-<turbine_number>_Blade-<blade-sequence>_Side-<side of inspection>_
Clock-<position of blade>_No-<blade section sequence>.geojson

Example: Turbine-1_Blade-A_Side-SS_Clock-3_No-1.geojson

thermo_images_annotated/ Turbine-<turbine_number>_Blade-<blade-sequence>_Side-<side of 
inspection>_Clock-<position of blade>_No-<blade section sequence>.png

Example: Turbine-1_Blade-A_Side-SS_Clock-3_No-1.png
aThe heatmap colouring or grey scaling for the thermo_images is relative to each individual image and is provided as a colour bar with each image. The user is free 
to adjust this for their specific visualisation using the raw data in the NumPy array format. In this study, the coldest temperature is shown in black and the hottest in 
white. To enhance the visibility of even small temperature differences, the background (primarily sky and clouds) and outliers are removed prior to normalisation.

TABLE 5    |    Variables used in filenames. Schematics for explaining the variables are provided in Figures 7 and 8.

Variable Description

turbine_number The turbine numbers from 1 to 30.

blade_sequence Blade identification; either A, B or C.

side of inspection The side of the turbine from which the inspection was 
taken; pressure side (PS) or suction side (SS).

edge of the blade For visual images, whether the primary perspective was 
on the leading edge (LE) or trailing edge (TE).

blade section sequencea The sequence of blade sections captured from the nacelle to the tip.

position of blade For the thermograms, whether the position of the blade was a 
certain position representative of a clock (3 or 9 o'clock).

aThe thermal images are taken in sections, as described in [21]. Because of the difference in spatial resolution of the two camera systems and blade lengths across 
turbines, the total number of sections per blade may differ across turbines.
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flow in the thermographic images. Consequently, the dataset of-
fers a possibility for analysing the correlation between visual and 
thermographic data. The dataset consists of the following:

•	 30 unique wind turbines. The turbines are anonymised, 
that is, they are numbered as Turbines 1–30. All identifi-
cation markings have been removed. Any identification of 
turbine type, location and so forth is unintended and purely 
coincidental.

•	 90 blades. The blades could have either been captured from 
the pressure side (PS) or the suction side (SS). This is men-
tioned in the filename and other metadata provided. An ex-
ample of each is given in Figures 4 and 5.

•	 2160 visual images, each in .jpg format and 5400 × 7920 pix-
els. All identification markings have been removed.

•	 1206 thermograms, each an array of 640 × 512 (64-bit 
floating-point number) temperature values in degrees 
Celsius. Thus, the original thermal data are provided 
(used temperature calibration of the IRT camera: −10°C to 
+40°C). All identification markings have been removed.

3.2   |   Dataset Management

The distribution of the data is provided in this section, along 
with the strategies used for setting the filename. Based on the 
AI-based detection described in Section 2.2, the TTPs detected 

in the thermograms have been annotated and provided in the 
dataset.

3.2.1   |   Folders

The main folder is titled ‘ki-visir_dataset_v1’. The remaining 
folders are described in Table 3. An overview schematic of the 
different folders can be seen in Figure 6.

3.2.2   |   Filename Strategies

For naming the data files, the strategy is described in Table 4. 
The variables used are described in Table 5. Two schematics are 
provided in Figures 7 and 8 that visually represent the variables 
for ease of interpreting.

3.3   |   Provided Tools

3.3.1   |   Metadata

Metadata corresponding to the dataset have been provided in a 
comma-separated file (.csv). Each thermogram and visual image 
has been referred to in this .csv file to provide the user with ad-
ditional information regarding the inspection. The columns in 
the metadata are described in Table 6 where an example is given 
for the filename ‘Turbine-6_Blade-A_Side-PS_Clock-9_No-1’, 
which is shown in Figure 5.

3.3.2   |   Python Programming Functions

In addition to metadata, a few Python programming functions 
have been provided in the ‘ki_visir_helper_functions_v2.py’ file 
that provides users a ‘quick start’ way of using the dataset. The 
functions provided are briefly explained in Table 7. The script is 
well-commented to leave as little as possible to interpretation. 
Basic knowledge of Python and basic Python package installa-
tion on a computer are required.

4   |   Discussion

The dataset indicates the possibility of capturing thermal tur-
bulence patterns (TTPs) that may act as an indication to wind 

FIGURE 7    |    Schematic to visualise variables linked to data 
management.

FIGURE 8    |    Blade section sequencing example for visual and thermal images. Images from Turbine-2 Blade B Suction side in the dataset.
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turbine operators that the rotor blades may have some addi-
tional aerodynamic losses due to the drag generated. The TTPs 
can also be identified using an AI-based algorithm. It should be 
noted that the measured temperatures on the rotor blade depend 
on the following parameters:

1.	 internal structure of the rotor blades as well as thermal prop-
erties of the used materials;

2.	 solar irradiation and reflections from the sun, sky and 
ground;

3.	 convection depending on the air flow on the rotor blade 
(laminar/turbulent);

4.	 surface emissivity, which is influenced by the paintwork as 
well as dirt.

TABLE 6    |    Columns in the metadata file.

Column title Description Example (see Figure 5)

turbine Identifier for the turbine Turbine-6

bladelength_m Length of the blade in metres 38

blade Identifier for the blade (A, B C) B

blade_side Side of the blade being inspected (Suction 
Side (SS)/Pressure Side (PS))

PS

inspection_type Type of inspection performed (image/thermo) thermo

blade_view Only for visual inspection: the view angle 
or perspective of the blade in the image 
(Leading Edge (LE)/Trailing Edge (TE))

—

clock_position Only for thermograms: Position of the blade 
in terms of clock orientation (3/9 o'clock)

9

group Unique name for each set of visual and 
thermal blade inspection data

Turbine-6_B_PS

file_sequence Sequence identifier for images/thermograms. 
A sequence is a set of images that belong 

together and illustrate a whole blade_side

85

image_order Order of the image in the inspection sequence. 
Goes from left to right for visual inspections 
and 3 o'clock thermograms. Goes from right 

to left for 9 o'clock thermograms (always 
from the hub to the tip of the blade)

1

file_name Name of the image or thermogram file Turbine-6_Blade-B_
Side-PS_Clock-9_No-1

left_blade_ma Blade section at the left image border in 
metres. (root = 0, tip = blade length)

0.12

center_blade_ma Blade section at the image centre in 
metres. (root = 0, tip = blade length)

4.02

right_blade_ma Blade section at right image border in 
metres. (root = 0, tip = blade length)

7.92

same_time_image_and_thermo Indicates if the image and thermogram were 
taken at the same time (True/False)

TRUE

wind_conditions_kmh Wind conditions in kilometres per 
hour during the inspection

14

weather_conditions General weather conditions during the inspection Mostly Cloudy

humidity_rhpercent Relative humidity percentage during the inspection 50

temperature_c Temperature in Celsius during the inspection 19

comment Additional comments or notes about the inspection —
aThe variables [left_blade_m, center_blade_m, right_blade_m] may lack precision because of factors such as blade or nacelle movements. Because these parameters 
are used to calculate the actual rotor blade section shown (length X metres to Y metres) for each image, the overlap between two adjacent images can then be 
calculated. Generally, the values obtained from visual inspections tend to be more accurate than those from thermographic inspections.
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8 of 9 Wind Energy, 2024

It is thus evident that the laminar flow on the rotor blade is only 
one of many effects that influence the measured surface tem-
perature and that the other effects should always be taken into 
account when interpreting the measured temperatures. This is 
because thermographic measurements are also used, in other 
cases, to visualise the internal structures of rotor blades at stand-
still or in idle mode. Figure 9 shows a thermographic image of 
a running rotor blade. The various influences on the measured 
surface temperature can be clearly recognised in this figure. In 
addition to the TTPs, which run as triangles from the leading 
edge (bottom) in dark (low temperature), inner structure (spar 
and repairs) and surface features (scratches) are recognisable in 
the thermogram.

5   |   Summary

The presented dataset contains the thermographic and visual im-
ages of 30 wind turbines taken simultaneously and from the same 

position relative to the rotor blades (see schematic in Figure 1 for 
reference). This results in visual and thermal images that have the 
same perspective of the rotor blades, allowing a direct spatial com-
parison of the acquired images. The focus of the measurements 
is to thermally visualise the transition from laminar to turbulent 
flow due to possible leading edge erosion, amongst other damage 
mechanisms. The dataset is free to download from https://​www.​
doi.​org/​10.​5281/​zenodo.​13771900. This short communication 
document may act as an aid for the user to understand how the 
data have been managed and may guide the user to a ‘quick-start’ 
with the data. More on the algorithm and analysis of the TTP will 
be available in a follow-up article.

Author Contributions

Somsubhro Chaudhuri: methodology, project administration, soft-
ware, hardware, data curation, inspection, validation, formal analysis, 
writing – original draft, visualisation. Michael Stamm: conceptuali-
sation, resources, project administration, funding acquisition, method-
ology, writing – reviewing and editing. Ivana Lapšanská: hardware, 
inspection, data curation, writing – reviewing and editing. Thibault 
Lançon: inspection, data curation. Lars Osterbrink: software, data 
curation, validation, formal analysis, writing – reviewing and editing. 
Thomas Driebe: software, data curation, validation, formal analysis. 
Daniel Hein: conceptualisation, project management. René Harendt: 
hardware, inspection, data curation, formal analysis, writing – review-
ing and editing.

Acknowledgements

This research has been supported by BAM's QI-Digital initiative. Open 
Access funding enabled and organized by Projekt DEAL.

Conflicts of Interest

The authors declare no conflicts of interest.

Data Availability Statement

https://​www.​doi.​org/​10.​5281/​zenodo.​13771900

Peer Review

The peer review history for this article is available at https://​www.​webof​
scien​ce.​com/​api/​gatew​ay/​wos/​peer-​review/​10.​1002/​we.​2958.

TABLE 7    |    Python functions provided with the dataset.

Function Description

npy_to_image Convert a NumPy array to a greyscale or heatmap image. Returns 
a 3D NumPy array each representing the RGB colour channels.

convert_npy_folder_to_png Convert all .npy files in a folder to .png images with 
either greyscale or heatmap colour maps.

combine_images Combines multiple images into a single large image (for ease of 
viewing) for a specified group. Used within the next function.

combine_images_by_group Performs the combine_images function 
based on groups in the metadata.

draw_geojson_on_images Draw polygons from GeoJSON files onto 
corresponding PNG images and save the results.

FIGURE 9    |    Top: Thermogram of a rotor blade section in operation. 
Bottom: The same thermogram with annotated features. Filename: 
Turbine-2_Blade-B_Side-SS_Clock-9_No-3.
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