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ABSTRACT 

In the last 20 years, Music Information Retrieval (MIR) 

has been an expanding research field, and the MIREX 

competition has become the main evaluation venue in 

MIR field. Analyzing recent results for various tasks of 

MIREX (MIR Evaluation eXchange), we observed that 

the evolution of task solutions follows two different 

patterns: for some tasks, the results apparently hit 

stagnation, whereas for others, they seem getting better 

over time. In this paper, (a) we compile the MIREX 

results of the last 6 years, (b) we propose a configurable 

quantitative index for evolution trend measurement of 

MIREX tasks, and (c) we discuss possible explanations 

or hypotheses for the stagnation phenomena hitting some 

of them. This paper hopes to incite a debate in the MIR 

research community about the progress in the field and 

how to adequately measure evolution trends. 

1. INTRODUCTION 

In the last 20 years, mainly due to growth of audio data 

available in the Internet, Music Information Retrieval 

(MIR) has been an expanding field of research. It 

encompasses various problems or tasks, whose solutions 

have impact in music market. Since 2005, the MIR 

Evaluation eXchange (MIREX) [7] is the main evaluation 

“arena” in MIR field, proposing datasets, tasks and 

metrics to compare MIR solutions. A shallow analysis of 

its results shows they are continuously evolving for some 

tasks, whereas they seem stagnated for other ones. 

There are several MIR and MIREX meta-analysis pa-

pers [6][7][23][24]. However, to our knowledge, a trans-

versal study over stagnation of results on MIR tasks is 

lacking, as well as an index for evolution trend measure-

ment. Also, stagnation phenomenon on many of these 

tasks is not yet being deeply discussed by the community. 

Both the existence of common reasons and task 

specific reasons for stagnation on MIR tasks are very 

probable. Therefore, a deep study of stagnation 

phenomena is task-dependent, and demands the analysis 

of techniques, datasets and metrics used in recent years. 

Then, it is out of the scope of this paper to perform a deep 

analysis on the reasons of stagnation for each one of the 

MIREX tasks. This paper intends, instead, to provoke 

researchers involved with MIREX tasks (stagnated or 

not) to test some general hypotheses we suggest, and to 

propose their own task specific hypotheses. 

Understanding of stagnation phenomena may be 

improved by objective evolution trends measurement. 

Comparing evolution trends between different datasets or 

metrics, for a given task, possibly help to identify how 

metrics and datasets bias observable results, or how each 

sub-problem of the task is more or less developed. In 

addition, evolution trends comparison between different 

tasks provide an overall picture of evolution in MIR 

research, drawing attention to what kind of methods and 

strategies are being used on developing tasks that could 

be adapted for stagnated ones. 

This paper presents an accurate empirical analysis of 

MIREX recent results. It also proposes a configurable 

quantitative index for evolution trends measurement. 

Finally, it raises some hypotheses and questions that 

could possibly explain stagnation phenomena and/or 

hopefully help MIR research community to exchange 

more information about it in order to move forward. 

Section 2 presents method used to analyze data. We 

explain and formalize a configurable index for evolution 

measurement on Section 3. Section 4 raises hypotheses 

about possible causes of stagnation. Section 5 draws 

some general conclusions on the performed analysis. 

Finally, future works are listed on Section 6. 

2. METHOD 

MIREX is the MIR competition that became the main 

evaluation venue in MIR field. It has been running since 

2005. According to MIREX 2015 final results’ poster, 

107 researchers from 64 teams participated in the last 

edition and submitted algorithms for 21 active tasks, 

resulting in 402 runs, over 47 different datasets [11].  

MIREX contributions to the MIR community are 

evident. Influential MIR researchers have identified four 

key contributions of MIREX: “training and induction into 

MIR”, “dissemination of new research”, “dissemination 

of data” and “benchmarking and evaluation” [7]. 

In order to evaluate research progress in MIR tasks, 

we could have tried to compare results published in 
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recent years. However, we decided to focus analysis in 

MIREX because it can be more systematic, since: (1) 

MIREX tasks are well defined, and (2) submissions from 

different years to a given task/subtask run over the same 

datasets and (3) the results are evaluated using the same 

metrics. We do acknowledge the limitations of this 

methodological choice, since not all MIR algorithms 

developed have been evaluated in MIREX competition. 

But, for the sake of comparison precision and 

extensiveness, it seemed to be the best choice. 

A timeline of tasks, subtasks and datasets used for 

each task or subtask was constructed with data collected 

from MIREX results between 2010 and 2015 [11]. In 

order to analyze tendencies, it is necessary to consider a 

relevant time frame, as well as to guarantee comparisons 

over time are consistent. As inclusion criterion, only tasks 

for which there was at least one dataset used for at least 

five editions since 2010 were admitted. The rationale of 

this choice is that observing a unique dataset ensures 

consistency and comparability of results, whereas 

considering at least five editions provides a reliable time 

window for trend analysis. Though, from all 28 tasks 

proposed between the first edition in 2005 and the last in 

2015, 4 tasks were discontinued until 2008, other 6 tasks 

were considered very recent (started in 2013 or later), 

whereas the remaining 18 tasks were analyzed in this 

study, including 3 active tasks in 2014 which did not run 

in 2015. 

We assumed datasets and methods for metrics 

computation did not change, except when explicitly 

documented on the task’s MIREX official wiki or results’ 

pages [11]. Among the remaining candidates, one dataset 

for each task or subtask was chosen to collect data for 

analysis. When more than one dataset was available, 

older datasets were preferred, to allow future researches 

to extend this work by comparing backwards. For Audio 

Genre Classification task, two datasets were equally 

older: Mixed Set and Latin. Mixed Set was then chosen, 

as a more generic set tends to provide a more realistic 

picture of the state of the art. 

Among 18 analyzed tasks, 3 tasks presented more 

than one subtask. “MF0 Estimation & Tracking” is 

divided into “MF0 Estimation” and “Note Tracking”. 

Actually, we believe that they could be two different 

tasks themselves, due to the different nature of their 

objectives. Then, both subtasks were analyzed. For 

“Query-by-tapping” (QBT), two subtasks are available: 

“QBT with symbolic input” (subtask 1) and “QBT with 

wave input” (subtask 2). We analyzed subtask 1, since 

onset files allow participants to concentrate on similarity 

matching, which is the main objective of the task, instead 

of onset detection. Finally, “Query-by-Singing/ 

Humming” (QBSH) presented two subtasks: “Classic 

QBSH evaluation” and “Variants QBSH evaluation”. 

Classic evaluation (subtask 1) was chosen, since the 

variants evaluation adds constraints to the original 

problem – for instance, considering queries as variants of 

“ground-truth” midi. 

Each task has several metrics computed. As our 

analysis needs to rank results, for the sake of comparison, 

one metric for each task or subtask was chosen. As this 

analysis aims to understand evolution of the state of the 

art on each task, more general metrics were assumed to 

provide a more realistic picture of each task’s 

performance. Then, metrics often used in MIREX Overall 

Results Posters [11] and metrics measuring overall 

performance were chosen, at the expense of those 

measuring a given characteristic of the algorithms. For 

instance, F-Measure was preferred when tasks also 

compute Precision and Recall, as Precision and Recall 

compute specific performances whereas F-Measure 

relates to both Precision and Recall. 

Considering the chosen metrics, top results for each 

task were analyzed. We then noticed that two groups 

emerged: “tasks presenting stagnated results” and “tasks 

presenting evolving results”. The first group included 

tasks which presented no significant improvement on 

results in the last years of the competition. And the 

second group included tasks whose results’ evolution is 

noticeable in the last six years. Of course, there is a high 

level of subjectivity on deciding when a given task is 

evolving (and at which pace), or stagnated. For a 

systematic analysis, a quantitative index for evolution 

measurement is necessary.  

3. AN INDEX FOR EVOLUTION MEASUREMENT 

To perform our study, we needed a quantitative index for 

measuring results’ evolution trends, in order to 

distinguish stagnated results from evolving ones. In this 

section we introduce what we called “Weighted 

Evolution Measurement Index” (WEMI), and we discuss 

its semantics. 

Measuring stagnation phenomena by just looking to 

evolution graphs has limitations, as similar graphs may 

 

Figure 1. Examples of different evolution trends: (a) stagnation trend; (b) continuous evolution trend; and (c) recovery 

from recent stagnation trend. 
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Figure 2. Some tasks results evolution plots (3 top results per year) and respective WEMI values (w=0.6 and 

c=0.0713): (A) “Audio Music Mood Classification”; (B) “Music Structure Segmentation”; (C) “Audio Chord Estima-

tion”; (D) “Audio Melody Extraction”; (E) Query-by-Singing/Humming”; and (F) “Score Following”; top historical re-

sults (squares) were used for trend analysis. 

be hard to distinguish. For a state of the art analysis of 

trends, we must be able to objectively differentiate 

continuous from intermittent evolution, as well as 

measure how evolution occurred over time and 

consistently compare evolution of different tasks. For 

instance, consider Figure 1, which shows different 

hypothetical evolution scenarios. In all cases, results 

evolve from 0.2 to 0.8, so the first and the last result of all 

series coincide (overall error drop was exactly the same). 

However, the way evolution occurred is different in each 

case, so evolution trends are not the same. First series (a) 

shows a clear stagnation trend, as no recent improvement 

occurred after a huge improvement in the past. Second 

series (b) shows a continuous evolution of results, with 

small improvements every year. Finally, third series (c) 

shows a huge recovery from a recent stagnation period, 

as recent improvements occurred after many years 

without any improvement. Therefore, it is interesting that 

an index for evolution trend measurement can be properly 

balanced to differentiate these scenarios. In addition, such 

an index must be consistent in scenarios of complete 

stagnation (i.e., no evolution since the beginning of the 

series). 

Considering that we are interested in state of the art 

evolution, it does make sense to discard results which did 

not overcome the top result achieved so far. Then, the 

proposed index considers evolution as a monotonically 

increasing function. Figure 2 shows various examples of 

actual top results per year, and results selected for trend 

analysis. 

The index we propose considers a series of results 

from year i to year f (in this study, i = 2010 and f = 

2015). According to the chosen metric and state of 

development of each task, bias may occur if we observe 

top results directly. In order to avoid it, we consider 

relative error drop rate from one year to the next. 

Error, in a given year y, such that i ≤ y ≤ f, is defined 

as: 

                                       (1) 

 

Where rj is the top result achieved in year j. The error 

drop rates are then computed for each pair of successive 

years (y-1 and y, such that  i+1 ≤  y  ≤  f ), as: 

 

       
  

                                              

 

Recent evolution is reinforced by higher weights of 

error drop rates for recent years, so that recent 

improvements tend to push WEMI up more than results 

achieved many years ago, even if the error drop rate in 

both cases was the same. 

Continuous evolution is reinforced with a direct 

proportionality between WEMI and the number of actual 

improvements within the time frame. This way, WEMI 

tends to be higher when continuous evolutions are 

achieved each year, in comparison with the situation in 

which the same overall evolution is achieved from one 

year to the next, at once. Then, WEMI is defined as: 

 

      
              

 
     

          
     

   
 

   
          

 

The number of improvements over previous top result 

between i+1 and f (i.e., the number of times ∆ej is larger 

374 Proceedings of the 17th ISMIR Conference, New York City, USA, August 7-11, 2016



  

 

Task Dataset Used Metric Observed YHTR q OEDR WEMI 

Audio Music Sim. and Retr. Default Av. Fine Score Human Eval. 2011 1 0.04 0.0188 

Audio Music Mood Classif. MIREX 2007 Normalized Class. Accuracy 2011 1 0.14 0.0202 

Music Structure Segment. MIREX 2009 Frame Pair Clust. F-Measure 2012 1 0.10 0.0216 

Audio Tag Classification Maj/Min Tag Tag Classification Accuracy 2011 1 0.11 0.0254 

MFFE&T – MF0 Estimat. MIREX 2009 Chroma Precision 2011 1 0.36 0.0324 

Audio Class. Comp. Ident. MIREX 2009 Normalized Class. Accuracy 2011 1 0.39 0.0341 

Symbolic Melodic Simil. Essen Col. "Fine" score1 2013 2 0.12 0.0398 

Audio Key Detection MIREX 2005 Weighted Key Score 2013 1 0.26 0.0540 

Audio Chord Estimation MIREX 20092 Weigh. Chord Symbol Recall 2011 1 0.87 0.0608 

Classic Query-by-Tapping Roger Jang Simple Count 2012 1 0.29 0.0738 

Audio Onset Detection MIREX 2005 Average F-Measure 2013 3 0.40 0.0801 

Audio Genre Classification Mixed Popular3 Normalized Class. Accuracy 2014 2 0.37 0.0829 

Audio Melody Extraction MIREX 2005 Overall Accuracy 2014 2 0.33 0.0901 

Audio Tempo Estimation MIREX 2006 Average P-Score 2015 2 0.18 0.1014 

Audio Beat Tracking MCK F-Measure 2015 4 0.20 0.1038 

MFFE&T – Note Tracking MIREX 2009 Average F-Measure4 2014 3 0.58 0.1731 

Query-by-Singing/Humm. Roger Jang Simple Count 2015 1 0.51 0.2353 

Score Following5 Not identified6 Total Precision 2015 4 0.83 0.4225 

Audio Cover Song Identif. Mixed Collec. Total num. of cov. id. in top 107 2013 1 N/A N/A 

1 Sum of fine-grained human similarity decisions. | 2 Major/minor triads classification. | 3 Also known as US Pop Music. | 
4 For onset only over chroma. | 5 Also known as “Real Time Audio to Score Alignment”. | 6 MIREX result pages men-

tions 3 datasets, but we could not identify which one was considered for the results in provided tables. | 7 Metric “mean 

number of covers identified in top 10 (average performance)” would be preferable, but is not available for all years. 

Table 1. Analyzed tasks’ general information; WEMI computed for w = 0.6 and c = 0.0713; YHTR stands for “Year of 

Historical Top Result”; OEDR stands for “Overall Error Drop Rate”, computed as OEDR = 1 – (e2015/e2010). 

than zero, for i+1 ≤  j ≤  f) is called q (if no improvement 

occurred, WEMI must be zero). Two configurable 

constants, w and c, are defined such that 0 < w ≤ 1 and c 

> 0. Clearly, the closer w is to zero, the greatest the 

weight of recent improvements on final index, whereas 

the closer it is to 1, more equalized weights are used. 

Also, the closer c is to zero, the lowest the weight of 

constant evolution on final WEMI value. In this study, 

we computed WEMI for a variety of w and c values 

(results are available at https://goo.gl/bxwrDy). Balancing 

w and c depends mainly on the importance one gives to 

recent against continuous evolution. Therefore, we 

believe a discussion on MIR community about this trade 

off would lead to more appropriate balancing of the index 

for MIREX tasks, considering the goal of identifying 

bottlenecks of evolution and/or evaluation. 

The “Audio Cover Song Identification” task could not 

have WEMI computed, as expected “total number of 

covers identified in top 10” (T10) is not available. 

However, results almost doubled T10 from 908 in 2010 

to 1714 in 2013, regardless of the absence of 

improvements in other MIREX editions. 

A total of 18 tasks were analyzed, with “MF0 

Estimation & Tracking” comprising two subtasks. This 

resulted in 19 task/subtasks. Table 1 shows a summary of 

the analysis, with examples of output for w = 0.6 and c = 

0.0713 (the average weighted sum of error drop rates of 

all tasks, considering w = 0.6). 

WEMI is a first proposal and a provocation for a 

broader discussion about evolution measurement indexes 

for MIR tasks, especially on MIREX competition. 

Objective and early identification of stagnation trends 

may raise earlier discussions in the community about the 

appropriateness of metrics, datasets or current methods 

for a given task, probably helping to shorten future 

stagnation periods or to improve current metrics and/or 

datasets. Evidently, computing WEMI for a single metric 

of a task may be misleading. On the other hand, 

computing it for many metrics of a task will probably 

lead to a greater understanding of specific bottlenecks in 

task evaluation and/or evolution. 

4. SOME STAGNATION HYPOTHESES 

Stagnation on most MIR task results is already 

acknowledged by MIR community, as in the case of 

singer identification in polyphonic audio [13], music  

transcription [2],  emotion and genre classification 

[14][19], music similarity [8][18], and so on. In spite of 

this acknowledgement, there is not much discussion 

about possible hypothesis which could explain the 

phenomena.  Sturm [22], among others [23][24], have 
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recently raised questions about the experimental validity 

in MIR evaluation, stating reliable evaluation remains 

neglected in MIR research. Even though, data put 

together in this research inspire some questions. This 

paper intends to provoke this kind of questions, and its 

explanation hypotheses. 

In order to encourage this discussion, identifying 

whether MIREX manages to satisfactorily measure 

improvements of performance for its various tasks is 

necessary. If this is true, why so many of them are 

stagnated? Temporary solution stagnation phenomena are 

a normal stage in scientific development. However, some 

mechanisms could be employed to shorten them. 

As we said before, since the explanations for 

stagnation may be task-dependent, it is difficult to 

provide general explanations for stagnation, and then 

hints on how to overcome it. Nevertheless, from some 

discussion on the literature of specific tasks, coupled with 

our own experience in MIR, we have formulated two 

hypotheses that may possibly help researchers to move 

forward. These hypotheses are not meant to be correct, 

but rather to start a transversal discussion among 

stagnated tasks. 

The first hypothesis is: MIR approaches should 

perhaps be more musical knowledge-intensive.  

According to Downie [6], in 2008, community members 

were becoming aware of the limitations of MIR “generic 

approaches”, i.e. the application of information retrieval 

solutions for music, without relying on musically 

meaningful features. However, since then, most of works 

in MIREX seems to still rely on more generic IR 

techniques than on an in-depth use of specific music 

knowledge. It is true that embedding music expert 

knowledge pawn generality of the approaches, but 

perhaps this could be path to move away from stagnation. 

Let’s take “Audio Chord Estimation” as an example. 

Chord estimation is apparently stuck into a kind of glass 

ceiling. Very often, approaches are agnostic, neglecting 

contextual information or musical knowledge after 

feature selection. The most successful approaches in 

MIREX often use probabilistic machine learning 

techniques, mostly through neural networks, as HMM, 

MLN or Bayesian [3][17][20][25]. A few approaches 

make use of specialist knowledge, applying it on the 

lower levels of symbolic information, in order to improve 

feature vector quality [4][12]. A deeper study on “Audio 

Chord Estimation” state of the art, performed by McVicar 

et al. [16], observed advances in feature extraction and 

modeling stage, as well as expert musical knowledge use 

for model training, but no musical knowledge use for 

post-processing, for instance. 

Musical creation process is essentially artistic. Then, 

perplexity of harmonic sequences in real world tends to 

be high, implying less predictability. In fact, one cannot 

talk about a correct or wrong chord sequence, as in most 

classification problems. A composer not only is free to 

create novel chord sequences, but he or she tends to look 

for them. Therefore, purely probabilistic approaches are 

limited by the predictability of analyzed corpus, meaning 

that uncommon (artistically novel) chord sequences may 

be misrecognized. In addition, other variables may 

interfere in harmonic sequences, such as genre (jazz 

harmony differs strongly from rock harmony) or style (a 

given musician tends to prefer some chord sequences). 

There are evidences that musical knowledge can 

improve chord estimation [21][1][5][15]. Therefore, we 

believe that improvements can be achieved using musical 

knowledge on higher levels of information and contextual 

information to decide what chord is represented by a 

given feature vector. By higher levels of information we 

basically mean musical theory applied over symbolic 

information. For instance, the use of functional harmonic 

analysis, which has been proved to add relevant 

information to chord sequences [21][5], to chose, among 

candidate chords, the ones which lead to more 

meaningful chord sequences, even when their feature 

vector are not the first options provided by a feature 

vector based classifier. 

Music structure information has also been shown to 

add relevant contextual information for chord estimation 

[15]. For instance, the classification of “easy” chords first 

and the use of this information to help classification of 

“harder” ones, according to the harmonic meaning of the 

sequence they would lead to, or using harmonically 

similar pieces already classified of the same song 

(sometimes with better conditions to feature extraction 

and classification, such as less noise, transients, arpeggios 

or ornamentation) may lead to improvement on current 

results. 

The second hypothesis is: the number of techniques 

employed by the MIREX community is perhaps too 

limited. It is very difficult to prove that a particular 

technique is not used by the community, as failed 

attempts are rarely published. But observing recent 

ISMIR publications, we noticed that each task presents a 

small set of often used techniques. For instance, chord 

estimation tends to rely mostly on HMM, but also on 

MLN or Bayesian networks, for classification. 

To reinforce our hypothesis, we analyze the impact of 

a specific technique in MIREX results, showing how the 

use of a new technique can affect results. Chosen 

technique was Deep Learning, which dates back to the 

Neo-cognition introduced by K. Fukushima in 1980 [9], 

but only a few years ago have been found promising for 

MIR. 

In 2012, Humphrey warned about the lack of deep 

learning approaches in MIR research [10]. Analyzing the 

top results from 2010 to 2015, among the 19 

tasks/subtasks considered in this work, we can notice 

that, in the last 3 years, 11 tasks had their results 

improved, but only 3 of the improvements came from 

approaches using deep learning techniques, according to 
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the technical reports submitted to MIREX. This may 

suggest that (1) deep learning is not being extensively 

explored yet in MIR and (2) if deep learning could 

improve results in three of the tasks, it is fair to consider 

there are possibly other techniques, yet not explored, with 

similar potential. 

Regarding the first assertion, it might be due to the 

lack of enough labeled data, meaning that some tasks are 

not even eligible for Deep Learning yet. In this case, it 

would be fair to consider the creation of new datasets or 

enlargement of existing ones as a possible path to 

overcome stagnation on these tasks.  

Of course, other hypotheses could be deeper 

investigated. For instance, the lowest WEMI values (even 

for several different w and c values) belong to tasks 

which use human generated ground truth data. Further 

investigation of this relation could lead to relevant 

information. Unsuitability or limitation of the datasets 

and metrics of the stagnated tasks are worth to 

investigate. However many of these hypotheses are task 

dependent and such an investigation would be better 

performed by specialists on each task. 

5. CONCLUSIONS 

Trying to understand recent practical advances in MIR 

research, a compilation of the last 6 years of MIREX 

results for 18 tasks (one of them comprised of two sub-

tasks) was performed. Aiming to encourage discussion on 

how to measure progress in MIR, we propose a 

configurable quantitative index of improvement, the 

“Weighted Evolution Measurement Index” (WEMI), in 

order to objectively measure trends on each task, in a 

comparable way, reinforcing recent and continuous 

advances. We believe such an index may help 

understanding bottlenecks of evolution or measurement 

issues, by comparing different datasets and metrics for a 

given task (intra-task analysis), as well as helping to 

overcome stagnation, by task comparisons, observing 

whether methods and strategies of evolving tasks are 

being applied to stagnated ones (inter-task analysis). The 

index can be balanced, according to the community’s 

understanding of what is most relevant: continuous or 

recent evolution. Also, we raise hypotheses and questions 

about stagnation affecting many of MIR tasks and we 

point some possible insights on this matter. We believe 

that a deeper discussion in MIR community about 

stagnation phenomena affecting many of MIR tasks may 

help to find general mechanisms or strategies which will 

allow overcoming it, as well as improving MIREX 

interest and relevance. 

6. FUTURE WORK 

It would be possible to obtain a more detailed overview 

of MIREX tasks’ trends with a number of additional 

information, for instance: (1) comparing WEMI 

computed for other metrics or other datasets, in a given 

task, will probably help understanding if metrics or 

datasets are biasing observable evolution trends at first 

sight; and/or (2) a deeper study on discrepant results (for 

instance, “Classical Composer Identification, 2011” and 

“Chord Estimation, 2011”, as seen in Figure 2) in order to 

identify overfitting or other distortions of top result will 

certainly improve accuracy. Another interesting 

improvement would be adaptation of WEMI so that total 

weights sum is normalized by the time window, as this 

would allow more consistent comparisons between time 

windows of different lengths, if this makes sense in a 

given context. Finally, a formal evaluation of the index is 

still missing. 
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