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ABSTRACT

Keyword spotting (or spoken term detection) is an inter-
esting task in Music Information Retrieval that can be ap-
plied to a number of problems. Its purposes include topi-
cal search and improvements for genre classification. Key-
word spotting is a well-researched task on pure speech, but
state-of-the-art approaches cannot be easily transferred to
singing because phoneme durations have much higher vari-
ations in singing. To our knowledge, no keyword spotting
system for singing has been presented yet.
We present a keyword spotting approach based on
keyword-filler Hidden Markov Models (HMMs) and test
it on a-capella singing and spoken lyrics. We test Mel-
Frequency Cepstral Coefficents (MFCCs), Perceptual Lin-
ear Predictive Features (PLPs), and Temporal Patterns
(TRAPs) as front ends. These features are then used to
generate phoneme posteriors using Multilayer Perceptrons
(MLPs) trained on speech data. The phoneme posteriors
are then used as the system input. Our approach produces
useful results on a-capella singing, but depend heavily on
the chosen keyword. We show that results can be further
improved by training the MLP on a-capella data.
We also test two post-processing methods on our phoneme
posteriors before the keyword spotting step. First, we aver-
age the posteriors of all three feature sets. Second, we run
the three concatenated posteriors through a fusion classi-
fier.

1. INTRODUCTION

Keyword spotting is the task of searching for certain words
or phrases (spoken term detection) in acoustic data. In con-
trast to text data, we cannot directly search for these words,
but have to rely on the output of speech recognition sys-
tems in some way.
In speech, this problem has been a topic of research since
the 1970’s [1] and has since seen a lot of development and
improvement [11]. For singing, however, we are not aware
of any fully functional keyword spotting systems.
Music collections of both professional distributors and pri-
vate users have grown exponentially since the switch to a
digital format. For these large collections, efficient search
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methods are necessary. Keyword spotting in music col-
lections has beneficial applications for both user groups.
Using keyword spotting, users are able to search their col-
lections for songs with lyrics about certain topics. As an
example, professional users might use this in the context
of synch licensing [4] (e.g., “I need a song containing
the word ’freedom’ for a car commercial”.) Private users
could, for example, use keyword spotting for playlist gen-
eration (“Generate a playlist with songs that contain the
word ‘party’.”)
In this paper, we present our approach to a keyword spot-
ting system for a-capella singing. We will first look at the
current state of the art in section 2. We then present our
data set in section 3. In section 4, we describe our own
keyword spotting system. A number of experiments on this
system and their results are presented in section 5. Finally,
we draw conclusions in section 6 and give an outlook on
future work in section 7.

2. STATE OF THE ART

2.1 Keyword spotting principles

As described in [13], there are three basic principles that
have been developed over the years for keyword spotting
in speech:
LVCSR-based keyword spotting For this approach, full

Large Vocabulary Continues Speech Recognition
(LVCSR) is performed on the utterances. This re-
sults in a complete text transcription, which can then
be searched for the required keywords. LVCSR-
based systems lack tolerance for description errors -
i.e., if a keyword is not correctly transcribed from the
start, it cannot be found later. Additionally, LVCSR
systems are complex and expensive to implement.

Acoustic keyword spotting As in LVCSR-based key-
word spotting, acoustic keyword spotting employs
Viterbi search to find the requested keyword in a
given utterance. In this approach, however, the sys-
tem does not attempt to transcribe each word, but
only searches for the specific keyword. Everything
else is treated as “filler”. This search can be per-
formed directly on the audio features using an acous-
tic example, or on phoneme posteriorgrams gener-
ated by an acoustic model. In the second case, the
algorithm searches for the word’s phonemes.
This approach is easy to implement and provides
some pronunciation tolerance. Its disadvantage is
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the lack of integration of a-priori language knowl-
edge (i.e. knowledge about plausible phoneme and
word sequences) that could improve performance.

Phonetic search keyword spotting Phonetic search key-
word spotting starts out just like LVCSR-based key-
word spotting, but does not generate a word tran-
scription of the utterance. Instead, phoneme lattices
are saved. Phonetic search for the keyword is then
performed on these lattices. This approach combines
the advantages of LVCSR-based keyword spotting
(a-priori knowledge in the shape of language mod-
els) and acoustic keyword spotting (flexibility and
robustness).

2.2 Keyword spotting in singing

The described keyword spotting principles cannot easily
be transferred to music. Singing, in contrast to speech,
presents a number of additional challenges, such as larger
pitch fluctuation, more pronunciation variation, and differ-
ent vocabulary (which means existing models cannot easily
be transferred).
Another big difference is the higher variation of phoneme
durations in singing. Both LVCSR-based keyword spot-
ting and Phonetic search keyword spotting depend heavily
on predictable phoneme durations (within certain limits).
When a certain word is pronounced, its phonemes will usu-
ally have approximately the same duration across speak-
ers. The language model employed in both approaches will
take this information into account.
We compared phoneme durations in the TIMIT speech
database [7] and our own a-capella singing database (see
section 3). The average standard deviations for vowels and
consonants are shown in figure 1. It becomes clear that
the phoneme durations taken from TIMIT do not vary a
lot, whereas some the a-capella phonemes show huge vari-
ations. It becomes clear that this especially concerns vow-
els (AA, AW, EH, IY, AE, AH, AO, EY, AY, ER, UW, OW,
UH, IH, OY). This observation has a foundation in music
theory: Drawn-out notes are usually sung on vowels.
For this reason, acoustic keyword spotting appears to be
the most feasible approach to keyword spotting in singing.
To our knowledge, no full keyword spotting system for
singing has been presented yet. In [2], an approach based
on sub-sequence Dynamic Time Warping (DTW) is sug-
gested. This is similar to the acoustic approach, but does
not involve a full acoustic model. Instead, example utter-
ances of the keyword are used to find similar sequences in
the tested utterance.
In [5], a phoneme recognition system for singing is pre-
sented. It extracts Mel-Frequency Cepstral Coefficients
(MFCCs) and Temporal Patterns (TRAPs) which are then
used as inputs to a Multilayer Perceptron (MLP). The pho-
netic output of such a system could serve as an input to a
keyword spotting system.
There are also some publications where similar principles
are applied to lyrics alignment and Query by Humming
[12] [3].

Figure 1: Average standard deviations for vowels and con-
sonants in the TIMIT speech databases (blue) and our a-
capella singing data set (green).

3. DATA SET

Our data set is the one presented in [5]. It consists of the
vocal tracks of 19 commercial pop songs. They are studio
quality with some post-processing applied (EQ, compres-
sion, reverb). Some of them contain choir singing. These
19 songs are split up into clips that roughly represent lines
in the song lyrics.
Twelve of the songs were annotated with time-aligned
phonemes. The phoneme set is the one used in CMU
Sphinx 1 and TIMIT [7] and contains 39 phonemes. All
of the songs were annotated with word transcriptions. For
comparison, recordings of spoken recitations of all song
lyrics were also made. These were all performed by the
same speaker.
We selected 51 keywords for testing our system. Most of
them were among the most frequent words in the provided
lyrics. A few were selected because they had a compara-
tively large number of phonemes. An overview is given in
table 1.

4. PROPOSED SYSTEM

Figure 2 presents an overview of our system.

1. Feature extraction We extract Mel-Frequency Cep-
stral Coefficients (MFCCs), Perceptual Linear Pre-
dictive features (PLPs), and Temporal Patterns
(TRAPs) [6]. We keep 20 MFCC coefficients and 39
PLP coefficients (13 direct coefficients plus deltas
and double-deltas). For the TRAPs, we use 8 lin-
early spaced spectral bands and a temporal context
of 20 frames and keep 8 DCT coefficients.

2. MLP training and phoneme recognition Using each
feature data set, we train Multi-Layer Perceptrons
(MLPs). MLPs are commonly used to train acoustic
models for the purpose of phoneme recognition. We
chose a structure with two hidden layers and tested
three different dimension settings: 50, 200, and 1000
dimensions per layer. MLPs were trained solely on
TIMIT data first, then on a mix of TIMIT and a-
capella in a second experiment. The resulting MLPs
are then used to recognize phonemes in our a-capella
dataset, thus generating phoneme posteriorgrams.

1 http://cmusphinx.sourceforge.net/
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Number of Phonemes Keywords
2 way, eyes
3 love, girl, away, time, over, home, sing, kiss, play, other
4 hello, trick, never, hand, baby, times, under, things, world, think, heart, tears, lights
5 always, inside, drink, nothing, rehab, forever, rolling, feeling, waiting, alright, tonight
6 something, denial, together, morning, friends, leaving, sunrise
7 umbrella, afternoon, stranger, somebody, entertain, everyone
8 beautiful, suicidal

Table 1: All 51 tested keywords, ordered by number of phonemes.

Figure 2: Overview of our keyword spotting system. Variable parameters are shown in italics.

The following two points described optional post-
processing steps on the phoneme posteriorgrams.

3a. Posteriorgram merging For this post-processing
step, we take the phoneme posterior results that
were obtained using different feature sets and
average them. We tested both the combinations of
PLP+MFCC, PLP+TRAP, and PLP+MFCC+TRAP.

3b. Fusion MLP classifier As a second post-processing
option, we concatenate phoneme posteriors obtained
by using different feature sets and run them through
a fusion MLP classifier to create better posteri-
ors. We again tested the combinations PLP+MFCC,
PLP+TRAP, and PLP+MFCC+TRAP.

4. Keyword spotting The resulting phoneme posterior-
grams are then used to perform the actual keyword
spotting. As mentioned above, we employ an acous-
tic approach. It is based on keyword-filler Hidden
Markov Models (HMMs) and has been described
in [14] and [8].
In general, two separate HMMs are created: One for
the requested keyword, and one for all non-keyword
regions (=filler). The keyword HMM is generated
using a simple left-to-right topology with one state
per keyword phoneme, while the filler HMM is a
fully connected loop of states for all phonemes.
These two HMMs are then joined. Using this com-
posite HMM, a Viterbi decode is performed on the
phoneme posteriorgrams. Whenever the Viterbi path
passes through the keyword HMM, the keyword is
detected. The likelihood of this path can then be
compared to an alternative path through the filler
HMM, resulting in a detection score. A threshold

Figure 3: Keyword-filler HMM for the keyword “greasy”
with filler path on the left hand side and two possible key-
word pronunciation paths on the right hand side. The pa-
rameter β determines the transition probability between
the filler HMM and the keyword HMM. [8]

can be employed to only return highly scored occur-
rences. Additionally, the parameter β can be tuned
to adjust the model. It determines the likelihood of
transitioning from the filler HMM to the keyword
HMM. The whole process is illustrated in figure 3.

We use the F1 measure for evaluation. Results are consid-
ered to be true positives when a keyword is spotted some-
where in an expected utterance. Since most utterances con-
tain one to ten words, we consider this to be sufficiently ex-
act. Additionally, we evaluate the precision of the results.
For the use cases described in section 1, users will usually
only require a number of correct results, but not necessarily
all the occurrences of the keyword in the whole database.
We consider a result to be correct when the keyword is
found as part of another word with the same pronuncia-
tion. The reasoning behind this is that a user who searched
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Figure 4: F1 measures for a-capella data (left) and speech
(right) when using PLP, MFCC, or TRAP features. The
MLPs for phoneme recognition had two hidden layers with
50, 200, or 1000 nodes each.

for the keyword “time” might also accept occurrences of
the word “times” as correct.

5. EXPERIMENTS

5.1 Experiment 1: Oracle search

As a precursor to the following experiments, we first tested
our keyword spotting approach on oracle posteriorgrams
for the a-capella data. This was done to test the general
feasibility of the algorithm for keyword spotting on singing
data with its highly variable phoneme durations.
The oracle posteriorgrams were generated by converting
the phoneme annotations to posteriorgram format by set-
ting the likelihoods of the annotated phonemes to 1 during
the corresponding time segment and everything else to 0.
A keyword search on these posteriorgrams resulted in F1

measures of 1 for almost all keywords. In cases where
the result was not 1, we narrowed the reasons down to an-
notation errors and pronunciation variants that we did not
account for. We conclude that our keyword-filler approach
is generally useful for keyword spotting on a-capella data,
and our focus in the following experiments is on obtaining
good posteriorgrams from the audio data.

5.2 Experiment 2: A-Capella vs. Speech

For our first experiment, we run our keyword spotting sys-
tem on the a-capella singing data, and on the same utter-
ances spoken by a single speaker. We evaluate all three fea-
ture datasets (MFCC, PLP, TRAP) separately. The recog-
nition MLP is trained on TIMIT speech data only. We also
test three different sizes for the two hidden MLP layers:
50 nodes, 200 nodes, and 1000 nodes in each layer. The
results are shown in figure 4.
As described in section 2.2, we expected keyword spotting

on singing to be more difficult than on pure speech because
of a larger pitch range, more pronunciation variations, etc.
Our results support this assumption: In speech, keywords
are recognized with an average F1 measure of 33% using
only PLP features, while the same system results in an av-
erage F1 of only 10% on a-capella singing.
For both data sets, an MLP with 200 nodes in the hidden
layers shows a notable improvement over one with just 50.
When using 1000 nodes, the result still improves by a few
percent in most cases.
When looking at the features, PLP features seem to work

Figure 5: F1 measures for a-capella data (left) and speech
(right) when the recognition is trained only on TIMIT
speech data (blue) or on a mix of TIMIT and a-capella data
(green).

best by a large margin, with TRAPs coming in second. It
is notable, however, that some keywords can be detected
much better when using MFCCs or TRAPs than PLPs (e.g.
“sing”, “other”, “hand”, “world”, “tears”, “alright”). As
described in [5] and [10], certain feature sets represent
some phonemes better than others and can therefore bal-
ance each other out. A combination of the features might
therefore improve the whole system.
Evaluation of the average precision (instead of F1 mea-
sure) shows the same general trend. The best results are
again obtained when using PLP features and the largest
MLP. The average precision in this configuration is 16%
for a-capella singing and 37% for speech. (While the dif-
ference is obvious, the result is still far from perfect for
speech. This demonstrates the difficulty of the recognition
process without a-priori knowledge.)

5.3 Experiment 3: Training including a-capella data

As a measure to improve the phoneme posteriorgrams for
a-capella singing, we next train our recognition MLP with
both TIMIT and a part of the a-capella data. We mix in
about 50% of the a-capella clips with the TIMIT data.
They make up about 10% of the TIMIT speech data. The
results are shown in figure 5 (only the results for the largest
MLP are shown).
This step improves the keyword recognition on a-capella

data massively in all feature and MLP configurations. The
best result still comes from the biggest MLP when using
PLP features and is now an average F1 of 24%. This step
makes the recognition MLP less specific to the properties
of pure speech and therefore does not improve the results
for the speech data very much. It actually degrades the best
result somewhat.
The effect on the average precision is even greater. The a-
capella results are improved by 10 to 15 percentage points
for each feature set. On speech data, the PLP precision
decreases by 7 percentage points.

5.4 Experiment 4: Posterior merging

As mentioned in experiment 2, certain feature sets seem to
represent some keywords better than others. We therefore
concluded that combining the results for all features could
improve the recognition result.
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Figure 6: F1 measures for a-capella data (left) and speech
(right) when posteriorgrams for two or three features are
merged. The configurations PLP+MFCC, PLP+TRAP, and
PLP+MFCC+TRAP are shown and compared to the PLP
only result.

Figure 7: F1 measures for a-capella data (left) and
speech (right) when posteriorgrams for two or three fea-
tures are fed into a fusion classifier. The configura-
tions PLP+MFCC, PLP+TRAP, and PLP+MFCC+TRAP
are shown and compared to the PLP only result.

To this end, we tested merging the phoneme posterior-
grams between the MLP phoneme recognition step and the
HMM keyword spotting step. In order to do this, we sim-
ply calculated the average values across the posteriors ob-
tained using the three different feature data sets. This was
done for all phonemes and time frames. Keyword spotting
was then performed on the merged posteriorgrams. We
tested the configurations PLP+MFCC, PLP+TRAP, and
PLP+MFCC+TRAP. The results are shown in figure 6.

Posterior merging seems to improve the results for a-
capella singing somewhat and works best when all three
feature sets are used. The F1 measure on a-capella singing
improves from 24% (PLP) to 27%. It does not improve the
speech result, where PLP remains the best feature set.

5.5 Experiment 5: Fusion classifier

After the posterior merging, we tested a second method
of combining the feature-wise posteriorgrams. In this
second method, we concatenated the posteriorgrams ob-
tained from two or all three of the feature-wise MLP rec-
ognizers and ran them through a second MLP classifier.
This fusion MLP was trained on a subset of the a-capella
data. This fusion classifier generates new, hopefully im-
proved phoneme posteriorgrams. HMM keyword spot-
ting is then performed on these new posteriorgrams. We
again tested the configurations PLP+MFCC, PLP+TRAP,
and PLP+MFCC+TRAP. The results are shown in figure 7.
The fusion classifier improves the F1 measure for a-capella
singing by 5 percentage points. The best result of 29% is
obtained when all three feature sets are used. Precision

improves from 24% to 31%. However, the fusion classifier
makes the system less specific towards speech and there-
fore decreases the performance on speech data.

5.6 Variation across keywords

The various results we presented in the previous exper-
iments varies widely across the 51 keywords. This is
a common phenomenon in keyword spotting. In many
approaches, longer keywords are recognized better than
shorter ones because the Viterbi path becomes more re-
liable with each additional phoneme. This general trend
can also be seen in our results, but even keywords with the
same number of phonemes vary a lot. The precisions vary
similarly, ranging between 2% and 100%.
When taking just the 50% of the keywords that can be rec-
ognized best, the average F1 measure for the best approach
(fusion MLP) jumps from 29% to 44%. Its precision in-
creases from 31% to 46%. We believe the extremely bad
performance of some keywords is in part due to the small
size of our data set. Some keywords occurred in just one
of the 19 songs and were, for example, not recognized be-
cause the singer used an unusual pronunciation in each oc-
currence or had an accent that the phoneme recognition
MLP was not trained with. We therefore believe these re-
sults could improve massively when more training data is
used.

6. CONCLUSION

In this paper, we demonstrated a first keyword spotting ap-
proach for a-capella singing. We ran experiments for 51
keywords on a database of 19 a-capella pop songs and
recordings of the spoken lyrics. As our approach, we
selected acoustic keyword spotting using keyword-filler
HMMs. Other keyword spotting approaches depend on
learning average phoneme durations, which vary a lot more
in a-capella singing than in speech. These approaches
therefore cannot directly be transferred.
As a first experiment, we tested our approach on oracle
phoneme posteriorgrams and obtained almost perfect re-
sults. We then produced “real world” posteriorgrams using
MLPs with two hidden layers which had been trained on
TIMIT speech data. We tested PLP, MFCC, and TRAP
features. The training yielded MLPs with 50, 200, and
1000 nodes per hidden layer. We observed that the 200
node MLP produced significantly better results than the 50
node MLPs in all cases (p < 0.0027), while the 1000 node
MLPs only improved upon this result somewhat. PLP fea-
tures performed significantly better than the two other fea-
ture sets. Finally, keywords were detected much better in
speech than in a-capella singing. We expected this result
due to the specific characteristics of singing data (higher
variance of frequencies, more pronunciation variants).
We then tried training the MLPs with a mixture of TIMIT
speech data and a portion of our a-capella data. This im-
proved the results for a-capella singing greatly.
We noticed that some keywords were recognized better
when MFCCs or TRAPs were used instead of PLPs. We
therefore tried two approaches to combine the results for
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all three features: Posterior merging and fusion classifiers.
Both approaches improved the results on the a-capella
data. The best overall result for a-capella data was pro-
duced by a fusion classifier that combined all three features
(29%).
As expected, keyword spotting on a-capella singing proved
to be a harder task than on speech. The results varied
widely between keywords. Some of the very low results
arise because the keyword in question only occurred in one
song where the singer used an unusual pronunciation or
had an accent. The small size of our data set also poses a
problem when considering the limited number of singers.
The acoustic model trained on speech data and a part of the
a-capella data might be subject to overfitting to the singers’
vocal characteristics.
In contrast, the recognition worked almost perfectly for
keywords with more training data. Keyword length also
played a role. When using only the 50% best keywords,
the average F1 measure increased by 15 percentage points.
Finally, there are many applications where precision plays
a greater role than recall, as described in section 4. Our
system can be tuned to achieve higher precisions than F1

measures and is therefore also useful for these applications.
We believe that the key to better keyword spotting results
lies in better phoneme posteriorgrams. A larger a-capella
data set would therefore be very useful for further tests and
would provide more consistent results.

7. FUTURE WORK

As mentioned in section 2, more sophisticated keyword
spotting systems for speech incorporate knowledge about
plausible phoneme durations (e.g. [9]). In section 2.2, we
showed why this approach is not directly transferable to
singing: The vowel durations vary too much. However,
consonants are not affected. We would therefore like to
start integrating knowledge about average consonant dura-
tions in order to improve our keyword spotting system. In
this way, we hope to improve the results for the keywords
that were not recognized well by our system.
Following this line of thought, we could include even more
language-specific knowledge in the shape of a language
model that also contains phonotactic information, word
frequencies, and phrase frequencies. We could thus move
from a purely acoustic approach to a phonetic (lattice-
based) approach.
We will also start applying our approaches to polyphonic
music instead of a-capella singing. To achieve good results
on polyphonic data, pre-processing will be necessary (e.g.
vocal activity detection and source separation).

8. REFERENCES

[1] J. S. Bridle. An efficient elastic-template method for
detecting given words in running speech. In Brit.
Acoust. Soc. Meeting, pages 1 – 4, 1973.

[2] C. Dittmar, P. Mercado, H. Grossmann, and E. Cano.
Towards lyrics spotting in the SyncGlobal project. In

3rd International Workshop on Cognitive Information
Processing (CIP), 2012.

[3] H. Fujihara and M. Goto. Three techniques for im-
proving automatic synchronization between music and
lyrics: Fricative detection, filler model, and novel fea-
ture vectors for vocal activity detection. In IEEE In-
ternational Conference on Acoustics, Speech and Sig-
nal Processing (ICASSP), pages 69–72, Las Vegas, NV,
USA, 2008.

[4] H. Grossmann, A. Kruspe, J. Abesser, and H. Luka-
shevich. Towards cross-modal search and synchroniza-
tion of music and video. In International Congress on
Computer Science Information Systems and Technolo-
gies (CSIST), Minsk, Belarus, 2011.

[5] J. K. Hansen. Recognition of phonemes in a-cappella
recordings using temporal patterns and mel frequency
cepstral coefficients. In 9th Sound and Music Comput-
ing Conference (SMC), pages 494–499, Copenhagen,
Denmark, 2012.

[6] H. Hermansky and S. Sharma. Traps – classifiers of
temporal patterns. In Proceedings of the 5th Inter-
national Conference on Spoken Language Processing
(ICSLP), pages 1003–1006, Sydney, Australia, 1998.

[7] J. S. Garofolo et al. TIMIT Acoustic-Phonetic Contin-
uous Speech Corpus. Technical report, Linguistic Data
Consortium, Philadelphia, 1993.

[8] A. Jansen and P. Niyogi. An experimental evaluation
of keyword-filler hidden markov models. Technical re-
port, Department of Computer Science, University of
Chicago, 2009.

[9] K. Kintzley, A. Jansen, K. Church, and H. Hermansky.
Inverting the point process model for fast phonetic key-
word search. In INTERSPEECH. ISCA, 2012.

[10] A. M. Kruspe, J. Abesser, and C. Dittmar. A GMM ap-
proach to singing language identification. In 53rd AES
Conference on Semantic Audio, London, UK, 2014.

[11] A. Mandal, K. R. P. Kumar, and P. Mitra. Recent devel-
opments in spoken term detection: a survey. Interna-
tional Journal of Speech Technology, 17(2):183–198,
June 2014.

[12] A. Mesaros and T. Virtanen. Automatic recognition of
lyrics in singing. EURASIP Journal on Audio, Speech,
and Music Processing, 2010(4), January 2010.

[13] A. Moyal, V. Aharonson, E. Tetariy, and M. Gishri.
Phonetic Search Methods for Large Speech Databases,
chapter 2: Keyword spotting methods. Springer, 2013.

[14] I. Szoeke, P. Schwarz, P. Matejka, L. Burget,
M. Karafiat, and J. Cernocky. Phoneme based acous-
tics keyword spotting in informal continuous speech.
In V. Matousek, P. Mautner, and T. Pavelka, editors,
TSD, volume 3658 of Lecture Notes in Computer Sci-
ence, pages 302–309. Springer, 2005.

15th International Society for Music Information Retrieval Conference (ISMIR 2014)

276




