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ABSTRACT

We describe a novel tempo estimation method based on
decomposing musical audio into sources using principal
latent component analysis (PLCA). The approach is moti-
vated by the observation that in rhythmically complex mu-
sic, some layers may be more rhythmically regular than the
overall mix, thus facilitating tempo detection. Each excerpt
was analyzed using PLCA and the resulting components
were each tempo tracked using a standard autocorrelation-
based algorithm. We describe several techniques for ag-
gregating or choosing among the multiple estimates that
result from this process to extract a global tempo estimate.
The system was evaluated on the MIREX 2006 training
database as well as a newly constructed database of rhyth-
mically complex electronic music consisting of 27 exam-
ples (IDM DB). For these databases the algorithms im-
proved accuracy by 10% (60% vs 50%) and 22.3% (48.2%
vs. 25.9%) respectively. These preliminary results suggest
that for some types of music, source-separation may lead
to better tempo detection.

1. BACKGROUND AND MOTIVATION

A working definition of tempo is the rate of the underlying
rhythmic pulse of music determined by a human listener
tapping along to the music, typically expressed in beats per
minute (BPM). This may differ from a notated tempo, and
different listeners, or the same listener at different times,
often entrain to different metrical levels, so that some tap-
ping rates may be half or double as fast as others. Further,
in some types of music, the most natural way to tap along
is asymmetric (e.g. tapping on the accented first and third
beat in a fast group of five beats). For our purposes, these
complexities are important to acknowledge at the outset as
they set natural bounds on performance and suggest appro-
priate ways of judging accuracy.

Tempo estimation is a fundamental MIR task and under-
lies almost all rhythmic descriptions of music. However,
state-of-the-art tempo detection is still highly variable in
its accuracy, working well on most simple cases, but often
performing poorly or not at all on rhythmically complex
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music [1]. The current work is motivated by two observa-
tions: 1) rhythmically complex music may be constructed
out of components or layers (e.g. musical parts or sources)
that are rhythmically simpler than the mix and thus easier
to track; 2) in many types of music, humans track the beat
or the tempo by hearing out a particular instrument or part.
For example, in many types of rhythmically complex elec-
tronic music, a “click track” is present in the mix. More
generally, in many musical genres a particular part plays
a time-keeping function: for example, in standard jazz the
walking bass line is the time keeper, in Indian music the
tabla, in Afro-Cuban music the clave. Being able to hear
out these time-keeping parts makes tempo tracking easier
for humans.

2. RELATED WORK

The starting point of the current work is tempo detection
that looks for periodicities in the signal by taking the au-
tocorrelation of the detection function (ACF). A good re-
view of current algorithms can be found in McKinney et
al. [2] as well as specific descriptions of autocorrelation-
based approach in Ellis [3] and Davies and Plumbley [4].
Recent work has explored the extension of this basic ap-
proach to tempo detection in a variety of ways. Wright
et al. [5] describe a system that searches for the rhythmic
pattern of the clave in Afro-Cuban music and show that
such an approach out-performs techniques more reliant on
isochronous events such as the Ellis and Dixon [6] algo-
rithms. In their work, a matched filter is used to extract the
clave from the mix. In this paper, we attempt to general-
ize the idea of finding the time-keeper in the mix in a way
that is less reliant on domain-specific knowledge. Seyer-
lehner et al. [7] cast tempo estimation as a nearest neighbor
problem, representing instances using a smoothed autocor-
relation function (ACF). This approach suggests the idea
of using not just the peak of the ACF, but including other
features to improve tempo detection. Xiao et al, [8] demon-
strate that using timbral features in addition to ACF-based
features can reduce double/half tempo errors and indicates
that even very crude uses of timbre can improve tempo esti-
mation accuracy. Earlier work on tempo detection has also
sought to improve accuracy by processing information in
particular frequency sub-bands [9, 10]. In some cases, this
is akin to a crude source separation, for example, separat-
ing the bass drum from the rest of a song.

Probabilistic latent component analysis (PLCA), a tech-
nique for source-separation described in Section 3.2, has
been used for unmixing as well as transcription [11, 12].
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The closely related technique of non-negative matrix fac-
torization (NMF) has been used to improve drum detec-
tion [13, 14]. In these works, tracks were separated into
sources that were then grouped into either tonal or percus-
sive layers based on features of the components. This is
relevant to the current work because it demonstrates the
idea of using source-separation as a pre-processing step to
improve performance on a standard MIR task. Addition-
ally, features of the components are used to classify them
into different groups, a technique used in this work to judge
how strong a pulse different components have.

3. METHOD

3.1 Overview

As stated, the technique described here builds on ACF-
based tempo detection. First, the track is separated into
components using a single-channel source separation method
(PLCA). Next, the tempo of each component is estimated
on the separated audio. The component tempo estimates,
along with the windowed ACF that was used to calculate
the component tempo, are then used to find a global tempo
estimate for the excerpt. We discuss several attempts to
solve the problem of finding the best tempo estimate from
the components. Two basic strategies were employed: se-
lecting the tempo of a component with the highest esti-
mated rhythmic clarity, and clustering component tempo
estimates and weighting each cluster by the rhythmic clar-
ity of each element in the cluster. Figure 1 shows a block
diagram of the system.

3.2 Source Separation

Blind source separation attempts to recover constituent el-
ements from a signal without any specific a priori knowl-
edge of their characteristics. For audio, this corresponds to
“unmixing,” the reconstruction of a clean signal of each of
a number of sounds that have been mixed together. Faith-
ful reconstruction of component elements has a wide array
of potential applications; in the current work we are less
interested in mimicking the timbre of the original sources
than in capturing rhythmic characteristics that may be less
evident in a full mix.

We approach this task using the non-shift-invariant ver-
sion of Probabilistic Latent Component Analysis (PLCA)
[11, 12]. The input to the PLCA is a spectrogram, com-
puted using a 1024 sample Hann window with a hopsize
of 256 samples and then normalized to be a valid probabil-
ity distribution. Latent variables representing the compo-
nents are estimated using expectation maximization, and
the output consists of a magnitude spectrum and relative
contribution over time for each component; the number of
desired components must be specified by the user.

After some experimentation, we set the number of com-
ponents to be extracted to eight. A more systematic evalua-
tion of the optimal number components remains for future
work. The corresponding timbral and temporal profiles
were used to synthesize audio for each component using
phase information from the original audio.

3.3 Tempo Estimation

The tempo was estimated for each component using the
Ellis algorithm [3]. The algorithm constructs a detection
function based on a 40-channel db-magnitude mel spectro-
gram. First the signal is downsampled to 8 kHz, mixed to
mono and divided into 32 ms frames with a 4 ms hopsize.
The first-order difference is taken for each channel, and the
sum of positive values across all channels is the value of the
detection function for that frame (spectral flux). The auto-
correlation of the detection function is calculated and then
windowed to bias it towards tempos close to 120 BPM. The
windowing effectively excludes tempos falling outside an
acceptable range, and at the same time mimics the natu-
ral preference of humans to tap at rates between 90-120
BPM [1]. The tempo estimate is simply the lag time corre-
sponding the peak value of the windowed ACF, converted
to BPM. Any peaks before the first zero-crossing of the
ACF are disallowed to prevent spurious peaks near zero
lag. A small modification was made to the Ellis algorithm
so that the top ten tempo candidates were returned rather
than a single best tempo estimate, defined as the BPMs cor-
responding to the ten highest peaks in the windowed ACF.
These additional tempo estimates were used in the cluster-
ing method described below. For all other techniques, only
the best estimate for each component was used.

Each component was tempo tracked in this way, result-
ing in ten candidate tempos for each component. This
meant that for a given track there were 80 tempo candi-
dates (8 components × 10 estimates). The ACF value as-
sociated with each candidate and the entire windowed ACF
were also stored, and these were used to help select the best
global tempo estimate from the candidates.

3.4 Tempo Selection

Below we describe several approaches to selecting a single
tempo estimate from the candidates.

3.4.1 Pulse-clarity

Inspired by the idea that certain components might accu-
rately represent a relatively isochronous part of the track,
the first approach focused on finding the best component
from which to estimate the global tempo. That is, we at-
tempted to find the component with the clearest pulse, and
then choose the highest ranked tempo estimate for that one
component as the global tempo estimate.

Lartillot et al. [15] showed that several features of the
ACF are correlated with human judgments of pulse-clarity.
Intuitively, the idea is that a relatively isochronous part
with clear onsets will lead to an ACF that has well-defined
and relatively large peaks. Following Lartillot et al., we
calculated the following features on the ACF: maximum,
minimum, and kurtosis. Additionally we added entropy
and sparseness [16] as features, with sparseness defined
as:

sparseness(x) =
√

n− (
∑
|xi|)/

√∑
x2

i√
n− 1

(1)

184



10th International Society for Music Information Retrieval Conference (ISMIR 2009)

t

t

t

t

t

t

t

t

PLCA

component component component component component

Tempo Tracking

Tempo Candidates

t1 t2 t3 t4 t5 t6 t7 t8

Clustering

t

t

t
t

t t

t
t t

t

tt t

t

t
t

t

t

t

t
t

t

t

t

t t

t
t

t
t

tt

t

t

t

t

tt
t

t

t

t

t t
t

t

t

t

t

t
t

t

t

t

t

t

t

tt

t

t

t

t
t

t

t

t

t

t t
t

t

Global Tempo Estimate

Figure 1. Block diagram of tempo estimation algorithm

Before calculating these features the ACF was normal-
ized so that higher amplitude components would not domi-
nate. For each component the ACF values were divided by
the sum of the absolute value of all ACF values. The max
and min were simply the maximum and minimum ACF
values after normalization, and we expected that larger ab-
solute values would correspond with greater pulse-clarity.
Kurtosis was used to measure the peakiness of the ACF,
i.e. how well-defined the ACF peaks were. Entropy and
sparseness also assessed peakiness.

Each feature was evaluated separately; Table 2 summa-
rizes the performance of each feature (evaluation criteria
are discussed in Section 4.2). It can be seen that the most
obvious feature, the maximum ACF value, outperformed
the other measures on the IDM09 data, while they were
about equal on the MIREX06 data.

In order to make better use of pulse-clarity features,
an attempt was made to apply them to a more system-
atic supervised machine-learning framework. For this, we
trained a multivariate Gaussian classifier using a ten-fold
cross validation scheme. In addition to the ACF features
we defined a new set of features based on the ratios of
the candidate tempo estimates for each component. These
features were based on the idea that we would expect to
see harmonically related peaks in the ACF of rhythmically
clear components. The ratio between every possible pair-
ing of the ten candidate tempos was computed, leading to(
10
2

)
, i.e. forty-five ratios per component. We then com-

puted a histogram of these values in the range .45 to 2.05
with a bin width of .1, leading to 23 features. The targets

were binary, representing whether the component estimate
matched the ground truth. The tempo of an excerpt was
calculated by choosing the tempo associated with the com-
ponent that had the highest posterior probability, i.e. the
greatest likelihood of its tempo matching the ground truth
given the ACF features. This approach worked well for the
MIREX06 data but less so for the IDM09 data (Table 2).
At this point it is difficult to say whether the IDM09 perfor-
mance was due to an insufficiently large training database
to accurately learn the multivariate distribution or if more
discriminative features must be found.

3.4.2 Clustering

Another method was attempted for determining the global
tempo, based on the idea of taking a vote among the candi-
date tempos, possibly weighted by the corresponding nor-
malized ACF values. The basic intuition was that the true
tempo should appear more frequently than spurious esti-
mates among the candidate tempos. To implement this, we
first partitioned the candidate tempos into clusters using a
hierarchical cluster tree. However, a simpler approach that
did not attempt an exclusive partitioning performed bet-
ter. In the latter approach, the candidate tempos for all
components and their associated normalized ACF values
were merged into a single matrix. For each tempo candi-
date, a score was determined by summing the ACF values
for that tempo as well as for any tempos that were half or
double, within a 5% tolerance. Of course such a method
will often lead to ties, which we resolved by choosing the
tempo closest to 120 BPM. Because we chose to measure
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accuracy accounting for half and double matches (see Sec-
tion 4.2), this was not a major issue. The tempo candidate
with the highest score was chosen as the global tempo es-
timate. To see if ACF weighting was important we also
performed experiments ignoring ACF values and assign-
ing scores by simply counting the number of elements in
each cluster. However, ACF weighting consistently im-
proved performance and was chosen as the default. Ad-
ditionally, we experimented with multiplying each ACF
value by the pulse-clarity estimate of the component based
on the heuristics described above. This did not affect re-
sults and was therefore not included in the final version.

4. EVALUATION

4.1 Databases

Evaluation was performed on two databases. The main
database consisted of twenty-seven 30-second excerpts cho-
sen from the IDM/glitch genre of electronic music (IDM09),
with an emphasis on tracks that we thought were rhythmi-
cally complex and layered. For each excerpt, two inde-
pendent manual annotations were made. 1 For all excerpts
the human annotators agreed, with the exception of a few
half/double conflicts. In those cases, we randomly selected
a single estimate. It should be noted that our accuracy mea-
sure allowed for half/double errors.

Additionally, the twenty publicly available MIREX06
training excerpts were used [2]. These consisted of a mix
of genres and tempo ranges, and included annotation of
two tempos representing the two highest peaks in a distri-
bution of tempos calculated from listeners’ tapping times.
For our experiments we simply selected the ground truth
tempo that was more commonly assigned.

4.2 Accuracy measure

We defined a match to be whenever the estimated tempo
matched the annotated tempo, or double or half the anno-
tated tempo, within a five percent tolerance window. Eval-
uation of tempo detection algorithms is somewhat depen-
dent on the end-goal. We might reasonably hope that the
tempo detection algorithm would correspond to judgments
of human listeners. However, although there may be a fair
degree of reliability between judgments for simple rhythms,
there can be substantial disagreement about the appropri-
ate metrical level or even the tempo for more rhythmically
complex music. Moreover, more experienced listeners of-
ten tap at a lower metrical level (i.e. slower tempo) than
novice listeners and in some cases novice listeners tap ir-
regularly and are unable to clearly sense the tempo. Al-
though this may be trivially true for music with no clear
rhythm, this can also occur for music where there is a
high degree of reliability for experienced listeners. For
retrieval tasks, such as selecting tracks with similar tem-
pos, it might be more appropriate to consider a match only
when the metrical level of the main ground truth annota-
tion is matched. On the other hand, for transcription or

1 The IDM09 database and the tempo annotations will be made pub-
licly available online.

Baseline (Ellis) Clustering Change
MIREX06 0.50 0.60 0.10
IDM09 0.26 0.48 0.22
combined 0.36 0.53 0.17

Table 1. The primary results are summarized here for each
of the databases as well as for the combined set. The base-
line is the Ellis algorithm run on the unseparated excerpts.
Clustering refers to choosing the global estimate according
to the procedure described in Section 3.4.2

synchronization tasks it is appropriate to consider matches
at different metrical levels. Because our emphasis here was
on IDM, a genre that often contains metrical level ambigu-
ity, we decided that this latter definition of accuracy made
the most sense.

4.3 Results

To get a sense of the upper-bound of performance for each
track we checked to see if the true tempo was the pri-
mary tempo estimate for any of the components, and also
whether the true tempo was present in any of the candi-
date tempos. Since subsequent steps attempt to filter these
values, our pulse-clarity based technique can do no bet-
ter than this first value, and the clustering method can do
no better than the latter. The primary component tempo
was correct for 70.4% of excerpts from IDM09 and 75%
of MIREX06. A match was found in a candidate tempo
of one of the components 96.3% and 85% of the time for
IDM09 and MIREX06 respectively. Of course it should
be noted while that we would expect this percentage to in-
crease as the number of candidate tempos per component
increases, the number of false positives will also tend to in-
crease. Nevertheless these data suggest a high performance
ceiling.

Table 1 summarizes the main the results, while Table
2 provides a more complete view of the performance of
the different algorithms described in the paper. The first
column in both tables is the baseline performance, given
by running the Ellis algorithm on the unseparated excerpt
using the definition of accuracy described above. Base-
line accuracy for the MIREX06 data was 50% and 25.9%
for IDM09. The substantially lower baseline accuracy for
IDM09 reflects the rhythmic complexity of these excerpts.
It can be seen that for the MIREX06, IDM09, and com-
bined databases that the clustering algorithms improved
accuracy by 10% (60% vs 50%) , 22.3% (48.2% vs. 25.9%)
and 17% (53.2% vs. 36.2%), respectively. From the de-
tailed results table we can see that the ML-based approach
achieved a 10 percentage-point improvement on MIREX06
(60% vs 50%), and a 3.7 percentage-point increase on IDM09.

Clustering using multiple candidates per component, as
well as the ML-based approach, had an accuracy of 60%
for MIREX06, a 10% improvement on the baseline. In
the case of IDM09 there was a substantial improvement of
22.3% (48.2% vs. 25.9%). However in this case the ML-
based approach was only marginally better than baseline.
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Baseline Pulse Clustering ML
Ellis min max entropy kurtosis sparseness all features pulse-only

MIREX06 0.50 0.35 0.40 0.40 0.40 0.40 0.60 0.60 0.60
IDM09 0.26 0.15 0.33 0.26 0.26 0.30 0.48 0.27 0.26
combined 0.36 0.23 0.36 0.32 0.32 0.34 0.53 0.43 0.40

Table 2. Detailed accuracy results for each of the pulse-clarity measures described in Section 3.4.1 as well as for the
machine learning algorithm also described in Section 3.4.1. For the ML algorithm results are shown for all features, as well
as with only the original pulse heuristic features.

For both data sets using pulse-clarity alone did not im-
prove results, with the exception of the max ACF (33.3%
vs. 25.9%) and sparseness (29.6% vs 25.9%) features for
IDM09.

5. DISCUSSION AND CONCLUSION

From these data it seems that the clustering-based approach
is the superior method, particularly when compared to us-
ing a single component as the basis for the global estimate.
It is possible, however, that this is simply an artifact of
an inaccurate source separation step. Auditioning compo-
nents reveals that many components are not true sources
at all but parts of sources or several sources; source sep-
aration is still a delicate art. Nevertheless, many compo-
nents do clearly correspond to parts and at times one can
clearly hear time-keeping parts popping out. This noisi-
ness probably accounts for the fact that the clustering ap-
proach, which retains more information about possible pe-
riodicities by retaining multiple tempo estimates for each
component, is more robust. Although the current work did
not bear out the ML-based approach, we believe that sys-
tematic incorporation of multidimensional rhythmic infor-
mation will play an important part in future component-
based tempo detection algorithms.

We have shown that for these data, using source separa-
tion in conjunction with clustering can substantially im-
prove results, particularly for rhythmically complex and
layered material. We have also explored a variety of tech-
niques for implementing the core idea of using source de-
composition to improve tempo estimation. In particular,
we developed techniques for tempo estimation based on
pulse clarity scoring of components and clustering of com-
ponent tempo estimates. As source separation techniques
improve, it should be possible to more closely mimic the
rhythmic perception of humans, which in many cases is
based on recognizing distinct parts that have a time-keeping
function.

We expect that the approach described here will be most
useful for layered, rhythmically complex music that tends
to have simpler sub-parts. For simpler music, on the other
hand, the less dramatic results are unlikely to justify the
computational cost of source separation. We expect that
this method will fail for music where the rhythm is emer-
gent, i.e. only becomes apparent when several layers are
played simultaneously.

6. FUTURE WORK

There are many possible extensions to this work. Thus
far we have done little work to tune the source separa-
tion step. For example, what is the optimum number of
components? It is likely that eventually this should be
set adaptively based on the characteristics of the piece and
the likely number of sources. These, however, remain un-
solved problems, though the recent surge in research on
single-channel source separation using PLCA and NMF
is likely to dramatically improve our unmixing capabili-
ties. Additionally, we intend to pursue the ML-based ap-
proach. In the long-run, it is likely that some combination
of features can be found that will determine more reliably
whether a component tempo estimate is the correct global
estimate. And, as always, only with the expansion of the
tempo database, and additional benchmarking against mul-
tiple systems, will we truly be able to assess the strengths
and weaknesses of the techniques presented here.
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