
GENERATING NONTRIVIAL MELODIES FOR MUSIC AS A SERVICE

Yifei Teng
U. of Illinois, Dept. of ECE
teng9@illinois.edu

Anny Zhao
U. of Illinois, Dept. of ECE
anzhao2@illinois.edu

Camille Goudeseune
U. of Illinois, Beckman Inst.
cog@illinois.edu

ABSTRACT

We present a hybrid neural network and rule-based sys-
tem that generates pop music. Music produced by pure
rule-based systems often sounds mechanical. Music pro-
duced by machine learning sounds better, but still lacks
hierarchical temporal structure. We restore temporal hi-
erarchy by augmenting machine learning with a temporal
production grammar, which generates the music’s overall
structure and chord progressions. A compatible melody is
then generated by a conditional variational recurrent au-
toencoder.

The autoencoder is trained with eight-measure seg-
ments from a corpus of 10,000 MIDI files, each of which
has had its melody track and chord progressions identified
heuristically.

The autoencoder maps melody into a multi-dimensional
feature space, conditioned by the underlying chord pro-
gression. A melody is then generated by feeding a random
sample from that space to the autoencoder’s decoder, along
with the chord progression generated by the grammar. The
autoencoder can make musically plausible variations on an
existing melody, suitable for recurring motifs. It can also
reharmonize a melody to a new chord progression, keeping
the rhythm and contour.

The generated music compares favorably with that gen-
erated by other academic and commercial software de-
signed for the music-as-a-service industry.

1. INTRODUCTION

Computer-generated music has started to expand from its
pure artistic and academic roots into commerce. Compa-
nies such as Jukedeck and Amper offer so-called music as
a service, by analogy with software as a service. However,
their melodies, when present at all, often just arpeggiate
the underlying chord.

We extend this approach by generating music with both
chord progressions and interesting, nontrivial melodies.
We expand a song structure such as AA′BA into a har-
monic plan, and then add a melody compatible with this
structure and harmony. This compatibility uses a chord-

c© Yifei Teng, Anny Zhao, Camille Goudeseune. Licensed
under a Creative Commons Attribution 4.0 International License (CC
BY 4.0). Attribution: Yifei Teng, Anny Zhao, Camille Goudeseune.
“Generating Nontrivial Melodies for Music as a Service”, 18th Inter-
national Society for Music Information Retrieval Conference, Suzhou,
China, 2017.

ML training

Crawled MIDI files

Harmonic
analysis

Learned model

Melody Chords

ML generation Chord grammar

Generated melody

Figure 1: Machine learning (ML) workflow for generating
music from a MIDI corpus.

melody relationship found by applying machine learning
to a corpus of MIDI transcriptions of pop music (Figure 1).

Prior research is discussed in section 2. Harmonic anal-
ysis is detailed in sections 3 and 4. Hierarchy generation
and melody generation are described in section 5.

2. RELATED WORK

Recent approaches to machine composition use neural net-
works (NNs), hoping to approximate how humans com-
pose. Chu et al [5] generate a melody with a hierarchical
NN that encodes a composition strategy for pop music, and
then accompany the melody with chords and percussion.
However, this music lacks hierarchical temporal structure.
Boulanger-Lewandowski et al [3] investigate hierarchical
temporal dependencies and long-term polyphonic struc-
ture. Inspired by how an opening theme often recurs at
a song’s end, they detect patterns with a recurrent tempo-
ral restricted Boltzmann machine (RTRBM). This can rep-
resent more complicated temporal distributions of notes.
Similarly, Huang and Wu [10] generate structured music
with a 2-layer Long Short Term Memory (LSTM) net-
work. Although the resulting music often sounds plau-
sible, it cannot produce clearly repeated melodic themes,
just like a Markov resynthesis of the text of the famous
poem “Jabberwocky” is unlikely to replicate the identical
opening and closing stanzas of the original. Despite the
LSTM network’s theoretical capability of long-term mem-
ory, it fails to generalize to arbitrary time lengths [8], and
its generated melodies remain unimaginative.

657

In these approaches, tonic chords dominate, and melody
is little more than arpeggiation. To avoid this banality, we
work in reverse. We first create structure and chords, and
then fit melody to that. This mimics how classical west-
ern Roman-numeral harmony is taught to beginners: only
after one has the underlying chord sequence, can one ex-
plain the melody in terms of chord tones, passing tones,
appoggiaturas, and so on.

3. MELODY IDENTIFICATION

For pop music, a catchy and memorable melody is crucial.
To generate melodies that sound less robotic than those
generated by other algorithms, we use machine learning.
To create a learning database, we started with a corpus of
10,000 MIDI files [16], from which we extracted useful
training data (melodies that sound vivid or fun). In partic-
ular, the training data was eight-measure excerpts labelled
as melody and chords. We thus had to identify which of a
MIDI file’s several tracks contained the melody. To do so,
we assigned each track the sum of a rubric score and an en-
tropy score. Whichever track scored highest was declared
to be the melody. (Ties between high-scoring tracks were
broken arbitrarily, because they were usually due to sev-
eral tracks having identical notes, differing only in which
instrument played them.)

3.1 Rubric Score

Our rubric considered attributes such as instrumentation,
note density, and pitch range.

We first considered a track’s instrument name (MIDI
meta-event FF 04). Certain instruments are more com-
mon for melody, such as violin or flute. Others are more
likely to be applied as accompaniment or long sustained
notes, such as low brass. A third category is likely used
as unpitched percussion. The instrument’s category then
adjusted the rubric’s score.

We also considered the track’s note density, how often
at least one note is sounding (between corresponding MIDI
note-on and note-off events), as a fraction of the track’s full
duration. A track scored higher if this was between 0.4 and
0.8, a typical value for pop melodies.

Finally we considered pitch range, because we observed
that pop melodies often lie between C3 and C5. The score
was higher for a pitch range between C3 and C6, to exclude
bass tracks from consideration.

The values for these attributes were chosen based on
manual inspection of 100 files in the corpus.

3.2 Entropy Score

We empirically observed that melody tracks often have a
greater variety of pitches than other tracks. Thus, to quan-
tify how varied, complex, and dynamic a track was, we
calculated each track’s entropy

H(X) = −
∑12

i=1
P (xi) logP (xi) (1)

where xi represents the event that a particular note in the
octave is i semitones from the pitch C, and P (xi) repre-
sents that event’s probability. Higher entropy corresponds
to a greater number of distinct pitches.

3.3 Evaluation

To measure how well this scoring identified melody tracks,
we manually tagged the melody track of 160 randomly se-
lected MIDI files. Comparing the scored prediction to this
ground truth showed that the error rate was 15%.

4. CHORD DETECTION

To identify the chords in a MIDI file, we considered three
aspects of how pop music differs from genres like classi-
cal music. First, chord inversions (where the lowest note
is not the chord’s root) are rare. When a new chord is pre-
sented, it is often in root position: most pop songs have
a clear melody line and bass line [14], and the onset of a
new chord is marked with the chord’s root in that bass line.
Second, chords may contain extensions (seventh), substitu-
tions (flattened fifth), doublings, drop voicings (changing
which octave a pitch sounds in), and omissions (third or
fifth). Although such modifications complicate the task of
functional harmony analysis, this is not a concern for our
application. Third, new chord onsets are often at the start
of a measure; rarely are there more than two chords per
measure. Combining these observations led us to the fol-
lowing chord detection algorithm.

We first partition the song into segments with constant
time signatures. (these are explicitly stated as MIDI meta
messages). Then each segment is evenly divided into bins,
where we try to match the entire bin to a chord. Be-
cause chords have different durations, we try different bin
lengths: half a measure, one measure, and two measures.
Then for each bin, containing all the notes sounding dur-
ing that time interval, we add all these notes to a set that is
matched against a fixed collection of chords, based on how
close the pitches are, with a cost function:

Chord Detection: COST

1: function BESTCHORDINBIN(Pitches)
2: Root← Lowest note starting before first upbeat
3: Chords← All chords, as array of intervals
4: return argminC∈Chords{COST(Pitches, C,Root)}
5: function COST(Pitches, Chord,Root)
6: PitchCost← 0
7: for P ∈ Pitches do
8: interval← No. semitones of P from Root
9: d← minvoice∈Chord{dist(interval, voice)}

10: PitchCost← PitchCost+ d

11: ChordCost← 0
12: for voice ∈ Chord do
13: d← minP∈Pitches{dist(P −Root, voice)}
14: ChordCost← ChordCost+ d

15: return PitchCost+ ChordCost

658 Proceedings of the 18th ISMIR Conference, Suzhou, China, October 23-27, 2017

Distance in semitones Compatibility distance
0 0
1 6
2 2
3 2
4 2
5 1
6 4
7 1

Table 1: Interval compatibility.

C A7/aug/b9 Dm Dm7

4
4

4
4

Gsus2 G13 C C7add9

Figure 2: Example of chord detection.

Each chord’s cost is the sum of the distance of the near-
est interval in the chord (from the root) to each interval
in the input pitches, and the distance of the nearest inter-
val in the input pitches (from its “root”) to each interval in
the chord, based on some definition of distance. The cost
function then returns the lowest-cost chord.

Defining the distance in terms of mere pitch difference
in semitones would be simple, but performs poorly. For
example, matching the pitch set [C,E,G] to the chord
[C,E[,G[] would yield a cost of two, which is far too
low. Instead, our distance function reflects how compat-
ible intervals are. The unison is the most compatible, with
distance zero; fourths and fifths are next, with distance one
(Table 1). This conveniently handles omitted-fifth chords,
because the chord’s root matches the omitted fifth with a
distance of only one.

Figure 2 demonstrates chord detection on the song Fly
me to the moon. The bin size is half a measure, yielding 8
identified chords. The A7/aug/[9 chord resulted from the
accompaniment notes A,G,B[(flat ninth), C], E, and the
melody notes A,G,F (augmented fifth).

5. WRITING MUSIC

To output pieces with audibly hierarchical structure, we
start with the harmonic structure produced by a temporal
generative grammar. Then an autoencoder recurrent neu-
ral network (RNN) generates a melody compatible with
this harmonic scaffold. The RNN learns to play using the
chord’s notes, with occasional surprising non-chord tone
decorations such as passing tones and appoggiaturas.

5.1 Generating Melody

We first search for a representation of the melody using
ML. This is traditionally done by an autoencoder, a pair of
NNs that maps high-dimensional input data to and from a
lower-dimensional space. Although this dimensionality re-
duction can eliminate perfect mappings, this turns out not
to be a problem because the subspace of “pleasant” music
within all possible musics is sufficiently small. Thus, the
autoencoder can extract the pleasant content and map only
that into the representation space.

It is tempting to feed a random point from the repre-
sentation space to the autoencoder’s decoder, and observe
how much sense it makes of that point. However, because
one cannot control the shape of the distribution of melody
representations, one cannot guarantee that a given point
from the representation space would be similar to those
seen by the decoder during training. Thus, the vanilla
autoencoder architecture [2] is not viable as a generative
model. We propose the following improvements for gen-
erating melodies:

1. Condition the NN on the chord progression. The
chord progression is provided to the NN at every
level, so when reproducing a melody, the decoder
has access to both the representation and the chord
progression. This is useful because a melody has
rhythmic information, intervallic content, and con-
tour. The decoder can ignore the separately provided
harmonic information, and use only the melody’s
other aspects. This also lets the representation
remain constant while altering the chord progres-
sion, so the NN can adapt a melody to a changed
chord progression, such as what happens when a key
changes from minor to major.

2. Add a stochastic layer. Autoencoders which learn
a stochastic representation are called variational au-
toencoders, and perform well in generative mod-
elling of images [11]. The representation is not de-
terministic. We assume a particular (Gaussian) dis-
tribution in the representation space, and then train
the NN to transform this distribution to match the
distribution of input melodies in their high dimen-
sional space. This ensures that we can take a ran-
dom sampling of the representation space following
its associated probability distribution, then feed it
through the decoder and expect a melody similar to
the set of musically sensible melodies.

3. Use recurrent connections. Pop music has many
time-invariant elements, especially at time scales be-
low a few beats. A recurrent NN shares the same
processing infrastructure for note sequences starting
at different times, and thereby accelerates learning.

4. Normalize all other notes relative to the tonic. Pop
music is also largely pitch invariant, insofar as a song
transposed by a few semitones still sounds perceptu-
ally similar. The NN ignores the song’s key and con-
siders the tonic pitch to be abstract, as far as pitches
in melody and chords are concerned.

Proceedings of the 18th ISMIR Conference, Suzhou, China, October 23-27, 2017 659

16x

-16 . . . 16 Silent Attack

}
x8...

...
...

...
...

I . . . VI VII Silent
Pwr Maj Min Dim Aug

...
...

...
...

...
Major Dorian . . . Locrian Jazz Minor

Table 2: An encoding of 8 measures (see section 5.1.1).

5.1.1 Implementation

The input melody is quantized to sixteenth notes. Only
sections with an unchanging duple or quadruple meter are
kept. The melody is converted to a series of one-hot vec-
tors, whose slots represent offsets from the tonic in the
range of −16 to 16 semitones, with one more slot repre-
senting silence. There is also an attack channel, where
a value of 1 indicates that the note is being rearticulated
at the current time step. The encoding for chords sup-
ports up to two chords per measure, and uses a one-hot
vector for scale degrees and separate boolean channels for
chord qualities (Table 2). (Note that because this encod-
ing uses just seven Roman-numeral symbols, it does not
try to represent chords outside the current mode. Before
training, we removed from the corpus the few songs that
contained significant occurrences of this.) We use the ba-
sic triad form for each chord identified using techniques
from section 4, marking compatible chord qualities. For
example, G7 is encoded by marking a 1 in the Maj and
Pwr columns. (The chord quality encoding could be ex-
tended to seventh and ninth chords.) The table’s gray rows
are data the network is conditioned on, while the other
rows are input data that the network tries to reproduce. For
an 8-measure example, the input and output vector size is
35 × 8 × 16 = 4480, and the conditional vector size is
8× 16 + 5× 16 + 8 = 216.

The network has 24 recurrent layers, 12 each for the en-
coder and decoder (Figure 3). Drawing on ideas of deep
residual learning from computer vision [9], we make ad-
ditional connections from the input to every third hidden
layer. To improve learning, the network accesses both the
original melody and the transformed results from previous
layers during processing. The conditional part (chords and
mode) is also provided to the network at every recurrent
layer, as extra incoming connections.

The network is implemented in Tensorflow, a machine
learning library for rapid prototyping and production train-
ing [1]. It was trained for four days on an Nvidia Tesla K80
GPU. We used Gated Recurrent Units [4] to build the bidi-
rectional recurrent layer and Exponential Linear Units [7]
as activation functions. These significantly accelerate
training while simplifying the network [6, 7]. Figure 4
shows the training error (the sum of model reproduction
errors) and the difference of the latent distribution from
a unit Gaussian distribution, as measured by Kullback-
Leibler divergence [12]. The network’s input data (avail-
able at https://goo.gl/VezNNA) is a set of MIDI

Input vector

600 hidden unit

600 hidden unit

600 hidden unit

600 hidden unit

600 hidden unit

600 hidden unit

600 hidden unit

600 hidden unit

600 hidden unit

600 hidden unit

600 hidden unit

600 hidden unit

chords
and

mode

8x300 to 1x1200

800 FC 800 FC

Latent distribution

600 FC

600 hidden unit

600 hidden unit

600 hidden unit

600 hidden unit

600 hidden unit

600 hidden unit

600 hidden unit

600 hidden unit

600 hidden unit

600 hidden unit

600 hidden unit

600 hidden unit

chords
and

mode

128x300 to 128x35

Output vector

600

600

300

600

600

300

600

600

300

600

600

2400

800 800

Mean
Standard Deviation

Sampling

600

600

300

600

600

300

600

600

300

600

600

300

Figure 3: Network architecture. Rectangles are bidirec-
tional recurrent neural network cells. Ellipses are strided
time-convolution cells. Rounded rectangles are fully con-
nected (FC) layers. Numbered arrows indicate a connec-
tion’s dimension.

660 Proceedings of the 18th ISMIR Conference, Suzhou, China, October 23-27, 2017

0 2 4 6

·105

200

400

600
Reproduction loss

KL divergence

Figure 4: Training error and Kullback-Leibler divergence
of the NN. The horizontal axis indicates how many training
segments have elapsed (×105). Initial outliers have been
removed.

songs from various online sources. Our harmonic analy-
sis converted this to 1.9 × 106 measures of melodies and
corresponding chords. We implemented KL warm up, be-
cause that is crucial to learning for a variational autoen-
coder [15]. But instead of linearly scaling the KL term for
this, we found that a sigmoid reduced the network’s repro-
duction loss.

5.2 Generating Hierarchy and Chords

Hierarchy and chords are generated simultaneously, using
a temporal generative grammar [13], modified to suit the
harmonies of pop music, and extended to enable repeated
motifs with variations. The original temporal generative
grammar has notions of sharing by binding a section to a
symbol. For example, the rule

let x = I in I M5(x) I M5(x) I, (2)

where M5 indicates modulating to the 5th degree, would
expand to five sections, with the second and fourth identi-
cal because x is reused. We extend this by having symbols
x carry along a number: x1, x2, Different subscripts of
the same symbol still expand to the same chord progres-
sion, but denote slightly different latent representations
when generating corresponding melodies for those sec-
tions. The latent representations corresponding to xi>1 are
derived from that of x1 by adding random Gaussian pertur-
bations. This yields variations on the original melody.

5.3 Training Examples in the Representation Space

We randomly chose 130 songs from the training set, fed
them through the network, and performed t-SNE analy-
sis on the resulting 130 locations in the representation
space. Although a melody maps to a distribution in
the representation space, Figure 5 plots only each dis-
tribution’s mean, for visual clarity. This t-SNE analy-
sis effectively reduces the 800-dimensional representation

Figure 5: Example melodies in a t-SNE plot of the repre-
sentation space.

4
4

4
4

Figure 6: Four-bar excerpts from the songs Indica (top)
and Control (bottom).

space into a low-dimensional human-readable format [17].
(A larger interactive visualization of 1,680 songs is at
https://composing.ai/tsne.)

Two songs that are both in the techno genre, Indica by
Jushi and Control by Junk Project, are indeed very near in
the t-SNE plot, almost overlapping. Excerpts from them
show that both have a staccato rhythm with notes landing
on the upbeat, and have similar contours (Figure 6).

5.4 Reharmonizing Melody

We hypothesized that, when building the neural network
architecture, providing the chord progression to both the
encoder and the decoder would not preserve that infor-
mation in the representation space, thus saving space for
rhythmic nuances and contour. To test this hypothesis,
we gave the network songs disjoint from the training set
and collected their representations. We then fed these rep-
resentations along with a new chord progression to the
network. We hoped that it would respond by generat-

Proceedings of the 18th ISMIR Conference, Suzhou, China, October 23-27, 2017 661

C C

4
4

C C C

F C G C

Cm Cm Cm

4
4

Cm Cm

Fm Gm Cm

Figure 7: The song Jasmine Flower with original chords
(top), and adapted to a new chord progression (bottom).

ing a melody that was harmonically compatible with the
new chord progression, while still resembling the origi-
nal melody. We demonstrate this with the Chinese folk
song Jasmine Flower, in a genre unfamiliar to the NN
(Figure 7). Note that we supplied the chords in Figure 7
(bottom), for which the NN filled in the melody. The
network flattened the E, A, and B, by observing that the
chord progression looked minor. This is typically how a
human would perform the reharmonization, demonstrating
the network’s comprehension of how melody and harmony
interact.

Although the NN struggled to reproduce the melody,
it provided interesting modifications. The grace notes in
measure 6 could be due to similar ones in the training set,
or due to vacillation between the A\ from the representa-
tion and the A[from the chord conditioning.

5.5 Examples of Generated Melodies

Because an entire multi-section composition cannot fit
here, we merely show excerpts from two shorter examples.

Figure 8 and Figure 9 demonstrate melodies generated
from points in the representation space that are not near any
particular previously known melody. Structure is evident
in Figure 8: measures 1–3 present a short phrase, and mea-
sure 4 leads to the next four measures, which recapitulate
the first three measures with elaborate variation. Figure 9
shows an energetic melody where the grammar only pro-
duced C minor chords. Although the final two measures
wander off, the first six have consistent style and natural
contour.

G G C

4
4

C G

G C C

Figure 8: Generated melody for a grammar-generated
chord progression.

4
4

Figure 9: Generated melody for an extended C minor
chord.

6. CONCLUSION AND FUTURE WORK

We have combined generative grammars for structure and
harmony with a NN, trained on a large corpus, to emit
melodies compatible with a given chord progression. This
system generates compositions in a pop music style whose
melody, harmony, motivic development, and hierarchical
structure all fit the genre.

This system is currently limited by assuming that the in-
put data’s chords are in root position. More sophisticated
chord detection would still let it exploit the relative har-
monic rigidity of popular music. Also, by investigating
the representation found by the NN, meaning could be as-
signed to some of its 800 dimensions, such as intensity,
consonance, and contour. This would let us boost or atten-
uate a given melody along those dimensions.

Acknowledgements. The authors are grateful to Mark
Hasegawa-Johnson for overall guidance, and to the anony-
mous reviewers for insights into both philosophical issues
and minute details.

7. REFERENCES

[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis,
J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard,
M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. Mur-
ray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden,
M. Wicke, Y. Yu, and X. Zheng. Tensorflow: a sys-
tem for large-scale machine learning. In Proc. USENIX

662 Proceedings of the 18th ISMIR Conference, Suzhou, China, October 23-27, 2017

Conf. Operating Systems Design and Implementation,
pages 265–283. USENIX Association, 2016.

[2] Bengio. Learning deep architectures for AI. Founda-
tions and Trends in Machine Learning, 2(1):1–127,
2009.

[3] N. Boulanger-Lewandowski, Y. Bengio, and P. Vin-
cent. Modeling temporal dependencies in high-
dimensional sequences: Application to polyphonic
music generation and transcription. arxiv.org/
abs/1206.6392, 2012.

[4] K. Cho, B. van Merrienboer, C. Gulcehre, D. Bah-
danau, F. Bougares, H. Schwenk, and Y. Bengio.
Learning phrase representations using rnn encoder-
decoder for statistical machine translation. arxiv.
org/abs/1406.1078, 2014.

[5] H. Chu, R. Urtasun, and S. Fidler. Song from PI: a
musically plausible network for pop music generation.
arxiv.org/abs/1611.03477, 2016.

[6] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio. Empiri-
cal evaluation of gated recurrent neural networks on se-
quence modeling. arxiv.org/abs/1412.3555,
2014.

[7] D. Clevert, T. Unterthiner, and S. Hochreiter. Fast and
accurate deep network learning by exponential lin-
ear units (elus). arxiv.org/abs/1511.07289,
2015.

[8] A. Graves, G. Wayne, and I. Danihelka. Neural turing
machines. arxiv.org/abs/1410.5401, 2014.

[9] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual
learning for image recognition. arxiv.org/abs/
1512.03385, 2015.

[10] A. Huang and R. Wu. Deep learning for music.
arxiv.org/abs/1606.04930, 2016.

[11] D. P. Kingma and M. Welling. Auto-encoding varia-
tional bayes. arxiv.org/abs/1312.6114, 2013.

[12] S. Kullback and R. A. Leibler. On information and suf-
ficiency. Annals of Mathematical Statistics, 22(1):79–
86, 1951.

[13] D. Quick and P. Hudak. A temporal generative graph
grammar for harmonic and metrical structure. In Proc.
International Computer Music Conference, pages 177–
184, 2013.

[14] M. P. Ryynänen and A. P. Klapuri. Automatic tran-
scription of melody, bass line, and chords in poly-
phonic music. Computer Music Journal, 32(3):72–86,
2008.

[15] C. K. Sønderby, T. Raiko, L. Maaløe, S. K. Sønderby,
and O. Winther. Ladder variational autoencoders.
arxiv.org/abs/1602.02282, 2016.

[16] Y. Teng and A. Zhao. Composing.AI. http://
composing.ai/, 2017.

[17] L. van der Maaten and G. E. Hinton. Visualizing high-
dimensional data using t-SNE. Journal of Machine
Learning Research, 9:2579–2605, 2008.

Proceedings of the 18th ISMIR Conference, Suzhou, China, October 23-27, 2017 663

