
The 4S Symposium 2024 – J. Zurera

1

MIA, a reusable execution platform for space missions. A case study based on an Autonomous

Flight Termination Unit.

Jesús Zurera (1), Alba Rozas (1), Miguel López(1)

(1) Sener Aerospace and Defense, jesus.zurera@aeroespacial.sener

ABSTRACT

As interest in space missions and the services they provide grows, the need to develop new platforms

that can support the necessities of these services becomes more evident. High cost in time and

resources are derived from Flight Software (FSW) development for each space mission. This effort,

however, is hardly reusable because the software for each particular mission is tailored to its particular

requirements. Thus, traditional FSW is tightly coupled, presents custom interfaces paired with data

protocols, requires internal mission knowledge and presents interdependencies between components.

In this new space era, the price dictates the business. In order to increase the reusability, modularity

and overall, ease the development of FSW, we have developed the sMart Integrated Avionics (MIA)

platform. This platform significantly facilitates the development of space software and applications,

such as the one presented as use case in this paper, an Autonomous Flight Termination Unit (AFTU).

This autonomous launcher subsystem allows unmanned operations, increasing the maximum launch

cadence, thus reducing the cost for space missions, facilitating that access to space is more easily and

rapidly achieved by all types of agents.

1 INTRODUCTION

The MIA platform is presented as a versatile solution aiming to a variety of apace applications needs,

ranging from the rigorous demands of space missions characterized by safety and functional criticality

to the more flexible requisites of NewSpace applications, which prioritize rapid deployment and

adaptability.

In this paper, we first present a general analysis of the MIA architecture, detailing the different parts

it presents and the functionalities provided by each component. It offers a general description

overview aligned with the platform's philosophy, emphasizing the modularity of its components and

how they can be exchanged without affecting the rest, thanks to the isolation of its various software

layers.

Next, a specific use case is presented involving an AFTU unit, demonstrating how a particular

specification of the MIA platform was developed to meet the requirements of this system. The general

characteristics of the chosen software are outlined, followed by a detailed explanation of how these

software components facilitate the deployment of the capabilities needed for the development of an

Autonomous Flight Termination System (AFTS).

Finally, two sections are dedicated to describing the implementation and execution specifics of the

software and FPGA (Field-Programmable Gate Array) blocks for the specific AFTU system.

mailto:jesus.zurera@aeroespacial.sener

The 4S Symposium 2024 – J. Zurera

2

2 MIA PLATFORM

The MIA platform is composed by a set of interchangeable software components, FPGA blocks, and

hardware devices in which it can be executed. MIA presents a highly decoupled layered architecture

developed to operate and communicate using a set of standardized common interfaces between layers.

This allows us to customize MIA by changing the components for each particular space mission

implementation without affecting the rest, granting the needed modularity and reusability to the

platform. This approach, allows the platform to be deployed over different physical devices such

including Micro Controller Unit (MCU) or Multiprocessor Systems-on-Chip (MPSoC), providing the

required modularity and flexibility to cope with different energy, memory or performance mission

requirements.

The MIA execution platform is not a novel product being introduced within this paper; rather, its

overarching description and analysis of its various components were initially presented at [1]. The

philosophy underlying this platform remains consistent, to provide a FSW execution platform that

excels at its flexibility and adaptability, from which novel outcomes can be derived. To aid in the

comprehension of this paper, a review of the different components and their general characteristics is

provided here. In subsequent sections, we will elaborate on how these distinct components have been

tailored to serve specific purposes within a particular space application.

The principal layers that constitute the MIA architecture are shown in Figure 1 and are described

below:

• The Hardware Layer includes the physical components of a System on Chip (SoC), including

processor cores, FPGAs, memory devices, peripherals, and interconnect logic.

• The Temporal and Spatial Partitioning (TSP) Layer is responsible for providing temporal and

spatial partitioning to the architecture. Space missions often entail specific applications of

varying levels of criticality, such as Attitude and Orbit Control Systems (AOCS), Data

Handling Systems (DHS), high-level applications, etc. Deploying a hypervisor enables us to

leverage all physical resources, such as physical interfaces and memories, as well as the

computational capacity of the processor cores, while maintaining isolation and criticality

between different applications. This is obtained using software partition, which divide a

computing system into multiple virtual environments. Each partition functions as an

independent entity with its own operating system, applications, and allocated resources. This

ensures that software partitions of varying criticality can be deployed on this layer without

encountering interferences or interdependencies between them.

• The Operative System (OS) Layer provides the functionality to interface with the Hardware

Layer either directly or virtualized by the hypervisor. It is also responsible for managing the

priorities inside each Software Partition regulating the access to the different hardware

resources.

• The Service Layer furnishes software services to applications. Within this layer, FSW

solutions are deployed, providing a suite of standardized functionalities required by the

majority of space applications. These services regard to application and time management,

event listening and message exchange. Additionally, abstraction layers between different parts

of the platform's software are included here, thereby isolating the development of the Real-

Time Operating System (RTOS), common services provider, and the applications deployed

over them. Special mention goes to Sener Services Layer Application programming interface

The 4S Symposium 2024 – J. Zurera

3

(SSLA), the abstraction layer through which application developers’ interface to access the

core services of the platform.

• The Application Layer is the domain where mission-specific functionality is implemented.

Each of the various space applications that can be deployed to the platform requires multiple

independent tasks utilizing the services provided by the Service Layer. It is within this context

that these applications are developed to meet the objectives of different space missions.

Examples include command ingestion and telemetry transmission, execution schedulers,

mode managers, or user developed applications for managing external subsystems such as

batteries, solar panels, or sensors and actuators. The objective of this platform would be to

establish a library of applications previously developed by users, each with specific

functionalities as described earlier, tailored for particular subsystems of a satellite, for

instance. This approach enables us to offer future users ready-made applications, pre-

developed and ready for integration into the platform. Consequently, the platform, along with

the application, would evolve into a potential ready-to-use configurable product.

Figure 1 MIA generic architecture

SSLA is central to the design of MIA, it comes along with its own Software Development Kit (SDK),

and it presents developers with a set of common services and functionalities, useful in the context of

space missions, for deploying their own mission FSW. These services and functionalities are tightly

coupled with the presence of core Flight System (cFS) [2] in the platform, with SSLA acting as a

façade for the most useful of its Application Programming Interfaces (APIs). SSLA also provides

some own services and a standard execution flow for applications. This SDK enables developers to

create and deploy applications with ease. Firstly, it enables the assignment of processes priorities,

allowing for the optimization of task execution based on predefined importance. Secondly, it

facilitates the establishment of clear interfaces between tasks, following a publication subscription

communication methodology. Lastly, it provides a rich repository of function libraries both providing

The 4S Symposium 2024 – J. Zurera

4

a fixed set of services that most FSW requires as well as allowing user-specific ones, enhancing the

tasks capabilities without increasing its complexity. The services provided by the SSLA library

comprise the following functionalities:

• Event Handling Services: Handling various types of events is the focus of this service. It

provides methods for sending debug, informational, error, and critical events, each tailored to

specific event types, enabling effective event management and debugging.

• Logging Services: Logging functionality is consolidated within this service, allowing

messages to be logged to the system log for record-keeping and diagnostic purposes.

• Application Management Services: Designed to manage applications within the system, this

class facilitates operations such as retrieving application IDs and names, registering child

tasks, and managing task-related operations within the system architecture.

• System Control Services: Responsible for system-level control, this service offers functions

for initiating system resets, providing a mechanism for system-wide management and control.

• Message Handling Services: Central to message handling operations, this service provides a

comprehensive suite of functions for message subscription, retrieval of message IDs and

command codes, registration of handlers for different types of messages, message reception,

transmission, and time retrieval.

These services collectively form the backbone of the SSLA library, providing developers with a

powerful set of tools for building and managing complex space applications efficiently.

3 AFTU ARCHITECTURE DESCRIPTION

Multiple sets of space mission applications can be deployed using different MIA platform

configurations. For the purposes of this paper, we have selected a particular case study based on an

AFTU. A set of power independent, sensor isolated AFTUs conform an AFTS, a system that checks

along the flight the correctness of a launcher trajectory, outputting a unique and coherent terminate

signal. This autonomous launcher subsystem allows unmanned operations, increasing the maximum

launch cadence, thus reducing the cost for space missions. This system has been developed under the

scope of the SAFEST project, which stands for Smart Avionics for Flight Termination Systems. This

project has been undertaken by a consortium of European companies, with leadership provided by

SENER Defense and Space. The various contributions from the consortium members that have

facilitated the development of the MIA platform will be presented alongside their respective

contributions.

The 4S Symposium 2024 – J. Zurera

5

Figure 2 MIA specification for the AFTU

For this particular use case, we have developed a MIA specification that follows the architecture

shown in Figure 2. It is developed to be deployed over the Xilinx MPSoC Z-7020. At software level,

the structure designed for MIA to fulfill the needs of an AFTU and the role that its different parts

carry out is the following.

3.1 XtratuM Hypervisor

FentISS XtratuM Hypervisor for Time and Space Partitioning [2][3]. The hypervisor plays a pivotal

role in enabling the deployment of the two primary applications of the AFTU: the Navigation Partition

and the Mission Rules partition, which are presented in more detail in section 4. These two FSW

Applications could be deployed on separate On-Board Computers (OBCs). However, through the

utilization of the Hypervisor to deploy them as software partitions within the same hardware, the full

potential of the MPSoC is utilized. By consolidating these applications onto a single hardware

platform, various benefits are realized. Firstly, communication between the applications is

streamlined, as they can directly interact with each other within the confines of the MPSoC, making

use of inter-partition communication. This eliminates the need for complex inter-OBC

communication protocols, reducing overhead and potential points of failure. Additionally, resource

utilization is optimized, as the shared hardware resources of the MPSoC are efficiently distributed

among the deployed partitions. This ensures that computational resources are fully utilized, enhancing

overall system performance and efficiency. Moreover, deploying both applications within the same

hardware environment simplifies system debug and testing, as the system is a centralized in a unique

platform.

The 4S Symposium 2024 – J. Zurera

6

3.2 RTEMS RTOS

RTEMS (Real-Time Executive for Multiprocessor Systems) as Real Time Operating System (RTOS).

RTEMS is deployed over the XNG hypervisor, and the synergy between these two software layers

has been proven across numerous projects both, making use of the capabilities of Symmetric

Multiprocessing (SMP) or single-core configurations, such as that of this platform. In the MIA

platform the applications are managed by the OS within each partition. RTEMS makes use of its

scheduler module to handle the execution flow of the different tasks. The concept of scheduling in

real-time systems dictates the ability to provide immediate response to specific external events,

particularly the necessity of scheduling tasks to run within a specified time limit without surpassing

it. The scheduler’s sole purpose is to allocate the resource of processor time to the various tasks

requiring execution time at the same software partition.

By utilizing this scheduler, we can ensure the continuous execution of the highest priority task

pending execution at any given time. This functionality aligns with a configuration option within

RTEMS known as preemption. In our particular use case, there are very high temporal constraints

due to rapid data aging. For instance, consider the transmission of a navigation solution from the

Navigation partition to the Mission Rules partition. From the moment data is received from the

sensors until the AFTU produces a correct termination signal, the maximum elapsed time must be

less than 10 ms. Such a temporal requirement requires that the execution of tasks responsible for

initial trajectory calculations and outputting to the Mission Rules partition must have the highest

priority. This ensures their capability to preempt lower-priority tasks, thereby meeting the time

constraints effectively.

3.3 cFE

cFE the core of NASA's cFS for the FSW framework. The cFE provides a set of core services

including Software Bus (messaging), Time, Event (Alerts), Executive (startup and runtime), and

Table services. The cFE defines an API for each service which serves as the basis for application

development. Both, cFE and RTEMS are particularly tailored to fulfill the necessities and certification

requirements that space missions present. For this project, a space profile cFE/RTEMS is developed.

The reduction of features such as file systems, embedded shells, or dynamic loading, make possible

to create a Qualification Data Package (QDP) tailored for applications categorized under ECSS

software criticality C. This QDP is specifically designed for deployment on the Xilinx Z-7020

platform by the consortium company embedded brains.

3.4 SSLA

SSLA operates as a service provider to the Application Layer. SSLA acts is an abstraction and

isolation layer, providing a structured and standardized interface for applications to access the

platform's services and functionalities. Applications are separated from the specific platform

implementation details such as cFE, Programmable Logic (PL), and communication interfaces.

Moreover, any modifications made to the lower layers of the platform have minimal impact on the

applications. Furthermore, employing SSLA allows developers to view the remaining components of

the MIA platform as a black box, simplifying the development process and reducing complexity.

4 AFTU SOFTWARE PARTITIONS

As presented in the previous section, to fulfill the requirements of the AFTU, two Mission Partitions

are developed. A Mission Partition is a set of applications intended to work together as a whole,

including common variables well known for each application as well as a set of priorities defined to

allow critical task behavior to work correctly. For the AFTU, the two Mission Partitions are the

‘Navigation’ and the ‘Mission Rules’, each of them executed in a separate hypervisor partition.

The 4S Symposium 2024 – J. Zurera

7

The Navigation partition encompasses the system's guidance functionality, incorporating sensor data

ingestion to produce a precise navigation solution. This partition is responsible for processing real-

time sensor inputs and executing algorithms to ensure precise and accurate position location

throughout the flight trajectory. In parallel, the Mission Rules partition operates as a flight correctness

and trajectory verification system. It continuously monitors the flight parameters against predefined

mission rules and criteria, verifying the adherence to desired flight paths and safety protocols. These

parameters not only come from the inner Navigation partition, but also from others tracking inputs

that the user can send to the system. By segregating these functionalities into distinct partitions, the

hypervisor ensures the isolation and independent operation of the Navigation and Mission Rules

systems. Making use of the flexibility of the platform, the AFTU is also designed to be modular in its

components, allowing the user to change its components, such as the sensors and Navigation partition,

as long as the navigation parameters that it sends are kept the same. The opposite is also true, the

system could be modified by the user to add its own Mission Rules partition, maintaining the

Navigation partition, or relaying on external tracking inputs.

4.1 Navigation Partition

The Navigation partition produces an estimation of the positioning state vector and an indicator of

the quality of the estimation. To do so the navigation application processes and integrates the

information coming from two subsystems: an Inertial Measurement Unit (IMU) and Global

Navigation Satellite System (GNSS). The data fusion algorithm implemented is a Loose Extended

Kalman Filter (EKF) [5][6]. The architecture and high-level data flow of the navigation is described

in Figure 3.

Figure 3 High-level Navigation Partition data flow

To deploy this architecture on the MIA platform, a set of SSLA applications and FPGA blocks have

been developed. The description of the FPGA blocks will be addressed in a subsequent section. Here,

our focus is to showcase the SSLA application architecture that has been developed to replicate the

high-level behavior required to meet the functional requirements of this partition. This architecture is

shown in 4. It is important to note that even though in the figure two FPGA blocks appear, this is just

for clarity in following the execution flow of applications, they refer to the same physical device. It

is also important to notice from the figure the presence of three different types of communication.

The first, in red, the hardware interruption that triggers a cyclic execution, the second, in green, the

command message, which carries information and triggers applications execution, the third, in blue,

the data messages, which only store information inside an application pipe to be read when awaken

by a command message. Lastly, the thin black arrows represent the FPGA related communication.

This communication is described in more detail in section 5.

The 4S Symposium 2024 – J. Zurera

8

The execution of these applications constitutes a cycle of operation. This execution cycle is triggered

by the arrival of a tick from the FPGA, which, through a hardware interrupt, initiates the execution

of an application. This interruption is linked to the arrival of a new data packet from the sensors, in

this case, from the IMU, which has the highest frequency. In this implementation, the IMU message

reception is set to 50 Hz. The arrival of a new GNSS is asynchronous to the system, and, as it has a

lower frequency and priority than the one from the IMU, it does not trigger any hardware interruption

and it is read in the following cycle. The arrival of the interruption initiates an internal communication

cycle using the internal communication bus, where this set of sensor data is distributed among the

different applications that require them. Within this cycle, a navigation solution is obtained and sent

through the FPGA to the Mission Rules partition.

Figure 4 Navigation Partition SSLA application architecture

Three main SSLA application types are developed. FPGA communication, scheduler management

and navigation algorithm function applications.

FPGA communication applications: These applications are specifically designed to manage

communication with the FPGA blocks within the system. They facilitate the exchange of data

between software applications and FPGA logic, ensuring seamless integration and coordination

between the two components. They are designed to be highly reusable and decouple the rest of the

SW from the external HW devices intricacies, being the only applications that would require

modification in case of changing the sensor or actuator selection.

- FPGA Reader: This application receives a HW interruption triggering the system cycle. It

reads sensor data from the memory, which has been previously written by the FPGA through

the usage of Direct Memory Access (DMA). Then, the application sends messages making

The 4S Symposium 2024 – J. Zurera

9

use of the SSLA communication services to the corresponding applications, as illustrated in

Figure 4. In case of malfunctioning at retrieving the data, the application has configured a set

of informational and error events that can be raised at any time.

- FPGA Writer: This application sole purpose is to receive the information that shall be

outputted each cycle either to the Mission Rules partition or as telemetry using one of the

configured external interfaces.

Scheduler Management applications: These applications interface between the raw and processed

data and the navigation algorithm functions. They control the operational modes and application

communication sequences.

- Mode Manager: The Mode Manager application implements a state machine that receives a

set of parameters as inputs and decides on the system's mode transitions. These parameters

are related to navigation, such as the validity of sensors or the results of navigation algorithm

functions.

- IMU Cycle Manager: The IMU Cycle Manager application is responsible for orchestrating

the execution sequence of algorithm applications with navigation functions and the Mode

Manager.

- GNSS Cycle Manager: The GNSS Cycle Manager application is triggered to execute upon

receiving a GNSS message. Its mission is to propagate the data received from this sensor to

the IMU Cycle Manager, which will encapsulate it as a new message in its communications

with the navigation algorithm applications.

Navigation algorithm applications: These applications encompass all operations performed on sensor

data to derive a navigation solution. These functions are autogenerated from graphical programming

environment and embedded within various applications listed below. These applications are where

the majority of CPU execution time per cycle is allocated, thus they are designed in such a way that

the execution of lower-priority functions will never halt the execution of a function with stricter

temporal requirements. Priorities are set regarding which sensor data the application computes. The

higher priority applications work with the IMU, which data aging, the time that it takes for a data to

be obsolete, is faster in comparison with GNSS due to their different reception frequencies (50Hz for

the IMU, 2Hz for the GNSS).

- High Priority Task (HPT): First level priority. Receives a message from IMU Cycle Manager

with sensor data and previous results from the rest of navigation functions. It executes its

algorithm function and propagate its results. Due to time constrains and strict limitation on

data aging in an AFTS, HPT is the application which commands the execution of FPGA

Writer, ensuring the lowest navigation solution transmission time.

- Medium Priority Task (MPT): Second level priority. Receives data from IMU Cycle Manager

with sensor data and HPT results, computes it, and propagates its results.

- Low Priority Task (LPT). Third level priority. Receives data from IMU Cycle Manager with

sensor data, HPT and MPT results, computes it, and propagates its results.

4.2 Mission Rules Partition

The Mission Rules partition process the tracking input information, update the state accordingly and

detect if any mission rule has been violated. The mission rules can process up to three tracking inputs;

The 4S Symposium 2024 – J. Zurera

10

the first one would come from the Navigation partition and the other two are optional, could be

provided by other AFTU or by the user. This architecture is presented in Figure 5.

Figure 5 High-level Mission Rules Partition data flow

Integrating this logical architecture into a set of SSLA applications and FPGA blocks on the MIA

platform is straightforward. From the perspective of the software architecture to be developed, it is

resolved with four applications. The two FPGA read and write applications, which are reusable from

the previous partition and reconfigured to receive and write the desired data. A Mode Manager

application, which receives parameters and computes the system's operating mode. Lastly, the

Mission Rules Checker application, which checks the correctness of the trajectory rule by rule. As

well as the Navigation partition, this partition also relays on a hardware interruption coming from the

FPGA to trigger its execution cycle. This hardware interruption is paired with the Navigation partition

writing the navigation solution to the FPGA. In this case, this communication is set to a frequency of

50Hz. This application configuration is shown in Figure 6.

Figure 6 Mission Rules Partition SSLA application architecture

This Mission Rules partition is designed and implemented aiming to achieve a lightweight and user-

friendly application architecture for an Autonomous Flight Termination System (AFTS). This design

choice is deliberate. The goal is to empower the user of an AFTS system with configuration capability

over the Mission Rules partition. From the perspective of an AFTS product, this approach makes

sense, as there are numerous parameters that are dependent on the launcher on which the AFTU is

installed, necessitating user configurability.

The 4S Symposium 2024 – J. Zurera

11

In this regard, two types of possible configurations have been considered, ranging from lower to

higher levels of system modification:

- Modification of specific parameters related to launch characteristics such as number and

definition of tracking inputs, launcher characteristics or trajectory definition.

- Integration of a new Mission Rules SW partition, based on the one provided in this project

but modified, compiled, and introduced into the system to be orchestrated by the hypervisor.

5 AFTU FPGA BLOCKS

Since, in this use case, it is designed to be executed on a Xilinx MPSoC Z-7020, the MIA platform

has built-in features for allocating different functionalities in the FPGA (Programmable Logic, PL)

and regular software in the ARM cores (Processing System, PS). In particular, the SSLA API and

service layer encapsulates all accesses to the FPGA registers and modules in a clear boundary (SSLA

Lib).

The information exchange between the PL and the PS in the MIA architecture is performed using

Direct Memory Access (DMA), this interaction is presented at Figure 7. This engine allows to transfer

data directly from the FPGA to the MPSoC memory. In particular, it allows sending data from the PL

to the Double Data Rate (DDR) Random Access Memory (RAM) without requiring the PS. The MIA

platform assumes that the FPGA logic and circuitry is designed in a structure of several register

blocks, accessible through the Advanced eXtensible Interface (AXI) bus, which configures and

controls a set of different FPGA subsystem. The DMA, its control registers, status registers, buffer

length (size of the transferences), destination address, etc, the different sensors and actuators

connected through external interfaces and the management of Telemetry and Telecommand (TMTC)

are configured using the AXI bus.

Figure 7 PL/PS Interaction

Although this is mission-dependent, the common approach both in MIA and in most FPGA-equipped

embedded systems is to allocate the low-level functionality of interfacing with external sensors,

The 4S Symposium 2024 – J. Zurera

12

actuators and subsystems in the FPGA. This reduces the software processing load and allows the

applications to be decoupled from the particular timing constraints of the different external hardware

units.

In this use case, the Navigation partition software requires the ingestion of the data produced by two

sensors, as described in 4.1, a IMU and a GNSS. These sensors are connected to the PL through a

serial interface RS422. Two FPGA blocks are developed to receive these data (implementing the

necessary serial protocol, flow control, etc.) and perform a pre-processing or conditioning on the data.

Then, the DMA engine is used to store the data retrieved and pre-processed from the sensors in the

application developed to read the data from the FPGA. With this approach, the software application

does not need to deal with the specifics of the serial protocol and timing, nor receive unnecessary data

that it won’t need for its functionality. The app would just read its required data from the memory on

its own decided schedule, making the app lighter and the guaranteeing of the global software

determinism much more feasible. In addition, this approach allows to change the particular sensors

used, both IMU ad GNSS, only modifying the FPGA block. The modification would only require

adapting the new received data to the frequency and generating the same message output format to

the PS, leaving the application software without changes.

As previously mentioned in section 4, both software partitions require a hardware interruption to start

their execution cycle, delegating their periodicity to an external input. In this particular design, the

Navigation partition interruption is dependent on the IMU sending messages through the RS422.

These messages are produced at 200 Hz by the sensor used. When the FPGA has received four IMU

packages, it processes them and writes the data to the PS memory at 50 Hz.

When using the hypervisor, the FPGA is treated as another hardware resource from the point of view

of each partition. A special FPGA block is used to exchange data between partitions in a secure way,

allowing partitions to share data without directly interfacing with each other. In the case of the

Mission Rules partition, the interruption that initiates the execution cycle depends on the Navigation

partition writing the navigation solution to the FPGA.

6 MIA SUPPORT FOR HIGH-LEVEL ALGORITHM INTEGRATION

Throughout this work, the motivations for using a platform like MIA for rapid, effective, and secure

deployment of FSW have been developed. Here, is shown how using this platform reduces

development time and cost.

As presented in previous sections, the MIA platform is designed in a versatile way so different space

applications can be deployed over it. As of today, one of the most commonly required space

application are guidance, navigation, and control (GNC) systems. These systems present complex

functionalities, tightly coupled to the spacecraft characteristics in which they are deployed.

Traditionally, this generates mission specific software that is hardly reusable. As of today, the

development of these algorithm systems is ever more dependent on simulator environments such as

Simulink or high-level algorithmic languages such as phyton or MATLAB. They are used for

modeling, simulating, and analyzing dynamic systems with complex algorithm functions. These tools

can provide a visual, block-based interface where users can build models by connecting predefined

blocks representing different system components. From these block-based diagrams or algorithm

descriptions, a non-experienced software developer user can run automatic code generation tools,

which ultimately generate a set of files in the programming language chosen by the user. These files

consist of a series of function declarations and structures that, when properly initialized with the

The 4S Symposium 2024 – J. Zurera

13

appropriate values and executed, replicate in software the behavior previously designed in the

graphical system.

Starting from this set of files containing source code and declarations of the algorithmic functions

produced by each block, a direct integration of these functions and interfaces can be achieved within

the MIA platform. Each of the designed blocks can generate source files ready to be added to different

applications with the granularity desired by the user. The simplest integration involves embedding all

functionalities executed at the same frequency into a single block, from which a function is

automatically generated,. The inputs and outputs of the function can be used as the definition of the

messages to which the SSLA application must subscribe and publish, respectively. This integration

is presented in Figure 8.

Figure 8 High-level algorithm blocks to SSLA application integration

As presented in the previous section, both the AFTU and the platform itself are designed to be

modified either by configuring specific parameters to define the operation of a launcher or by

replacing the Mission Rules partition. In the latter case, users are provided with a template of the

source code for this partition.

Given the pre-developed and provided sensors, actuators, FPGA blocks, and SSLA applications that

interact with them to obtain and deliver data externally, the MIA platform is designed so an

inexperienced user can develop communications and applications to replicate the behavior of various

algorithmic functions on this data. Following the example of the software partition described in Figure

6, a set of templates and tutorials are provided to facilitate the integration of this auto-generated

software. The Mission Rules Checker application, along with its corresponding algorithm library, is

provided to the developer in the form of a template. Here, the developer can integrate the functions

generated by their auto-generation tool. The user only needs to define the inputs of their module,

equivalent to the input interfaces defined in their system, and call the auto-coded function embedding

the functionality of the system. The execution of this function will return a set of values that will be

parsed into the Mission Rules Output message, thus completing the process of integrating auto-

generated software with the MIA platform.

Once all the software is integrated, the tools of the MIA platform include all the necessary

configuration files to compile the entire system and generate an executable in the form of a software

partition. This partition can then be integrated into the platform and loaded by the hypervisor as a

new software partition. This process is displayed in Figure 9.

The 4S Symposium 2024 – J. Zurera

14

Figure 9 User Software Partition customization

7 CONCLUSIONS

Portrayed in the AFTU use case, the advantages of using the MIA platform as an avionics solution

for a real scenario are proven. Deploying two distinct software partitions, Navigation and Mission

Rules, ensures their isolation, enabling easy modification or replacement, thus enhancing the

platform's modularity and flexibility. The different SSLA applications with communication

functionality with the FPGA, as well as the FPGA blocks themselves, can be reused in future projects

for interfacing with these same sensors, or slightly modified for other sensors of the same nature. The

templates and tutorials for integrating autogenerated functions into SSLA applications, with a clear

approach of inputs as reception messages, autocoded functions as main execution and outputs as

publication messages, reducing the software development complexity.

In summary, this paper delves into the advantages that using the MIA platform provides to developers

and companies in the space and avionics sector. The ability to deploy different configurations of space

software with different criticalities over one platform, the incremental added value that new reusable

applications provide, and the platform’s modularity make MIA an advanced, easy to use, low-cost

and modular avionics solution.

8 ACKNOWLEDGMENTS

This work is carried out in the frame of the SAFEST Project with Sener as the coordinator of a joint

effort of many individuals and organizations. This project has received funding from the European

Union’s Horizon Europe research and innovation programmed under grant agreement No 101082662.

We greatly thank of the great work of all the consortium members, in particular in particular to fentISS

(hypervisor) and embedded brains (operating system), the European Commision officers and reviews

and the business development department from Sener, which have believed in and firmly committed

to the project.

9 REFERENCES

[1] Santiago Lozano, Ana Rodríguez, Carlos Rodríguez, and Miguel López, MIA: European Multi-

Purpose Space Platform using cFS and TSP, Flight Software Workshop, 2022.

The 4S Symposium 2024 – J. Zurera

15

[2] McComas, D. (2012, November). NASA/GSFC's Flight Software Core Flight System. In Flight

Software WorkshopFlight Workshop (No. GSFC. CPR. 7525.2013).

[3] Masmano, M., Coronel, J., Balbastre, P., Crespo, A., Simó, J., & Peiró, S. XtratuM hypervisor for

mixed-criticality systems.

[4] Masmano, M., Ripoll, I., Crespo, A., Metge, J.J., and Arberet, P. Xtratum: An open source

hypervisor for TSP embed- ded systems in aerospace. In DASIA 2009. DAta Systems In Aerospace.,

Istanbul (Turkey), May 2009.

[5] S. Ramirez, S. Diaz, C. Fernandez, NAVIGA: Multi-Purpose European Space Navigation Unit,

IAC 2022

[6] M. Sanchez, S. Ramirez, C. Tato, S. Caporossi, Next Generation Autonomous Flight Termination

System (aFTS) for Launchers, IAF Space Transportation Solutions and Innovations Symposium,

2022.

	MIA, a reusable execution platform for space missions. A case study based on an Autonomous Flight Termination Unit.
	1 INTRODUCTION
	2 MIA PLATFORM
	3 AFTU ARCHITECTURE DESCRIPTION
	3.1 XtratuM Hyperviso r
	3.2 RTEMS RTOS
	3.3 cFE
	3.4 SSLA

	4 AFTU SOFTWARE PARTITIO NS
	4.1 Navigation Partition
	4.2 Mission Rules Partition

	5 AFTU FPGA BLOCKS
	6 MIA SUPPORT FOR HIGH-LEVEL ALGORITHM INTEGRATION
	7 CONCLUSIONS
	8 ACKNOWLEDGMENTS
	9 REFERENCES

