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ABSTRACT 

As interest in space missions and the services they provide grows, the need to develop new platforms 

that can support the necessities of these services becomes more evident. High cost in time and 

resources are derived from Flight Software (FSW) development for each space mission. This effort, 

however, is hardly reusable because the software for each particular mission is tailored to its particular 

requirements. Thus, traditional FSW is tightly coupled, presents custom interfaces paired with data 

protocols, requires internal mission knowledge and presents interdependencies between components. 

 

In this new space era, the price dictates the business. In order to increase the reusability, modularity 

and overall, ease the development of FSW, we have developed the sMart Integrated Avionics (MIA) 

platform.  This platform significantly facilitates the development of space software and applications, 

such as the one presented as use case in this paper, an Autonomous Flight Termination Unit (AFTU). 

This autonomous launcher subsystem allows unmanned operations, increasing the maximum launch 

cadence, thus reducing the cost for space missions, facilitating that access to space is more easily and 

rapidly achieved by all types of agents. 

1 INTRODUCTION  

The MIA platform is presented as a versatile solution aiming to a variety of apace applications needs, 

ranging from the rigorous demands of space missions characterized by safety and functional criticality 

to the more flexible requisites of NewSpace applications, which prioritize rapid deployment and 

adaptability. 

 

In this paper, we first present a general analysis of the MIA architecture, detailing the different parts 

it presents and the functionalities provided by each component. It offers a general description 

overview aligned with the platform's philosophy, emphasizing the modularity of its components and 

how they can be exchanged without affecting the rest, thanks to the isolation of its various software 

layers. 

 

Next, a specific use case is presented involving an AFTU unit, demonstrating how a particular 

specification of the MIA platform was developed to meet the requirements of this system. The general 

characteristics of the chosen software are outlined, followed by a detailed explanation of how these 

software components facilitate the deployment of the capabilities needed for the development of an 

Autonomous Flight Termination System (AFTS). 

 

Finally, two sections are dedicated to describing the implementation and execution specifics of the 

software and FPGA (Field-Programmable Gate Array) blocks for the specific AFTU system. 
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2 MIA PLATFORM 

The MIA platform is composed by a set of interchangeable software components, FPGA blocks, and 

hardware devices in which it can be executed. MIA presents a highly decoupled layered architecture 

developed to operate and communicate using a set of standardized common interfaces between layers. 

This allows us to customize MIA by changing the components for each particular space mission 

implementation without affecting the rest, granting the needed modularity and reusability to the 

platform. This approach, allows the platform to be deployed over different physical devices such 

including Micro Controller Unit (MCU) or Multiprocessor Systems-on-Chip (MPSoC), providing the 

required modularity and flexibility to cope with different energy, memory or performance mission 

requirements. 

 

The MIA execution platform is not a novel product being introduced within this paper; rather, its 

overarching description and analysis of its various components were initially presented at [1]. The 

philosophy underlying this platform remains consistent, to provide a FSW execution platform that 

excels at its flexibility and adaptability, from which novel outcomes can be derived. To aid in the 

comprehension of this paper, a review of the different components and their general characteristics is 

provided here. In subsequent sections, we will elaborate on how these distinct components have been 

tailored to serve specific purposes within a particular space application. 

 

The principal layers that constitute the MIA architecture are shown in Figure 1 and are described 

below: 

 

• The Hardware Layer includes the physical components of a System on Chip (SoC), including 

processor cores, FPGAs, memory devices, peripherals, and interconnect logic. 

 

• The Temporal and Spatial Partitioning (TSP) Layer is responsible for providing temporal and 

spatial partitioning to the architecture. Space missions often entail specific applications of 

varying levels of criticality, such as Attitude and Orbit Control Systems (AOCS), Data 

Handling Systems (DHS), high-level applications, etc. Deploying a hypervisor enables us to 

leverage all physical resources, such as physical interfaces and memories, as well as the 

computational capacity of the processor cores, while maintaining isolation and criticality 

between different applications. This is obtained using software partition, which divide a 

computing system into multiple virtual environments. Each partition functions as an 

independent entity with its own operating system, applications, and allocated resources. This 

ensures that software partitions of varying criticality can be deployed on this layer without 

encountering interferences or interdependencies between them.  

 

• The Operative System (OS) Layer provides the functionality to interface with the Hardware 

Layer either directly or virtualized by the hypervisor. It is also responsible for managing the 

priorities inside each Software Partition regulating the access to the different hardware 

resources. 

 

• The Service Layer furnishes software services to applications. Within this layer, FSW 

solutions are deployed, providing a suite of standardized functionalities required by the 

majority of space applications. These services regard to application and time management, 

event listening and message exchange. Additionally, abstraction layers between different parts 

of the platform's software are included here, thereby isolating the development of the Real-

Time Operating System (RTOS), common services provider, and the applications deployed 

over them. Special mention goes to Sener Services Layer Application programming interface 
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(SSLA), the abstraction layer through which application developers’ interface to access the 

core services of the platform. 

 

• The Application Layer is the domain where mission-specific functionality is implemented. 

Each of the various space applications that can be deployed to the platform requires multiple 

independent tasks utilizing the services provided by the Service Layer. It is within this context 

that these applications are developed to meet the objectives of different space missions. 

Examples include command ingestion and telemetry transmission, execution schedulers, 

mode managers, or user developed applications for managing external subsystems such as 

batteries, solar panels, or sensors and actuators. The objective of this platform would be to 

establish a library of applications previously developed by users, each with specific 

functionalities as described earlier, tailored for particular subsystems of a satellite, for 

instance. This approach enables us to offer future users ready-made applications, pre-

developed and ready for integration into the platform. Consequently, the platform, along with 

the application, would evolve into a potential ready-to-use configurable product. 

 

 
Figure 1 MIA generic architecture 

 

SSLA is central to the design of MIA, it comes along with its own Software Development Kit (SDK), 

and it presents developers with a set of common services and functionalities, useful in the context of 

space missions, for deploying their own mission FSW. These services and functionalities are tightly 

coupled with the presence of core Flight System (cFS) [2] in the platform, with SSLA acting as a 

façade for the most useful of its Application Programming Interfaces (APIs). SSLA also provides 

some own services and a standard execution flow for applications. This SDK enables developers to 

create and deploy applications with ease. Firstly, it enables the assignment of processes priorities, 

allowing for the optimization of task execution based on predefined importance. Secondly, it 

facilitates the establishment of clear interfaces between tasks, following a publication subscription 

communication methodology. Lastly, it provides a rich repository of function libraries both providing 
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a fixed set of services that most FSW requires as well as allowing user-specific ones, enhancing the 

tasks capabilities without increasing its complexity. The services provided by the SSLA library 

comprise the following functionalities: 

 

• Event Handling Services: Handling various types of events is the focus of this service. It 

provides methods for sending debug, informational, error, and critical events, each tailored to 

specific event types, enabling effective event management and debugging. 

 

• Logging Services: Logging functionality is consolidated within this service, allowing 

messages to be logged to the system log for record-keeping and diagnostic purposes. 

 

• Application Management Services: Designed to manage applications within the system, this 

class facilitates operations such as retrieving application IDs and names, registering child 

tasks, and managing task-related operations within the system architecture. 

 

• System Control Services: Responsible for system-level control, this service offers functions 

for initiating system resets, providing a mechanism for system-wide management and control. 

 

• Message Handling Services: Central to message handling operations, this service provides a 

comprehensive suite of functions for message subscription, retrieval of message IDs and 

command codes, registration of handlers for different types of messages, message reception, 

transmission, and time retrieval. 

 

These services collectively form the backbone of the SSLA library, providing developers with a 

powerful set of tools for building and managing complex space applications efficiently. 

3 AFTU ARCHITECTURE DESCRIPTION  

Multiple sets of space mission applications can be deployed using different MIA platform 

configurations. For the purposes of this paper, we have selected a particular case study based on an 

AFTU. A set of power independent, sensor isolated AFTUs conform an AFTS, a system that checks 

along the flight the correctness of a launcher trajectory, outputting a unique and coherent terminate 

signal. This autonomous launcher subsystem allows unmanned operations, increasing the maximum 

launch cadence, thus reducing the cost for space missions. This system has been developed under the 

scope of the SAFEST project, which stands for Smart Avionics for Flight Termination Systems. This 

project has been undertaken by a consortium of European companies, with leadership provided by 

SENER Defense and Space. The various contributions from the consortium members that have 

facilitated the development of the MIA platform will be presented alongside their respective 

contributions. 
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Figure 2 MIA specification for the AFTU 

For this particular use case, we have developed a MIA specification that follows the architecture 

shown in Figure 2. It is developed to be deployed over the Xilinx MPSoC Z-7020. At software level, 

the structure designed for MIA to fulfill the needs of an AFTU and the role that its different parts 

carry out is the following. 

3.1 XtratuM Hypervisor 

FentISS XtratuM Hypervisor for Time and Space Partitioning [2][3]. The hypervisor plays a pivotal 

role in enabling the deployment of the two primary applications of the AFTU: the Navigation Partition 

and the Mission Rules partition, which are presented in more detail in section 4. These two FSW 

Applications could be deployed on separate On-Board Computers (OBCs). However, through the 

utilization of the Hypervisor to deploy them as software partitions within the same hardware, the full 

potential of the MPSoC is utilized. By consolidating these applications onto a single hardware 

platform, various benefits are realized. Firstly, communication between the applications is 

streamlined, as they can directly interact with each other within the confines of the MPSoC, making 

use of inter-partition communication. This eliminates the need for complex inter-OBC 

communication protocols, reducing overhead and potential points of failure. Additionally, resource 

utilization is optimized, as the shared hardware resources of the MPSoC are efficiently distributed 

among the deployed partitions. This ensures that computational resources are fully utilized, enhancing 

overall system performance and efficiency. Moreover, deploying both applications within the same 

hardware environment simplifies system debug and testing, as the system is a centralized in a unique 

platform.    
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3.2 RTEMS RTOS 

RTEMS (Real-Time Executive for Multiprocessor Systems) as Real Time Operating System (RTOS). 

RTEMS is deployed over the XNG hypervisor, and the synergy between these two software layers 

has been proven across numerous projects both, making use of the capabilities of Symmetric 

Multiprocessing (SMP) or single-core configurations, such as that of this platform. In the MIA 

platform the applications are managed by the OS within each partition. RTEMS makes use of its 

scheduler module to handle the execution flow of the different tasks. The concept of scheduling in 

real-time systems dictates the ability to provide immediate response to specific external events, 

particularly the necessity of scheduling tasks to run within a specified time limit without surpassing 

it. The scheduler’s sole purpose is to allocate the resource of processor time to the various tasks 

requiring execution time at the same software partition. 

 

By utilizing this scheduler, we can ensure the continuous execution of the highest priority task 

pending execution at any given time. This functionality aligns with a configuration option within 

RTEMS known as preemption. In our particular use case, there are very high temporal constraints 

due to rapid data aging. For instance, consider the transmission of a navigation solution from the 

Navigation partition to the Mission Rules partition. From the moment data is received from the 

sensors until the AFTU produces a correct termination signal, the maximum elapsed time must be 

less than 10 ms. Such a temporal requirement requires that the execution of tasks responsible for 

initial trajectory calculations and outputting to the Mission Rules partition must have the highest 

priority. This ensures their capability to preempt lower-priority tasks, thereby meeting the time 

constraints effectively. 

3.3 cFE 

cFE the core of NASA's cFS for the FSW framework. The cFE provides a set of core services 

including Software Bus (messaging), Time, Event (Alerts), Executive (startup and runtime), and 

Table services. The cFE defines an API for each service which serves as the basis for application 

development. Both, cFE and RTEMS are particularly tailored to fulfill the necessities and certification 

requirements that space missions present. For this project, a space profile cFE/RTEMS is developed. 

The reduction of features such as file systems, embedded shells, or dynamic loading, make possible 

to create a Qualification Data Package (QDP) tailored for applications categorized under ECSS 

software criticality C. This QDP is specifically designed for deployment on the Xilinx Z-7020 

platform by the consortium company embedded brains. 

3.4 SSLA 

SSLA operates as a service provider to the Application Layer. SSLA acts is an abstraction and 

isolation layer, providing a structured and standardized interface for applications to access the 

platform's services and functionalities. Applications are separated from the specific platform 

implementation details such as cFE, Programmable Logic (PL), and communication interfaces. 

Moreover, any modifications made to the lower layers of the platform have minimal impact on the 

applications. Furthermore, employing SSLA allows developers to view the remaining components of 

the MIA platform as a black box, simplifying the development process and reducing complexity. 

4 AFTU SOFTWARE PARTITIONS 

As presented in the previous section, to fulfill the requirements of the AFTU, two Mission Partitions 

are developed. A Mission Partition is a set of applications intended to work together as a whole, 

including common variables well known for each application as well as a set of priorities defined to 

allow critical task behavior to work correctly.  For the AFTU, the two Mission Partitions are the 

‘Navigation’ and the ‘Mission Rules’, each of them executed in a separate hypervisor partition.  
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The Navigation partition encompasses the system's guidance functionality, incorporating sensor data 

ingestion to produce a precise navigation solution. This partition is responsible for processing real-

time sensor inputs and executing algorithms to ensure precise and accurate position location 

throughout the flight trajectory. In parallel, the Mission Rules partition operates as a flight correctness 

and trajectory verification system. It continuously monitors the flight parameters against predefined 

mission rules and criteria, verifying the adherence to desired flight paths and safety protocols. These 

parameters not only come from the inner Navigation partition, but also from others tracking inputs 

that the user can send to the system. By segregating these functionalities into distinct partitions, the 

hypervisor ensures the isolation and independent operation of the Navigation and Mission Rules 

systems. Making use of the flexibility of the platform, the AFTU is also designed to be modular in its 

components, allowing the user to change its components, such as the sensors and Navigation partition, 

as long as the navigation parameters that it sends are kept the same. The opposite is also true, the 

system could be modified by the user to add its own Mission Rules partition, maintaining the 

Navigation partition, or relaying on external tracking inputs. 

4.1 Navigation Partition 

The Navigation partition produces an estimation of the positioning state vector and an indicator of 

the quality of the estimation. To do so the navigation application processes and integrates the 

information coming from two subsystems: an Inertial Measurement Unit (IMU) and Global 

Navigation Satellite System (GNSS). The data fusion algorithm implemented is a Loose Extended 

Kalman Filter (EKF) [5][6]. The architecture and high-level data flow of the navigation is described 

in Figure 3. 

 

 
Figure 3 High-level Navigation Partition data flow 

 

To deploy this architecture on the MIA platform, a set of SSLA applications and FPGA blocks have 

been developed. The description of the FPGA blocks will be addressed in a subsequent section. Here, 

our focus is to showcase the SSLA application architecture that has been developed to replicate the 

high-level behavior required to meet the functional requirements of this partition. This architecture is 

shown in 4. It is important to note that even though in the figure two FPGA blocks appear, this is just 

for clarity in following the execution flow of applications, they refer to the same physical device. It 

is also important to notice from the figure the presence of three different types of communication. 

The first, in red, the hardware interruption that triggers a cyclic execution, the second, in green, the 

command message, which carries information and triggers applications execution, the third, in blue, 

the data messages, which only store information inside an application pipe to be read when awaken 

by a command message. Lastly, the thin black arrows represent the FPGA related communication. 

This communication is described in more detail in section 5. 
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The execution of these applications constitutes a cycle of operation. This execution cycle is triggered 

by the arrival of a tick from the FPGA, which, through a hardware interrupt, initiates the execution 

of an application. This interruption is linked to the arrival of a new data packet from the sensors, in 

this case, from the IMU, which has the highest frequency. In this implementation, the IMU message 

reception is set to 50 Hz. The arrival of a new GNSS is asynchronous to the system, and, as it has a 

lower frequency and priority than the one from the IMU, it does not trigger any hardware interruption 

and it is read in the following cycle. The arrival of the interruption initiates an internal communication 

cycle using the internal communication bus, where this set of sensor data is distributed among the 

different applications that require them. Within this cycle, a navigation solution is obtained and sent 

through the FPGA to the Mission Rules partition. 

 

 
Figure 4 Navigation Partition SSLA application architecture 

 

Three main SSLA application types are developed. FPGA communication, scheduler management 

and navigation algorithm function applications. 

 

FPGA communication applications: These applications are specifically designed to manage 

communication with the FPGA blocks within the system. They facilitate the exchange of data 

between software applications and FPGA logic, ensuring seamless integration and coordination 

between the two components. They are designed to be highly reusable and decouple the rest of the 

SW from the external HW devices intricacies, being the only applications that would require 

modification in case of changing the sensor or actuator selection.  

 

- FPGA Reader: This application receives a HW interruption triggering the system cycle. It 

reads sensor data from the memory, which has been previously written by the FPGA through 

the usage of Direct Memory Access (DMA). Then, the application sends messages making 
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use of the SSLA communication services to the corresponding applications, as illustrated in 

Figure 4. In case of malfunctioning at retrieving the data, the application has configured a set 

of informational and error events that can be raised at any time. 

 

- FPGA Writer: This application sole purpose is to receive the information that shall be 

outputted each cycle either to the Mission Rules partition or as telemetry using one of the 

configured external interfaces. 

 

Scheduler Management applications: These applications interface between the raw and processed 

data and the navigation algorithm functions. They control the operational modes and application 

communication sequences.  

 

- Mode Manager: The Mode Manager application implements a state machine that receives a 

set of parameters as inputs and decides on the system's mode transitions. These parameters 

are related to navigation, such as the validity of sensors or the results of navigation algorithm 

functions. 

 

- IMU Cycle Manager: The IMU Cycle Manager application is responsible for orchestrating 

the execution sequence of algorithm applications with navigation functions and the Mode 

Manager. 

 

- GNSS Cycle Manager: The GNSS Cycle Manager application is triggered to execute upon 

receiving a GNSS message. Its mission is to propagate the data received from this sensor to 

the IMU Cycle Manager, which will encapsulate it as a new message in its communications 

with the navigation algorithm applications. 

 

Navigation algorithm applications: These applications encompass all operations performed on sensor 

data to derive a navigation solution. These functions are autogenerated from graphical programming 

environment and embedded within various applications listed below. These applications are where 

the majority of CPU execution time per cycle is allocated, thus they are designed in such a way that 

the execution of lower-priority functions will never halt the execution of a function with stricter 

temporal requirements. Priorities are set regarding which sensor data the application computes. The 

higher priority applications work with the IMU, which data aging, the time that it takes for a data to 

be obsolete, is faster in comparison with GNSS due to their different reception frequencies (50Hz for 

the IMU, 2Hz for the GNSS).   

 

- High Priority Task (HPT):  First level priority. Receives a message from IMU Cycle Manager 

with sensor data and previous results from the rest of navigation functions. It executes its 

algorithm function and propagate its results. Due to time constrains and strict limitation on 

data aging in an AFTS, HPT is the application which commands the execution of FPGA 

Writer, ensuring the lowest navigation solution transmission time.  

 

- Medium Priority Task (MPT): Second level priority. Receives data from IMU Cycle Manager 

with sensor data and HPT results, computes it, and propagates its results. 

 

- Low Priority Task (LPT). Third level priority. Receives data from IMU Cycle Manager with 

sensor data, HPT and MPT results, computes it, and propagates its results. 

4.2 Mission Rules Partition 

The Mission Rules partition process the tracking input information, update the state accordingly and 

detect if any mission rule has been violated. The mission rules can process up to three tracking inputs; 
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the first one would come from the Navigation partition and the other two are optional, could be 

provided by other AFTU or by the user. This architecture is presented in Figure 5. 

 

 
Figure 5 High-level Mission Rules Partition data flow 

 

Integrating this logical architecture into a set of SSLA applications and FPGA blocks on the MIA 

platform is straightforward. From the perspective of the software architecture to be developed, it is 

resolved with four applications. The two FPGA read and write applications, which are reusable from 

the previous partition and reconfigured to receive and write the desired data. A Mode Manager 

application, which receives parameters and computes the system's operating mode. Lastly, the 

Mission Rules Checker application, which checks the correctness of the trajectory rule by rule. As 

well as the Navigation partition, this partition also relays on a hardware interruption coming from the 

FPGA to trigger its execution cycle. This hardware interruption is paired with the Navigation partition 

writing the navigation solution to the FPGA. In this case, this communication is set to a frequency of 

50Hz.  This application configuration is shown in Figure 6. 

 

 
Figure 6 Mission Rules Partition SSLA application architecture 

 

This Mission Rules partition is designed and implemented aiming to achieve a lightweight and user-

friendly application architecture for an Autonomous Flight Termination System (AFTS). This design 

choice is deliberate. The goal is to empower the user of an AFTS system with configuration capability 

over the Mission Rules partition. From the perspective of an AFTS product, this approach makes 

sense, as there are numerous parameters that are dependent on the launcher on which the AFTU is 

installed, necessitating user configurability. 
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In this regard, two types of possible configurations have been considered, ranging from lower to 

higher levels of system modification:  

- Modification of specific parameters related to launch characteristics such as number and 

definition of tracking inputs, launcher characteristics or trajectory definition.  

- Integration of a new Mission Rules SW partition, based on the one provided in this project 

but modified, compiled, and introduced into the system to be orchestrated by the hypervisor. 

5 AFTU FPGA BLOCKS 

Since, in this use case, it is designed to be executed on a Xilinx MPSoC Z-7020, the MIA platform 

has built-in features for allocating different functionalities in the FPGA (Programmable Logic, PL) 

and regular software in the ARM cores (Processing System, PS). In particular, the SSLA API and 

service layer encapsulates all accesses to the FPGA registers and modules in a clear boundary (SSLA 

Lib). 

 

The information exchange between the PL and the PS in the MIA architecture is performed using 

Direct Memory Access (DMA), this interaction is presented at Figure 7. This engine allows to transfer 

data directly from the FPGA to the MPSoC memory. In particular, it allows sending data from the PL 

to the Double Data Rate (DDR) Random Access Memory (RAM) without requiring the PS. The MIA 

platform assumes that the FPGA logic and circuitry is designed in a structure of several register 

blocks, accessible through the Advanced eXtensible Interface (AXI) bus, which configures and 

controls a set of different FPGA subsystem. The DMA, its control registers, status registers, buffer 

length (size of the transferences), destination address, etc, the different sensors and actuators 

connected through external interfaces and the management of Telemetry and Telecommand (TMTC) 

are configured using the AXI bus. 

 

 
Figure 7 PL/PS Interaction 

 

Although this is mission-dependent, the common approach both in MIA and in most FPGA-equipped 

embedded systems is to allocate the low-level functionality of interfacing with external sensors, 
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actuators and subsystems in the FPGA. This reduces the software processing load and allows the 

applications to be decoupled from the particular timing constraints of the different external hardware 

units. 

 

In this use case, the Navigation partition software requires the ingestion of the data produced by two 

sensors, as described in 4.1, a IMU and a GNSS. These sensors are connected to the PL through a 

serial interface RS422. Two FPGA blocks are developed to receive these data (implementing the 

necessary serial protocol, flow control, etc.) and perform a pre-processing or conditioning on the data. 

Then, the DMA engine is used to store the data retrieved and pre-processed from the sensors in the 

application developed to read the data from the FPGA. With this approach, the software application 

does not need to deal with the specifics of the serial protocol and timing, nor receive unnecessary data 

that it won’t need for its functionality. The app would just read its required data from the memory on 

its own decided schedule, making the app lighter and the guaranteeing of the global software 

determinism much more feasible. In addition, this approach allows to change the particular sensors 

used, both IMU ad GNSS, only modifying the FPGA block. The modification would only require 

adapting the new received data to the frequency and generating the same message output format to 

the PS, leaving the application software without changes. 

 

As previously mentioned in section 4, both software partitions require a hardware interruption to start 

their execution cycle, delegating their periodicity to an external input. In this particular design, the 

Navigation partition interruption is dependent on the IMU sending messages through the RS422. 

These messages are produced at 200 Hz by the sensor used. When the FPGA has received four IMU 

packages, it processes them and writes the data to the PS memory at 50 Hz. 

 

When using the hypervisor, the FPGA is treated as another hardware resource from the point of view 

of each partition. A special FPGA block is used to exchange data between partitions in a secure way, 

allowing partitions to share data without directly interfacing with each other. In the case of the 

Mission Rules partition, the interruption that initiates the execution cycle depends on the Navigation 

partition writing the navigation solution to the FPGA. 

6 MIA SUPPORT FOR HIGH-LEVEL ALGORITHM INTEGRATION 

Throughout this work, the motivations for using a platform like MIA for rapid, effective, and secure 

deployment of FSW have been developed. Here, is shown how using this platform reduces 

development time and cost. 

 

As presented in previous sections, the MIA platform is designed in a versatile way so different space 

applications can be deployed over it. As of today, one of the most commonly required space 

application are guidance, navigation, and control (GNC) systems. These systems present complex 

functionalities, tightly coupled to the spacecraft characteristics in which they are deployed. 

Traditionally, this generates mission specific software that is hardly reusable. As of today, the 

development of these algorithm systems is ever more dependent on simulator environments such as 

Simulink or high-level algorithmic languages such as phyton or MATLAB. They are used for 

modeling, simulating, and analyzing dynamic systems with complex algorithm functions. These tools 

can provide a visual, block-based interface where users can build models by connecting predefined 

blocks representing different system components. From these block-based diagrams or algorithm 

descriptions, a non-experienced software developer user can run automatic code generation tools, 

which ultimately generate a set of files in the programming language chosen by the user. These files 

consist of a series of function declarations and structures that, when properly initialized with the 
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appropriate values and executed, replicate in software the behavior previously designed in the 

graphical system. 

 

Starting from this set of files containing source code and declarations of the algorithmic functions 

produced by each block, a direct integration of these functions and interfaces can be achieved within 

the MIA platform. Each of the designed blocks can generate source files ready to be added to different 

applications with the granularity desired by the user. The simplest integration involves embedding all 

functionalities executed at the same frequency into a single block, from which a function is 

automatically generated,. The inputs and outputs of the function can be used as the definition of the 

messages to which the SSLA application must subscribe and publish, respectively. This integration 

is presented in Figure 8. 

 

 
Figure 8 High-level algorithm blocks to SSLA application integration 

 

As presented in the previous section, both the AFTU and the platform itself are designed to be 

modified either by configuring specific parameters to define the operation of a launcher or by 

replacing the Mission Rules partition. In the latter case, users are provided with a template of the 

source code for this partition.  

 

Given the pre-developed and provided sensors, actuators, FPGA blocks, and SSLA applications that 

interact with them to obtain and deliver data externally, the MIA platform is designed so an 

inexperienced user can develop communications and applications to replicate the behavior of various 

algorithmic functions on this data. Following the example of the software partition described in Figure 

6, a set of templates and tutorials are provided to facilitate the integration of this auto-generated 

software. The Mission Rules Checker application, along with its corresponding algorithm library, is 

provided to the developer in the form of a template. Here, the developer can integrate the functions 

generated by their auto-generation tool. The user only needs to define the inputs of their module, 

equivalent to the input interfaces defined in their system, and call the auto-coded function embedding 

the functionality of the system. The execution of this function will return a set of values that will be 

parsed into the Mission Rules Output message, thus completing the process of integrating auto-

generated software with the MIA platform.  

 

Once all the software is integrated, the tools of the MIA platform include all the necessary 

configuration files to compile the entire system and generate an executable in the form of a software 

partition. This partition can then be integrated into the platform and loaded by the hypervisor as a 

new software partition. This process is displayed in Figure 9.  
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Figure 9 User Software Partition customization 

7 CONCLUSIONS 

Portrayed in the AFTU use case, the advantages of using the MIA platform as an avionics solution 

for a real scenario are proven. Deploying two distinct software partitions, Navigation and Mission 

Rules, ensures their isolation, enabling easy modification or replacement, thus enhancing the 

platform's modularity and flexibility. The different SSLA applications with communication 

functionality with the FPGA, as well as the FPGA blocks themselves, can be reused in future projects 

for interfacing with these same sensors, or slightly modified for other sensors of the same nature. The 

templates and tutorials for integrating autogenerated functions into SSLA applications, with a clear 

approach of inputs as reception messages, autocoded functions as main execution and outputs as 

publication messages, reducing the software development complexity.  

 

In summary, this paper delves into the advantages that using the MIA platform provides to developers 

and companies in the space and avionics sector. The ability to deploy different configurations of space 

software with different criticalities over one platform, the incremental added value that new reusable 

applications provide, and the platform’s modularity make MIA an advanced, easy to use, low-cost 

and modular avionics solution. 
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