
ISMIR 2008 – Session 2a – Music Recommendation and Organization

KERNEL EXPANSION FOR ONLINE PREFERENCE TRACKING

Yvonne Moh JoachimM.Buhmann
Institute of Computational Science

Swiss Federal Institute of Technology (ETH) Zurich
{tmoh,jbuhmann}@inf.ethz.ch

ABSTRACT

User preferences of music genres can significantly changes
over time depending on fashions and the personal situation
of music consumers. We propose a model to learn user pref-
erences and their changes in an adaptive way. Our approach
refines a model for user preferences by explicitly consid-
ering two plausible constraints of computational costs and
limited storage space. The model is required to adapt itself
to changing data distributions, and yet be able to compress
“historical” data. We exploit the success of kernel SVM,
and we consider an online expansion of the induced space
as a preprocessing step to a simple linear online learner that
updates with maximal agreement to previously seen data.

1 INTRODUCTION

Adaptivity is an indispensable prerequisite for personaliza-
tion of acoustic devices like hearing aids. Hearing instru-
ments, for instance, are often expected to suppress distract-
ing or even annoying acoustic background sounds, whereas
enjoyable acoustic scenes should be enhanced.
Such acoustic scenes can often be differentiated in a fairly

fine-grained way, e.g. users might like some specific pop
artists, but dislikes other pop entertainers. We currently live
in a constantly changing world, and the amount of person-
alization that can be predicted and implemented in advance
is quite limited. This pre-training of device parameters can-
not cover all possible acoustic scenes (databases) to provide
user specific settings. Furthermore, new acoustic scenes
might evolve (e.g. new music types), and the user might
change his preference over time. Hence, we need to look at
real-time online adaptive algorithms.
Many classification results are based on batch learning,

where the training set with complete or partial labeling is
static and given at the training time. State-of-the-art meth-
ods for classification are Support Vector Machines (SVM)
[1] which have been successfully employed in genre/artist
classification [2] as well as in active learning [3]. A SVM
classifier is a kernel method which finds an optimal separat-
ing hyperplane of the data points x in a high-dimensional
projection space Φ(x), without having to explicitly expand
the data representation in this high-dimensional space. This

computational advantage is achieved via the kernel trick,
i.e., the scalar product in this high dimensional space as-
sumes a functional form defined by the kernel. The large
margin discriminatory hyperplane in this high dimensional
space accounts for the success of SVM in batch classifiers.
In our scenario we deal with the user’s preference. Here,

batch algorithms are no longer applicable since data are not
available in advance, nor can the system select data points
from a known database for querying (e.g. in active learn-
ing). Furthermore, temporal preference changes can not be
modeled via batch learning, since the time information is
discarded.
Hence we need to consider a sequential online learning

paradigm. In sequential online learning [4], the data are
processed as a stream, and the algorithm updates the clas-
sifier parameters online. Here, we use two online-learning
algorithms: an incremental SVM (LASVM) [5] and online
passive-aggressive algorithms (PA) [6]. Both algorithms are
discriminative kernel algorithms that learn sequentially. A
drawback of kernelized online large margin methods is the
tendency to invoke more and more support vectors which in-
evitably will violate the constraints on computational costs
and space.
To maintain the advantages of kernelization without the

space/computational violations, we introduce a infinite mem-
ory extension of kernel machines (specifically to PA) which
integrates the advantages of kernelization with the memory
space limitations.

2 BACKGROUND

In sequential learning, the data is accessible at times t =
1, ..., T , where the horizon T can be arbitrarily large. At
each time step t, a new observation xt is presented to the
system, which predicts a label ft(xt). After this prediction,
the correct label yt is revealed to the system which uses this
information to update the classifier ft+1. The new classifier
ft+1 is used for the next time step t + 1.
This paper presents an extension of the passive-aggressive

algorithm (PA) [6] for online preference learning and it com-
pares it with an incremental SVM learning system (LASVM)
[5]. Both algorithms learn discriminative classifiers in a se-
quential manner, i.e., LASVM optimizes a quadratic cost

167

ISMIR 2008 – Session 2a – Music Recommendation and Organization

function, whereas PA implements gradient descent. Our
variation of PA replaces the scalar product in the linear form
of PA by a kernel expansion.

2.1 Incremental SVM

For comparison purposes, we consider an incremental ver-
sion of SVM, the LASVM [5]. SVM optimization solves a
quadratic programming problem for the dual objective func-
tion of large margin classifiers. One commonly used solver
is the sequential minimal optimization (SMO) [7] which
computes a τ -approximate solution. The LASVM imple-
mentation reorganizes the SMO sequential direction searches
by considering pairs of examples (the new data point and ex-
isting support vectors (SVs)). In a second step, it repeats the
search between pairs of SVs and eliminates redundant SVs.
We modified the code provided by the authors 1 to pro-

cess the data in order of input. Simultaneously, we compute
the cumulative error of the training in one epoch.

2.2 Online Passive-Aggressive Algorithms

Online passive-aggressive algorithms (PA) define a family
of margin-based online learning algorithms [6] which are
based on the hinge-loss for large margin classification

l(w; (x, y)) =
{

0 y(w · x) ≥ 1
1− y(w · x) otherwise.

(1)

This constrained optimization is formulated as

wt+1 = arg min
w∈RD

1
2
||w−wt||2 s.t. l(w; (xt, yt)) = 0. (2)

This procedure can be interpreted as follows: At each update
step, if the current hyperplane misclassifies the current sam-
ple x (within a margin), then the hyperplane is adjusted to
the next nearest hyperplane that resolves this problem. The
nearest hyperplane is the one that deviates the least from the
original hyperplane.

Algorithm 1 PA
Require: Input: aggressive parameter C > 0, initial classi-

fier w1

1: for t = 1, 2, ... do
2: Predict: ŷt = sign(w′

txt) for current data xt

3: Obtain yt: loss lt = max{0 , 1 − yt(w ′
txt)}

4: Update:

αt = min
{

C,
lt

||xt||2
}

wt+1 = wt + αtytxt

5: end for

1 http://leon.bottou.org/projects/lasvm/

The PA algorithm is outlined above. Its kernel counter-
part is obtained by replacing the scalar product with a kernel
function. The update step

wt+1 = wt + αtytxt (3)

of the classifier function is replaced by

ft+1(x) =
t∑

i=1

αiyiK(xi, x). (4)

Comparing the Eq 3 and Eq 4, we see that the kernel for-
mulation requires an explicit storage of the data points with
αi �= 0 (“SVs”). These SVs are accumulated during the
learning phase and their number may grow arbitrarily large.
Apart from violating storage constraints, a large number of
SVs also leads to an increased computational cost for the
prediction step, when the kernel function has to be evalu-
ated for each of the many “SVs”. Contrary to this growth
of the computational complexity for kernel machines, the
linear support vector machines (Eq 3) implicitly encode the
SVs with the normal vector wt+1, which leaves the storage
requirements and the computational costs unchanged during
update.

2.3 Limiting the Kernel PA

When the cache for the kernel storage is limited, two alter-
natives are available for discarding exemplars: removal of
the oldest “SV”, or removal of the worst performing “SV”.
By removing the oldest sample, we penalize the systemwhere
memory is needed. If the data shows cyclical behavior, then
the “SVs” used to model a certain phase might have been
discarded by the time this phase is revisited. In expulsion of
the worst performing “SV”, we discard “SVs”, as advocated
in [8]. If a loss is incurred, we find the “SV” for which the
removal decreases the loss maximally:

arg max
j

yt(ft(xt)− αjyjK(xj , xt)) =

arg min
j

ytαjyjK(xj , xt) (5)

3 KERNEL EXPANSION FOR THE PASSIVE
AGGRESSIVE ALGORITHM

Mercer’s theorem states that a continuous, symmetric, posi-
tive semi-definite kernel function represents a scalar product
in an appropriately high-dimensional space. Via the kernel
trick [9], observations xi of a non-linearly separable prob-
lem are mapped to a high-dimensional space Φ(xi), such
that these data becomes linearly separable. The scalar prod-
uct in the linear function is replaced with the kernel func-
tion, such that it is not necessary to explicitly computeΦ(x):

K(x, z) = Φ(x) · Φ(z). (6)

168

ISMIR 2008 – Session 2a – Music Recommendation and Organization

Two commonly used kernels are the radial basis function
(RBF) kernel

K(x, z) = e−γ||x−z||2 , (7)

where γ is the kernel width, and the polynomial kernel

K(x, z) = (γx′z + c)δ, (8)

for some scale factor γ, bias c and degree δ. For instance,
the polynomial kernel emulates the scalar product of a finite
induced feature space. Consider the polynomial kernel of
degree 2,K(x, z) = (x · z′)2. We obtain

Φ(x) = (x2
1, ..., x

2
D,
√

2x1x2, ...,
√

2xdxd+j , ...,
√

2xD−1xD)
(9)

where d = 1, ..., D, and j = 1, ..., D − d indexes an ex-
haustive pairing of all features. This transformation yields a
D(D + 1)/2 dimensional space, i.e. Φ(x) ∈ R

D(D+1)/2.
We can now modify the algorithm PA to derive the algo-

rithm passive-aggressive linear (expanded) PA-L-EX (Table3)
which requires an additional input: function Φ which maps
the input data to a different (higher) dimensional space in-
duced by the kernel. Whilst this high dimensional repre-
sentation is infeasible for batch-learning algorithms (dataset
representation has to be stored for ALL data points which
may be infeasible for large datasets), it is readily integrated
in the online scenario. Since the data points are processed
individually, this high dimensional expansion is calculated
on the fly and, therefore, it is practical. In general, this ex-
tension holds for any kernel with a finite expansion for the
induced feature space, or which admits some approximation
of this induced feature space.

Algorithm 2 PA-L-EX
Require: Input: aggressive parameter C > 0, Expansion

function Φ : R
D → R

M ,M � D, initial classifier
w1 ∈ R

M

1: for t = 1, 2, ... do
2: Expand data xt ∈ R

D : Φ(xt) ∈ R
M

3: Predict: ŷt = sign(w′
tΦ(xt)) for current data xt

4: Obtain yt: loss lt = max{0 , 1 − yt(w ′
tΦ(xt))}

5: Update:

αt = min
{

C,
lt

||Φ(xt)||2
}

wt+1 = wt + αtytΦ(xt)

6: end for

4 EXPERIMENTAL SETUP

Our experiments use a subset of the uspop2002 2 dataset.
This subset of 18 pop artists 1 each with 5 or 6 albums is

2 http://labrosa.ee.columbia.edu/projects/musicsim/uspop2002.html

Rolling Stones Aerosmith Beatles
Dave Matthews Band Metallica Queen
Fleetwood Mac Garth Brooks Madonna
Depeche Mode Green Day Roxette
Bryan Adams Pink Floyd Genesis

Creedence Clearwater Revival Tina Turner U2

Table 1. Artists in the 18-artist subset of uspop2002.

Set Artist Album Song
Train 18 3× 18 650
Test 18 2× 18 448
Valid 9 1× 9 102
Phase1 ⊂ Train 18 2× 18 431
Phase2 = Valid ∪ Train\Phase1 18 2× 9 + 1× 9 321

Table 2. Number of artists, albums and songs covered in
each subset of the dataset. Phase1 and Phase2 data is a
repartition of the combined Train and Valid sets.

described in [3]. We use these authors’ training and test set
partition definition, which takes into account the producer’s
effect. The validation set has not been used during training.
In one experiment, we combined the validation and train-
ing set to created a large 2-phase-training set to simulate
user-preference change. Table 2 shows the statistics for the
various database partitions.

4.1 Feature Extraction

We employed the 20 dimensional MFCC features distributed
with the database (some songs were corrupt and discarded
from the database), and we generated song level features.
This grouping is achieved by vectorizing the sufficient statis-
tics of the MFCC features per song, yielding a 230 dimen-
sional input feature vector per song. We normalized 3 each
feature dimension using the training data. High level fea-
tures were not considered but can be readily integrated.

4.2 Verification and Simulation

To verify our dataset, we repeated the artist classification
task outlined in [3] and we obtained the same accuracy rates.
For our experiments, we simulated random user profiles

by splitting the 18 artists into two categories (like/dislike).
The user likes a random subset of 3 to 15 artists, and dis-
likes the remaining artists. In this manner, we cover both
balanced (same number of artists in each class) and unbal-
anced (one class having more artists) scenarios. For each

3 For real-life scenario, approximate normalization factors can be esti-
mated for a small dataset.

169

ISMIR 2008 – Session 2a – Music Recommendation and Organization

Kernel K(x, z) Test Acc
Linear x′z 77.8± 6.6
Poly2 (x′z)2 81.4± 5.2
RBF e−0.01∗||x−z||2 82.7± 4.7

Table 3. Results for batch SVM models. Hyper-parameters
are optimized.

profile, we run 10 fold cross validation by using 10 permu-
tations of the order in which the data is presented to the user.
While the assumption of random selection might not cor-
rectly model the preferences of most users (preferences may
occur in more structured groupings, e.g. mood or style), the
random choice is certainly a difficult setting, since the clas-
sifier might be required to learn potential quirks.

4.3 Evaluation Measure

We consider two evaluation measure. For testing, we report
accuracy rates 1

n

∑n
i=1 11(f(xi), yi)∗100% where 11 denotes

the indicator function. For online learning scenarios, we
report the cumulative accuracy

CumAcc =
1
T

T∑
t=1

11(ft(xt−1), yt) ∗ 100%, (10)

which is the accuracy during the learning phase. The in-
curred error (100% − CumAcc) indicates how often the
user was required to correct the system by responding with
the correct label.

5 EXPERIMENTAL RESULTS

We first consider static random user preferences by simu-
lating 100 randomly sampled user profiles. The results for
batch learning algorithms (Sec 5.1) are analyzed for com-
parison purposes, then we consider sequential learning with
independent and identically-distributed (i.i.d.) drawing of
the data (Sec 5.2). In Sec 5.3 we further analyze the situa-
tion when the data are no longer presented randomly, rather,
they occur in cycles. Here, the simulations considered bal-
anced preferences (liking 50% of the artists). Finally, in
Sec 5.4 the users change their preferences after an initial
training phase. During the second training phase some pref-
erences are flipped, and the classifier should adapt for such
opinion changes.

5.1 Batch Conditions

We first test the “best” case when all training data are known
in advance. For this batch learning, we use a SVM classi-
fier using libsvm 4 . Comparing the different kernel types,

4 http://www.csie.ntu.edu.tw/cjlin/libsvm

Figure 1. Illustration of SVM boundaries for RBF kernels.
Circled data points are SVs. A high proportion of the obser-
vations serve as SVs.

Model Kernel, Details CumAcc Test Acc

PA-L Linear, D=230 75.0± 3.9 77.5± 5.7
PA-L-EX Linear, Expand 80.8± 5.9 81.8± 5.7
PA-R200 RBF, 200 SV 77.5± 6.8 76.6± 7.6
PA-R RBF,∞ SV 81.6± 5.2 83.3± 5.1
LASVM RBF,∞ SV 80.8± 4.3 81.7± 4.6

Table 4. Descriptions of different incremental models and
their performances during training (CumAcc) and for a hold
out set (Test Acc). Sequential online learning on i.i.d. data.
First three rows implement limited memory space. The last
two rows are not truly online learners since no memory lim-
itations is imposed on them.

the linear kernel performs poorly, whereas the RBF kernel
shows the best performance, as can be seen in Table 3. The
less frequently evaluated polynomial kernel, here with de-
gree 2, almost matches the performance of RBF kernels.
Observing the models, we note that a large proportion

of the training data was almost always retained within the
model as support vectors, with almost all SVs located within
the margin. For the RBF model, this 84.5 ± 6.5% of the
training data were retained as SVs. This high proportion of
SVs can be visualized as in Figure 1. New subcategories
of data mark out new regions. As the amount of training
data increases, it is possible that this growth in number of
SV will level off. However, it is likely that new preferences
(sub-categories) will require more SVs. Hence, for a fixed,
batch training scenario, SVM may perform well, but for an
equivalent online scenario, the algorithm may face resource
problems such as infinitely large storage of SVs.

5.2 Sequential i.i.d. Conditions

To test the online learning under sequential i.i.d. conditions,
we present the training data in a randomly permuted order.
To ensure strict comparison, permutations were preserved
across all systems, and 10 permutations were simulated for
each different random preference.
Table 4 shows the descriptions and results for the various

170

ISMIR 2008 – Session 2a – Music Recommendation and Organization

Figure 2. Detailed results on 20 randomly selected user pro-
files. Left: Train cumulative results. Right: Test accuracy
on hold-out test set. Models are explained in Table 4.

models tested. The first three models are online sequential
models which operate on a limited memory-storage, while
the last two models (with ∞ SV) assume infinite storage
space, and are not practical, and serve as a reference.
Comparing the performance sequential algorithms with

that of the batch SVM classifiers (Table 3), we see that the
performances are similar. LASVM attains a 81.7% perfor-
mance which is 1.0% poorer than that of the SVM-RBF
counterpart. PA-R even shows better performance at 83.3%.
Similarly for the linear classifiers, PA-L performs 0.3%worse
than that of the linear SVM.
While RBF-based algorithms are superior over the linear

models for batch models, and also under impractical con-
ditions of infinite memory, we see that this advantage no
longer holds when memory is limited. Limiting the number
of SV to 200SV (30% of the training set) as in PA-R200, we
see a significant drop in performance, Instead, we observe
that our approach of space expansion (PA-L-EX) combined
with a linear classifier achieves similar performance levels
to the kernel based classifiers with infinite storage.
Figure 2 demonstrates detailed results for 20 of the 100

random user profiles, both during training and on the hold-
out test set. Note that while LASVM show slightly better
results in the more difficult cases where accuracy is lower,
it starts to show instable behavior when the sets are easy,
resulting in large error bars. A detailed analysis shows that
LASVM’s stability depends on the sequence in which the
data is presented. On the other hand, PA-algorithms are
more stable for the same “unfavorable” sequences.

5.3 Sequential Non-i.i.d. Conditions

For common real world scenarios, data are no longer gener-
ated under i.i.d. conditions, rather, they show some patterns.

Model Train CumAcc Test Acc
PA-L 84.0± 1.6 65.7± 4.3
PA-L-EX 76.5± 1.5 73.1± 2.4
PA-R200 73.3± 2.6 59.1± 4.4
PA-R 79.7± 1.8 73.4± 4.2
LASVM 78.5± 2.0 78.5± 1.7
SVM (rbf) batch 78.7± 1.7

Table 5. Performance when learning occur in an ordered
manner (non-i.i.d.). Classes are balanced.

Artist ID Phase 1 Phase 2 Test

a1 likes likes likes
a2 likes likes likes
a3 likes dislikes dislikes
a4 dislikes likes likes
a5 dislikes likes likes
a6 dislikes dislikes dislikes

Table 6. Simulation example for user preference change

For example, Christmas songs are usually popular only over
Christmas, or some artist are more frequently played when
they have released a new album. We have a learning phase
that records the behavior of the user over a cycle, and hope
that this preference is still represented during the evaluation
cycle, where user feedback is no longer provided.
In this experiment, we have generated 10 random user

profiles. Each user likes a random subset of 9 artists, result-
ing in a balanced class problem. The data is presented in
phases, at each phase, only data from one “like” artist and
one “dislike” artist is exhaustively presented, yielding a total
of 9 phases during the training simulation.
Table 5 summarizes the results. Again, we show results

for two online systems PA-L-EX and PA-R200. Results are
also reported for PA-R and LASVM, but since they require
infinite memory, they are impractical and serve as bounds.
Comparing the PA-L-EX and PA-R200 (limited storage),

we see that the kernelized version does not perform well
when data from previous phases are presented to the sys-
tem during the evaluation phase, resulting in a low accuracy
of 59.1%. PA-L-EX, on the other hand, still retains good
classification accuracy, performing slightly worse at 73.1%.
However, this almost equals the performance of a PA-RBF
with infinite memory. We see that LASVM performs better,
but is not feasible due to its requirement of large SV storage.

5.4 Adaptation to Preference Change over Time

In this experiment, we simulate a very adverse scenario.
There are two phases during learning. During phase one,
data from the set Phase1 are streamed i.i.d. to the system,

171

ISMIR 2008 – Session 2a – Music Recommendation and Organization

Model Train CumAcc Test Acc
PA-L-EX 75.8± 3.3 68.9± 3.6
LASVM 71.5± 1.6 61.1± 4.7

Table 7. Simulation for adverse (50%) preference change.

with the same 100 user profiles generated in the first exper-
iment (i.i.d. data). Upon completion, data from set Phase2
are streamed with a 50% preference change. The 9 artists
with 2 albums in the set Phase2 now have their labels (user
preference) flipped. At the end of phase two, we test the fi-
nal model on the test set, where the artist preference reflects
that of phase two. Table 6 shows an example.
The performance of the two models LASVM and PA-L-

EX are presented in Table 7. Recall that LASVM stores all
the SVs that it accumulates. Its learning strength is greatly
undermined by the change in user preference, which lead to
conflicting SVs that greatly weakens the performance. As
such, it breaks down and shows poor behavior (61.1% test
accuracy). Even during the learning phase, it is already ex-
periencing difficulties, degrading significantly from previ-
ous scenarios. PA-L-EX tries to accommodate for the new
data by adjusting the hyperplane while trying to compromise
for the previously learnt information. It shows weakened
performance, but still retains information at 68.9%. This
simulation models a severe 50% change in the classification
classes, which takes its toll. Nevertheless, we notice that
PA-L-EX does not break down which is in contrast to the
complete failure of LASVM.

6 CONCLUSION

We have presented a user preference tracking system that
exploits the advantages of using kernels for learning, with-
out having to store potentially infinite numbers of support
vectors. Our preference tracking system uses a simple algo-
rithm PA-L-EX which can be efficiently implemented into
small devices with limited storage and computational power.
Despite these constraints, the algorithm has shown to be
capable of recalling historically learnt events, and further-
more, adapt well to changes in concepts. These are neces-
sary ingredients in adjusting and learning user preferences
over time.
Our focus was primarily on song-level features, based on

low level MFCC features. We experimented with 30 second
music segments, which had slightly degraded performance
(76.9% versus 81.8% test accuracy for i.i.d. case). Nev-
ertheless, the results are encouraging given the simplicity
of the features. There is potential for this algorithm to be
used in combination with more sophisticated higher level
features, and also online features.
We have addressed the case where the system learns and

adjusts to the true label after each prediction. Future work
could encompass the consideration of stream-based active
learning ([10], [11]) where the data arrives in a stream, but
labels must be procured. Other scenarios can include sparse
feedback and inconsistent feedback.
Acknowledgements. This work is part of a project funded
by KTI, Nr8539.2;2EPSS-ES.

7 REFERENCES

[1] N. Cristianini and J. Shawe-Taylor, Eds., Support Vec-
tor Machines and other kernel-based learning methods,
Cambridge University Press, 2000.

[2] M. Mandel and D. Ellis, “Song-level features and sup-
port vector machines for music classification,” Proc.
Int. Conf. on Music Information Retrieval, pp. 594–599,
Sept. 2005.

[3] M. Mandel, G. Poliner, and D. Ellis, “Support vector
machine active learning for music retrieval,”Multimedia
Systems, special issue on Machine Learning Approaches
to Multimedia Information Retrieval, vol. 12, no. 1, pp.
3–13, Aug. 2006.

[4] N. Cesa-Bianchi and G. Lugosi, Prediction, learning
and games, Cambridge University Press, 2006.

[5] A. Bordes, S. Ertekin, J. Weston, and L. Bottou, “Fast
kernel classifiers with online and active learning,” Jour-
nal of Machine Learning Research, vol. 6, pp. 1579–
1619, 2005.

[6] K. Crammer, O. Dekel, J. Keshet, S. Shalev-Schwartz,
and Y. Singer, “Online passive-aggressive algorithms,”
Journal of Machine Learning Research, vol. 7, pp. 551–
585, 2006.

[7] John C. Platt, Advances in Kernel Methods: Support
Vector Learning, chapter Fast Training of Support Vec-
tor Machines using Sequential Minimal Optimization,
pp. 185–208, MIT Press, 1999.

[8] Koby Crammer, Jaz S. Kandola, and Yoram Singer,
“Online classification on a budget,” in NIPS, 2003.

[9] M. Aizerman, E. Braverman, and L. Rozonoer, “Theo-
retical foundations of the potential function method in
pattern recognition learning.,” Automation and Remote
Control, vol. 25, pp. 821 – 837, 1964.

[10] H. S. Seung, M. Opper, and H. Sompolinsky, “Query by
committee,” in Computational Learning Theory, 1992,
pp. 287–294.

[11] Y. Freund, H. S. Seung, E. Shamir, and N. Tishby, “Se-
lective sampling using the query by committee algo-
rithm,” Journal of Machine Learning, vol. 28, pp. 133–
168, 1997.

172

