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ABSTRACT

We describe a probabilistic model for learning musical key-
profiles from symbolic files of polyphonic, classical mu-
sic. Our model is based on Latent Dirichlet Allocation
(LDA), a statistical approach for discovering hidden topics
in large corpora of text. In our adaptation of LDA, sym-
bolic music files play the role of text documents, groups
of musical notes play the role of words, and musical key-
profiles play the role of topics. The topics are discovered
as significant, recurring distributions over twelve neutral
pitch-classes. Though discovered automatically, these dis-
tributions closely resemble the traditional key-profiles used
to indicate the stability and importance of neutral pitch-
classes in the major and minor keys of western music. Un-
like earlier approaches based on human judgement, our
model learns key-profiles in an unsupervised manner, in-
ferring them automatically from a large musical corpus that
contains no key annotations. We show how these learned
key-profiles can be used to determine the key of a musical
piece and track its harmonic modulations. We also show
how the model’s inferences can be used to compare musi-
cal pieces based on their harmonic structure.

1. INTRODUCTION

Musical composition can be studied as both an artistic and
theoretical endeavor. Though music can express a vast
range of human emotions, ideas, and stories, composers
generally work within a theoretical framework that is highly
structured and organized. In western tonal music, two im-
portant concepts in this framework are the key and the tonic.
The key of a musical piece identifies the principal set of
pitches that the composer uses to build its melodies and
harmonies. The key also defines the tonic, or the most sta-
ble pitch, and its relationship to all of the other pitches in
the key’s pitch set. Though each musical piece is charac-
terized by one overall key, the key can be shifted within a
piece by a compositional technique known as modulation.
Notwithstanding the infinite number of variations possible
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Figure 1. C major (left) and C minor (right) key-
profiles proposed by Krumhansl-Kessler (KK), used in the
Krumhansl-Schmukler (KS) key-finding algorithm.

in music, most pieces can be analyzed in these terms.
Musical pieces are most commonly studied by analyz-

ing their melodies and harmonies. In any such analysis,
the first step is to determine the key. While the key is in
principle determined by elements of music theory, individ-
ual pieces and passages can exhibit complex variations on
these elements. In practice, considerable expertise is re-
quired to resolve ambiguities.

Many researchers have proposed rule-based systems for
automatic key-finding in symbolic music [2,10,12]. In par-
ticular, Krumhansl and Schmuckler (KS) [8] introduced a
model based on “key-profiles”. A key-profile is a twelve-
dimensional vector in which each element indicates the
stability of a neutral pitch-class relative to the given key.
There are 24 key-profiles in total, one for each major and
minor key. Using these key profiles, KS proposed a sim-
ple method to determine the key of a musical piece or
shorter passages within a piece: first, accumulate a twelve-
dimensional vector whose elements store the total duration
of each pitch-class in a song; second, compute the key-
profile that has the highest correlation with this vector. The
KS model uses key-profiles derived from probe tone stud-
ies conducted by Krumhansl and Kessler (KK) [9]. Fig-
ure 1 shows the KK key profiles for C major and C minor;
profiles for other keys are obtained by transposition. In re-
cent work [14, 15], these key-profiles have been modified
to achieve better performance in automatic key-finding.

In this paper, we show how to learn musical key-profiles
automatically from the statistics of large music collections.
Unlike previous studies, we take a purely data-driven ap-
proach that does not depend on extensive prior knowledge
of music or supervision by domain experts. Based on a
model of unsupervised learning, our approach bypasses the
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need for manually key-annotated musical pieces, a pro-
cess that is both expensive and prone to error. As an ad-
ditional benefit, it can also discover correlations in the data
of which the designers of rule-based approaches are un-
aware. Since we do not rely on prior knowledge, our model
can also be applied in a straightforward way to other, non-
western genres of music with different tonal systems.

Our approach is based on Latent Dirichlet Allocation
(LDA) [1], a popular probabilistic model for discovering
latent semantic topics in large collections of text docu-
ments. In LDA, each document is described as a mixture
of topics, and each topic is characterized by its own par-
ticular distribution over words. LDA for text is based on
the premise that documents about similar topics contain
similar words. Beyond document modeling, LDA has also
been adapted to settings such as image segmentation [5],
part-of-speech tagging [6], and collaborative filtering [11].

Our variant of LDA for unsupervised learning of key-
profiles is based on the premise that musical pieces in the
same key use similar sets of pitches. Roughly speaking,
our model treats each song as a “document” and the notes
in each beat or half-measure as a “word”. The goal of
learning is to infer harmonic “topics” from the sets of pitches
that commonly co-occur in musical pieces. These har-
monic topics, which we interpret as key-profiles, are ex-
pressed as distributions over the twelve neutral pitch-classes.

We show how to use these key-profiles for automatic
key-finding and similarity ranking of musical pieces. We
note, however, that our use of key-profiles differs from that
of the KS model. For key-finding, the KS model con-
sists of two steps: 1) derive key-profiles and 2) predict
keys using key-profiles. In our model, these steps are nat-
urally integrated by the Expectation-Maximization (EM)
algorithm [3]. We do not need further heuristics to make
key-finding predictions from our key-profiles as the EM
algorithm yields the former along with the latter.

2. MODEL

This section describes our probabilistic topic model, first
developing the form of its joint distribution, then sketching
out the problems of inference and parameter estimation.
We use the following terminology and notation throughout
the rest of the paper:

1. A note u ∈ {A,A],B, . . . ,G]} is the most basic
unit of data. It is an element from the set of neu-
tral pitch-classes. For easy reference, we map these
pitch-classes to integer note values 0 through 11. We
refer to V =12 as the vocabulary size of our model.

2. A segment is a basic unit of time in a song (e.g.,
a measure). We denote the notes in the nth seg-
ment by un = {un1, . . . , unL}, where un` is the `th
note in the segment. Discarding the ordering of the
notes, we can also describe each segment simply by
the number of time each note occurs. We use xn to
denote the V -dimensional vector whose jth element
xj

n counts the number of times that the jth note ap-
pears in the nth segment.

3. A song s is a sequence of notes in N segments:
s = {u1, . . . ,uN}. Discarding the ordering of notes
within segments, we can also describe a song by the
sequence of count vectors X = (x1, . . . , xN ).

4. A music corpus is a collection of M songs denoted
by S = {s1, . . . , sM}.

5. A topic z is a probability distribution over the vo-
cabulary of V = 12 pitch-classes. Topics model
particular groups of notes that frequently occur to-
gether within individual segments. In practice, these
groupings should contain the principle set of pitches
for a particular musical key. Thus, we interpret each
topic’s distribution over twelve pitch-classes as the
key-profile for a musical key. We imagine that each
segment in a song has its own topic (or key), and we
use z = (z1, z2, . . . , zN ) to denote the sequence of
topics across all segments. In western tonal music,
prior knowledge suggests to look for K = 24 topics
corresponding to the major and minor scales in each
pitch-class. Section 2.3 describes how we identity
the topics with these traditional key-profiles.

With this terminology, we can describe our probabilistic
model for songs in a musical corpus. Note that we do not
attempt to model the order of note sequences within a seg-
ment or the order of segments within a song. Just as LDA
for topic modeling in text treats each document as a “bag
of words”, our probabilistic model treats each song as a
“bag of segments” and each segment as a “bag of notes”.

2.1 Generative process

Our approach for automatic key-profiling in music is based
on the generative model of LDA for discovering topics in
text. However, instead of predicting words in documents,
we predict notes in songs. Our model imagines a sim-
ple, stochastic procedure in which observed notes and key-
profiles are generated as random variables. In addition,
we model the key-profiles as latent variables whose values
must be inferred by conditioning on observed notes and
using Bayes rule.

We begin by describing the process for generating a
song in the corpus. First, we draw a topic weight vector
that determines which topics (or keys) are likely to ap-
pear in the song. The topic weight vector is modeled as
a Dirichlet random variable. Next, for each segment of
the song, we sample from the topic weight vector to deter-
mine the key (e.g., A minor) of that segment. Finally, we
repeatedly draw notes from the key-profile until we have
generated all the notes in the segment. More formally, we
can describe this generative process as follows:

1. For each song in the corpus, choose a K-dimensional
topic weight vector θ from the Dirichlet distribution:

p(θ|α) =
Γ(

∑
i αi)∏

i Γ(αi)

∏
i

θαi−1. (1)
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Note that α is a K-dimensional corpus-level param-
eter that determines which topics are likely to co-
occur in individual songs. The topic weight vector
satisfies θi ≥ 0 and

∑
k θk = 1.

2. For each segment indexed by n ∈ {1, . . . , N} in a
song, choose the topic zn ∈ {1, 2, . . . ,K} from the
multinomial distribution p(zn =k|θ) = θk.

3. For each note indexed by ` ∈ {1, . . . , L} in the nth
measure, choose a pitch-class from the multinomial
distribution p(un` = i|zn = j, β) = βij . The β pa-
rameter is a V ×K matrix that encodes each topic as
a distribution over V =12 neutral pitch-classes. Sec-
tion 2.3 describes how we identify these distribu-
tions as key-profiles for particular musical keys.

This generative process specifies the joint distribution over
observed and latent variables for each song in the corpus.
In particular, the joint distribution is given by:

p(θ, z, s|α, β) = p(θ|α)
N∏

n=1

p(zn|θ)
Ln∏
l=1

p(unl|zn, β). (2)

Figure 2(a) depicts the graphical model for the joint distri-
bution over all songs in the corpus. As in LDA [1], we use
plate notation to represent independently, identically dis-
tributed random variables within the model. Whereas LDA
for text describes each document as a “bag of words”, we
model each song as a “bag of segments”, and each segment
as a “bag of notes”. As a result, the graphical model in Fig-
ure 2(a) contains an additional plate beyond the graphical
model of LDA for text.

2.2 Inference and learning

The model in eq. (2) is fully specified by the Dirichlet pa-
rameter α and the musical key-profiles β. Suppose that
these parameters are known. Then we can use probabilis-
tic inference to analyze songs in terms of their observed
notes. In particular, we can infer the main key-profile for
each song as a whole, or for individual segments. Infer-
ences are made by computing the posterior distribution

p(θ, z|s, α, β) =
p(θ, z, s|α, β)

p(s|α, β)
(3)

following Bayes rule. The denominator in eq. (3) is the
marginal distribution, or likelihood, of a song:

p(s|α, β)=
∫

p(θ|α)
N∏

n=1

K∑
zn=1

p(zn|θ)
Ln∏
l=1

p(unl|zn, β) dθ.

(4)
The problem of learning in our model is to choose the
parameters α and β that maximize the log-likelihood of
all songs in the corpus, L(α, β) =

∑
m log p(sm|α, β).

Learning is unsupervised because we require no training
set with key annotations or labels.

In latent variable models such as ours, the simplest ap-
proach to learning is maximum likelihood estimation using
the Expectation-Maximization (EM) algorithm [3]. The

Figure 2. (a) Graphical representation of our model and
(b) the variational approximation for the posterior distribu-
tion in eq. (3). See Appendix A for details.

EM algorithm iteratively updates parameters by comput-
ing expected values of the latent variables under the pos-
terior distribution in eq. (3). In our case, the algorithm
iteratively alternates between an E-step, which represents
each song in the corpus as a random mixture of 24 key-
profiles, and an M-step, which re-estimates the weights of
the pitch classes for each key-profile. Unfortunately, these
expected values cannot be analytically computed; there-
fore, we must resort to a strategy for approximate prob-
abilistic inference. We have developed a variational ap-
proximation for our model based on [7] that substitutes a
tractable distribution for the intractable one in eq. (3). Ap-
pendix A describes the problems of inference and learning
in this approximation in more detail.

2.3 Identifying Topics as Keys

Recall from section 2.1 that the estimated parameter β ex-
presses each topic as a distribution over V = 12 neutral
pitch-classes. While this distribution can itself be viewed
as a key-profile, an additional assumption is required to
learn topics that can be identified with particular musical
keys. Specifically, we assume that key-profiles for differ-
ent keys are related by simple transposition: e.g., the pro-
file for C] is obtained by transposing the profile for C up by
one half-step. This assumption is the full extent to which
our approach incorporates prior knowledge of music.

The above assumption adds a simple constraint to our
learning procedure: instead of learning V ×K independent
elements in the β matrix, we tie diagonal elements across
different keys of the same mode (major or minor). En-
forcing this constraint, we find that the topic distributions
learned by the EM algorithm (see section 3) can be un-
ambiguously identified with the K = 24 major and minor
modes of classical western music. For example, one topic
distribution places its highest seven weights on the pitches
C, D, E, F, G, A, and B; since these are precisely the notes
of the C major scale, we can unambiguously identify this
topic distribution with the key-profile for C major.

3. RESULTS

We estimated our model from a collection of 235 MIDI
files compiled from http://www.classicalmusicmidipage.com.
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Figure 3. The C major and C minor key-profiles learned
by our model, as encoded by the β matrix.

The collection included works by Bach, Vivaldi, Mozart,
Beethoven, Chopin, and Rachmaninoff. These composers
were chosen to span the baroque through romantic periods
of western, classical music.

We experimented with different segment lengths and
different ways of compiling note counts. Though mea-
sures define natural segments for music, we also exper-
imented with half-measures and quarter-beats. All these
choices led to similar musical key-profiles. We also exper-
imented with two ways of compiling note counts within
segments. The first method sets the counts proportional to
the cumulative duration of notes across the segment; the
second method sets the counts proportional to the number
of distinct times each note is struck. We found that the
second method worked best for key-finding, and we report
results for this method below.

3.1 Learning Key-Profiles

Recall that each column of the estimated β matrix encodes
a musical key as a distribution over V = 12 neutral pitch-
classes. Fig. 3 shows the two columns that we identified
as belonging to the keys of C major and C minor. These
key-profiles have the same general shape as those of KK,
though the weights for each pitch-class are not directly
comparable. (In our model, these weights denote actual
probabilities.) Note that in both major and minor modes,
the largest weight occurs on the tonic (C), while the second
and third largest weights occur on the remaining degrees of
the triad (G, E for C major; G, E[ for C minor). Our key-
profiles differ only in the relatively larger weight given to
the minor 7th (B[) of C major and major 7th (B) of C mi-
nor. Otherwise, the remaining degrees of the diatonic scale
(D, F, A for C major; D, F, A[ for C minor) are given larger
weights than the remaining chromatics. Profiles for other
keys can be found by transposing.

3.2 Symbolic Key-Finding

From the posterior distribution in eq. (3), we can infer hid-
den variables θ and z that identify dominant keys in whole
songs or segments within a song. In particular, we can
identify the overall key of a song from the largest weight
of the topic vector θ that maximizes eq. (3). Likewise, we
can identify the key of particular segments from the most
probable values of the topic latent variables zn.

We first show results at the song-level, using our model
to determine the overall key of the 235 musical pieces in
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Figure 4. Key judgments for the first 12 measures of
Bach’s Prelude in C minor, WTC-II. Annotations for each
measure show the top three keys (and relative strengths)
chosen for each measure. The top set of three annotations
are judgments from our LDA-based model; the bottom set
of three are from human expert judgments [8].
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Song Length All 20 beats 8 beats 4 beats
LDA 86% 77% 74% 67%
KS 80% 71% 67% 66%

Table 1. Key-finding accuracy of our LDA model and the
KS model on 235 classical music pieces. Song length in-
dicates how much of each piece was included for analysis.

Figure 5. Songs represented as distributions over key-
profiles. The first set of bars shows keys used in the query
song; the remaining sets of bars show keys used in the three
songs of the corpus judged to be most similar. Note how
all songs modulate between the keys of E[ M, A[ M, C m,
and F m.

our corpus. We tested our model against a publicly avail-
able implementation of the KS model [4] that uses normal-
ized KK key-profiles and weighted note durations. Table 1
compares the results when various lengths of each piece
are included for analysis. In this experiment, we found
that our model performed better across all song lengths.

We also compared our model to three other publicly
available key-finding algorithms [13]. We were only able
to run these algorithms on a subset of 107 pieces in our
corpus, so for these comparisons we only report results
on this subset. These other algorithms used key-profiles
from another implementation of the KS model [8] and from
empirical analyses of key-annotated music [14, 15]. Ana-
lyzing whole songs, these other algorithms achieved ac-
curacies between 62%–67%. Interestingly, though these
models obtained their key-profiles using rule-based or su-
pervised methods, our unsupervised model yielded signifi-
cantly better results, identifying the correct key for 79% of
the songs in this subset of the corpus.

Next, we show results from our model at the segment
level. Fig. 4 shows how our model analyzes the first twelve
measures of Bach’s Prelude in C minor from Book II of the
Well-Tempered Clavier (WTC-II). Results are compared to
annotations by a music theory expert [8]. We see that the
top choice of key from our model differs from the expert
judgment in only two measures (5 and 6).

3.3 Measuring Harmonic Similarity

To track key modulations within a piece, we examine its
K =24 topic weights. These weights indicate the propor-

tion of time that the song spends in each key. They also
provide a low-dimensional description of each song’s har-
monic structure. We used a symmetrized Kullback-Leibler
(KL) divergence to compute a measure of dissimilarity be-
tween songs based on their topic weights. Fig. 5 shows
several songs as distributions over key-profiles. (Note that
previous graphs showed key-profiles as distributions over
pitches.) The first set of bars show the topic weights for
the same Bach Prelude analyzed in the previous section;
the remaining sets of bars show the topic weights for the
three songs in the corpus judged to be most similar (as
measured by the symmetrized KL divergence). From the
topic weight vectors, we see that all songs modulate pri-
marily between the keys of E[ M, A[ M, C m, and F m.

4. CONCLUSION

In this paper, we have described a probabilistic model for
the unsupervised learning of musical key-profiles. Un-
like previous work, our approach does not require key-
annotated music or make use of expert domain knowledge.
Extending LDA from text to music, our model discovers la-
tent topics that can be readily identified as the K =24 pri-
mary key-profiles of western classical music. Our model
can also be used to analyze songs in interesting ways: to
determine the overall key, to track harmonic modulations,
and to provide a low-dimensional descriptor for similarity-
based ranking. Finally, though the learning in our model is
unsupervised, experimental results show that it works very
well compared to existing methods.
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of Jyväskylä, Jyväskylä, Finland, Available:
http://www.jyu.fi/musica/miditoolbox/, 2004.

[5] L. Fei-Fei, P. Perona: “A Bayesian hierarchical model
for learning natural scene categories,” CVPR, 524-531,
2005.

[6] T. Griffiths, M. Steyvers, D. Blei, J. Tenenbaum: “In-
tegrating topics and syntax,” In L. Saul, Y. Weiss, and
L. Bottou, editors, NIPS, 537-544, 2005.

[7] M. I. Jordan, Z. Ghahramani, T. Jaakkola, L. Saul: “In-
troduction to variational methods for graphical mod-
els,” Machine Learning, 37:183-233, 1999.

445



Poster Session 3

[8] C. Krumhansl: Cognitive Foundations of Musical
Pitch, Oxford University Press, Oxford, 1990.

[9] C. Krumhansl, E. J. Kessler: “Tracing the dynamic
changes in perceived tonal organization in a spatial
representation of musical keys,” Psychological Review,
89:334-68, 1982.

[10] H. C. Longuet-Higgins, M. J. Steedman: “On interpret-
ing Bach,” Machine Intelligence, 6:221-41, 1971.

[11] B. Marlin: “Modeling user rating profiles for col-
laborative filtering,” In S. Thrun and L. Saul and B.
Schölkopf, editors, NIPS, 2003.

[12] D. Rizo: “Tree model of symbolic music for tonality
guessing,” Proc. of the Int. Conf. on Artificial Intelli-
gence and Applications, 299-304, 2006.

[13] D. Sleator, D. Temperley: “The Melisma Music An-
alyzer,” Available: http://www.link.cs.cmu.edu/music-
analysis/, 2001.

[14] D. Temperley: The Cognition of Basic Musical Struc-
ture, MIT Press, 2001.

[15] D. Temperley: “A Bayesian approach to key-finding,”
Lecture Notes in Computer Science, 2445:195-206,
2002.

A. VARIATIONAL APPROXIMATION

This appendix describes our variational approximation for
inference and learning mentioned in section 2. It is similar
to the approximation originally developed for LDA [1].

A.1 Variational Inference

The variational approximation for our model substitutes a
tractable distribution for the intractable posterior distribu-
tion that appears in eq. (3). At a high level, the approxima-
tion consists of two steps. First, we constrain the tractable
distribution to belong to a parameterized family of distri-
butions whose statistics are easy to compute. Next, we
attempt to select the particular member of this family that
best approximates the true posterior distribution.

Figure 2(b) illustrates the graphical model for the ap-
proximating family of tractable distributions. The tractable
model q(θ, z|γ, φ) drops edges that make the original model
intractable. It has the simple, factorial form:

q(θ, z|γ, φ) = q(θ|γ)
N∏

n=1

q(zn|φn) (5)

We assume that the distribution q(θ|γ) is Dirichlet with
variational parameter γ, while the distributions q(zn|φn)
are multinomial with variational parameters φn. For each
song, we seek a factorial distribution of the form in eq. (5)
to approximate the true posterior distribution in eq. (3). Or
more specifically, for each song sm, we seek the varia-
tional parameters γm and φm such that q(θ, z|γm, φm) best
matches p(θ, z|sm, α, β).

Though it is intractable to compute the statistics of the
true posterior distribution p(θ, z|α, β) in eq. (3), it is pos-
sible to compute the Kullback-Leibler (KL) divergence

KL(q, p) =
∑
z

∫
dθq(θ, z|γ, φ) log

q(θ, z|γ, φ)
p(θ, z|s, α, β)

(6)

up to a constant term that does not depend on γ and φ.
Note that the KL divergence measures the quality of the
variational approximation. Thus, the best approximation is
obtained by minimizing the KL divergence in eq. (6) with
respect to the variational parameters γ and φn. To derive
update rules for these parameters, we simply differentiate
the KL divergence and set its partial derivatives equal to
zero. The update rule for γm is analogous to the one in the
LDA model for text documents [1]. The update rule for the
multinomial parameters φni is given by:

φni ∝
V∏

j=1

β
xj

n
ij exp[Ψ(γi)], (7)

where Ψ(·) denotes the digamma function and xj
n denotes

the count of the jth pitch class in the nth segment of the
song. We omit the details of this derivation, but refer the
reader to the original work on LDA [1] for more detail.

A.2 Variational Learning

The variational approximation in eq. (5) can also be used
to derive a lower bound on the log-likelihood log p(s|α, β)
of a song s. Summing these lower bounds over all songs
in the corpus, we obtain a lower bound `(α, β, γ, φ) on the
total log-likelihood L(α, β) =

∑
m log p(sm|α, β). Note

that the bound `(α, β, γ, φ) ≤ L(α, β) depends on the
model parameters α and β as well as the variational pa-
rameters γ and φ across all songs in the corpus.

The variational EM algorithm for our model estimates
the parameters α and β to maximize this lower bound. It
alternates between two steps:

1. (E-step) Fix the current model parameters α and β,
compute variational parameters {γm, φm} for each
song sm by minimizing the KL divergence in eq. (6).

2. (M-step) Fix the current variational parameters γ and
φ across all songs from the E-step, maximize the
lower bound `(α, β, γ, φ) with respect to α and β.

These two steps are repeated until the lower bound on the
log likelihood converges to a desired accuracy. The up-
dates for α and β in the M-step are straightforward to de-
rive. The update rule for β is given by:

βij ∝
M∑

m=1

N∑
n=1

φi
mnxj

mn. (8)

While the count xj
mn in eq. (8) may be greater than one,

this update is otherwise identical to its counterpart in the
LDA model for text documents. The update rule for α also
has the same form.
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