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ABSTRACT

We explore the origins of hubs in timbre-based song mod-

eling in the context of content-based music recommenda-

tion and propose several remedies. Specifically, we find

that a process of model homogenization, in which certain

components of a mixture model are systematically removed,

improves performance as measured against several ground-

truth similarity metrics. Extending the work of Aucouturier,

we introduce several new methods of homogenization. On

a subset of the uspop data set, model homogenization im-

proves artist R-precision by a maximum of 3.5% and agree-

ment to user collection co-occurrence data by 7.4%. We

also explore differences in the effectiveness of the various

homogenization methods for hub reduction. Further, we ex-

tend the modeling of frame-based MFCC features by using a

kernel density estimation approach to non-parametric mod-

eling. We find that such an approach significantly reduces

the number of hubs (by 2.6% of the dataset) while improv-

ing agreement to ground-truth by 5% and slightly improving

artist R-precision as compared with the standard parametric

model.

1 INTRODUCTION

Content-based music similarity is a promising but under-

developed approach to automatic music recommendation.

To date, most work in this area has been focused on cal-

culating similarity through comparison of song-level statis-

tical models. However, such systems have thus far yielded

only limited results [2], regardless of modeling method. It

is thought that this may be connected to the existence of

“hubs”, songs that are found to be inaccurately similar to a

large number of songs in a database. The origin of these

hubs has been conjectured, yet no clear strategy for combat-

ing them has been established.

We conjecture that some songs are modeled particularly

poorly, in effect leaving them far from other songs in the

database and thus unlikely to be recommended. These songs,

which we call “anti-hubs”, are shown to be identifiable from

certain properties of their models. In this paper, we propose

a method to systematically reduce the incidence of anti-hubs.

Another modeling approach suggested by the goal of hub re-

duction was also explored.

2 METHODOLOGY

2.1 Prior Work

Gaussian mixture models (GMMs) of short-time MFCC frames

have been explored extensively and are considered the state-

of-the-art approach to content-based song modeling [10, 7,

4, 8, 1]. Typically, the symmetric Kullback-Leibler (KL)

divergence is found between these models and is used as a

similarity measure. Since there is no closed-form solution

for mixture models, this distance must be approximated,

usually by a Monte Carlo method [1] or the Earth Mover’s

distance (EMD) [11].

2.2 Modeling

Following this work, we also use the MFCC-GMM approach

for song modeling. While Aucouturier [2] showed 50 com-

ponents to be optimal, for speed we chose to use 32 compo-

nents, and empirically deemed these to have sufficient mod-

eling power.

For experiments using non-parametric modeling, we em-

ployed kernel density estimation (KDE) [9, 6] as imple-

mented by MATLAB’s ksdensity routine. Our mod-

els therefore consist of a sampled density function for each

MFCC dimension, considering each to be independent. We

empirically determined a resolution of 1,000 points per den-

sity function was sufficient to represent the distributions.

The kernel bandwidth, which depends on the number of

frames and their median absolute deviation, is scaled to con-

trol the smoothness of the density estimate, and this scaling

can be varied to explore its effect on model performance.

2.3 Distance

Initial experiments showed the Monte Carlo-based distance

to be prohibitively slow for comparing GMMs, and EMD

was used instead. For KDE models, we adopted the Bhat-

tacharyya distance [5], a common measure of similarity be-
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tween two discrete probability distributions. Note that be-

cause each density is sampled over different ranges, we lin-

early interpolate over the maximum range of the two given

models so that each density is defined and compared for

common x values.

2.4 Data

These experiments used a subset of the uspop collection

consisting of 617 songs from 40 artists. This set was in-

tended to match the relative size of Berenzweig’s subset [3],

while not hand-picking tracks based on intra-class timbral

homogeneity and inter-class heterogeneity as with Aucou-

turier’s set [1].

2.5 Hubness

In measuring a kernel’s hubness, we adopted the N -occurrences

measure used by Aucouturier [1] and Berenzweig [3], choos-

ing N to be 100. This measure is a count of the number of

times a song appears in the top-N list of other tracks, in that

a large value indicated a hub. Like Aucouturier, we consid-

ered a track a hub if its 100-occurrences are greater than 200

(2 times the mean) and an anti-hub if its 100-occurences is

less than 20.

2.6 Ground-truth Agreement

In measuring agreement to ground-truth, we first measured

each kernel’s artist R-precision. This is the percentage of

retrieved the R nearest neighbors with the same artist as the

seed, where R is the number of the artist’s songs in the data

set. This corresponds to the common k-NN classifier with

leave-one-out cross-validation, except that k is dependent

on the size of each seed’s class.

As another measure of ground-truth agreement, we used

the OpenNap user collection co-occurrence data accompa-

nying the uspop collection [4]. Using the top-N rank agree-

ment score, we found how well our computed kernels’ neigh-

bor rankings matched the kernel computed from the Open-

Nap data.

3 HUBS OR ANTI-HUBS?

Berenzweig discovered that models with very few near neigh-

bors, which we now refer to as anti-hubs (and classified by

Pampalk as “always dissimilar” [8]), had certain characteris-

tic properties [3]. It was hypothesized that perhaps the focus

in the quest for understanding hubs was on the wrong side

of the hub distribution: “... hubs may actually be the only

songs behaving nicely, while non-hubs [are] pathologically

far away from everything else.” Because we base our rec-

ommendations and, in result, notions of hubness, on nearest

neighbors in kernel space, anti-hubs could actually be con-

sidered as problematic as hubs. In other words, anti-hubs

Correlation

Trace of single Gauss. covar. −0.2432
Max. intra-comp. dist. −0.3272

Max. comp. dist from centroid −0.3156

Table 1. Pearson correlation coefficients between 100-

occurences count and measures of model spread

are absent from their rightful timbral neighborhoods, leav-

ing their would-be neighbors near other songs that are per-

haps not perceptually suitable.

We speculate that these anti-hubs originate not from what

would be considered perceptually anomalous timbres, but

from a relative small number of frames representing tran-

sient timbral sections. Because the algorithms used to train

song models are musically agnostic (i.e. silence is as musi-

cally valid as a chorus), we have found several components

of mixture models are spent modeling these unrepresenta-

tive timbral sections.

This section demonstrates that models of anti-hubs tend

to contain outlier mixture components that can prove detri-

mental to their parent models’ discriminative power. We

also propose that anti-hubs are at least easier to identify

through measuring attributes of these components and there-

fore more easily treatable.

3.1 Model Variance

By measuring the overall “variance” of his GMMs, Aucou-

turier found no correlation with hubness and this measure

of model “spread” [1], disproving his hypothesis that hubs

are well-connected to other models simply due to a rela-

tively large distribution of frames. However, using three

other measures of model spread, we found a negative corre-

lation between model size and hubness, as seen in Table 1.

This suggests hubs actually have small spreads compared

to anti-hubs, likely indicating that anti-hubs have largely

multi-modal distributions.

3.2 Outlier Components

But, as Berenzweig observed [3], the large spread of anti-

hubs can be attributed to relatively few mixture components.

Berenzweig observed anti-hubs contain components with very

small variance, leading to models that are overly specific to

a certain region in feature-space and thus making them less

likely to match other models. He also found these com-

ponents tend to have other common attributes: relatively

significant prior probabilities so they cannot be ignored as

“mathematical nuisances”, large distance from the mixture’s

centroid meaning they are most likely to blame for anti-

hubs’ overall “wide diameter” models, and close proxim-

ity to the origin, suggesting these components are primarily
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Correlation

Min. log-det. of covar. 0.2247
Max. dist. from centroid −0.3113

Min. dist. from origin 0.3253
Min. prior probability 0.0908

Table 2. Pearson correlation coefficients between 100-

occurences count and measures of component attributes

modeling low-energy frames. We found that components

of anti-hubs in general can be characterized with the same

attributes. To verify, we calculated the Pearson correlation

between each model’s 100-occurrences count and measure-

ments of the most extreme component according to these

attributes. Table 2 shows these correlations, which were all

found to be statistically significant.

4 HOMOGENIZATION

Aucouturier concurred that a significant amount of model-

ing power was being occupied by certain outlier frames, as

seen through his experiments with “homogenizing” mod-

els [1]. His experiments were based on the idea that compo-

nents with high prior probabilities model statistically impor-

tant frames, so that we can, in effect, associate these com-

ponent weights with component “importance”. He then re-

moved components whose prior probabilities fell below a

given threshold, producing a “homogenized” version of the

original model. Through this experiment, he claimed that

most of the variance of a GMM is accounted for by the least

5-10% of the statistically weighted components. Also, he

argued that the hubness of a song is based primarily on the

least statistically “important” components, as the hubness

of his collection increased by nearly a factor of 3 when the

models were homogenized to just 90%.

Mixture models, however, typically contain components

that are highly overlapped. In this way, the prior probability,

or “weight”, of a particular component may be low, but to-

gether with its neighbor components, could comprise a large

mode in the overall density function. Therefore, the prior

probabilities alone cannot be assumed to correlate with a

component’s “importance”.

Therefore, we claim that component prior probabilities

are not a reliable feature to effectively homogenize mixture

models. We instead make use of the correlates to hubness

highlighted in the previous section. In particular, we pro-

pose to base homogenization around procedures aimed at

removing the components characterized by the above fea-

tures. In each case, practically the same algorithm described

by Aucouturier is used: components not meeting a certain

defined threshold requirement are discarded and the compo-

nent weights (prior probabilities) are re-normalized.

Figure 1. Influence of homogenization by distance from

mixture centroid on number of hubs (top) and anti-hubs

(bottom) for different thresholds. The un-homogenized

amounts are plotted as horizontal lines for reference.

4.1 Homogenization by Distance from Centroid

The first method of homogenization explored was based on

the observation that anti-hubs tend to have components that

are distant from a main mode of the frame distribution. We

therefore discarded components whose Euclidean distance

from the component center to the mixture’s centroid was

greater than a given threshold. The threshold values were

determined empirically by observing many activation se-

quences (showing the likelihood that each frame occurred

from each GMM component) of models found from all sec-

tions of the hub distribution, as inspired by Berenzweig [3].

4.1.1 Effects on hubness

Figure 1 shows the effects of homogenization on the oc-

currence of hubs and anti-hubs. Note the symmetry of the

un-homogenized distributions: there are approximately the

same number of hubs and anti-hubs (71 and 70, respec-

tively). It is clear that the number of hubs and anti-hubs

decreased only for severe homogenization levels.

Interestingly, the number of anti-hubs greatly increased

after mild homogenization. If anti-hubs become more cen-

tralized in distribution space after homogenization as in-

tended, they should attain more neighbors. But would these

neighbors be new or are anti-hubs simply getting closer to

their previous nearest neighbors? To answer this, we ob-

served where in the hub distribution each song’s nearest

neighbors existed. It was clear that anti-hubs’ only near

neighbors tended to be other anti-hubs. Because of this, if

we treat some anti-hubs with homogenization, their former

neighbors, who were generally unaffected by this procedure,

become more severe anti-hubs. Therefore, while several
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Figure 2. Influence of homogenization by distance from

mixture centroid on artist R-precision. The R-precision

level before homogenization is plotted as a horizontal line

for reference.

anti-hubs are clearly being introduced into the song pool,

increasing not only their similarity accuracy but also that

of their new neighbors, we see many borderline anti-hubs

dropping into the anti-hub region after homogenization.

4.1.2 Effects on agreement to ground-truth

Figure 2 shows the artist R-precision computed for each

homogenization by distance from centroid threshold. R-

precision increased monotonically until a threshold of 0.875

with a maximum increase of 3.50% (absolute) above the un-

homogenized baseline (R-precision with a random kernel

was found to be 0.03). This was likely due to anti-hubs be-

ing brought nearer to their appropriate perceptual neighbors,

as songs by the same artist are generally similar timbrally.

After this threshold, the R-precision drops dramatically. The

decrease with severe homogenization was no doubt due to

song models disintegrating into generic distributions with

little discriminating information.

We then computed the top-39 (our dataset contains 40

artists) rank agreement scores against the OpenNap user co-

occurrence kernel for each level of homogenization. Each

score was averaged over 1,000 runs to smooth out incon-

sistencies resulting from ties. A Wilcoxon signed-rank test

showed that agreement scores for homogenization distance

thresholds from 3.0 to 0.875 were significantly higher than

the un-homogenized score, where a maximum increase of

5.95% (absolute) over the GMM-EMD kernel was found.

4.2 Homogenization by Variance

We next examined homogenization by variance. With this

method, we removed components whose log-determinant

did not meet a minimum threshold. The determinant of a

covariance matrix can be thought of as a measure of a com-

ponent’s volume, so we were in effect removing components

that cover a small region of the timbral space. Again, the

existence of such components was shown to be negatively

correlated with a model’s hubness, so we again expected

homogenization to primarily affect models on the lower end

of the hub distribution.

Note we were unable to affect all models with this ap-

proach without removing all of certain models’ components.

Therefore, our most severe homogenization level with this

method affected only 70% of the models. This highlights

an advantage in the use of relative component features (e.g.

distance from centroid) in defining the homogenizing func-

tion, as opposed to absolute cut-offs (e.g. log-determinant).

4.2.1 Effects on hubness

Unlike the previously discussed homogenization method,

this method did not show improvement in hubness at any

level. The number of hubs increased by 2 for weak homog-

enization and remained unchanged for more severe thresh-

olds. The number of anti-hubs, in fact, increased by 16

(2.6% of the dataset) for most homogenization levels. This

was assumed to be a result of the aforementioned abandon-

ment of borderline anti-hubs.

4.2.2 Effects on agreement to ground-truth

Despite its apparent detriment to hubness, this homogeniza-

tion improved agreement to ground-truth. All levels ex-

cept for the most severe were found to significantly increase

over the un-homogenized level, with a maximum increase

of 1.26% at the -110 threshold. Note this is only about half

of the improvement seen with homogenization by distance

from mixture centroid.

Significant improvement was also seen in agreement to

the OpenNap user co-occurrence data, fairly consistently

across homogenization levels. The maximum increase of

6.18% (absolute) was seen at a log-determinant threshold of

-105.

4.3 Homogenization by Distance from Origin

The last homogenization method explored was based on the

observation that anti-hubs tend to have components near the

origin. These are likely modeling frames with low energy

(e.g. silence) and can reasonably be considered not percep-

tually relevant in relation to the song’s timbre. As before,

several thresholds were found empirically, and components

less than this distance away from the origin were discarded

from the model. Like with homogenization by variance, we

were only able to treat at most 60% without fulling collaps-

ing certain models whose components were all fairly near

the origin.
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4.3.1 Effects on hubness

Hubness was not improved for any homogenization level

with this method. In fact, like with homogenization by vari-

ance, we saw a slight increase in hubs and a considerable

increase in anti-hubs, by more than 15 (2.4% of the dataset)

for each threshold.

4.3.2 Effects on agreement to ground-truth

We saw that artist R-precision also improved with this ho-

mogenization, increasing monotonically with distance from

origin threshold. The maximum increase of 3.09% (abso-

lute) was found when discarding components less than 5.5

units from the origin (in MFCC space). All changes were

found to be significant under the Wilcoxon signed-rank test.

Agreement with the OpenNap data significantly increased

as well with this type of homogenization, increasing mono-

tonically and reaching a maximum of 7.38% (absolute) above

the un-homogenized baseline at a threshold of 5.5.

5 NON-PARAMETRIC MODELING

We discussed in Section 3 that using algorithms such as

Expectation-Maximization to train parametric mixture mod-

els such as GMMs can result in mixture components that are

devoted to modeling timbral frames that are not related to

perceptually salient sections. This tends to result in models

with poor representative power that in turn leads to inaccu-

rately low similarity scores with other models. However, in-

stead of iteratively training a parametric model to fit a given

distribution, non-parametric approaches can be used to ex-

plicitly model these complex distributions of MFCC frames.

In particular, using kernel density estimation (KDE), we are

given some control over the effect spurious frames have on

a model by increasing the kernel bandwidth. Wider band-

widths yield smoother density functions, effectively reduc-

ing the multi-modal behavior shown to be consistent with

songs containing outlier frames (i.e. anti-hubs).

Aucouturier compares a type of non-parametric model-

ing to other modeling algorithms in his thesis [1]. Using

three methods (independent histograms and two vector quan-

tization methods), he shows that each performs much worse

than the GMM approach, in both R-precision and hubness.

Interestingly, our approach here is similar to his indepen-

dent histograms modeling (which scored 24% lower in R-

precision than GMM), in that we treat each MFCC dimen-

sion independently, but since we use estimated density func-

tions, we use the Bhattacharyya distance or the Monte Carlo

approximated divergence to compare these models instead

of Euclidean distance.

We verified that our KDE models were consistent with

the GMM models by computing the top-N rank agreement

between kernels. We chose N to be 616 and slowly de-

caying rank weights to allow for a large set of neighbors

Agreement

Bhattacharyya 0.8940
Monte Carlo 0.8866

Random 0.3218

Table 3. Top-N rank agreement scores for KDE kernels and

the standard GMM kernel using different distance metrics

and unity bandwidth scaling

to impact the scores. The agreement scores are shown in

Table 3 and show KDE kernels from both distance metrics

agree well with the GMM kernel.

5.1 Hubness

Looking at hubness, however, here was a large discrepancy

between the GMM kernel and the KDE-BD kernels. A large

decrease was found in both the number of hubs and anti-

hubs, as high as 16 and 29 respectively or 23% and 41%

of the un-homogenized GMM levels. It seems there is no

strong relationship between hubness and the smoothness of

the density function. After examining this in more detail, it

was shown that the anti-hub region is unaffected by smooth-

ing of the density functions. This goes against our earlier hy-

pothesis that anti-hubs are severely multi-modal, which first

led to our experiments with homogenization. We speculated

that the smoother the density functions (i.e. the more ho-

mogenized the underlying distribution), the more hub-like

the model would become. We did see the amount of hubs

decrease 9.8% (61 to 55) with increased smoothing, sug-

gesting, if anything, we were decreasing hubs. This could

be a result of more models from the middle of the hub distri-

bution moving nearer hubs, thus splitting the former hubs’

neighbors amongst the new hubs. In this way, a song simply

occupying a centralized region in space (or as Aucouturier

calls a “center of mass”) does not make it a hub; the song

must be relatively alone in this region.

It was also shown that there is a strong correlation (0.788)

between the hubness values of GMM and KDE models. In

other words, songs that appear as hubs in the GMM ker-

nel are likely to appear as hubs in the KDE kernel. This

is contrary to Aucouturier’s experiment [1] where he finds

a much weaker correlation between hubs appearing from

GMMs and his non-parametric histogram models.

5.2 Agreement to ground-truth

No significant difference was found for artist R-precision

scores on the KDE kernels as compared to the GMM ker-

nels. However, KDE modeling improved agreement to the

OpenNap data, where we saw an improvement of about 5%

(absolute) for all bandwidth sizes. Similar results were seen
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with the Monte Carlo distance, with a maximum increase

over the GMM-EMD baseline of 6% (absolute).

5.3 Computation Time

Aside from apparently better discriminative power, KDE-

BD models also showed advantages in necessary compu-

tation time. The total computation time to train the KDE

models on all 617 songs of the uspop subset was found

to decrease exponentially with kernel bandwidth. For very

small bandwidths, we saw modeling time increase by over

a factor of 15 over GMMs, with no apparent detriment to

modeling power.

As far as distance computation time, the Bhattacharyya

distance (with linear interpolation and 2,000-point density

functions) took on average 83 ms. per pair of KDE mod-

els, compared to 30 ms. for finding the distance between

two GMMs via the Earth Mover’s distance 1 . This means

computing a KDE-BD kernel took about 2.7 times longer

(262 minutes) than the GMM-EMD kernel (95 minutes) on

our 617-song uspop subset. Speed of the BD computa-

tion could of course be improved by employing lower order

interpolation and more sparsely sampling the density func-

tions.

The Monte Carlo distance, on the other hand, took signif-

icantly longer, averaging 586 ms. per pair (generating 2,000

samples per model), meaning the entire kernel took 31 hours

to compute, which is entirely unacceptable in a real-world

scenario. Granted, measures could be taken to increase its

efficiency, but since the results on the above performance

tasks were comparable to the BD kernel, no reason is seen

to further use the computationally expensive Monte Carlo-

based distance.

6 CONCLUSION

Homogenization of GMMs was shown to improve the hub-

ness of several models, particularly anti-hubs. While the

overall amounts of hubs and anti-hubs generally increased

after this procedure, this was assumed to be a result of the

abandonment of anti-hub neighbors who were themselves

untreatable by the given homogenization method. Each method

showed significant improvements, however, in agreement to

ground-truth data, as shown in Table 4. This is encouraging,

since the improved representative power of the models af-

fected by homogenization seems to outweigh the expected

loss in models left untreated.

Non-parametric modeling by kernel density estimation

proved to offer not only significant reduction in hubness but

considerable improvement in computation time and ground-

truth agreement.

1 Computed on a MacPro with 2 2.66 GHz Dual-Core Intel Xeon pro-

cessors and 2 GB of RAM

Homogenization Artist OpenNap

Method R-precision Agreement

Dist. from centroid 3.50% 5.95%
Variance 1.26% 6.15%

Dist. from origin 3.10% 7.40%

Table 4. Maximum percent improvement (absolute) of

agreement to ground-truth data for different homogeniza-

tion methods.

Overall, the work presented here suggests approaches to

solutions to fundamental problems found in content-based

music modeling.
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