A STUDY ON LSTM NETWORKS FOR
POLYPHONIC MUSIC SEQUENCE MODELLING

Adrien Ycart and Emmanouil Benetos
Centre for Digital Music, Queen Mary University of London, UK
{a.ycart, emmanouil.benetos}@gmul.ac.uk

ABSTRACT

Neural networks, and especially long short-term memory
networks (LSTM), have become increasingly popular for
sequence modelling, be it in text, speech, or music. In
this paper, we investigate the predictive power of simple
LSTM networks for polyphonic MIDI sequences, using an
empirical approach. Such systems can then be used as a
music language model which, combined with an acoustic
model, can improve automatic music transcription (AMT)
performance. As a first step, we experiment with synthetic
MIDI data, and we compare the results obtained in vari-
ous settings, throughout the training process. In particu-
lar, we compare the use of a fixed sample rate against a
musically-relevant sample rate. We test this system both
on synthetic and real MIDI data. Results are compared in
terms of note prediction accuracy. We show that the higher
the sample rate is, the better the prediction is, because self
transitions are more frequent. We suggest that for AMT, a
musically-relevant sample rate is crucial in order to model
note transitions, beyond a simple smoothing effect.

1. INTRODUCTION

Recurrent neural networks (RNNs) have become increas-
ingly popular for sequence modelling in various domains
such as text, speech or video [7]. In particular, long short-
term memory networks (LSTMs) [10] have helped make
tremendous progress in natural language modelling [15].
Those so-called language models can, in turn, be com-
bined with acoustic models to improve speech recogni-
tion systems. Many recent improvements in this field have
stemmed from better language models [8].

Automatic music transcription (AMT) is to music what
speech recognition is to natural language: it is defined as
the problem of extracting a symbolic representation from
music signals, usually in the form of a time-pitch repre-
sentation called piano-roll, or in a MIDI-like represen-
tation. Despite being one of the most widely discussed
topics in music information retrieval (MIR), it remains an
open problem, in particular in the case of polyphonic mu-

(© Adrien Ycart and Emmanouil Benetos. Licensed un-

der a Creative Commons Attribution 4.0 International License (CC BY
4.0). Attribution: Adrien Ycart and Emmanouil Benetos. “A Study on
LSTM Networks for Polyphonic Music Sequence Modelling”, 18th In-
ternational Society for Music Information Retrieval Conference, Suzhou,
China, 2017.

sic [2]. While there has been extensive research on acous-
tic models for music transcription, music language models
(MLMs) have received little attention until quite recently.

In this paper, we propose a study on the use of LSTM
neural networks for symbolic polyphonic music modelling,
in the form of piano-roll representations. We evaluate
the impact of various parameters on the predictive perfor-
mance of our system. Instead of relying on ever more com-
plex architectures, we choose to use an LSTM with only
one layer, and see how each parameter influences the final
result, namely, the number of hidden nodes, the learning
rate, the sampling rate of the piano-roll, and doing data
augmentation. We also compare the use of time frames of
fixed length against the use of beat-quantised time frames
of fixed musical length (such as a 16th note). We evalu-
ate the predictive performance of our system in terms of
precision, recall and F-measure, and we monitor the evo-
lution of these metrics throughout the learning process. We
also conduct proof-of-concept experiments on AMT by
post-processing the output of an existing acoustic model
with our predictive models. We show that time-based time
steps yield better results in terms of prediction because
self-transitions are more frequent. This results in a simple
smoothing effect when used in the context of transcription.
On the other hand, note-based time steps perform worse for
prediction, but show interesting behaviour that might be
crucial for transcription, in particular the ability to model
note transitions and some basic rhythmic features. To the
best of our knowledge, such a study has not yet been done
in the context of polyphonic music prediction.

The remainder of the paper is organised as follows. In
section 2, we review existing works on symbolic music se-
quence modelling. In section 3, we describe the neural
network architecture chosen for the experiments. In sec-
tion 4, we describe the two employed datasets, one made
of synthetic MIDI data, the other of real-life MIDI data. In
section 6, we describe the various experiments performed
for prediction and their results. In section 7, we show pre-
liminary results on the application of the language model
in the context of AMT. Finally, in section 8, we discuss the
results obtained and their implications for future work.

2. STATE OF THE ART

Although MLMs have been discussed for quite a long time
[14], they have not been specifically used in audio anal-
ysis until quite recently. Temperley [18] was one of the

421

Proceedings of the 18th ISMIR Conference, Suzhou, China, October 23-27, 2017

first to propose a joint probabilistic model for harmony,
rhythm and stream separation, and suggested its use for
AMT. Since then, several other audio analysis systems,
such as [16], have used probabilistic models of high-level
musical knowledge in order to improve their performance.

More recently, some approaches have used neural net-
works to post-process the output of an acoustic model.
Indeed, it seems that neural networks are more suitable
to model polyphonic sequences compared to probabilistic
models such as hidden Markov models (HMMs). In [4], a
neural network architecture combining a RNN with a Re-
stricted Boltzman Machine (RBM) was proposed to esti-
mate at each time-step a pitch distribution, given the pre-
vious pitches. This architecture was later integrated in var-
ious systems. In [17], it was integrated in an end-to-end
neural-network for multi-pitch detection in piano music,
coupled with a variety of neural-network-based acoustic
models. In all these models, the time-step is of the order
of 10 ms, which is small compared to the typical duration
of a music note. Moreover, this time-step is constant, and
does not depend on the tempo of the input music signal.

Some systems have also modelled symbolic music se-
quences for other purposes. Pachet et al. [9] proposed an
architecture consisting of four joint neural networks in or-
der to generate Bach chorales. In [11], another architecture
using reinforcement learning to enforce musical rules in a
RNN was proposed for music generation.

All the above neural architectures rely on sophisticated
combinations of neural networks, and have many param-
eters, which means that they need a lot of training data,
and can be prone to over-fitting. In this study, we focus
on a simple architecture, and try to build from that us-
ing an experimental method to assess the importance of
various hyper-parameters. A study similar to the present
has been conducted in [13] on chord sequence modelling
(thus on modelling monophonic sequences instead of poly-
phonic ones). In this previous study, the advantage of
RNNs over HMMs is questioned in the context of chord
sequence modelling. In particular, it is argued that when
the frame rate is high (order of 10 fps), the RNN only has
a smoothing effect, and thus is no more efficient than sim-
pler models such as an HMM. On the other hand, it is sug-
gested that on the chord-level (ie. one symbol per chord,
no matter how long), the RNN used is significantly better
than an HMM. We aim at investigating similar questions in
the context of polyphonic note sequence modelling in the
current study.

3. MODEL

In this section, we describe the model we used in the exper-
iments. This model is trained to predict the pitches present
in the next time frame of a piano-roll, given the previous
ones.

3.1 Data Representation

The input is a piano-roll representation, in the form of an
88 x T' matrix M, where 7' is the number of timesteps, and
88 corresponds to the number of keys on a piano, between

MIDI notes AOQ and C8. M is binary, such that M[p,t] = 1
if and only if the pitch p is active at the timestep ¢. In
particular, held notes and repeated notes are not differen-
tiated. The output is of the same form, except it only has
T —1 timesteps (the first timestep cannot be predicted since
there is no previous information). We use two different
timesteps:
e a fixed time step of 10 milliseconds, that we refer to
as time-based
e a variable time step with a fixed musical length of a
sixteenth note, referred to as note-based.

3.2 Network Architecture

Our primary goal is to study the influence of various pa-
rameters, namely the number of hidden nodes, the learning
rate, the use of data augmentation, and the time steps used.
In order to assess the influence of those parameters as ac-
curately as possible, without being influenced by other pa-
rameters, we deliberately choose to use the most simple
LSTM architecture possible. In particular, we choose not
to use multiple layers, nor to use dropout or any other reg-
ularisation method during training. These will be investi-
gated in future work.

We thus use an LSTM with 88 inputs, one single hid-
den layer, and 88 outputs. The number of hidden nodes is
chosen among: 64,128, 256,512. The network is trained
using the Adam optimiser [12], using the cross-entropy be-
tween the output of the network and the ground truth as
cost function. The learning rate is kept constant, and is
chosen among: 0.01,0.001, 0.0001.

The output of the network is then sent through a sig-
moid, and thresholded to obtain a binary piano-roll. The
threshold is determined by choosing the one that gives the
best results on the validation dataset (see section 4).

4. DATASETS

We use two different datasets for training and testing our
models. One is a synthetic dataset, the other is a dataset
made of real music pieces. Both datasets were split into
training, validation and test datasets with the following re-
spective proportions: 70%-10%-20%.

4.1 Synthetic MIDI Dataset

The synthetic MIDI dataset used in this study consists of
combinations of notes and chords in the C major key. It
contains only notes on the C major scale, between C3 and
C5. The chords are either a note and the note a third above
(major or minor, such that the second note is also in C ma-
jor), or a note, the note a third above, and the note a fifth
above. All generated files are 3sec long, with a tempo of
60, so each file is 3-quarter-notes long. All notes have a
duration multiple of a quarter note, so note changes can oc-
cur after 1 second, 2 seconds, both or neither. We take all
possible combinations of 3 notes or chords and we allow
repetition. When a note or a chord is repeated we create
two distinct files, one corresponding to the note being held,
one corresponding to the note being played again. Overall,

Proceedings of the 18th ISMIR Conference, Suzhou, China, October 23-27, 2017

the dataset contains more than 36,000 files, representing
30 hours of data and will be referred to as Synth dataset.

4.2 Piano-midi.de Dataset

We use the Piano-midi.de dataset' as real-world MIDI
data. This dataset currently holds 307 pieces of classical
piano music from various composers. It was made by man-
ually editing the velocities and the tempo curve of quan-
tised MIDI files in order to give them a natural interpre-
tation and feeling. This mode of production is the main
reason why we chose it: it sounds real, with an expressive
timing, and at the same time, the rhythmic ground truth is
readily available. We can thus easily compute note-based
time steps, without having to rely on a beat and meter de-
tection algorithm.

This dataset holds pieces of very different durations
(from 20 seconds to 20 minutes). In order to avoid ex-
cessive zero-padding for neural network training and to
be more computationally efficient, we only keep the first
minute from each file (and we zero-pad the shorter files).
The resulting dataset is 5 hours long, and will be referred
to as the Piano dataset. We also augment our dataset by
transposing every piece in all keys from 7 semitones below
to 6 semitones above. This increases the size of the dataset
12-fold, up to 60 hours. That way, all tonalities are equally
represented, without shifting the range of notes too much.

5. EVALUATION METRICS

To evaluate the performance of our system, we compute
several metrics following the MIREX Multiple-FO Estima-
tion task [1], namely the precision, recall and F-measure.
Those metrics are computed for each file, and then aver-
aged over a dataset. The progress throughout learning is
computed on the validation dataset, and the performance
of the trained model is computed on the test dataset.

6. PREDICTION

In this section, we compare the results obtained in various
configurations, both quantitatively and qualitatively.

6.1 Number of Hidden Nodes and Learning Rate

We trained on the Synth dataset a series of mod-
els, with various numbers of hidden nodes in the hid-
den layer (n_hidden), and various learning rates (learn-
ing_rate). We tried all possible combinations with
n_hidden € {64,128,256,512} and learningrate €
{0.0001,0.001,0.01}. We trained each model for
50 epochs, with a batch size of 50. All the im-
plementations were made in Python, using Tensor-
flow [6]. The code necessary for the experiments
can be found at: http://www.eecs.gmul.ac.uk/
~ay304/code/ismirl7 .

In each case, the model converges to the same state:
at epoch 50, all the models get the same precision, recall
and F-measure with 10~2 precision. The only difference

"http://piano-midi.de/

among all the models is the convergence speed. Similar
observations were made for the other numbers of hidden
nodes.

Quite expectedly, the parameter that has the most influ-
ence on convergence speed is the learning rate. Generally
speaking, the larger the number of nodes is, the quicker the
model converges (we could not compare when the learning
rate is 0.01 since all the models converge in one epoch).
Those empirical observations are consistently observed in
all the other experiments as well (on the Piano dataset, with
or without note-based time steps, with or without data aug-
mentation).

When inspecting the output of the network before go-
ing through the sigmoid, we can notice some interesting
features. All the notes that are outside the scale of C (that
never appear in the training set) have a very low output,
showing that the network is able to learn which notes might
appear. This can be double-edged: notes outside the key
are not mistakenly detected, but if they appear (which hap-
pens), they will not be detected either. In Section 7 we
attempt to run this model on a real-life input file, and those
findings are confirmed: the prediction clearly masks out
every note that was not in the set of notes seen during train-
ing.

Considering the results of this preliminary experiment,
we decide to keep for the rest of the experiments only
n_hidden € [128,256] and learning_rate € [0.001, 0.01].
Indeed, 512 hidden nodes is too heavy computationally
(around 20% longer training time compared to all the other
configurations) without any clear improvement over 256
nodes. Similarly, a learning rate of 0.0001 converges too
slowly compared to the others, with no noticeable advan-
tage in the end result. We nevertheless choose to keep sev-
eral models, not only the best one, because the best model
on this dataset will not necessarily be the best one on an-
other.

6.2 Data Augmentation

On the Piano dataset, we compare the performance of
the model trained on the original 5-hour dataset, and on
the augmented 60-hour dataset. The evolution of the F-
measure on the validation dataset with and without data
augmentation can be found in Figure 1. Results show that
data augmentation improves greatly the results. All mod-
els trained on augmented data converge more quickly in
terms of number of epochs, which is understandable since
12 times more data is processed at each epoch. However,
in both cases, the results obtained after 50 epochs are ap-
proximately the same in terms of metrics.

6.3 Time Step

We compare the behaviour of the network when using
time-based and note-based time steps, on both datasets. A
comparison of the evolution of the F-measure on the Piano
validation dataset with time-based or note-based time steps
can be found in Figure 1.

With time-based time steps, we find that all the models
seem to achieve similar results: with data augmentation, all

423

424

Proceedings of the 18th ISMIR Conference, Suzhou, China, October 23-27, 2017

Time-based, Not augmented

1.01

0.8

0.6 1

F-measure

—— 128, 0.001

128, 0.01
—— 256, 0.001
—— 256, 0.01

0.4

0.21

0.0

0 10 20 30 40
Epochs

Note-based, Not augmented

— 128,0.001
1.0 128, 0.01
—— 256, 0.001
—— 256, 0.01
0.8

0.6 1

F-measure

0.4

0.2

0.0 y u T T
0 10 20 30 40
Epochs

Time-based, Augmented

0.8 f
0.6
— 128,0.001
0.4 1 128, 0.01
- —— 256, 0.001
— 256,0.01

0.2

F-measure

0.0

0 10 20 30 40
Epochs

Note-based, Augmented

—— 128, 0.001

128,0.01
—— 256, 0.001
—— 256, 0.01
0.8

0.6

F-measure

PP

0.4

0.2

0.0 T T
0 10 20 30 40
Epochs

Figure 1. Comparison of the evolution of the F-measure across epochs, on the Piano validation dataset, with time-based or
note-based timesteps, with or without data augmentation. A threshold of 0.5 is used.

F-Measure | Precision | Recall
Without augmentation

128, 0.001 0.451 0.409 0.509

256, 0.001 0.513 0.484 0.549

128, 0.01 0.548 0.536 0.560

256, 0.01 0.553 0.544 0.562

With augmentation

128, 0.001 0.558 0.557 0.560

256, 0.001 0.571 0.552 0.592

128, 0.01 0.597 0.61 0.588

256, 0.01 0.601 0.615 0.592

Table 1. Prediction performance computed with note-

based time steps on the Piano test dataset.

the models achieve a F-measure score of 0.966. Without
data augmentation, the models trained with a learning rate
of 0.01 achieve the same performance, with a learning rate
of 0.001, the 128-hidden-node model achieves 0.917, and
the 256-hidden-node model achieves 0.944. This might be
due to the fact that they haven’t fully converged after 50
epochs. All those scores were computed with a threshold
of 0.5.

We also compute the precision, recall and F-measure on
the Piano test dataset with note-based time steps. These re-
sults can be found in Table 1. We observe that this time,
higher learning rate, higher number of nodes and data aug-
mentation not only lead to quicker convergence, but also to
better results.

For both datasets, the predictive accuracy is better in
time-based configurations, since the frame rate is much
higher, and thus there are more self-transitions (ie. notes
are prolongated from the previous time steps). It seems in-
deed that in both cases, the system is uncertain when there
are note changes, but learns to repeat the ongoing notes.

The difference in performance can thus be attributed to the
fact that note changes are much more frequent in the note-
based case (once every 4 time steps versus once every 100
timesteps for the Synth dataset).

However, the note-based model shows very interesting
behaviour at the uncertain time steps (ie. at each beat).
On the Synth dataset, when the note changes, it gives a
small probability to every note of the scale (the notes that
might appear in the next frame), and rules out all the out-
of-scale notes. Moreover, even when the note is kept for
more than one beat, the model still shows the same “un-
certain” behaviour, which does not happen with the time-
based model. This is an error (which partly explains the
worse scores), because the note should be held, but it
has some very interesting consequences in terms of mu-
sic modelling. This shows that the note-based model has
learned that periodically, notes have a strong probability to
change. This can be related to the rhythmic structure of
music, as note changes are more frequent on strong metric
positions. An example prediction output before threshold-
ing is shown in Figure 2. We can see those “uncertain”
time-steps in position 3 and 7, which correspond to time-
steps 4 and 8 in the input (ie note changes).

‘We also find this behaviour with the Piano dataset, how-
ever only appearing with data augmentation. It is not clear
if this is specific to data augmentation, or if it is simply
because models without data augmentation were under-
trained. In this case, the “uncertain” behaviour occurs at
every eighth note, and with stronger probabilities at each
quarter note. This suggests that the model behaves this
way at the smallest metrical level, and not only at strong
metrical positions. This might be a problem in the future,
since it might encourage transitions too frequently. How-
ever, a small probability is only given to notes of the cor-

Proceedings of the 18th ISMIR Conference, Suzhou, China, October 23-27, 2017

Note-based

MIDI pitch

0 2 4 8 10

6
Time step

Figure 2. The prediction system output (n_hidden = 256,
learning_rate=0.01) with note-based time steps after going
through the sigmoid, before thresholding. The ground truth
is: E3, C4E4G4, F4A4. At each note change, a small prob-
ability is given to all notes in C major scale.

rect scale, which shows that the model is able to get the
tonal context of a piece to some extent. An example output
before thresholding is shown in Figure 3.

Note-based

MIDI pitch

0 20 40 60 80 100
Time step

Figure 3. The output of the prediction system (n_hidden
= 256, learning_rate=0.01) with note-based time steps af-
ter going through the sigmoid, before thresholding. The
ground truth is Chopin’s Prelude, No. 7, Op. 28 in A Ma-
jor. At each eighth note, a small probability is given to
some notes in A major, the tonality of the piece.

7. AUDIO TRANSCRIPTION

A preliminary experiment on assessing the potential of pre-
diction models in the context of AMT is carried out. For
this experiment, we use a single piece taken from the Piano
dataset: Chopin’s Prelude No. 7, Op. 28 in A Major.

7.1 Acoustic Model

For the experiment on integrating AMT with polyphonic
music prediction, we use the system of [3], which is based
on Probabilistic Latent Component Analysis. The system
decomposes an input spectrogram into several probability
distributions for pitch activations, instrument contributions
and tuning deviations, using a dictionary of pre-extracted
spectral templates. For this experiment, a piano-specific
system is used, trained using isolated notes from the MAPS
database [5]. The output of the acoustic model is a poste-
riogram of pitch activations over time.

7.2 Method

We synthesise the MIDI file with GarageBand, using the
default Steinway Grand Piano soundbank. We analyse 3
different audio files:

Groumn ot

MIDI pitch

750 1000 1250 1500 1750 2000
Time step

Audio transcription

MIDI pitch

0 250 500 750 1000 1250 1500 1750 2000
Time step

Figure 4. The first 20 seconds of the thresholded output of
the baseline AMT system, compared with the ground truth.

e The full audio file, with expressive timing.

e The right-hand of the piece, transposed in C. In this
case, predictive models trained both on the Synth
and Piano dataset are evaluated.

e The full audio file, with quantised timing. The out-
put of the transcription system is then downsampled
to obtain a time step of a 16th note.

We take the posteriogram output by the previously de-
scribed acoustic model, and feed it to various polyphonic
prediction models, in various conditions:

e The raw posteriogram, with positive values theoreti-
cally unbounded (raw_post)

o The raw posteriogram thresholded in order to have a
binary piano-roll (raw_piano)

The output of our predictive model is then thresholded
using the value determined on the validation dataset in the
experiments described in Section 6.3. The resulting piano-
roll is compared to the ground truth using the accuracy
metrics described in Section 5. An example of output of
the baseline transcription system is shown in Figure 4.

7.3 Results

Results in terms of multi-pitch detection are shown in Ta-
ble 2. Although we tested every configuration with all our
models, we only report the results of the most meaningful
experiments.

In the vast majority of cases, the results with the pre-
dictive model are below those of the acoustic model only,
without post-processing. The only cases where the post-
processing step improves the results is when the prediction
is made on the whole piece, with time-based time steps,
in raw_piano configuration. Otherwise, the results are at
best equivalent to those of the baseline system. In the case
where the results are improved, we inspect what improve-
ments are made by the predictive model. It seems that the
only improvements were few isolated frames that are tem-
porally smoothed. We do not notice any missing notes be-

425

426

Proceedings of the 18th ISMIR Conference, Suzhou, China, October 23-27, 2017

F-Measure | Precision | Recall
Full audio, raw_piano

Baseline 0.455 0.960 0.299

128, 0.001 0.458 0.938 0.303

256, 0.001 0.458 0.941 0.303

128, 0.01 0.460 0.959 0.303

256, 0.01 0.460 0.961 0.303

Right hand in C,
raw_post, Synth

Baseline 0.670 0.898 0.535

128, 0.001 0.556 0.955 0.393

256, 0.001 0.607 0.966 0.442

128, 0.01 0.522 0.834 0.380

256, 0.01 0.527 0.877 0.377

Full note-based, raw_piano

Baseline 0.526 0.963 0.361

128, 0.001 0.434 0.624 0.332

256, 0.001 0.440 0.651 0.332

128, 0.01 0.478 0.852 0.332

256, 0.01 0.481 0.875 0.332

Table 2. Some results on transcription from audio, com-
pared to the output of the baseline acoustic model.

ing added, and very few spurious notes are removed.

When using the Synth-dataset-trained models on the
right hand transposed in C, the results are mixed. The pre-
cision measure is improved, due to the fact that many spu-
rious notes are removed. On the other hand, some notes
went completely missing because they were not in the C
major scale, which leads to a lower recall score. Overall,
the F-measure is lower than that of the acoustic model .

When using frame-based time steps, in every configura-
tion, the results are worse. We have identified two reasons
for that. The first is that sometimes, the system would add
evenly distributed noise at the beginning of the prediction.
This is probably due to the fact that the network takes a
few frames to build a memory good enough to make cor-
rect predictions. More training removes that problem (the
problem does not appear with models trained with a learn-
ing rate of 0.01). The second reason is that the system has
some latency: a note is only activated one frame after it is
seen in the input, and it is only deactivated one frame after
it disappears of the input. When comparing the output of
the system shifted one frame back with the output of the
baseline system, the results were very close, and in some
cases, identical (though never better).

8. DISCUSSION

In this study, we compare the influence of various parame-
ters of an LSTM network on modelling polyphonic music
sequences with respect to the training process and predic-
tion performance. Those parameters are: the learning rate,
the number of hidden nodes, the use of data augmenta-
tion by transposition, and the use of time-based time steps
against note-based time steps. We found that with a given
time step and a given dataset, the learning rate is the most
important factor for learning speed, and that the more hid-
den nodes there are, the quicker the convergence is. We
also found that data augmentation greatly improves both
the convergence speed and the final performance.

When it comes to the choice of the time steps, it appears
that time-based time steps yield a better prediction perfor-
mance, because self transitions are more frequent. On the
other hand, note-based time steps seem to show better mu-
sical properties. When trained on synthetic data containing
only notes of the scale, it seems rather evident that notes
that are have never been obeserved are very unlikely. More
interestingly, when trained with real data in all tonalities,
the system can still detect the scale of the piece : we can
see with the example in Figure 3 that only notes of the cor-
rect tonality are given a some probability. We can also see
that the system has learned the places where note changes
might occur, and that the note changes are more frequent
at beat positions than at half-beat positions.

We also use our system to post-process the output of
an acoustic model for multi-pitch detection, in a proof-of-
concept experiment. The first thing that we can notice from
this experiment is that a good prediction performance does
not necessarily translate to a good audio transcription per-
formance. However, the order of performance for predic-
tion seem to be kept for transcription: models with more
nodes and higher learning rate tend to perform better.

The poor performance of our the predictive model for
improving AMT performance is understandable: the in-
put presented to the system in the transcription process is
very different from those the models were trained on. Fu-
ture work will include training predictive models not with
piano-rolls, but with acoustic model posteriograms.

From all the above experiments, we can conclude that
with time-based time steps, what the LSTM does is a sim-
ple smoothing, albeit a good one, since it improves tran-
scription performance in some cases. The very fact that
post-processing the output of the acoustic model with our
system can improve the transcription performance, even
though our language model was trained on a completely
different kind of data, shows that it has in fact not learned
much from the data it was fed, except temporal smoothing
similar to e.g. a median filter. Since we aim at modelling
the complex vertical and horizontal dependencies that exist
within music, this behaviour is not sufficient.

On the other hand, we found some very interesting fea-
tures in the output of the note-based models: they are able
to learn when note changes might occur and what note
might be activated which is very promising in terms of
polyphonic music modelling. The downside of such mod-
els is that they would rely on meter detection algorithms
when applied to audio, which might lead to error propaga-
tion. Future work will focus on investigating the possibili-
ties of those models in the context of AMT, assuming that
the meter and tempo are given as a first step.

Finally, we will extend this study in future work by
gradually increasing the complexity of our model, and
studying how the performance varies. In particular, we will
study the result of adding more hidden nodes, and using
more sophisticated regularisation techniques. We will also
further investigate the results by visualising the learned pa-
rameters, as well as the activations of the hidden nodes.

Proceedings of the 18th ISMIR Conference, Suzhou, China, October 23-27, 2017

9. ACKNOWLEDGEMENTS

A. Ycart is supported by a QMUL EECS Research Stu-
dentship. E. Benetos is supported by a RAEng Research
Fellowship (RF/128).

(1]

(3]

[4]

(5]

(7]

(8]

[10]

[11]

10. REFERENCES

Mert Bay, Andreas F. Ehmann, and J. Stephen Downie.
Evaluation of Multiple-FO Estimation and Tracking
Systems. In 10th International Society for Music Infor-
mation Retrieval Conference (ISMIR), pages 315-320,
2009.

E. Benetos, S. Dixon, D. Giannoulis, H. Kirchhoff, and
A. Klapuri. Automatic music transcription: challenges
and future directions. Journal of Intelligent Informa-
tion Systems, 41(3):407-434, 2013.

E. Benetos and T. Weyde. An efficient temporally-
constrained probabilistic model for multiple-
instrument music transcription. In 16th International
Society for Music Information Retrieval Conference
(ISMIR), pages 701-707, 2015.

N. Boulanger-Lewandowski, P. Vincent, and Y. Ben-
gio. Modeling Temporal Dependencies in High-
Dimensional Sequences: Application to Polyphonic
Music Generation and Transcription. 29th Interna-
tional Conference on Machine Learning, pages 1159—
1166, 2012.

V. Emiya, R. Badeau, and B. David. Multipitch esti-
mation of piano sounds using a new probabilistic spec-
tral smoothness principle. IEEE Transactions on Au-
dio, Speech and Language Processing, 18(6):1643—
1654, August 2010.

M. Abadi et al. TensorFlow: Large-scale machine
learning on heterogeneous systems, 2015. Software
available from tensorflow.org.

I. Goodfellow, Y. Bengio, and A. Courville. Deep
learning. MIT Press, 2016.

A. Graves, A. Mohamed, and G. Hinton. Speech recog-
nition with deep recurrent neural networks. In /EEE
International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pages 6645-6649. IEEE,
2013.

G. Hadjeres and F. Pachet. DeepBach: a steerable
model for Bach chorales generation. arXiv preprint
arXiv:1612.01010, 2016.

S. Hochreiter and J. Schmidhuber. Long short-term
memory. Neural computation, 9(8):1735-1780, 1997.

N. Jaques, S. Gu, R. E. Turner, and D. Eck. Tuning Re-
current Neural Networks with Reinforcement Learn-
ing. 5th International Conference on Learning Repre-
sentations (ICLR), pages 1722-1728, 2017.

[12]

[13]

[14]

[15]

[16]

[17]

[18]

D. P. Kingma and J. Ba. Adam: A method for stochas-
tic optimization. In 3rd International Conference on
Learning Representations (ICLR), 2015.

F. Korzeniowski and G. Widmer. On the Futility of
Learning Complex Frame-Level Language Models for
Chord Recognition. In AES International Conference
on Semantic Audio, 2017.

F. Lerdahl and R. Jackendoff. A Generative Theory of
Tonal Music. MIT Press, 1983.

T. Mikolov, M. Karafiét, L. Burget, J. Cernocky, and
S. Khudanpur. Recurrent neural network based lan-
guage model. In Interspeech, volume 2, page 3, 2010.

S. A. Raczyniski, E. Vincent, and S. Sagayama. Dy-
namic Bayesian networks for symbolic polyhonic pitch
modeling. IEEE Transactions on Audio, Speech, and
Language Processing, 21(9):1830 — 1840, 2013.

S. Sigtia, E. Benetos, and S. Dixon. An end-to-end neu-
ral network for polyphonic piano music transcription.
IEEE/ACM Transactions on Audio, Speech, and Lan-
guage Processing, 24(5):927-939, May 2016.

D. Temperley. A Unified Probabilistic Model for Poly-
phonic Music Analysis. Journal of New Music Re-
search, 38(1):3-18, 2009.

427

