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ABSTRACT

This paper introduces a method for the organization of re-
corded music according to structural similarity. It uses
the Normalized Compression Distance (NCD) to measure
the pairwise similarity between songs, represented using
beat-synchronous self-similarity matrices. The approach is
evaluated on its ability to cluster a collection into groups of
performances of the same musical work. Tests are aimed at
finding the combination of system parameters that improve
clustering, and at highlighting the benefits and shortcom-
ings of the proposed method. Results show that structural
similarities can be well characterized by this approach, gi-
ven consistency in beat tracking and overall song structure.

1. INTRODUCTION

Characterizing the temporal structure of music has been
one of the main goals of the MIR community, with ex-
ample applications including thumbnailing, long-term seg-
mentation and synchronization between multiple record-
ings [1, 2]. Despite this focus, however, there has been lit-
tle in terms of using structure as the main driver of audio-
based retrieval and organization engines.

This paper proposes and evaluates a methodology for
the characterization of structural similarity between musi-
cal recordings. The approach models similarity in terms
of the information distance between music signals repre-
sented using self-similarity matrices. These matrices are
well-known for their ability to characterize recurring pat-
terns in structured data, and are thus widely used in MIR
for the analysis of musical form. However, in retrieval ap-
plications they are mostly used as intermediate representa-
tions from which a final representation (e.g. beat spectrum,
segment labels) is derived. In this paper we argue that self-
similarity matrices can be used directly in the computa-
tional modeling of texture-, tempo- and key-invariant rela-
tionships between songs in a collection. Our approach is
mainly inspired by the work in [3], which uses the same
principle to compare the structure of protein sequences.
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1.1 Background

The use of structure for audio-based MIR was first pro-
posed in [4]. This approach is based on the idea that long-
term structure can be characterized by patterns of dynamic
variation in the signal. In this approach, song similarity is
measured as the cost of DP-based pairwise alignment be-
tween sequences of local energy or magnitude spectral co-
efficients. Experimental results, albeit preliminary, show
the potential of this idea for retrieval.

A similar concept is explored in [5], and more exten-
sively in [6], where variations of spectral content are quan-
tized into a symbolic sequence, obtained via vector quanti-
zation or HMMs. In these works, pairwise song similarity
is measured using the edit distance or, more efficiently, lo-
cality sensitive hashing [6].

The mentioned sequences are not only able to represent
the texture and harmony of musical pieces, but also struc-
tural patterns, from motifs and phrases to global form. Mu-
sical sequences sharing style, origin or functionality will
be likely to show structural similarity, despite differences
in actual sequence content. Hence, a change of key does
not preclude listeners from identifying a 12-bar blues, and
the relationship between different variations and renditions
of a work remain close, despite changes of instrumenta-
tion, ornamentation, tempo, dynamics and recording con-
ditions. Unfortunately, all representations discussed above
are sensitive to one or more of these variables. As a result,
their success at characterizing music similarity depends on
their ability to marginalize those changes. Examples in-
clude the use of modified distance metrics and suboptimal
feature transposition methods [2, 5].

Structure comparison has been extensively studied in
other fields, such as bioinformatics. For protein sequences,
for example, structures are usually characterized using con-
tact maps, which are, simply put, binary self-similarity
matrices where a 1 characterizes a contact (i.e. similar-
ity higher than a certain threshold) and a 0 the lack of it.
The problem of comparing protein topologies using con-
tact maps is known as maximum contact map overlap, with
many proposed solutions in the literature. In this paper we
concentrate on the one proposed in [3], which uses an ap-
proximation of the information distance between two con-
tact maps known as the normalized compression distance
(NCD), to be discussed in more detail in section 2.2.

In music, the NCD has been used on raw MIDI data
for clustering and classification based on genre, style and
melody [7, 8]. More recently, it has been used on audio
data for sound and music classification [9] and, with lim-
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Figure 1. (a) Self similarity matrix of the first 248 bars of a performance of Beethoven 5th Symphony; MDS projection of
a quarter (b), half (c) and full matrix (d) to 3 dimensions; (e) comparison of two different performances.

ited success, in cover-song identification [10]. To the best
of our knowledge this paper proposes the first use of NCD
to characterize structural similarity between music audio
recordings.

1.2 Example

Figure 1(a) shows a self-similarity matrix of the first 248
bars of the first movement of Beethoven’s 5th symphony.
The recording is of a 2006 performance by the Russian
National Orchestra conducted by Mikhail Pletnev. Figures
1(b-d) are the result of taking the distances in the matrix
and projecting them into a 3-dimensional space using clas-
sical multidimensional scaling (MDS). The figures show
the trajectory of the piece at a quarter, half and full seg-
ment length, respectively. Figures 1(b) and (c) depict the
famous opening section of this symphony as a loop, while
figure 1(d) shows the recapitulation as simply another, ap-
proximate instance of the same loop. This example clearly
shows how self-similarity matrices are able to character-
ize primary (the trajectory itself) and, at least, secondary
(local motifs such as the loop) structure in music. Fig-
ure 1(e) shows the full segment trajectory described above
(in black), and a new trajectory, corresponding to a 1963
recording by the Berlin Philharmonic conducted by Her-
bert von Karajan (in red). The goal of our approach is to
quantify the (dis)similarity of these representations, and to
use the results to group related music together.

2. APPROACH

The proposed approach consists of three main parts: (a)
representation, where a self-similarity matrix is generated
from the analysis of the audio signal; (b) similarity, where
the pairwise distance between the representations is com-
puted using the NCD; and (c) clustering, where the matrix
of NCDs is used for the grouping of songs. The details are
explained in the following.

2.1 Representation

In our implementation we use a beat-synchronous feature
set F , composed of either MFCC or chroma features. The
first 20 MFCCs are calculated using a 36-band filterbank,
frame size of 23.22ms and 50% overlap. The chroma fea-
tures are computed via the constant-Q transform using a
minimum frequency of 73.42 Hz, 36 bins per octave and
a 3-octave span, on a signal downsampled to fs = 5512.5

Hz. The resulting features are tuned and their dimension-
ality reduced to 12 with a weighted sum across each 3-bin
pitch class neighborhood. For beat tracking we use the al-
gorithm in [11], and average the extracted features between
consecutive beats. Beat tracking is used to reduce the size
of the self-similarity matrix and to minimize the effect of
tempo-variations on the representation.

The feature set is smoothed using zero-phase forward-
backward filtering with a second order Butterworth filter.
Filter cutoff is at 1/128th of the feature rate. Finally, the
features are standardized (separately for each song).

The computation of self-similarity matrices has been
discussed extensively elsewhere in the literature and will
not be discussed in any detail here. Suffices to say that for
our tests we use both the euclidean and cosine distances.
Once computed, matrices are normalized (per song) to the
[-1,1] range, their upper triangular part extracted, and the
values uniformly quantized and encoded into B bits. In
our experiments B assumes the values 2, 3 and 4. It is
worth noting that we have favored the notion of “fuzzy”
rather than binary self-similarity, as it is not clear what an
adequate definition of contact may be in the context of this
work. For the same reason we have favored the use of uni-
form quantization over other possible partitions of the sim-
ilarity range.

2.2 Similarity

We measure similarity using the normalized compression
distance (NCD), which will be briefly introduced here (For
a comprehensive discussion the reader is referred to [7]).

It can be shown that the information distance between
two objects o1 and o2, up to a logarithmic additive term, is
equivalent to:

ID(o1, o2) = max{K(o1|o2),K(o2|o1)} (1)

whereK(.) denotes the Kolmogorov complexity. The con-
ditional complexityK(o1|o2) measures the resources need-
ed by a universal machine to specify o1 given o2.

The information distance in Eq. 1 suffers from not con-
sidering the size of the input objects, and from the non-
computability of K(.). To solve the first problem, a nor-
malized information distance can be defined as:

NID(o1, o2) =
max{K(o1|o2),K(o2|o1)}
max{K(o1),K(o2)}

(2)

To solve the second problem, we can approximateK(.) us-
ing C(.), the size in bytes of an object when compressed
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using a standard compression algorithm. Using this prin-
ciple, it can be shown that equation 2 can be approximated
by the normalized compression distance:

NCD(o1, o2) =
C(o1o2)−min{C(o1), C(o2)}

max{C(o1), C(o2)}
(3)

where C(o1o2) is obtained by compressing the concatena-
tion of objects o1 and o2 [7]. For our implementation the
objects are the encoded self-similarity matrices for each
song. We use the NCD implementation in the CompLearn
toolkit 1 with the bzip2 and PPMd compression algorithms.

2.3 Clustering

We use an algorithm from Matlab’s statistics toolbox that
builds a hierarchical cluster tree using the complete linkage
method [12]. The clusters are defined by finding the small-
est height in the tree at which a cut across all branches will
leave MaxClust or less clusters. The output of the pro-
cess is a vector containing the cluster number per item in
the test set.

3. EXPERIMENTAL SET-UP

3.1 Test Data

We use two datasets in our experiments. The first set,
which we call P56, consists of 56 recordings of piano mu-
sic, including excerpts of 8 works by 3 composers (Beetho-
ven, Chopin and Mozart), played by 25 famous pianists
between 1946 and 1998. It was collected as part of the
computational study of expressive music performance dis-
cussed in [13]. Each work has, at least, 3 associated rendi-
tions and at most 13, with audio file lengths in the range of
1 to 8 minutes.

The second set (S67, collected by the authors) includes
67 recordings of symphonic music, including one move-
ment for each of 11 works by 7 composers (Beethoven,
Berlioz, Brahms, Mahler, Mendelssohn, Mozart and Tchai-
kovsky). The set includes instances from 56 different re-
cording sessions scattered between 1948 and 2008, featur-
ing 34 conductors. Each work has 6 associated renditions,
with the sole exception of the 3rd movement of Brahm’s
Symphony No. 1 in C minor, for which 7 performances are
available. The duration of the recorded movements range
from 3 to 10 minutes.

Classical music is used as, apart from the odd repeti-
tion of a motif or section, the structure of renditions can
be expected to be the same. The two sets are composed
of recordings using similar instrumentation (piano, orches-
tra), to emphasize the difference with timbre-base simi-
larity approaches. Both sets, however, present significant
variations in recording condition and interpretation (no-
tably in dynamics and tempo). All files are 128 kb/s MP3s
with sampling frequency of 44.1kHz.

1 http://www.complearn.org

3.2 Methodology

Clustering methods are highly sensitive to both the num-
ber and relative size of partitions in a dataset. To account
for variations of those factors and avoid overfitting, every
test is performed I times, each using a random sample of
size N < M , where M is the number of items in the
dataset. For every test, we report the mean accuracy of
clusters across the I subsets, measured as follows.

Given a partition of the dataset into R groups, Q =
{q1, ..., qR}, produced by the clustering algorithm, and a
target partition, T = {t1, ..., tP }, we can validate Q using
the Hubert-Arabie Adjusted Rand (AR) index as:

AR =

(
N
2

)
(a+ d)− [(a+ b)(a+ c) + (c+ d)(b+ d)](
N
2

)2 − [(a+ b)(a+ c) + (c+ d)(b+ d)]
(4)

where
(
N
2

)
is the total number of object pairs in our dataset.

AR measures the correspondence between Q and T , as a
function of the number of the following types of pairs: (a)
pairs with objects in the same group both in Q and T ; (b)
objects in the same group in Q but not in T ; (c) objects
in the same group in T but not in Q; and (d) objects in
different groups in both Q and T . The AR index accounts
for chance assignments and does not require arbitrary as-
signment of cluster labels not P = R, as might be the case
when using classification accuracy to validate clustering.
Readers unfamiliar with the AR index might find the fol-
lowing guidelines useful: AR = 1 means perfect clustering,
while values above 0.9, 0.8 and 0.65 reflect, respectively,
excellent, good and moderate cluster recovery. Random
partitions of the dataset result on AR → 0 (can also as-
sume small negative values). For a detailed discussion of
the properties and benefits of the AR index see [14].

4. RESULTS AND DISCUSSIONS

The main goal of our experiments is to test the capacity of
the proposed approach in characterizing structural similar-
ity. As similarity is an elusive concept which is not easily
quantified, we test an approximate scenario: the task of
clustering a music collection into groups of renditions of
the same work. Thus, for example, a partition Q of S67,
generated using the approach in section 2 with parame-
ters θ, is validated using AR and a target partition T of
11 groups, where each group contains the 6 or 7 renditions
of one of the works in the collection.

Specifically, our experiments seek to: (1) find the pa-
rameterization θ that maximizes AR, (2) assess the impact
of the used clustering methodology, and (3) highlight the
strengths and shortcomings of our approach.

4.1 Parameterization

In our experiments θ = {F, d,B,C,MaxClust}, where
F is the feature set (MFCC or chroma), d the distance met-
ric used to compute the self-similarity matrix (euclidean or
cosine), B the number of bits used to quantize the matrix
(2, 3 or 4), C the compression method used for the com-
putation of the NCD (bzip2 or PPMd), and MaxClust the
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Figure 2. Comparison of mean AR results for allF, d com-
binations on sets P56 (left) and S67 (right).

Figure 3. Comparison of mean AR results for B =
{2, 3, 4} on sets P56 (left) and S67 (right).

Figure 4. Comparison of mean AR results for C =
{bzip2, PPMd} on sets P56 (left) and S67 (right).

maximum number of clusters to be retrieved from the tree
(between 6 and 35).

All possible combinations of θ are tested I = 50 times 2 ,
using random samples of size N = 0.75×M (42 for P56,
50 for S67). In all tests, both collections are tested inde-
pendently.

Figure 2 shows results for all F, d combinations forC =
bzip2 and B = 3. As with most figures in this section, it
separately shows AR values for P56 (left) and S67 (right),
across the range of MaxClust values. For both datasets,
chroma features outperform MFCCs, clearly for P56 and
slightly for S67. This is consistent with the notion of har-
monic content as a reliable indicator of structure in music,
as has been repeatedly found in the segmentation litera-
ture [1,2]. The better performance of MFCCs in S67 com-
pared to P56 is to be expected, as within-song timbre dif-

2 We tested I = {10, 20, 50, 100, 200, 500, 1000} and found varia-
tions of mean AR to be minimal for I ≥ 50.

ferences and dynamic changes are more pronounced in or-
chestral than in piano music. For chroma features, the use
of euclidean or cosine distances in the computation of the
self-similarity matrix makes little difference. For MFCCs,
however, the euclidean distance results in significantly bet-
ter performance, indicating that dynamics are as important
as timbre changes in defining the structure of a piece.

Figure 3 illustrates the importance of the number of
bits B used in the encoding and quantization of the self-
similarity matrix, for F = chroma, d = euclidean and
C = bzip2. Apart from B = 2 giving the best results
for S67, no clear trend is visible in these plots (at least not
common to both sets). This hints at process independence
from the choice of B. The good performance of B = 2,
however, opens the door for a binary definition of contacts
in music, although more extensive testing is necessary to
define an appropriate threshold.

Finally, figure 4 compares two compression methods for
the computation of NCD. In these plots, F = chroma,
d = euclidean and B = 3. In all cases bzip2 outperforms
PPMd, which is unfortunate as the latter is much faster
than the former. This result seems to contradict findings in
the literature where the PPM family of compression meth-
ods usually works best for the NCD computation [7].

Figure 5. Variation of mean AR according to random sam-
ple size N (P56 in black, S67 in gray).

4.2 Clustering methods

On a separate experiment, we tested our system against
variations of the random sample size N for both collec-
tions. N values ranged from 30 to 52 for P56, and 64 for
S67. We used F = chroma, d = euclidean, B = 3 and
C = bzip2. Figure 5 shows results for P56 (in black) and
S64 (in gray, skewed towards the right), across a range of
MaxClust values ranging from N/2 − 20 to N/2 + 10.
Each curve corresponds to a value ofN . Variations of peak
AR across N appear to be uniformly distributed in the de-
picted range for each test set. Their location within this
range does not follow any obvious trend. For example, for
P56, the minimum peak corresponds to the N = 32 curve,
while the maximum peak is for N = 30 (closely followed
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by N = 48). All other peaks are randomly located in be-
tween.

Notably, the location of peaks appears to be a function
of N , with most peaks in (N/2 − 5) ± 3 for P56 and in
(N/2 + 3) ± 2 for S67. The difference between the sets,
however, also indicates that the size of the collection M ,
the number of groups within that collection and the size of
those groups have a hand in the results. While N and M
are always known, it is unreasonable to expect the number
and size of groups to be known, making the choice of value
for the critical MaxClust parameter a complex one. Our
inability to define MaxClust with prior information is a
major shortcoming of the proposed approach.

As an alternative we have tested a different clustering
algorithm, which operates by merging clusters whose sep-
aration, measured in their connecting node, is less than a
pre-specified Cutoff value, ranging between 0 and 1. No-
tably, this method does not require any prior information
about cluster numbers. Additionally, we test building the
hierarchical cluster tree using single, average and weighted
linkage in addition to the complete linkage method used in
the rest of this paper [12]. Figure 6 shows the results of
these tests using F = chroma, d = euclidean, B = 2
andC = bzip2. The AR = 0.63 result for weighted linkage
and Cutoff = 0.85 in S67 is the highest obtained in our ex-
periments, a significant increase on our previous best (vis-
ible in the “complete” curve of the same graph). It clearly
shows that gains can be made by improving our cluster-
ing stage. However, this result is not indicative of a gen-
eral trend, as illustrated by the low results obtained for the
same method in the P56 dataset. An in-depth exploration
of the space of clustering methods and their parameteriza-
tions will be the focus of future work.

Figure 6. Test of cutoff clustering with 4 linkage methods.

4.3 An example tree

Figure 7 is generated using yet another linkage algorithm
on the full S67 dataset, the quartet method described in
[7], using F = chroma, d = euclidean, B = 3 and
C = bzip2. Clustering on this tree usingMaxClust = 36
results on AR = 0.55, which makes this graph represen-
tative of system performance using the best parameteriza-
tion.

The tree branches out into 10 clusters, each correspond-
ing to a work in the collection. Four of those clusters group
all renditions of a given work. Figure 7(a) shows a detail

of the tree exemplifying one such cluster, corresponding to
the 7 renditions of the third movement of Brahm’s Sym-
phony No. 1 in C minor. Two clusters group 5 out of 6
performances, for example those for the third movement
of Mozart’s Symphony No. 4 in G minor k550 depicted
in Figure 7(c). One cluster, for the second movement of
Mahler’s Symphony No. 1 in D major “Titan”, groups 4
out of 6 performances as shown in Figure 7(b). The three
remaining clusters group only 3 or 2 performances out of 6.
Only one work results in no clusters of any kind. In total,
47 out of 67 recordings are correctly assigned to a group.
Ungrouped recordings are located in the stem of the tree,
which has been gray-shaded in the graph.

Figures 7(b) and (c) also help illustrate the effect of beat
tracking accuracy on the proposed approach. The number
of detected beats in the missing performance of Mozart’s
k550, visible in the stem of the tree in Fig. 7(b), is ap-
proximately twice as many as those detected in all other
performances of the same piece. Octave errors act as fil-
ters on the feature set, which can result on a significant loss
of detail in the corresponding self-similarity matrix and, as
the tree shows, a poor characterization of structural simi-
larity between the recordings. This is an important draw-
back of our approach as octave errors are common in beat
tracking. Another example of the same problem are the
two missing recordings in Mahler’s Symphony 1 cluster in
Fig. 7(b), which are located in the lower end of the stem of
the tree. An informal analysis of the results shows that a
good portion of overall clustering errors are associated to
inconsistencies in beat tracking. It is worth noting that “in-
consistency” is the right word in this case, as what is really
important is not that beats are correctly tracked, but that
their relation to the actual tempo of the piece is the same
for all performances.

An additional observation relates to the six performances
of the fourth movement of Berlioz’s “Symphonie Fantas-
tique”. The score includes a repetition of the first 77 bars
of this movement before entering its second half, roughly
describing an AAB structure. Half of the performances
in our dataset, however, ignore that repetition resulting on
a shorter AB structure. Correspondingly, the cluster in
the tree related to this piece groups only the latter, while
the other three performances appear close together in the
lower end of the tree. While in theory the common part
of the structure should be enough to identify the similarity
between all six recordings, in practice this is clearly not
the case. This sensitivity to common structural changes,
e.g. repetitions, raises questions about the potential use of
NCD-based similarity in the modeling of the relationships
that exist amongst variations, covers, remixes and other
derivatives of a given work. Further research is now be-
ing conducted to fully explore this issue.

5. CONCLUSIONS AND FUTURE WORK

This paper presents a novel approach for the organization
of recorded music according to structural similarity. It
uses the Normalized Compression Distance (NCD) on self-
similarity matrices extracted from audio signals, using stan-
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Figure 7. Uprooted binary tree of S67 using the quartet method. Details show a perfect cluster (A) and two partial clusters
(B and C)

dard features and distance metrics. The approach is eval-
uated on its ability to facilitate the clustering of different
performances of the same piece together. Experimental re-
sults on piano and orchestral music datasets show that the
approach is able to successfully group the majority of per-
formances in a collection, resulting on average AR values
in the 0.5-0.6 range. Our tests show that best results are ob-
tained for self-similarity matrices computed using chroma
features and the euclidean distance, and encoded using 2-3
bits. They also show that the NCD works best when using
the bzip2 compression algorithm. Preliminary results also
indicate that further gains can be made by improving the
clustering stage.

On the downside, the approach has shown sensitivity
to octave errors in beat tracking and, predictably, to struc-
tural changes, which limit the potential application of the
current implementation to the retrieval and organization of
other types of musical variations. To address these issues,
future work will concentrate on two main areas. First, the
improvement of the self-similarity representation, along
the lines of work in [2], to include transposition invariance,
path following and the merging of matrices computed at
1/2, 1 and 2 times the tracked tempo. Second, we will ex-
plore alternatives to the use of NCD for the maximum con-
tact map overlap problem. We plan to explore solutions
based on the branch and cut approach (e.g. [15]) and adapt
them to the specificities of music data.

6. ACKNOWLEDGEMENTS

The author would like to thank Gerhard Widmer and Werner
Goebl for the P56 dataset, and Dan Ellis and the Com-
pLearn team for free distribution of their code libraries.
This material is based upon work supported by the NSF
(grant IIS-0844654) and by the IMLS (grant LG-06-08-
0073-08).

7. REFERENCES

[1] M. A. Bartsch and G. H. Wakefield. To catch a chorus:
Using chroma-based representations for audio thumb-
nailing. In WASPAA-01, NY, USA, pages 15–18, 2001.

[2] M. Müller. Information Retrieval for Music and Mo-
tion. Springer-Verlag New York, Inc., Secaucus, NJ,
USA, 2007.

[3] N. Krasnogor and D. A. Pelta. Measuring the similarity
of protein structures by means of the universal similar-
ity metric. Bioinformatics, 20(7):1015–1021, 2004.

[4] J. Foote. Arthur: Retrieving orchestral music by long-
term structure. In ISMIR, 2000.

[5] J.-J. Aucouturier and M. Sandler. Using long-term
structure to retrieve music: Representation and match-
ing. In ISMIR 2001, Bloomington, Indiana, USA, 2001.

[6] M. Casey and M. Slaney. Song intersection by approx-
imate nearest neighbour retrieval. In ISMIR-06, Victo-
ria, Canada, 2006.

[7] R. Cilibrasi and P. M. B. Vitányi. Clustering by com-
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