
An Integrated MIR Programming and Testing Environment

Jörg Garbers
Department of Computer and Information Sciences

Utrecht University
garbers@cs.uu.nl

Abstract
The process of shaping a music information retrieval algo-
rithm is highly connected with implementing it and test-
ing suitable parameterizations. Often music information re-
trieval scientists do not have a programmer at hand and must
implement their experimental setup themselves. This paper
describes an integrated tool setupOHRconsisting of the mu-
sic (analysis) systemsOpenMusic, Humdrumand Rubato
and a system for form based parametrization and compari-
son of algorithms. These packages and their programming
environments provide the scientist with frameworks and ex-
isting libraries for implementing and testing algorithms. They
differ in the programming languages that they support and
in the type of testing user interfaces that they allow the sci-
entist to build easily. The systems and their components are
integrated by using their scripting languages. We sketch an
example of the integrated use of these systems.

Keywords: Computational music analysis, development en-
vironments, scientific programming, software integration

1. Introduction
The process of shaping a music information retrieval algo-
rithm is highly connected with implementing it and test-
ing it. Algorithm implementation is usually done in one
or more general purpose programming language(s) with or
without the help of an integrated programming environment
and with respect to existing libraries. Effective testing how-
ever requires the scientist him/herself to build a time con-
suming graphical or text based interface or to embed his/her
algorithm into existing testing systems. That is where exper-
imenting environments come in that provide us with ways of
parameterizing algorithms, of applying them to data and of
visualizing results.

We give a short overview of the systemsOpenMusic,
Humdrum, RubatoR© and their integrationOHR. The systems
have their specific strengths and weaknesses, technical bar-
riers and programming skills requirements. We show how to
integrate them, so that one can use both the systems’ inter-
active parameterization front ends and their functional back

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page.
c© 2006 University of Victoria

ends. Then we describe the general purpose resource com-
parison framework of theReisewissenproject and its ability
to call into scriptable systems. Finally, we give an example
of using the resulting system as an experimentation frame-
work for comparing similarity algorithms.

2. OHR
TheOHRsystem was an effort to integrateOpenMusic[1],
Humdrum[2] andRubato[3], and to make each system’s al-
gorithms reusable from each of the other systems. Why and
how this was done is described in detail in [4, 5].

Essentially the approach uses the scripting facilities of
each of the systems, which make availableexpression eval-
uators that are close or identical to the components imple-
mentation languages:

• TheHumdrumtools can be invoked by (remotely) eval-
uating shell scripts. This allows users as well as the
other systems to access and filter a large database of
musical scores. Humdrum users can help other scien-
tists to construct such scripts.

• Rubato’salgorithms and components can be accessed
via FScript, which provides wrappers forApple’s Co-
coa libraries and user definedObjective-Cclasses.
Besides simple evaluation of scripts, external mod-
ules can also change the state of the runningRubato
application. Scientists who have a Macintosh com-
puter can build their testing graphical user interfaces
with Apple’s freeXCodeIDE andInterface Builder.

• Functions that are implemented by the user inOpen-
Musicas graphicalPatchesor ordinaryLisp functions
can be called via the underlyingLispsystem.

In its extended version inOHR OpenMusiccomes with rou-
tines for generating scripts and for sending them toHum-
drum or Rubato. This allows users to graphically define
functions that use arbitrary functionality of the three sys-
tems. So scientist are not required to have other program-
ming environments butOpenMusic. From there they can
use the other systems’ components in ways that are often
not anticipated by their developers.

3. The Reisewissen testing system
TheReisewissentesting system is described in detail in [6].
In short its graphical user interface allows users to compare



the performance ofparameterizable evaluatorsand combi-
nations of their results with respect to a list of resources
(e.g. scores). The results are presented in an (evaluator x
resource) table. Each evaluator instance comes with its own
window in which the user enters the parameters and inspects
details of the results. This setup is not only appropriate for
testing within the hotel booking domain [7], where the tool
was developed, but can also be used to do music similarity
studies: An evaluator implements a melodic, harmonic or
rhythmic distance between two scores. The query score is
given as a parameter and compared with the database scores.
The distances are presented in the table.

Writing an evaluator with a new form based front end is
relatively simple and requires only basic knowledge ofJava.
Swingcalls orHTML code are automatically generated from
the programmer’s form description, so scientists can con-
centrate on the algorithm. However, to use the system the
scientist is not required to knowJava. Instead there are gen-
eral purpose scripting connectors forSWI-PrologandLisp
based systems. The latter allows us to call as a function any
Patchfrom OpenMusic, includingPatchesthat callRubato,
Humdrumor one of theIRCAM synthesis applications that
are callable fromOpenMusic.

4. Example
To build and test a new complex similarity definition we
might proceed as follows:

• To exclude ornaments from comparison, we apply a
metrical filter. Therefore we useHumdrum’s metpos
command orRubato’s MetroRubette[8]. Notes on on-
sets with low metrical profile are omitted.

• Humdrum’s yankandextractare used to create a re-
duction of the score segments to be compared.

• Rubato’s HarmoRubette[9] is used to compute a
functional harmonical analysis of the reduced scores.
We play with parameters in the interactive user in-
terface and store different harmonic theory configura-
tions.

• OpenMusicis used as a front end to define distance
functions and bind everything together: We play with
several definitions for the distance between two har-
monic sequences. Adistance Patchtakes two named
score files and produces a real number. To test this
patch quickly, some score files are named directly in-
side atesting Patchand thedistance Patchis applied
to them viamapcar, with one bound parameter.

• We run our hybrid algorithm from theReisewissen
testing system: To simplify the visual comparison, we
may preorder the scores according to our similarity
expectations. We use the system to compare our re-
sults with the results of existing similarity implemen-
tations, such as [10].

5. Outlook
The described systems will be used and improved within
theWITCHCRAFTproject at theUtrecht Universityand the
Meertens Instituut. We will integrate them into the MUU-
GLE project (see poster by Martijn Bosma). We will evalu-
ate the integrated system and its components with respect to
scientific programming needs and its usability for end users
and power users. On the basis of computational experiments
on music we hope to stimulate the discussion between mu-
sic theorists and the music information retrieval community.
See http://www.cs.uu.nl/research/projects/witchcraft.

6. Acknowledgments
We want to thank those who have developed software that
is used directly in this work: Guerino Mazzola, Oliver Za-
horka, Carlos Agon, Philippe Mougin, David Huron and
Magnus Niemann. Thanks also to my new colleagues in
Utrecht for feedback.

References

[1] C. Agon, G. Assayag, M. Laurson, and C. Rueda, “Computer
assisted composition at Ircam: Patchwork & OpenMusic,”
Computer Music Journal, 1998. [Online]. Available:
http://www.ircam.fr/equipes/repmus/RMPapers/CMJ98/

[2] D. Huron, “Music information processing using the Hum-
drum toolkit: Concepts, examples, and lessons,”Computer
Music Journal, vol. 26, no. 2, pp. 11–26, 2002.

[3] G. Mazzola and O. Zahorka, “The RUBATO performance
workstation on NeXTSTEP,”ICMA (ed.): Proceedings of
the ICMC 94, S. Francisco, 1994.

[4] J. Garbers, “Integration von Bedien- und Programmier-
sprachen am Beispiel von OpenMusic, Humdrum und Ru-
bato,” Ph.D. dissertation, Fakultät IV – Elektrotechnik und
Informatik der Technischen Universität Berlin, 2004.

[5] ——, “User participation in software configuration and in-
tegration of OpenMusic, Humdrum and Rubato,”Lluis-
Puebla, Emilio, Guerino Mazzola und Thomas Noll (eds.):
Perspectives in Mathematical and Computer-Aided Music
Theory, Verlag epOs-Music, Osnabrück, 2003.

[6] J. Garbers and M. Niemann, “The Reisewissen testing sys-
tem,” FU-Berlin, Tech. Rep., 2006, to be published at
http://reisewissen.ag-nbi.de/en/.

[7] J. Garbers, M. Niemann, and M. Mochol, “A personalized
hotel selection engine,”Proceedings of the European
Semantic Web Conference 2006. [Online]. Available:
http://www.eswc2006.org/poster-papers/FP15-Mochol.pdf

[8] A. Fleischer, “Die analytische Interpretation, Schritte zur Er-
schließung eines Forschungsfeldes am Beispiel der Metrik,”
Ph.D. dissertation, Philosophische Fakultät der Humbold-
Universiẗat zu Berlin, 2002.

[9] J. Garbers and T. Noll, “Harmonic path analysis,”Lluis-
Puebla, Emilio, Guerino Mazzola und Thomas Noll (eds.):
Perspectives in Mathematical and Computer-Aided Music
Theory, Verlag epOs-Music, Osnabrück, 2003.

[10] F. Wiering, R. Typke, and R. Veltkamp, “Transportation dis-
tances in music notation retrieval,”Computing in Musicology
13, 113-128, 2004.


