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Abstract

Linguistic neutrosophic numbers (LNNs) can easily describe the incomplete and indetermi-

nate information by the truth, indeterminacy, and falsity linguistic variables (LVs), and the

Hamy mean (HM) operator is a good tool to deal with multiple attribute group decision mak-

ing (MAGDM) problems because it can capture the interrelationship among the multi-input

arguments. Motivated by these ideas, we develop linguistic neutrosophic HM (LNHM) oper-

ator and weighted linguistic neutrosophic HM (WLNHM) operator. Some desirable proper-

ties and special cases of two operators are discussed in detail. Furthermore, considering

the situation in which the decision makers (DMs) can’t give the suitable weight of each attri-

bute directly from various reasons, we propose the concept of entropy for linguistic neutro-

sophic set (LNS) to obtain the attribute weight vector objectively, and then the method for

MAGDM problems with LNNs is proposed, and some examples are used to illustrate the

effectiveness and superiority of the proposed method by comparing with the existing

methods.

1. Introduction

Nowadays, the multi-attribute decision-making (MADM) or MAGDM is widely existed in

various fields [1–5], and to obtain accurate evaluation information is one of premises for DMs

to make rational and feasible decision. However, in real-world situation, there are a variety of

limitations, such as too much redundant data, uncertainty and complexity of the decision-

making environment, difficulties of exploiting information etc. Therefore, it is a concerned

topic in decision-making theoretical field about how to describe the attribute values of alterna-

tives and reduce information loss. In qualitative environment, decision information can be

usually estimated by linguistic terms (LTs) rather than exact numerical values due to universal

uncertainty and the vagueness of human judgement. Zadeh [6] firstly introduced the notion of

LVs). Later, Herrera and Herrera-Viedma [7, 8] proposed a linguistic assessments consensus
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model and further developed the steps of linguistic decision analysis. Xu [9] proposed a lin-

guistic hybrid arithmetic average operator to solve MAGDM problems. However, these meth-

ods based on the LVs can only reflect the truth/membership degree. Then, Chen et al. [10]

proposed the linguistic intuitionistic fuzzy number (LIFN) which takes the form of γ = (sα,sβ),
where sα and sβ represent the truth/membership and falsity/non-membership degrees used by

LVs based on the given LT set (LTS). It is obvious that the LIFN can describe more complex

linguistic information than LVs. Based on the LIFN, some scholars [11, 12] proposed some

improved aggregation operators for LIFNs, and applied them to MADM or MAGDM

problems.

However, it is insufficient for LIFN to only express incomplete information, but not inde-

terminate and inconsistent information. In order to make up for deficiencies of LIFN, Fang

and Ye [13] put forward the concept of LNN by combining LTs and simplified neutrosophic

number [14–17], which consists of the truth-membership, indeterminacy-membership, and

false-membership by three LVs. Compared with neutrosophic linguistic numbers (NLNs) [18–

20], there is only a LV in NLNs, and the truth-membership, indeterminacy-membership, and

false-membership are real values. Compared with the LIFNs, the LIFNs only reflect linguistic

membership degrees and linguistic non-membership degrees in evaluation information. It

cannot present the indeterminate information, which is not consistent with the ambiguity of

inherent nature of human judgement. Therefore, whether NLNs or LIFNs, they can’t effec-

tively describe attribute values of each alternative, while LNN is designed to handle the incom-

plete, indeterminate, and inconsistent information, and it is a generalization of LIFN and LV.

Then, Fan et al. [21] proposed a LNN normalized weighted Bonferroni mean (BM) operator

and a LNN normalized weighted geometric BM (LNNNWGBM) operator to handle MAGDM

problems. Liang et al. [22] developed an extended TOPSIS method with LNNs to evaluate

investment risks of metallic mines. Shi and Ye [23] presented a cosine similarity measure

between LNNs and applied it to MAGDM problems. Ye [24] extended LNN to the linguistic

neutrosophic cubic number (LNCN) and developed an MADM approach based on the LNCN

weighted arithmetic averaging (LNCNWAA) operator or LNCN weighted geometric averag-

ing (LNCNWGA) operator.

As an important tool for MADM or MAGDM, information aggregation operators have

attracted wide attentions, and made a lot of achievements [25–30]. But so far, the study on the

linguistic neutrosophic aggregation operators for MAGDM problems has a little progress. As

we have known, there are different aggregation operators to accommodate the variety require-

ments. Some of them can relieve the influences of unreasonable evaluation values due to DMs’

own personal preference, such as PA operator. There are also some aggregation operators

which can consider the interrelationship of the aggregated arguments, such as BM, Hamy

mean (HM) operator or Maclaurin symmetric mean (MSM) operator. Qin [25] make a com-

parison between the HM and the MSM, the MSM is a special case of HM [31–33]. In addition,

compared with BM operator, the main advantage of the HM is that it can capture the interrela-

tionships among multi-input arguments and can provide DMs more options. However, the

HM only achieved a few research results on the theory and application of inequality [34–37].

Until now, there is no research based on HM operator for aggregating incomplete, indetermi-

nate, and inconsistent information. So it is necessary to propose some HM operators for

LNNs.

From the above analysis, we can see that it’s necessary to aggregate imprecise, uncertain,

and inconsistent information for the MAGDM problems with LNNs. Therefore, in order to
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select the best alternative(s) in practical MAGDM problems, we may need to synchronously

consider the following two situations: (1) DMs usually give weight vector of attributes on the

basis of their own personal preference, but they have some limited judgments for the complex

decision making problems, which may have a negative effect on the final decision result. To

relieve these impacts, we can utilize the entropy measure of LNS to determine the objective

weights of attributes. However, the entropy measure presented by Zadeh [38] in 1965 cannot

deal with LNNs. So, it is necessary to develop the entropy measure for LNNs. (2) In some prac-

tical situations, there are interrelationships among attributes and we need to capture the inter-

relationships among the attribute values to deal with complex decision making problems. As a

result, some traditional aggregation operators, such as the BM or MSM, can be applied to

reflect interactions among input arguments. However, compared with the ordinary BM, the

HM can consider the interrelationship among multi-input arguments whereas the ordinary

BM can only capture the interrelationship between two input arguments. On the other hand,

the HM is more general than the MSM, and the MSM is a special case of HM operator. There-

fore, the HM is more suitable to model interactions among input arguments than the BM and

MSM.

Motivated by the above ideas, the goals of this paper are listed as follows:

1. Proposing some HM operators for LNNs, such as LNHM operator and WLNHM operator,

to aggregate DMs’ incomplete, indeterminate, and inconsistent evaluation information;

2. Developing the entropy measure for LNNs;

3. Determining the object weights of the attributes to deal with incomplete weights situation

under linguistic neutrosophic environment;

4. Establishing a MAGDM method based on the WLNHM operator, which provides a new

method to solve multi- linguistic neutrosophic problems in actual situations;

5. Showing the advantages of the proposed approach by comparing with the existing methods

[13,21,22].

The rest of this paper is organized as follows. In Sect. 2, we briefly review some basic con-

cepts of LIFNs, LNNs and the HM operator. In Sect. 3, we propose the LNHM and WLNHM

operators, we also further discuss their desirable properties and special cases. In Sect. 4, we

develop an entropy measure of LNS. In Sect. 5, we propose a novel MAGDM method based on

WLNNHM operator with LNNs. In Sect. 6, we compare the proposed method with those pre-

sented in [13,21,22]. In Sect. 7, we conclude the paper.

2. Preliminaries

2.1. LIFNs

Definition 1 [10].Let lα,lβ 2 L and a = (lα,lβ), if α + β� t, then the a is called a LIFN, where lα,

lβ are the elements in the LTS L = (l0,l1,� � �,lt).
Remark 1. If α 2 [0,t], then (lα,neg(lα)) is still a LIFN, where neg(lα) = lt−α.
Remark 2. We can convert the uncertain LVs [39] to the LIFNs. If �L ¼ ½la; lb� is an

uncertain LV, where α,β 2 [0,t] and α� β, then we can use a LIFN (lα,lt−β) to express

�L ¼ ½la; lb�.
For convenience, we use G0

½0;t� to express the set of all LIFNs.
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Definition 2 [10]. Let a ¼ ðla; lbÞ; a1 ¼ ðla1
; lb1
Þ; a2 ¼ ðla2

; lb2
Þ 2 G0

½0;t�, λ> 0, then the opera-

tional laws of the LIFNs are shown as follows:

a1 � a2 ¼ ðla1
; lb1
Þ � ðla2

; lb2
Þ ¼ la1þa2 �

a1a2
t
; lb1b2

t

� �
; ð1Þ

a1 
 a2 ¼ ðla1
; lb1
Þ 
 ðla2

; lb2
Þ ¼ la1a2

t
; l

b1þb2�
b1b2
t

� �
; ð2Þ

la ¼ lðla; lbÞ ¼ l
t� t 1� a

tð Þ
l ; l

t b
tð Þ

l

� �

; ð3Þ

al ¼ ðla; lbÞ
l
¼ l

t a
tð Þ

l ; l
t� t 1�

b
tð Þ

l

� �

: ð4Þ

Obviously, the above operational results are still LIFNs.

Definition 3 [10]. Let a = (lα,lβ) be a LIFN based on LTS L. The score function and the accu-

racy function of the LIFN a are defined as follows:

SðaÞ ¼ a � b; ð5Þ

HðaÞ ¼ aþ b: ð6Þ

Then, based on Definition 3, the comparison method of LIFNs is shown as follows.

Definition 4 [10]. Let a1 ¼ ðla1
; lb1
Þ; a2 ¼ ðla2

; lb2
Þ 2 G0

½0;t�, then

1. If S(a1)< S(a2), then a1� a2;

2. If S(a1) = S(a2),

a. and H(a1)<H(a2), then a1� a2;

b. and H(a1)>H(a2), then a1� a2.

For any two LIFNs a1 ¼ ðla1
; lb1
Þ; a2 ¼ ðla2

; lb2
Þ 2 G0

½0;t�. If α1� α2 and β1� β2, then α1� α2.

Obviously, we have (l0,lt)� (lα,lβ)� (lt,l0) for any ðla; lbÞ 2 G0
½0;t�.

2.2 LNNs

Definition5 [13]. Let X be a universal set and L = (l0,l1,� � �,lt)be a LTS. A LNS A in X is

characterized by a truth-membership function αA, a indeterminacy-membership function

βA and a falsity-membership function γA, where αA,βA,γA: X![0,t], and 8x 2 X, e ¼
ðlaAðxÞ; lbAðxÞ; lgAðxÞÞ 2 A is called a LNN of A.

For convenience, we use Γ[0,t] to express the set of all LNNs.

Remark 3. Let A be a collection of LNNs, then its complement is denoted by AC, which is

expressed as aAC ¼ gA; bAC ¼ t � bA; gAC ¼ aA.
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Definition 6 [13]. Let e ¼ ðla; lb; lgÞ; e1 ¼ ðla1
; lb1

; lg1
Þ; e2 ¼ ðla2

; lb2
; lg2
Þ 2 G½0;t�, λ> 0, then

the operational laws of the LNNs are shown as follows:

e1 � e2 ¼ ðla1
; lb1

; lg1
Þ � ðla2

; lb2
; lg2
Þ ¼ la1þa2 �

a1a2
t
; lb1b2

t
; lg1g2

t

� �
; ð7Þ

e1 
 e2 ¼ ðla1
; lb1

; lg1
Þ 
 ðla2

; lb2
; lg2
Þ ¼ la1a2

t
; l

b1þb2 �
b1b2
t
; lg1þg2 �

g1g2
t

� �
; ð8Þ

le ¼ lðla; lb; lgÞ ¼ l
t� t 1� a

tð Þ
l ; l

t b
tð Þ

l ; l
t g

tð Þ
l

� �

; ð9Þ

el ¼ ðla; lb; lgÞ
l
¼ l

t a
tð Þ

l ; l
t� t 1�

b
tð Þ

l ; l
t� t 1�

g
tð Þ

l

� �

: ð10Þ

It’s clearly that these operational results are still LNNs.

Definition7 [13]. Let e = (lα,lβ,lγ) be a LNN. The score function and the accuracy function

of the LNN e are defined as follows:

φðeÞ ¼
2t þ a � b � g

3t
; ð11Þ

sðeÞ ¼
a � g

t
: ð12Þ

In the following, we give the comparison method of two LNNs [6].

Definition 8 [13]. Let e1 ¼ ðla1
; lb1

; lg1
Þ; e2 ¼ ðla2

; lb2
; lg2
Þ 2 G½0;t�, then

1. If φ(e1)< φ(e2), then e1� e2;

2. If φ(e1) = φ(e2),

a. and σ(e1)< σ(e2), then e1� e2;

b. and σ(e1) = σ(e2), then e1� e2.

2.3 Hamy mean operator

The Hamy mean (HM) [40] is proposed to capture the interrelationship among the multi-

input arguments, and is defined as follows:

Definition 9 [40] Suppose xi(i = 1,2,� � �,n) is a collection of nonnegative real numbers, and

parameter k = 1,2,� � �,n. The HM is defined as

HMðkÞðx1; x2; � � � ; xnÞ ¼

P

1�i1<���<ik�n

Yk

j¼1

xij

 !1=k

n
k

� � ð13Þ

where (i1,i2,� � �,ik)traverses all the k-tuple combination of (1,2,� � �,n) and
n
k

� �

is the binomial

coefficient, and
n
k

� �

¼ n!

k!ðn� kÞ!.
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Obviously, the HM has the following properties:

1. HM(k) (0,0,� � �,0) = 0, HM(k) (x,x,� � �,x) = x;

2. HM(k) (x1,x2,� � �,xn)�HM(k) (y1,y2,� � �,yn), if xi� yi for all i;

3. min{xi}�HM(k) (x1,x2,� � �,xn)�max{xi}

3. Linguistic neutrosophic HM aggregation operators

In this section, based on the operational laws of LNNs, we shall explore the HM operator to

deal with LNNs and develop LNHM operator and WLNHM operator, and then we also discuss

some properties and some special cases of these new operators.

3.1 LNHM operator

Definition 10. Let ei (i = 1,2,� � �,n) be a collection of LNNs, the LNHM operator is defined as

follows:

LNHMðkÞðe1; e2; . . . :; enÞ ¼

P

1�i1<���<ik�n

Yk

j¼1

eij

 !1
k

n
k

� � ð14Þ

where (i1,i2,� � �,ik) traverses all the k-tuple combination of (1,2,� � �,n) and
n
k

� �

is the binomial

coefficient, and
n
k

� �

¼ n!

k!ðn� kÞ!.

Theorem 1. Let ei ¼ ðlai ; lbi ; lgiÞ (i = 1,2,� � �,n) be a collection of LNNs, then the aggregated

value from definition 10 is still a LNN, and

LNHMðkÞðe1; e2; . . . :; enÞ

¼ l

t� t
Y

1�i1<���<ik�n

1 �

Yk

j¼1

aij

tk

0

B
B
B
B
@

1

C
C
C
C
A

1
k

0

B
B
B
B
B
@

1

C
C
C
C
C
A

0

B
B
B
B
B
@

1

C
C
C
C
C
A

1

n
k

� � ; l

t
Y

1�i1<���<ik�n

1 �
Yk

j¼1

1 �
bij

t

 ! !1
k

0

@

1

A

0

@

1

A

1

n
k

� � ; l

t
Y

1�i1<���<ik�n

1 �
Yk

j¼1

1 �
gij

t

� � !1
k

0

@

1

A

0

@

1

A

1

n
k

� �

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

ð15Þ

Proof.

According to Eqs (7)–(10), we have

Yk

j¼1

eij ¼ lYk

j¼1

aij

tk� 1

; l
t� t
Yk

j¼1

1 �
bij

t

 !; l
t� t
Yk

j¼1

1 �
gij

t

� �

0

B
B
B
B
B
@

1

C
C
C
C
C
A
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and

Yk

j¼1

eij

 !
1

k
¼ l

t

Yk

j¼1

aij

tk

0

B
B
B
B
@

1

C
C
C
C
A

1

k

; l

t� t
Yk

j¼1

1 �
bij

t

 ! !
1

k

; l

t� t
Yk

j¼1

1 �
gij

t

� � !
1

k

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

X

1�i1<���<ik�n

Yk

j¼1

eij

 !
1

k
¼ l

t� t
Y

1�i1<���<ik�n

1 �

Yk

j¼1

aij

tk

0

B
B
B
B
@

1

C
C
C
C
A

1

k

0

B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
A

; l

t
Y

1�i1<���<ik�n

1 �
Yk

j¼1

1 �
bij

t

 ! !
1

k

0

B
B
@

1

C
C
A

; l

t
Y

1�i1<���<ik�n

1 �
Yk

j¼1

1 �
gij

t

� � !
1

k

0

B
B
@

1

C
C
A

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

Then we obtain

1

n
k

� �
X

1�i1<���<ik�n

Yk

j¼1

eij

 !1
k

¼ l

t� t
Y

1�i1<���<ik�n

1 �

Yk

j¼1

aij

tk

0

B
B
B
B
@

1

C
C
C
C
A

1
k

0

B
B
B
B
B
@

1

C
C
C
C
C
A

0

B
B
B
B
B
@

1

C
C
C
C
C
A

1

n
k

� � ; l

t
Y

1�i1<���<ik�n

1 �
Yk

j¼1

1 �
bij

t

 ! !1
k

0

@

1

A

0

@

1

A

1

n
k

� � ; l

t
Y

1�i1<���<ik�n

1 �
Yk

j¼1

1 �
gij

t

� � !1
k

0

@

1

A

0

@

1

A

1

n
k

� �

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A
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Therefore,

LNHMðkÞðe1; e2; . . . :; enÞ

¼ l

t� t
Y

1�i1<���<ik�n

1 �

Yk

j¼1

aij

tk

0

B
B
B
B
@

1

C
C
C
C
A

1
k

0

B
B
B
B
B
@

1

C
C
C
C
C
A

0

B
B
B
B
B
@

1

C
C
C
C
C
A

1

n
k

� � ; l

t
Y

1�i1<���<ik�n

1 �
Yk

j¼1

1 �
bij

t

 ! !1
k

0

@

1

A

0

@

1

A

1

n
k

� � ; l

t
Y

1�i1<���<ik�n

1 �
Yk

j¼1

1 �
gij

t

� � !1
k

0

@

1

A

0

@

1

A

1

n
k

� �

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

:

In addition, since 0 � t � t
Y

1�i1<���<ik�n

1 �

Yk

j¼1

aij

tk

0

B
B
B
B
@
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is also a LNN, which Theorem1 is proved.

Example 3.1 Let L = {l0 = extremely low, l1 = very low, l2 = low, l3 = fair, l4 = high, l5 = very

high, l6 = extremely high} and e1 = (l3,l2,l1), e2 = (l6,l4,l2), e3 = (l5,l1,l3), e4 = (l5,l4,l3), be four

LNNs based on L.Then, we can use the proposed LNHM operator to aggregate these four

LNNs (suppose k = 2), and generate a comprehensive value LNHM(k)(e1,e2,e3,e4) = (lα,lβ,lγ),
described as follows.
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Therefore, we can obtain LNHM(2)(e1,e2,e3,e4) = (lα,lβ,lγ) = (l4.8619,l2.8126,l2.2603).

In what follows, we shall investigate some desirable properties of LNNs.

Property 1 (Idempotency). If ei = e = (lα,lβ,lγ) for all (i = 1,2,� � �,n), then

LNHMðkÞðe; e; . . . :; eÞ ¼ ðla; lb; lgÞ ð16Þ

Proof.
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Since e = (lα,lβ,lγ), based on Theorem 1, we have
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Property 2 (Commutativity). Let ei (i = 1,2,� � �,n) be a collection of LNNs, and

ðe0
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2
; . . . :; e0nÞ be any permutation of (e1,e2,. . ..,en), then
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Proof.

Based on Definition 10, the conclusion is obvious.
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Property 3 (Monotonicity). Let ei ¼ ðlai ; lbi ; lgiÞ, fi ¼ ðlpi ; lqi ; lriÞ (i = 1,2,. . .,n) be two collec-

tions of LNNs, if αi� pi, βi� qi, γi� ri for all i, then
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Proof.
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Let e = LNHM(k)(e1,e2,. . .,en), f = LNHM(k)(f1,f2,. . .,fn) and φ(e),φ(f) be the score functions

of e and f. According to the score value in Eq (11) and the above inequality, we can imply φ(e)
� φ(f). Then we discuss the following cases:
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and based on the accuracy value in Eq (12), there is σ(e) = σ(f). So, finally, we have

LNHM(k)(e1,e2,. . .,en)� LNHM(k)(f1,f2,. . .,fn)
Property 4 (Boundedness). Let ei ¼ ðlai ; lbi ; lgiÞ (i = 1,2,� � �,n) be a collection of LNNs,
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Thus the proof is completed.
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2. When k = n, the LNHM operator in (14) will reduce to the LNG (Linguistic Neutrosophic

Geometric) operator
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C
C
C
C
C
C
C
C
C
A

ðlet ij ¼ iÞ ¼
Yn

i¼1

e

1

n
i ¼ LNGðe1; e2; . . . ; enÞ:

ð21Þ
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3.2 WLNHM operator

Definition 11. Let ei (i = 1,2,� � �,n) be a collection of LNs, ω = (ω1,ω2,. . ..,ωn)T be the weight

vector of~li, with ωi 2 [0,1] and
Xn

i¼1
oi ¼ 1, then we can define the WLNHM operator as fol-

lows.

WLNHMðkÞðe1; e2; . . . :; enÞ ¼

X

1�i1<���<ik�n

Yk

j¼1

wij
eij

 !1
k

n
k

� � ð22Þ

where (i1,i2,. . ..,ik) traverses all the k–tuple combination of (1,2,. . ..,n), and
n
k

� �

is the bino-

mial coefficient, and
n
k

� �

¼ n!

k!ðn� kÞ!.

Based on the operational rules of LNNs presented in Eqs (7)–(10), from Eq (22), we can

derive the following theorem.

Theorem 3. Let ei ¼ ðlai ; lbi ; lgiÞ (i = 1,2,� � �,n) be a collection of LNNs, ω = (ω1,ω2,. . ..,ωn)T

be the weight vector of ei with ωi 2 [0,1], i = 1,2,. . ..,n and
Xn

i¼1
oi ¼ 1. Then the aggregated

value obtained from the WLNHM operator in (22) is also a LNN, and

WLNHMðkÞðe1; e2; . . . :; enÞ ¼

l

t� t
Y

1�i1<���<ik�n

1 �
Yk

j¼1

1 � 1 �
aij

t

� �wij
� � !

1

k

0

B
B
@

1

C
C
A

0

B
B
@

1

C
C
A

1
n

k

 !

; l

t
Y

1�i1<���<ik�n

1 �
Yk

j¼1

1 �
bij

t

 !wij
 ! !

1

k

0

B
B
@

1

C
C
A

0

B
B
@

1

C
C
A

1
n

k

 !

; l

t
Y

1�i1<���<ik�n

1 �
Yk

j¼1

1 �
gij

t

� �wij
� � !

1

k

0

B
B
@

1

C
C
A

0

B
B
@

1

C
C
A

1
n

k

 !

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

ð23Þ

Proof.

According to the operational rules of LNNs, we have

wij
eij ¼ l

t� t 1�
aij
t

� �wij ; l
t
� bij

t

�wij ; lt gij
t

� �wij

� �

;

Yk

j¼1

wij
eij ¼ l

t
Yk

j¼1

1 � 1 �
aij

t

� �wij
� �; l

t� t
Yk

j¼1

1 �
bij

t

 !wij
 !; l

t� t
Yk

j¼1

1 �
gij

t

� �wij
� �

0

B
B
B
B
@

1

C
C
C
C
A
;
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and
Yk

j¼1

wij
eij

 !1
k

¼ l

t
Yk

j¼1

1 � 1 �
aij

t

� �wij
� � !1

k
; l

t� t
Yk

j¼1

1 �
bij

t

 !wij
 ! !1

k
; l

t� t
Yk

j¼1

1 �
gij

t

� �wij
� � !1

k

0

B
B
B
B
B
@

1

C
C
C
C
C
A

then
X

1�i1<���<ik�n

Yk

j¼1

eij

 !1
k

¼ l

t� t
Y

1�i1<���<ik�n

1 �
Yk

j¼1

1 � 1 �
aij

t

� �wij
� � !1

k
0

@

1

A

; l

t
Y

1�i1<���<ik�n

1 �
Yk

j¼1

1 �
bij

t

 !wij
 ! !1

k
0

@

1

A

; l

t
Y

1�i1<���<ik�n

1 �
Yk

j¼1

1 �
gij

t

� �wij
� � !1

k
0

@

1

A

0

B
B
B
B
B
@

1

C
C
C
C
C
A

;

1

n
k

� �
X

1�i1<���<ik�n

Yk

j¼1

eij

 !1
k

¼ l

t� t
Y

1�i1<���<ik�n

1 �
Yk

j¼1

1 � 1 �
aij

t

� �wij
� � !1

k
0

@

1

A

0

@

1

A

1

n
k

� � ; l

t
Y

1�i1<���<ik�n

1 �
Yk

j¼1

1 �
bij

t

 !wij
 ! !1

k
0

@

1

A

0

@

1

A

1

n
k

� � ; l

t
Y

1�i1<���<ik�n

1 �
Yk

j¼1

1 �
gij

t

� �wij
� � !1

k
0

@

1

A

0

@

1

A

1

n
k

� �

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

Therefore,

WLNHMðkÞðe1; e2; . . . :; enÞ

¼ l

t� t
Y

1�i1<���<ik�n

1 �
Yk

j¼1

1 � 1 �
aij

t

� �wij
� � !1

k
0

@

1

A

0

@

1

A

1

n
k

� � ; l

t
Y

1�i1<���<ik�n

1 �
Yk

j¼1

1 �
bij

t

 !wij
 ! !1

k
0

@

1

A

0

@

1

A

1

n
k

� � ; l

t
Y

1�i1<���<ik�n

1 �
Yk

j¼1

1 �
gij

t

� �wij
� � !1

k
0

@

1

A

0

@

1

A

1

n
k

� �

0

B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
A

;

which Theorem 3 is proved.

Based on the operation rules of the LNNs, the WLNHM operator has also the same desir-

able properties described as follows:

Property 1 (Commutativity). Let ei (i = 1,2,� � �,n) be a collection of LNNs, and

ðe0
1
; e0

2
; . . . :; e0nÞ is any permutation of (e1,e2,. . ..,en), then

WLNHMðkÞðe0
1
; e0

2
; . . . :; e0nÞ ¼WLNHMðkÞðe1; e2; . . . :; enÞ ð24Þ

Property 2 (Monotonicity). Let ei ¼ ðlai ; lbi ; lgiÞ, fi ¼ ðlpi ; lqi ; lriÞ (i = 1,2,. . .,n) be two collec-

tions of LNNs, if αi� pi, βi� qi, γi� ri for all i, then

WLNHMðkÞðe1; e2; . . . ; enÞ �WLNHMðkÞðf1; f2; . . . ; fnÞ ð25Þ
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Property 4 (Boundedness). Suppose e− = min(e1,e2,. . ..,en), e+ = max(e1,e2,. . ..,en) then

e� � LNHMðkÞðe1; e2; . . . :; enÞ � eþ: ð26Þ

The proofs of the above theorems are similar with the corresponding theorems of LNHM

so it’s omitted here.

4. Entropy of LNSs

Entropy is a useful tool to measure uncertainty in a set, including fuzzy set (FS), intuitionistic

fuzzy set (IFS) and vague set etc. Here the LNS is characterized by handling uncertain informa-

tion with truth-membership function, indeterminacy-membership function and falsity-mem-

bership function, respectively. As a consequence, it’s necessary to further define the entropy of

LNS. Zadeh [38] first introduced the entropy of FS to measure fuzziness in 1965. Later De

Luca-Termini [41] axiomatized the non-probabilistic entropy. Based on above studies, the

entropy E of a fuzzy set A should satisfy the following axioms:

1. E(A) = 0 iff A 2 2X;

2. E(A) = 1 iff μA (x) = 0.5,8x 2 X;

3. E(A)� E(B) iff A is less fuzzy than B, i.e. if μA (x)� μB (x)� 0.5,8x 2 X or if μA (x)� μB (x)

� 0.5, 8x 2 X;

4. E(AC) = E(A).

About entropy measure, Kaufmann [42] proposed a distance based on the soft entropy.

Kosko [43] introduced a new non-probabilistic entropy measure and investigated the degree

of subsethood of one FS in another. Majumdar and Samanta [44] proposed several entropy

measures for soft sets. Szmidt & Kacprzyk [45] studied the entropy of IFSs. Yager [46] put for-

ward fuzziness measure in terms of distinction between the fuzzy set and its complement etc.

Definition 12. Assume that A ¼ fhxi; laAðxiÞ; lbAðxiÞ; lgAðxiÞijxi 2 Xg is a LNS, we define the

entropy of LNS as a function EL: L(X)![0,t], satisfying the following axiomatic requirements:

1. EL(A) = 0, if A is a crisp set;

2. ELðAÞ ¼ 1 iff aAðxÞ
t ¼

bAðxÞ
t ¼

gAðxÞ
t ¼ 0:5; 8x 2 X;

3. EL(A)� EL(B) iff A is less uncertain than B, i.e. if aAðxÞ
t þ

gAðxÞ
t �

aBðxÞ
t þ

gBðxÞ
t and

�
�
�
�

bAðxÞ
t �

bAC ðxÞ
t

�
�
�
� �

�
�
�
�

bBðxÞ
t �

bBC ðxÞ
t

�
�
�
�;

4. EL(AC) = EL(A).

As for the uncertain measure of LNS, we need to consider two factors, one is the partial

truth-membership and partial false-membership and another is the indeterminacy factor.

Based on these two factors we propose the entropy measure EL of a LNS A as follows:

ELðAÞ ¼ 1 �
1

n

X

x2X

aAðxÞ
t
þ

gAðxÞ
t

� �

�

�
�
�
�
bAðxÞ
t
�

bACðxÞ
t

�
�
�
� ð27Þ

Then we prove that (27) can meet the conditions of definition 12.

Proof:

1. For a crisp set A and there is no indeterminacy-membership for any LNN of A. Hence

EL(A) = 0 holds.
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2. If A be such that
aAðxÞ
t ¼

bAðxÞ
t ¼

gAðxÞ
t ¼ 0:5; 8x 2 X, then

aAðxÞ
t þ

gAðxÞ
t ¼ 1 and

bAðxÞ
t �

bAC ðxÞ
t ¼ 0:5 � 0:5 ¼ 0; 8x 2 X ) ELðAÞ ¼ 1.

3. A is less uncertain than B, we suppose
aAðxÞ
t þ

gAðxÞ
t �

aBðxÞ
t þ

gBðxÞ
t and

�
�
�
�

bAðxÞ
t �

bAC ðxÞ
t

�
�
�
� �

�
�
�
�

bBðxÞ
t �

bBC ðxÞ
t

�
�
�
�. Based on the entropy value in Eq (27), we can obtain EL(A)� EL(B).

4. AC ¼ fhxi; lgAðxiÞ; lt� bAðxiÞ
; laAðxiÞijxi 2 Xg,

ELðACÞ ¼ 1 � 1

n

X

x2X

gAðxÞ
t
þ

aAðxÞ
t

� �

�

�
�
�
�

bAC ðxÞ
t �

bAðxÞ
t

�
�
�
� ¼ ELðAÞ.

Example 4.1 Let X be the universe set and A ={(l3,l2,l1),(l6,l4,l2),(l5,l1,l3),(l5,l4,l3)} be a LNS in X.

Then the entropy of X will be

ELðAÞ ¼ 1 �
1

4

3

6
þ

1

6

� �

�

�
�
�
�
2

6
�

6 � 2

6

�
�
�
�þ

6

6
þ

2

6

� �

�

�
�
�
�
4

6
�

6 � 4

6

�
�
�
�þ

5

6
þ

3

6

� �

�

�
�
�
�
1

6
�

6 � 1

6

�
�
�
�þ

5

6
þ

3

6

� �

�

�
�
�
�
4

6
�

6 � 4

6

�
�
�
�

� �

¼ 1 � 0:5 ¼ 0:5:

5. The method for MAGDM based on the WLNHM operator

For a MAGDM with LNNs, let A = {A1,A2,. . ..,Am} be a set of alternatives, D = {D1,D2,. . ..,Dt}
be the set of DMs and λ = (λ1,λ2,. . ..,λt)

T be the weight vector of DMs Dh(h=1,2,. . ..,t), λh 2

[0,1],h = 1,2,. . ..,t and
Xt

h¼1

lh ¼ 1. Let C = {C1,C2,. . ..,Cn}be the set of attributes and there are

two kinds of attributes, i.e., the benefit attributes and the cost attributes. Here we assume the

weight vector of the attributes is unknown. If the hth (h = 1,2,. . ..,t) DM provides the evalua-

tion of the alternative Ai(i = 1,2,. . ..,m) about the attribute Cj(j = 1,2,. . ..,n) based on the LTS,

such as s = {s0 = extremely poor,s1 = very poor,s2 = poor,s3 = slightly poor,s4 = medium,s5 =

slightly better,s6 = good, s7 = very good, s8 = perfect}, by the form of a LNN xhij ¼ ðl
h
aij
; lh

bij
; lh

gij
Þ for

ahij; b
h
ij; g

h
ij 2 ½0; t� (h = 1,2,. . ..,t;i = 1,2,. . ..,m;j = 1,2,. . ..,n). Therefore, we can obtain the hth

LNN decision matrix Xh ¼ ½xhij�m�n. Based on these information, the proposed MAGDM

method can be presented as follows:

Step 1: Standardize the decision-making information.

In general, if there exist cost attributes, then normalize each decision matrix Xh ¼ ½xhij�m�n
(h = 1,2,. . .,t) into the transformed decision matrix Rh ¼ ½rhij�m�n (h = 1,2,. . .,t), where xhij ¼

ðlh
aij
; lh

bij
; lh

gij
Þ and

rhij ¼ ðl
h
pij
; lhqij ; l

h
rij
Þ ¼

ðlh
aij
; lh

bij
; lh

gij
Þ for the benefit attribute Cj

ðlht� aij
; lht� bij

; lht� gij
Þ for the cost attribute Cj

ð28Þ

8
<

:

where h = 1,2,. . ..,t; i = 1,2,. . ..,m; j = 1,2,. . ..,n.

Step 2: Aggregate all individual decision matrix Rh (h = 1,2,. . ..,t) into collective one

R ¼ ½~r ij�m�n.

~r ij ¼ ðlpij ; lqij ; lrijÞ ¼WLNHMðkÞðr1

ij; r
2

ij; . . . ; rtijÞ ð29Þ

where ~rij is the collective evaluation value for alternative Ai with respect to attribute Cj.
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Step 3: Calculate the weight of the attributes by utilizing the entropy of LNSs.

Rj ¼ ð~r1j;~r2j; . . . ;~rmjÞ

ELðRjÞ ¼ 1 �
1

m

X

x2X

aRjðxÞ

t
þ

gRjðxÞ

t

 !

�

�
�
�
�

bRj
ðxÞ

t
�

bRCj
ðxÞ

t

�
�
�
�

oj ¼ ELðRjÞ=
Xn

j¼1

ELðRjÞ ð30Þ

Step 4: Calculate the comprehensive evaluation value of each alternative.

~r i ¼ ðlpi ; lqi ; lriÞ ¼WLNHMðkÞð~r i1;~r i2; . . . ;~r inÞ ð31Þ

where ~ri is the obtained comprehensive collective value of alternative Ai, where i = 1,2,. . ..,m.

Step 5: Compute the score function φð~riÞ and the accuracy function sð~riÞ based on the Eqs

(11) and (12).

Step 6: Based on Definition 8, rank Ai (i = 1,2,. . ..,m) in descending order. The larger the score

function φð~riÞ, the better the ranking order of alternative Ai. If the score functions of the

alternatives are the same, then the larger the accuracy function φð~riÞ of alternative Ai, the

better the ranking order of alternative Ai (i = 1,2,. . ..,m).

6. Application examples

In the following, an illustrative example about the selection of investment alternatives from

[22] is provided to show the advantages of the proposed method.

There are four companies as a set of alternatives A = {A1,A2,A3,A4}, where A1 is a car com-

pany; A2 is a food company; A3 is a car company and A4 is an arms company. And there are

five attributes to be considered: (1) C1 is the geological risk analysis; (2) C2 is the production

risk analysis; (3) C3 is the market risk analysis; (3) C4 is the management risk analysis; (3) C5 is

the social environment analysis. A group of three DMs Dh (h = 1,2,3) are invited to evaluate

the attribute values by the LTSs s = {s0 = extremely poor,s1 = very poor,s2 = poor,s3 = slightly
poor,s4 = medium,s5 = slightly better,s6 = good, s7 = very good, s8 = perfect} and assume the

weight vector of the three DMs is l ¼ 1

3
; 1

3
; 1

3

� �T
. By the above information, the company needs

to consider the relation among attribute for parameters k. So suppose here k = 2. DMs Dh
(h = 1,2,3) gives the evaluation value of the alternative Ai(i = 1,2,3,4) on the attribute

Cj(j = 1,2,3) by LNN, and then three LNN decision matrices Xh ¼ ½xhij�m�n are constructed and

listed in Tables 1–3.

Table 1. Linguistic neutrosophic decision matrix X1 given by D1.

C1 C2 C3 C4 C5

A1 (l1,l2,l1) (l2,l3,l2) (l4,l4,l3) (l1,l5,l1) (l3,l3,l2)

A2 (l2,l6,l2) (l3,l8,l2) (l2,l4,l1) (l3,l1,l2) (l1,l2,l1)

A3 (l2,l3,l1) (l3,l2,l3) (l1,l4,l1) (l3,l5,l1) (l5,l2,l4)

A4 (l3,l1,l2) (l1,l7,l1) (l4,l6,l3) (l2,l5,l1) (l4,l6,l4)

https://doi.org/10.1371/journal.pone.0193027.t001
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6.1 Procedure of decision making based on the WLNHM operator

Case 1: If the information about the attribute weights is completely unknown, then we use the

proposed method to handle the above problem which the decision-making steps as follows:

Step 1: Standardize the decision-making information.

As all the measured attribute values are the cost type, then we need normalize evaluation values

by Eq (28). The normalized decision-making matrix are shown in Tables 4–6.

Step 2: Aggregate all individual decision matrix Rh (h = 1,2,. . ..,t) into collective one R ¼
½~r ij�m�n by the WLNHM operator in (29), and the results are shown in Table 7.

Table 2. Linguistic neutrosophic decision matrix X2 given by D2.

C1 C2 C3 C4 C5

A1 (l1,l6,l1) (l4,l3,l4) (l2,l6,l2) (l3,l5,l2) (l5,l2,l4)

A2 (l1,l4,l1) (l3,l2,l1) (l2,l3,l4) (l4,l0,l5) (l2,l6,l4)

A3 (l3,l5,l2) (l2,l4,l3) (l1,l6,l5) (l3,l5,l3) (l2,l6,l1)

A4 (l2,l7,l2) (l4,l6,l1) (l3,l7,l2) (l4,l4,l2) (l3,l8,l4)

https://doi.org/10.1371/journal.pone.0193027.t002

Table 3. Linguistic neutrosophic decision matrix X3 given by D3.

C1 C2 C3 C4 C5

A1 (l2,l4,l1) (l3,l5,l2) (l5,l1,l4) (l2,l6,l1) (l3,l3,l2)

A2 (l1,l2,l1) (l2,l4,l2) (l1,l5,l3) (l4,l2,l0) (l0,l5,l6)

A3 (l2,l3,l3) (l1,l5,l2) (l2,l4,l5) (l0,l4,l6) (l3,l2,l4)

A4 (l2,l3,l2) (l4,l2,l1) (l1,l4,l3) (l3,l4,l5) (l0,l4,l5)

https://doi.org/10.1371/journal.pone.0193027.t003

Table 4. Normalized decision matrix R1.

C1 C2 C3 C4 C5

A1 (l7,l6,l7) (l6,l5,l6) (l4,l4,l5) (l7,l3,l7) (l5,l5,l6)

A2 (l6,l2,l6) (l5,l0,l6) (l6,l4,l7) (l5,l7,l6) (l7,l6,l7)

A3 (l6,l5,l7) (l5,l6,l5) (l7,l4,l7) (l5,l3,l7) (l3,l6,l4)

A4 (l5,l7,l6) (l7,l1,l7) (l4,l2,l5) (l6,l3,l7) (l4,l2,l4)

https://doi.org/10.1371/journal.pone.0193027.t004

Table 5. Normalized decision matrix R2.

C1 C2 C3 C4 C5

A1 (l7,l6,l7) (l4,l5,l4) (l6,l2,l6) (l5,l3,l6) (l3,l6,l4)

A2 (l7,l4,l7) (l5,l6,l7) (l6,l5,l4) (l4,l8,l3) (l6,l2,l4)

A3 (l5,l3,l6) (l6,l4,l5) (l7,l2,l3) (l5,l3,l5) (l6,l2,l7)

A4 (l6,l1,l6) (l4,l2,l7) (l5,l1,l6) (l4,l4,l6) (l5,l0,l4)

https://doi.org/10.1371/journal.pone.0193027.t005
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Step 3: Calculate the weight of attributes by Eqs (27) and (30), and get

ELðR1Þ ¼ 0:1759; ELðR2Þ ¼ 0:3656; ELðR3Þ ¼ 0:3802; ELðR4Þ ¼ 0:2147; ELðR5Þ ¼ 0:4364

o1 ¼ 0:1118; o2 ¼ 0:2324; o3 ¼ 0:2418; o4 ¼ 0:1365; o5 ¼ 0:2775:

Step 4: Obtain the comprehensive evaluation value of each alternative by the WLNHM opera-

tor in (31), then we can get

~r1 ¼ ðl0:529; l7:685; l7:843Þ; ~r2 ¼ ðl0:753; l7:696; l7:850Þ; ~r3 ¼ ðl0:683; l7:660; l7:782Þ; ~r4 ¼ ðl0:590; l7:460; l7:816Þ:

Step 5: Compute the score function φð~riÞ (i = 1,2,3,4) based on the Eq (11), and obtain

φð~r1Þ ¼ 0:0417; φð~r2Þ ¼ 0:0503; φð~r3Þ ¼ 0:0517; φð~r4Þ ¼ 0:0548:

Step 6: Rank the alternatives

According to the above score functions φð~r iÞ (i = 1,2,3,4), the ranking result is A4� A3�

A2� A1.

So, the best alternative is A4.

Case 2: If the information about the attribute weights is given by DMs, and the weight vector is

ωj = (0.17,0.29,0.11,0.3,0.13)T, then we handle the above problem with the proposed

method in which Step 3 is omitted.

As mentioned above, the score functions φð~riÞ (i = 1,2,3,4) of Case 2 can be obtained as fol-

low: φð~r1Þ ¼ 0:0428, φð~r2Þ ¼ 0:0457, φð~r3Þ ¼ 0:0514, φð~r4Þ ¼ 0:0512. Based on Definition 8,

the ranking result is A3� A4� A2� A1, which is different from the order of Case 1 due to the

diverse weights of attribute values.

In typical MADM approaches, weights of attributes can reflect the relative importance in

decision making process. However, the information about attribute weights is completely

unknown or incompletely known because of time pressure, data loss, and the DMs’ limited

Table 6. Normalized decision matrix R3.

C1 C2 C3 C4 C5

A1 (l6,l4,l7) (l5,l3,l6) (l3,l7,l4) (l6,l2,l7) (l5,l5,l6)

A2 (l7,l6,l7) (l6,l4,l6) (l7,l3,l5) (l4,l6,l8) (l8,l3,l2)

A3 (l6,l5,l5) (l7,l3,l6) (l6,l4,l3) (l8,l4,l2) (l5,l6,l4)

A4 (l6,l5,l6) (l4,l6,l7) (l7,l4,l5) (l5,l4,l3) (l8,l4,l3)

https://doi.org/10.1371/journal.pone.0193027.t006

Table 7. Integration decision matrix R.

C1 C2 C3 C4 C5

A1 (l3.636,l6.389,l7.652) (l2.239,l6.537,l7.022) (l1.825,l6.641,l6.863) (l3.012,l5.541,l7.547) (l1.823,l6.998,l7.022)

A2 (l3.636,l6.389,l7.547) (l2.459,l5.520,l7.419) (l3.286,l6.359,l7.066) (l1.831,l7.828,l7.549) (l4.777,l6.200,l6.641)

A3 (l2.703,l6.537,l7.311) (l3.012,l6.559,l6.998) (l3.636,l5.971,l6.637) (l3.652,l5.975,l6.813) (l2.025,l6.766,l6.931)

A4 (l2.703,l6.646,l7.268) (l2.279,l5.720,l7.652) (l2.509,l5.233,l6.998) (l2.239,l6.169,l7.105) (l3.355,l4.295,l6.169)

https://doi.org/10.1371/journal.pone.0193027.t007
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domain knowledge about the problem. To get the optimal alternatives, we should determine

the weight vector of attributes by some methods. The attribute weights in Case 2 are to deter-

mine usually according to the preference or judgments of DMs while the Case 1 adopts the

entropy concept to confirm the weights of attribute values which can effectively balance the

influence of subjective factors. Therefore, it’s more objective and reasonable to apply entropy

of LNS to assign weight for each attribute in the decision-making process.

6.2 Discuss the influence of the parameter k
In order to discuss the influence of the parameter k, we can adopt different values of parameter

k in our proposed method to rank the alternatives, and the results are listed in Table 8.

As we can see from Table 8, the ranking orders are different with the parameter k changes

in this example. When k = 2 and k = 3, the ranking results are same, i.e., A4� A3� A2� A1,

whereas it produces a different ranking result “A4� A2� A3� A1” when k = 1. Obviously,

when k = 1, the proposed method doesn’t consider the interrelationship among the attributes,

and ranking result is different from the ones when k = 2 and k = 3, which mean the interrela-

tionships between two attributes or among three attributes are considered. This verifies that

the proposed method based on the WLNHM can provide more flexibility and adaptability in

information aggregation and take full advantage of parameter change to solve MAGDM prob-

lems in which there are interrelationships between the attributes. Furthermore, it is noted that

the score values of each alternative is reducing along with the parameter k increases, which

reflect the risk preferences of the DMs in practical situations. In real-world decision-making

situations, DMs can choose the appropriate value in accordance with their risk preferences.

That is, it is more effective for DMs to select adaptive value of the parameter k according to

their risk attitude. If the DM favors risk, he/she can take the parameter as small as possible; if

the DM dislikes risk, he can take the parameter as large as possible. Therefore, the proposed

method provides a general and flexible way to express the DMs’ preference and/or real

requirements by utilizing the different parameter k in the decision process. Inspired by the

idea of MSM operator proposed by Qin and Liu [31], we usually take k = [n/2] to solve prob-

lems, where symbol [] is a round function and n is the number of elements that need to be

aggregated, which is not only intuitive and feasible, but comprehensive. In such case, the risk

preference of DMs is neutral and the interrelationships of each argument can be fully taken

into account.

6.3 Further compared with other methods

In the following, we make a comparison of the proposed method based on the WLNHM opera-

tor with the ones of Liang et al.’s method [22] based on the extended TOPSIS model, Fang and

Ye’s method [13] based on the linguistic neutrosophic number weighted arithmetic averaging

(LNNWAA) operator and Fan et al.’s method [21] based on the LNN normalized weighted

Bonferroni mean (LNNNWBM) operator for dealing with the same problem adopted from

[22]. In order to guarantee the rationality and scientificity of the contrasting results, these

Table 8. Ranking results by utilizing the different k.

φð~r 1Þ φð~r 2Þ φð~r 3Þ φð~r 4Þ Ranking

k = 1 0.0431 0.0590 0.0541 0.0618 A4� A2� A3� A1

k = 2 0.0417 0.0502 0.0517 0.0548 A4� A3� A2� A1

k = 3 0.0412 0.0471 0.0508 0.0526 A4� A3� A2� A1

https://doi.org/10.1371/journal.pone.0193027.t008
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methods should be based the same weight vector of the attributes, so we used the weight vector

ωj = (0.08,0.20,0.15,0.27,0.30)T which is given from [22]. In addition, in order to make the con-

trast even more remarkable, we set the different parameter value (k = 1,2,3) in Step 2 and Step
4 to aggregate evaluation information of DMs and attribute values of each alternative for pro-

posed method in this paper, and the comparison results are listed in Table 9.

From Table 9, we can see that the proposed method based on the WLNHM operator

(k = 1), Liang et al.’s method [22] based on the extended TOPSIS model, and Fang and Ye’s

method [13] based on the LNNWAA operator produce the same ranking result. These results

can easily be explained that these methods don’t consider interrelationships among attributes.

So they can verify the validity of the proposed method when k = 1. Similarly, the same ranking

results can be obtained by the proposed method based on the WLNHM operator (k = 2) and

Fan et al.’s method [21] based on the LNNNWBM operator (p = q = 1), and they are different

from the ones when k = 1. These results can easily be explained that these methods consider

interrelationships between two attributes. So these results can also verify the validity of pro-

posed methods in this paper. In addition, when k = 3, the ranking results produced by the pro-

posed method are different from above methods [13,21,22] and the results by the proposed

method when k = 1 and k = 2. The reason is that the proposed method considered interrela-

tionships among three attributes.

Based on the above analysis, we can get that the method proposed in this paper is more gen-

eral and flexible than these methods [13,21,22] by adopting the WLNHM operator with param-

eter k.

In the following, we will compare and analyze some advantages of our proposed method

with the three methods. From the above analysis, we can summarize characteristics of these

methods shown in Table 10.

As shown in Table 10, we can find that:

(1) Compared with the method based on the extended TOPSIS model [22]

Liang et al.’s method [22] adopts the extended TOPSIS model which cannot aggregate eval-

uation information and does not consider interrelationships among attributes, while the pro-

posed method base on the WLNHM operator which can easily integrate indeterminate

information and reflect interrelationships among attributes. The proposed aggregation opera-

tor has more advantages than the extended TOPSIS model because they can integrate different

attribute values of each alternative to comprehensive values and then rank the alternatives

while the extended TOPSIS model can only rank them.

Table 9. A comparison of the ranking results from different methods.

Methods Score values φð~r iÞ Ranking

Liang et al.’s method [19] based on the extend TOPSIS model No A4 � A2� A3� A1

Fang and Ye’s method [6] based on the LNNWAA operator φð~r1Þ ¼ 0:494, φð~r 2Þ ¼ 0:790,

φð~r3Þ ¼ 0:649, φð~r 4Þ ¼ 0:792

A4 � A2� A3� A1

Fan et al.’s method [5] based on the LNNNWBM operator

(p = q = 1)

φð~r1Þ ¼ 0:459, φð~r 2Þ ¼ 0:477,

φð~r3Þ ¼ 0:521, φð~r 4Þ ¼ 0:540

A4 � A3� A2� A1

the proposed method based on the WLNHM operator

(k = 1)

φð~r1Þ ¼ 0:077, φð~r 2Þ ¼ 0:683,

φð~r3Þ ¼ 0:380, φð~r 4Þ ¼ 0:684

A4 � A2� A3� A1

the proposed method based on the WLNHM operator

(k = 2)

φð~r1Þ ¼ 0:041, φð~r 2Þ ¼ 0:047,

φð~r3Þ ¼ 0:051, φð~r 4Þ ¼ 0:053

A4 � A3� A2� A1

the proposed method based on the WLNHM operator

(k = 3)

φð~r1Þ ¼ 0:447, φð~r 2Þ ¼ 0:259,

φð~r3Þ ¼ 0:461, φð~r 4Þ ¼ 0:473

A4 � A3� A1� A2

https://doi.org/10.1371/journal.pone.0193027.t009
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It is worth noting that these two methods adopt objective weight measure to determinate

the weight vector of attributes. The proposed method utilizes fuzzy entropy to measure the

weight of each attribute, while the method in [22] applies the maximum deviation model to

determine the weight vector of attribute. The maximizing deviation method only focus on the

divergence of alternatives, and the entropy measure used in the proposed method pays atten-

tion to synthesize the truth-membership, falsity-membership and indeterminacy-membership

of alternatives for a certain attributes. In other words, the entropy weight method can better

reflect the determinacy/indeterminacy of various attributes-if the entropy value for an attri-

bute is bigger across alternatives, it can provide more useful information. Then, the attribute

would be distributed a bigger weight; Otherwise, such an attribute would be assigned a small

weight. So our proposed method is more general and more reasonable than Liang et al.’s

method [22] in practical applications.

(2) Compared with the method based on the LNNWAA operator [13]

For aggregation operators, the method by Fang and Ye [13] used the LNNWAA operator

which does not consider interrelationships among attributes, whereas our proposed method

adopts the WLNHM operator which can capture the interrelationship among the multi-input

attributes.

However, there are interrelationships among attributes in above example, i.e., the produc-

tion risk analysis C2 and the market risk analysis C3, the management risk analysis C4 and the

social environment analysis C5 etc., the method proposed in [13] cannot take into account

interrelationships among attributes to handle MAGDM problem. It would seem the method

in this paper can obtain more reasonable result in decision-making process. In a word, the

arithmetic averaging operator is only the special cases of LNHM operator, the method pro-

posed in this paper are more typical and general than that by Fang and Ye [6].

(3) Compared with the method based on the LNNNWBM operator [21]

In the view of aggregation function, both of these two methods consider the interrelation-

ship of the attributes. The main advantage of the WLNHM operator proposed in this paper is

that it can capture the interrelationship among the multi-input attributes, while Fan et al.’s

method [21] only present the interrelationship between two attributes. It can be concluded

that the method proposed in this paper is more general than that in Fan et al.’s method [21] by

adopting the WLNHM operator with parameter k. In this case, DMs have the choice to take

appropriate value of the parameter k based on their subjective preference. So the WLNHM
operator introduced in this paper is helpful for the DMs to make effective measure under

more complex decision-making environments. In addition, our method can greatly simplifies

Table 10. Characteristic comparisons of different methods.

Methods Whether aggregate

indeterminate information

Whether consider interrelationship

between two arguments

Whether consider

interrelationship of multi

arguments

Whether determinate weight vector

of attributes more objective

Liang et al.’s

hmetod [19]

No No No Yes

Fang and Ye’s

method [6]

Yes No No No

Fan et al.’s

method [5]

Yes Yes No No

the proposed

method

Yes Yes Yes Yes

https://doi.org/10.1371/journal.pone.0193027.t010
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the process of calculation by using a simple formula only with one parameter k, whereas Fan

et al.’s method [21] based on the LNNNWBM operator shows some complex operations

through two parameters p and q.

Based on the comparisons and analysis above, the proposed method based on the WLNHM
operator can overcome the shortcomings of the methods [13,21,22] in the situation when

there are relationships among multi-attributes. Moreover, the proposed method based on the

entropy weight measure can provide reasonable and objective weight of each attribute and

reduce the impact of subjective weights determined by DMs.

In a word, we have verified the effectiveness of the proposed method and shown the advan-

tages for solving MAGDM problem with indeterminate and inconsistent information.

7. Conclusion

In this paper, we propose the LNNHM, WLNNHM operators. Then we investigate some desir-

able properties and further discuss their special cases when the parameter takes different val-

ues. Further, we define the entropy of LNS and apply it to determinate weights. Based on the

WLNNHM operator and entropy weight measure, we develop a novel MAGDM method with

LNNs. We demonstrate the feasibility and advantages of proposed method by comparing with

the existing methods [13,21,22]. In the future research, we shall further develop other methods

with LNNs, such as TODIM and VIKOR of LNNs, and apply them to handle MADM or

MAGDM problems, especially when we need to consider incomplete, indeterminate and

inconsistent information in the problems. On the other hand, we can develop the potential

applications of the proposed method to different domains.
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