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Abstract: There are many practical decision-making problems in people’s lives, but the information
given by decision makers (DMs) is often unclear and how to describe this information is of critical
importance. Therefore, we introduce interval neutrosophic linguistic numbers (INLNs) to represent
the less clear and uncertain information and give their operational rules and comparison methods.
In addition, since the Maclaurin symmetric mean (MSM) operator has the special characteristic
of capturing the interrelationships among multi-input arguments, we further propose an MSM
operator for INLNs (INLMSM). Furthermore, considering the weights of attributes are the important
parameters and they can influence the decision results, we also propose a weighted INLMSM
(WINLMSM) operator. Based on the WINLMSM operator, we develop a multiple attribute decision
making (MADM) method with INLNs and some examples are used to show the procedure and
effectiveness of the proposed method. Compared with the existing methods, the proposed method
is more convenient to express the complex and unclear information. At the same time, it is
more scientific and flexible in solving the MADM problems by considering the interrelationships
among multi-attributes.

Keywords: multiple attribute decision making (MADM); neutrosophic number; Maclaurin symmetric
mean; linguistic variables

1. Introduction

The unclear set (FS) theory was put forward by Zadeh [1] in 1965. In this theory, the membership
degree (MD) T(x) is used to describe fuzzy information and it has also been widely used in practice.
However, the inadequacies of FS are evident. For example, it is difficult to express the non-membership
degree (NMD) F(x). In order to fix this problem, Intuitionistic FS (IFS) was proposed by Atanassov [2]
in 1986. It is made up of two parts: MD and NMD. IFS is an extension and development of Zadeh’
FS and Zadeh’ FS is a special case of IFS [3]. IFS needs to meet two conditions: (1) T(x), F(x) ∈ [0, 1];
(2) 0 ≤ T(x) + F(x) ≤ 1 [2]. Subsequently, the IFS theory was further extended such as Zadeh [4]
proposed interval IFS (IIFS). Zwick et al. [5] put forward the triangular IFS while Zeng and Li [6]
defined trapezoidal IFS. However, under some circumstances due to the limited cognitive ability of
the DMs, they may hesitate in the two choices for accuracy and uncertainty. Since they choose both of
them at the same time, this can produce an imprecise or contradictory evaluation result. Therefore,
Smarandache [7,8] introduced a concept called neutrosophic set (NS), which included MD, NMD,
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and indeterminacy membership degree (IMD) in a non-standard unit interval [9]. Clearly, the NS
is the generalization of FS and IFS. Furthermore, Wang [10] proposed the definition of interval NS
(INS) which uses the standard interval to express the function of MD, IMD, and NMD. Broumi and
Smarandache [11] presented the correlation coefficient of INS.

When dealing with the MADM problems with qualitative information, it is difficult for DMs
to describe their own ideas with precise values. Generally, DMs ordinarily uses some linguistic
terms (LTs) like “excellent”, “good”, “bad”, “very bad”, or “general” to indicate their evaluations.
For example, when we look at a person’s height, we usually describe him as “high” or “very high”
by visual inspection, but we will not give the exact value. In order to easily process the qualitative
information, Herrera and Herrera-Viedma [12] proposed the LTs to deal with this kind of information
instead of numerical computation. However, because LT such as “high” is not with MD, or we can
think its MD is 1, which means LTs cannot describe the MD and NMD. Therefore, in order to facilitate
DMs to describe the MD and NMD for one LT, Liu and Chen [13] defined the linguistic intuitionistic
fuzzy number (LIFN), which combined the advantages of intuitionistic fuzzy numbers (IFNs) and
linguistic variables (LVs). Therefore, LIFN can fully express the complex fuzzy information and there is
a good prospect in MADM. After that, Ye [14] came up with the single-valued neutrosophic linguistic
number (SVNLN). The most striking feature of the SVNLN is that it used LTs to describe the MD, IMD,
and NMD. Sometimes, the three degrees are not expressed in a single real number, but is expressed
in intervals [15]. And then, Ye [16] defined an interval neutrosophic linguistic set (INLS) and INLNs.
INLNs is used to represent three values of MD, IMD, and NMD in the form of intervals. Clearly, INLS
is a generalization of FS, IFS, NS, INS, LIFN, and SVNLN. It is general and beneficial for describing
practical problems.

The aggregation operators (AOs) are an efficient way to handle MADM problems [17,18].
Many AOs are proposed for achieving some special functions. Yager [19] employed the ordered
weighted average (OWA) operator for MADM. Bonferroni [20] proposed the Bonferroni mean (BM)
operator, which can capture the correlation between input variables very well. Then BM operators have
been extended to process different uncertain information such as IFS [21,22], interval-valued IFS [23],
q-Rung Orthopai Fuzzy set [24], and Multi-valued Ns [25]. In addition, Beliakov [26] presented
the Heronian mean (HM) operators, which have the same feature as the BM (i.e., they can capture
the interrelationship between input parameters). Some HM operators have been proposed [27–30].
Furthermore, Yu [31] gave the comparison of BM with HM. However, since the BM operator and
the HM operator can only reflect the relationship between any two parameters, they cannot process
the MADM problems, which require the relationship for multiple inputs. In order to solve this
shortcoming, Maclaurin [32] proposed the MSM operator, which has prominent features of capturing
the relationship among multiple input parameters. Afterward, Qin and Liu [33] developed some MSM
operators for uncertain LVs. Liu and Qin [34] developed some MSM for LIFNs. Liu and Zhang [35]
proposed some MSM operators for single valued trapezoidal neutrosophic numbers.

Since the INLNs are superior to other ways of expressing complex uncertain information [16] and
the MSM has good flexibility and adaptability, it can capture the relationship among multiple input
parameters. However, now the MSM cannot deal with INLNs. Therefore, the objectives of this paper
are to extend the MSM and weighted MSM (WMSM) operators to INLNs and to propose the INLMSM
operator and the WINLMSM operator, to prove some properties of them and discuss some special
cases, to propose a MADM approach with INLNs, and show the advantages of the proposed approach
by comparing with other studies.

In Section 2 of this paper, we introduce some basic concepts about NS, INS, INLS, and MSM.
In Section 3, we introduce the INLN and its operations including a new scoring function and
a comparison method of INLN. In Section 4, we introduce an operator of INLMSM. Additionally,
in order to improve flexibility, we propose the INLGMSM operator based on the GMSM operator.
Furthermore, we develop the WINLMSM operator and the WINLGMSM operator to compare with
operators that lack weight. Afterwards, we use examples to prove our theories. In Section 5, we give
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a MADM method for INLNs. In Section 6, we provide an example to demonstrate the effectiveness of
the proposed method. Lastly, we provide the conclusions.

2. Preliminaries

In this section, we will introduce some existing definitions and basic concepts in order to
understand this study.

2.1. The NS and INS

Definition 1 [7–9]. Let X be a space of points (objects) with a generic element in X denoted by x. A NS A in X
is expressed by a MD TA(x), an IMD I(x), and a NMD FA(x).

Then a NS A is denoted below.

A = {〈x, TA(x), IA(x), FA(x)〉|x ∈ X} (1)

TA(x), I(x), and FA(x) are real standard or non-standard subsets of ]−0, 1+[. That is

TA : X → ]−0, 1+[; IA : X → ]−0, 1+[ ; FA : X → ]−0, 1+[

With the condition −0 ≤ TA(x) + IA(x) + FA(x) ≤ 3+.

Definition 2 [10,11]. Let X be a space of points (objects) with a generic element in X denoted by x.
For convenience, the lower and upper ends of T, I, F are expressed as TL

A(x), TU
A (x), IL

A(x), IU
A (x), FL

A(x),
and FU

A (x). An INS A in X is defined below.

A =
{

x,
〈[

TL
A(x), TU

A (x)
]
,
[

IL
A(x), IU

A (x)
]
,
[

FL
A(x), FU

A (x)
]〉∣∣∣x ∈ X

}
(2)

For each point x in X, we have that
[
TL

A(x), TU
A (x)

]
⊆ [0, 1],

[
IL
A(x), IU

A (x)
]
⊆ [0, 1],

[
FL

A(x), FU
A (x)

]
⊆

[0, 1], and 0 ≤ TU
A (x) + IU

A (x) + FU
A (x) ≤ 3.

Definition 3 [10,11]. An INS A is contained in the INS B, A ⊆ B, if and only if TL
A(x) ≤ TL

B (x),
TU

A (x) ≤ TU
B (x), IL

A(x) ≥ IL
B(x), IU

A (x) ≥ IU
B (x), FL

A(x) ≥ FL
B (x), and FU

A (x) ≥ FU
B (x). If A ⊆ B

and A ⊇ B, then A = B.

2.2. LVs

Definition 4 [36,37]. Let S = { si|i = 0, 1, . . . , l, l ∈ N∗} be a LT set (LTS) where N∗ is a set of positive
integers and si represents LV.

Because the LTS is convenient and efficient, it is widely used by DMs in decision making.
For instance, when we evaluate the production quality, we can set l = 9, then S is given below.

S = {s0 = extremely bad, s1 = very bad, s2 = bad, s3 = slightly bad, s4 = f air, s5 = slightly good,
s6 = good, s7 = very good, s8 = extremely good}

To relieve the loss of linguistic information in operations, Xu [38,39] extended LTS S to continuous
LTS S = { sθ |0 ≤ θ ≤ l}. About the characteristics of LTS, please refer to References [38–40].

Definition 5 [13]. Let sα and sβ be any two LVs in S. The related operations can be defined below.

sα ⊕ sβ = s
α+β− α·β

l
(3)

λsα = sl−l·(1− α
l )

λ , λ > 0 (4)



Symmetry 2018, 10, 127 4 of 23

sα ⊗ sβ = s α·β
l

(5)

(sα)
λ = sl·( α

l )
λ , λ > 0 (6)

2.3. MSM Operator

Definition 6 [15,32]. Let xi(i = 1, 2, . . . , n) be the set of the non-negative real number. An MSM operator of
dimension n is a mapping MSM(m) : (R+)

n → R+ and it can be defined below.

MSM(m)(x1, . . . , xn) =

(
∑1≤i1<...<im≤n ∏m

j=1 xij

Cm
n

) 1
m

(7)

where (i1, i2, . . . , im) traverses all the m-tuple combination of (1, 2, . . . , n) and Cm
n = n!

m!(n−m)! is the binomial
coefficient. In addition, xij refers to ijth element in a particular arrangement.

There are some properties of the MSM(m) operator, which are defined below.

(1) Idempotency. If xi = x for each i, and then MSM(m)(x, x, . . . , x) = x;

(2) Monotonicity. If xi <= yi for all i, MSM(m)(x1, x2, ..., xn) ≤ MSM(m)(y1, y2, ..., yn);

(3) Boundedness. min{ x1, x2, ...xn} ≤ MSM(m){ x1, x2, ...xn} ≤ max{ x1, x2, ...xn} .

Furthermore, the MSM(m) operator would degrade some particular forms when m takes some
special values, which are shown as follows.

1. When m = 1, the MSM(m) operator would become the average operator.

MSM(1)(x1, x2, ...xn) =

(
∑1≤i1≤n xi1

C1
n

)
=

n
∑

i=1
xi

n
(8)

2. When m = 2, the MSM(m) operator would become the following BM operator (p = q = 1).

MSM(2)(x1, . . . , xn) =

(
∑1≤i1<i2≤n ∏2

j=1 xij

C2
n

) 1
2

= (
2 ∑1≤i1<i2≤n xi1xi2

n(n−1) )
1
2

=

(
∑n

i.j=1,i 6=j xixj
n(n−1)

) 1
2
= BM1,1(x1, ..., xn)

(9)

3. When m = n, the MSM(m) operator would become the geometric mean.

MSM(n)(x1, . . . , xn) = (
n

∏
j=1

xj)

1
n

(10)

Definition 7 [15]. Let xi(i = 1, 2, . . . , n) be the set of non-negative real numbers and p1, p2, . . . , pm ≥ 0.
A generalized MSM operator of dimension n is a mapping GMSM(m,p1,p2,...,pm) : (R+)

n → R+ and it is
defined below.

GMSM(m,p1,p2,...,pm)(x1, . . . , xn) = (
∑1≤i1<...<im≤n ∏m

j=1 x
pj
ij

Cm
n

)

1
p1+p2+...pm

(11)
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where (i1, i2, . . . , im) traverses all the m-tuple combination of (1, 2, . . . , n) and Cm
n = n!

m!(n−m)! is the
binomial coefficient.

There are some properties of the GMSM(m,P1,P2,...,Pm) operator below.

(1) Idempotency. If xi = x for each i, and then GMSM(m,P1,P2,...,Pm)(x, x, ..., x) = x;

(2) Monotonicity. If xi ≤ yi for all i, GMSM(m,p1,p2,...,pm)(x1, x2, ..., xn) ≤
GMSM(m,P1,P2,...,Pm)(y1, y2, . . . , yn);

(3) Boundedness. min{ x1, x2, ...xn} ≤ GMSM(m,p1,p2,...,pm){ x1, x2, ...xn} ≤ max{ x1, x2, ...xn} .

In addition, the GMSM(m,P1,P2,...,Pm) operator would degrade to some particular forms when m
takes some special values, which are shown below.

1. When m = 1, we have the formula below.

GMSM(1,P1)(x1, x2, ...xn) = (
∑1≤i1≤n xi1

p1

C1
n

)

1
p1

= (

n
∑

i=1
xi

p1

n
)

1
p1

(12)

2. When m = 2, the GMSM(m,P1,P2,...,Pm) operator would become the following BM operator.

GMSM(2,p1,p2)(x1, . . . , xn) = (
∑1≤i1<i2≤n x

p1
i1

xp2
i2

C2
n

)

1
p1+p2

= (
2∑1≤i<j≤n x

p1
i xp2

j
n(n−1) )

1
p1+p2

= (

n
∑

i.j=1,i 6=j
x

p1
i xp2

j

n(n−1) )

1
p1+p2

= BMp1,p2

(13)

3. When m = n, the MSM(m) operator would become the following formula.

GMSM(n,p1,p2,...,pn)(x1, . . . , xn) = (
n

∏
j=1

x
pj
j )

1
p1+p2+...pn

(14)

4. When p1 = p2 = ... = pm = 1, the GMSM(m,P1,P2,...,Pm) operator would degenerate to the MSM
operator and the parameter is m below.

GMSM(m,1,1,...,1)(x1, . . . , xn) = (
∑1≤i1<...<im≤n ∏m

j=1 x1
ij

Cm
n

)

1
m

= MSM(m)(x1, . . . , xn). (15)

3. INLNs and Operations

Definition 8 [16,41]. Let X be a finite universal set. An INLS in X is defined by the equation below.

A =
{

x,
〈

sθ(x), [TA(x), IA(x), FA(x)]
〉
|x ∈ X

}
(16)

where sθ(x) ∈ S, TA(x) =
[
TL

A(x), TU
A (x)

]
⊆ [0, 1], IA(x) =

[
IL
A(x), IU

A (x)
]
⊆ [0, 1], FA(x) =[

FL
A(x), FU

A (x)
]
⊆ [0, 1] represent the MD, the IMD, and the NMD of the element x in X to the LV sθ(x),

respectively, with the condition 0 ≤ TU
A (x) + IU

A (x) + FU
A (x) ≤ 3 for any x ∈ X.

Then the seven tuple
〈

sθ(x),(
[
TL

A(x), TU
A (x)

]
,
[
IL
A(x), IU

A (x)
]
,
[
FL

A(x), FU
A (x)

]
)
〉

in
A is called an INLN. For convenience, an INLN can be represented as a =〈

sθ(a), (
[
TL(a), TU(a)

]
,
[
IL(a), IU(a)

]
,
[
FL(a), FU(a)

]
)
〉

.

Then we introduced the operational rules of operators of INLNs.
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Definition 9 [16,37,42]. Let a1 =
〈

sθ(a1)
, (
[
TL(a1), TU(a1)

]
,
[
IL(a1), IU(a1)

]
,
[
FL(a1), FU(a1)

]
)
〉

and

a2 =
〈

sθ(a2)
, (
[
TL(a2), TU(a2)

]
,
[
IL(a2), IU(a2)

]
,
[
FL(a2), FU(a2)

]
)
〉

be two INLNs and λ ≥ 0. Then the
operation of the INLNs can be expressed by the equation below.

a1 ⊕ a2 =
〈

sθ(a1)+θ(a2), (
[
TL(a1) + TL(a2)− TL(a1)× TL(a2), TU(a1) + TU(a2)− TU(a1)× TU(a2)

]
,[

IL(a1)× IL(a2), IU(a1)× IU(a2)
]
,
[
FL(a1)× FL(a2), FU(a1)× FU(a2)

]
)
〉 (17)

IU(a1) + IU(a2)− IU(a1)× IU(a2)
]
,
[
FL(a1) + FL(a2)− FL(a1)× FL(a2),

a1 ⊗ a2 =
〈

sθ(a1)×θ(a2), (
[

TL(a1)× TL(a2), TU(a1)× TU(a2)
]

,
[
IL(a1) + IL(a2)− IL(a1)× IL(a2) ,

FU(a1) + FU(a2)− FU(a1)× FU(a2)
]
)
〉 (18)

λa1 =
〈

sλ×θ(a1)
, (
[
1− (1− TL(a1))

λ, 1− (1− TU(a1))
λ
]
,
[
(IL(a1))

λ, (IU(a1))
λ
]
,[

(FL(a1))
λ, (FU(a1))

λ
]
)
〉
(λ > 0)

(19)

aλ
1 = sθλ(a1)

, (
[
(TL(a1))

λ, (TU(a1))
λ
]
,
[
1− (1− IL(a1))

λ, 1− (1− IU(a1))
λ
]
,[

1− (1− FL(a1))
λ, 1− (1− FU(a1))

λ
]
)
〉

, (λ > 0)
(20)

Example 1. Let a1 = 〈s3, ([0.1, 0.2], [0.2, 0.3], [0.4, 0.5])〉 and a2 = 〈s4, ([0.3, 0.5], [0.3, 0.4], [0.5, 0.6])〉
be two INLNs and S = {s0 = very bad, s1 = bad, s2 = slightly bad, s3 = f air, s4 = slightly good,
s5 = good, s6 = very good}, then we have the equations below.

a1 ⊕ a2 = 〈s3+4, ([0.1 + 0.3− 0.1× 0.3, 0.2 + 0.5− 0.2× 0.5], [0.2× 0.3, 0.3× 0.4], [0.4× 0.5, 0.5× 0.6]〉
= 〈s7, ([0.37, 0.6], [0.06, 0.12], [0.2, 0.3]〉

a1 ⊗ a2 = 〈s3×4, ([0.1× 0.3, 0.2× 0.5] , [0.2 + 0.3− 0.2× 0.3, 0.3 + 0.4− 0.3× 0.4] ,
[0.4 + 0.5− 0.4× 0.5, 0.5 + 0.6− 0.5× 0.6])〉
= 〈s12, ([0.03, 0.1] , [0.44, 0.58], [0.7, 0.8])〉

As seen from the above examples, these results are not reasonable because they exceed the range of LTS.
In order to overcome these limitations, we will improve these operations by Definition 10.

Definition 10. Let a1 =
〈

sθ(a1)
, (
[
TL(a1), TU(a1)

]
,
[
IL(a1), IU(a1)

]
,
[
FL(a1), FU(a1)

]
)
〉

and a2 =〈
sθ(a2)

, (
[
TL(a2), TU(a2)

]
,
[
IL(a2), IU(a2)

]
,
[
FL(a2), FU(a2)

]
)
〉

be two INLNs and λ ≥ 0. Then the
operations of the INLNs can be defined by the equations below.

a1 ⊕ a2 =

〈
s

θ(a1)+θ(a2)−
θ(a1)·θ(a2)

l
, (
[
TL(a1) + TL(a2)− TL(a1)× TL(a2), TU(a1) + TU(a2)− TU(a1)× TU(a2)

]
,[

IL(a1)× IL(a2), IU(a1)× IU(a2)
]
,
[
FL(a1)× FL(a2), FU(a1)× FU(a2)

]
)
〉 (21)

a1 ⊗ a2 =

〈
s θ(a1)×θ(a2)

l
, (
[

TL(a1)× TL(a2), TU(a1)× TU(a2)
]

,
[
IL(a1) + IL(a2)− IL(a1)× IL(a2) ,

IU(a1) + IU(a2)− IU(a1)× IU(a2)
]
,
[
FL(a1) + FL(a2)− FL(a1)× FL(a2),

FU(a1) + FU(a2)− FU(a1)× FU(a2)
]
)
〉 (22)

λa1 =

〈
s

l−l·(1− θ(a1)
l )

λ , (
[
1− (1− TL(a1))

λ, 1− (1− TU(a1))
λ
]
,[

(IL(a1))
λ, (IU(a1))

λ
]
,
[
(FL(a1))

λ, (FU(a1))
λ
]
)
〉

, (λ > 0)
(23)

aλ
1 = s

l·( θ(a1)
l )

λ , (
[
(TL(a1))

λ, (TU(a1))
λ
]
,
[
1− (1− IL(a1))

λ, 1− (1− IU(a1))
λ
]
,[

1− (1− FL(a1))
λ, 1− (1− FU(a1))

λ
]
)
〉

, (λ > 0).
(24)
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Based on the operational rules above, the above example is recalculated as follow.

Example 2. Let a1 = 〈s3, ([0.1, 0.2], [0.2, 0.3], [0.4, 0.5])〉 and a2 = 〈s4, ([0.3, 0.5], [0.3, 0.4], [0.5, 0.6])〉
be two INLNs and S = {s0 = very bad, s1 = bad, s2 = slightly bad, s3 = f air, s4 = slightly good,
s5 = good, s6 = very good}, then we have the equations below.

a1 ⊕ a2 =
〈

s3+4− 3×4
6

, ([0.1 + 0.3− 0.1× 0.3, 0.2 + 0.5− 0.2× 0.5], [0.2× 0.3, 0.3× 0.4], [0.4× 0.5, 0.5× 0.6]
〉

= 〈s5, ([0.37, 0.6], [0.06, 0.12], [0.2, 0.3]〉

a1 ⊗ a2 =
〈

s 3×4
6

, ([0.1× 0.3, 0.2× 0.5] , [0.2 + 0.3− 0.2× 0.3, 0.3 + 0.4− 0.3× 0.4] ,

[0.4 + 0.5− 0.4× 0.5, 0.5 + 0.6− 0.5× 0.6])〉
= 〈s2, ([0.03, 0.1] , [0.44, 0.58], [0.7, 0.8])〉

From the above example, the results are more reasonable than the previous ones.
In the following definitions, a new scoring function and a comparison method of INLN are described.

Definition 11. [37]. Let a =
〈

sθ(a), (
[
TL(a), TU(a)

]
,
[
IL(a), IU(a)

]
,
[
FL(a), FU(a)

]
)
〉

be an INLN.
Then the score function of a can be expressed by the equation below.

S(a) = α · θ(a)
6

[
0.5(TU(a) + 1− FL(a)) + αIU(a)

]
+ (1− α) · θ(a)

6

[
0.5(TL(a) + 1− FU(a)) + αIL(a)

]
(25)

where the values of α ∈ [0, 1] reflect the attitudes of the decision makers.

Definition 12. [37]. Let a and b be two INLNs. Then the INLN comparison method can be expressed by the
statements below.

If S(a) > S(b), then a � b; (26)

If S(a) = S(b), then a ∼ b; (27)

If S(a)<(b), then a ≺ b; (28)

4. Some Interval Neutrosophic Linguistic MSM Operators

In this section, we will propose INLMSM operators and INLGMSM operators.

4.1. The INLMSM Operators

Definition 13. Let ai = 〈s θi
, ([TL(ai), TU(ai)], [IL(ai), IU(ai)], [FL(ai), FU(ai) ])〉 (i = 1, 2, ..., n) be a set

of INLNs. Then the INLMSM operator: Ωn → Ω is shown below.

INLMSM(m)(a1, . . . , an) = (

⊕
1≤i1<...<im≤n(

m
⊗

j=1
aij)

Cm
n

)

1
m

(29)

Ω is a set of INLNs and m = 1, 2, ..., n.
According to the operational laws of INLNs in Definition 10, we can get the expression of the INLMSM

operator shown below.
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Theorem 1. Let ai = 〈s θi
, ([TL(ai), TU(ai)], [IL(ai), IU(ai)], [FL(ai), FU(ai) ])〉 (i = 1, 2, ..., n) be a set of

INLNs and m = 1, 2, ..., n. Then the value aggregated from Definition 13 is still an INLN.

INLMSM(m)(a1, . . . , an) =〈
s

l·(1−∏
Cm

n
k=1 (1−∏m

j=1 (
θij

(k)

l ))

1
Cm

n
)

1
m

,



1−∏Cm

n
k=1

(
1−

m
∏
j=1

TL
ij(k)

) 1
Cm

n


1
m

,

1−∏Cm
n

k=1

(
1−

m
∏
j=1

TU
ij(k)

) 1
Cm

n


1
m
 ,

1−

1−∏Cm
n

k=1

(
1−

m
∏
j=1

(
1− IL

ij(k)

)) 1
Cm

n


1
m

, 1−

1−∏Cm
n

k=1

(
1−

m
∏
j=1

(
1− IU

ij(k)

)) 1
Cm

n


1
m
,

1−

1−∏Cm
n

k=1

(
1−

m
∏
j=1

(
1− FL

ij(k)

)) 1
Cm

n


1
m

, 1−

1−∏Cm
n

k=1

(
1−

m
∏
j=1

(
1− FU

ij(k)

)) 1
Cm

n


1
m

〉

(30)

where k = 1, 2, ...Cm
n , aij(k) is the ijth element of k th permutation.

Proof.
Because

aij(k) =
〈

sθij(k), ((T
Lij(k), TU ij(k)), (ILij(k), IU ij(k)), (FLij(k), FU ij(k)))

〉
(j = 1, 2, ..., m)

⇒
m
⊗

j=1
aij(k) =

〈
s

l·∏m
j=1 (

θij(k)
l )

,

([
m

∏
j=1

TLij(k),
m

∏
j=1

TU ij(k)

]
,

[
1−

m

∏
j=1

(
1− IL

ij(k)

)
, 1−

m

∏
j=1

(
1− IU

ij(k)

)]
,

[
1−

m

∏
j=1

(
1− FL

ij(k)

)
, 1−

m

∏
j=1

(
1− FU

ij(k)

)])〉

⇒ ⊕
1≤i1<...<im≤n

(
m
⊗

j=1
aij

)
=

〈
s

l−l·∏Cm
n

k=1 (1−∏m
j=1 (

θij(k)
l ))

,

([
1−

Cm
n

∏
k=1

(
1−

m

∏
j=1

TL
ij(k)

)
, 1−

Cm
n

∏
k=1

(
1−

m

∏
j=1

TU
ij(k)

)]
,

[
Cm

n

∏
k=1

(
1−

m

∏
j=1

(
1− IL

ij(k)

))
,

Cm
n

∏
k=1

(
1−

m

∏
j=1

(
1− IU

ij(k)

))]
,

[
Cm

n

∏
k=1

(
1−

m

∏
j=1

(
1− FL

ij(k)

))
,

Cm
n

∏
k=1

(
1−

m

∏
j=1

(
1− FU

ij(k)

))])〉

⇒


⊕
1≤i1<...<im≤n

(
m
⊗

j=1
aij

)
Cm

n


1
m

=

〈
s

l·(1−∏
Cm

n
k=1 (1−∏m

j=1 (
θij(k)

l ))

1
Cm

n )

1
m

,



1−

Cm
n

∏
k=1

(
1−

m

∏
j=1

TL
ij(k)

) 1
Cm

n


1
m

,

1−
Cm

n

∏
k=1

(
1−

m

∏
j=1

TU
ij(k)

) 1
Cm

n


1
m
 ,

1−

1−
Cm

n

∏
k=1

(
1−

m

∏
j=1

(
1− IL

ij(k)

)) 1
Cm

n


1
m

, 1−

1−
Cm

n

∏
k=1

(
1−

m

∏
j=1

(
1− IU

ij(k)

)) 1
Cm

n


1
m

,
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1−

1−
Cm

n

∏
k=1

(
1−

m

∏
j=1

(
1− FL

ij(k)

)) 1
Cm

n


1
m

, 1−

1−
Cm

n

∏
k=1

(
1−

m

∏
j=1

(
1− FU

ij(k)

)) 1
Cm

n


1
m



〉

Therefore, Theorem 1 is kept. �

Property 1. Let xi = 〈s αi
, ([TL(xi), TU(xi)], [IL(xi), IU(xi)], [FL(xi), FU(xi) ])〉 (i = 1, 2, ..., n) and

yi = 〈s βi
, ([TL(yi), TU(yi)], [IL(yi), IU(yi)], [FL(yi), FU(yi) ])〉 (i = 1, 2, ..., n) be sets of INLNs. There are

four properties of INLMSM(m) operator, which is shown below.

(1) Idempotency. If the INLNs xi = x = 〈s θx
, ([TL

x, TU
x], [IL

x, IU
x], [FL

x, FU
x ])〉 for each

i(i = 1, 2, ..., n) and then INLMSM(m) = x = 〈sθx , (Tx, Ix, Fx)〉.
(2) Commutativity. If xi is a permutation of yi for all i (i = 1, 2, ..., n) and then

INLMSM(m)(x1, x2, ..., xn) = INLMSM(m)(y1, y2, ..., yn).
(3) Monotonicity. If αi ≤ βi, TL(xi) ≤ TL(yi), TU(xi) ≤ TU(yi), IL(xi) ≥ IL(yi), IU(xi) ≥

IU(yi), FL(xi) ≥ FL(yi) and FU(xi) ≥ FU(yi) for all i (i = 1, 2, ..., n), then xi ≤ yi and
INLMSM(m)(x1, x2, ..., xn) ≤ INLMSM(m)(y1, y2, ..., yn).

(4) Boundedness. min{ x1, x2, ...xn} ≤ INLMSM(m){ x1, x2, ...xn} ≤ max{ x1, x2, ...xn} ..

Proof.

1 If each ai = x, then we get the equation below.

INLMSM(m)(x, x, ..., x) =〈
s

l·(1−∏
Cm

n
k=1 (1−∏m

j=1 (
θx
l ))

1
Cm

n )

1
m

,



1−∏Cm

n
k=1

(
1−

m
∏
j=1

TL
x

) 1
Cm

n


1
m

,

1−∏Cm
n

k=1

(
1−

m
∏
j=1

TU
x

) 1
Cm

n


1
m

 ,

1−

1−∏Cm
n

k=1

(
1−

m
∏
j=1

(
1− IL

x
)) 1

Cm
n


1
m

, 1−

1−∏Cm
n

k=1

(
1−

m
∏
j=1

(
1− IU

x
)) 1

Cm
n


1
m

,

1−

1−∏Cm
n

k=1

(
1−

m
∏
j=1

(
1− FL

x
)) 1

Cm
n


1
m

, 1−

1−∏Cm
n

k=1

(
1−

m
∏
j=1

(
1− FU

x
)) 1

Cm
n


1
m


〉

= 〈sθx , (Tx, Ix, Fx)〉 = x.

2 This property is clear and it is now omitted.
3 If αi ≤ βi, TL(xi) ≤ TL(yi), TU(xi) ≤ TU(yi), IL(xi) ≥ IL(yi), IU(xi) ≥ IU(yi), FL(xi) ≥ FL(yi)

and FU(xi) ≥ FU(yi) for all i, according to Theorem 1. Since

m
∏
j=1

αi ≤
m
∏
j=1

βi,
m
∏
j=1

TL(xi) ≤
m
∏
j=1

TL(yi),
m
∏
j=1

TU(xi) ≤
m
∏
j=1

TU(yi),
m
∏
j=1

IL(xi) ≥
m
∏
j=1

IL(yi),

m
∏
j=1

IU(xi) ≥
m
∏
j=1

IU(yi),
m
∏
j=1

FL(xi) ≥
m
∏
j=1

FL(yi),
m
∏
j=1

FU(xi) ≥
m
∏
j=1

FU(yi)

then l ·

1−
Cm

n

∏
k=1

(
1−

m

∏
j=1

αi
l

) 1
Cm

n


1
m

≤ l ·

1−
Cm

n

∏
k=1

(
1−

m

∏
j=1

βi
l

) 1
Cm

n


1
m

,

1−
Cm

n

∏
k=1

(
1−

m

∏
j=1

TL(xi)

) 1
Cm

n


1
m

≤

1−
Cm

n

∏
k=1

(
1−

m

∏
j=1

TL(yi)

) 1
Cm

n


1
m

,
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1−
Cm

n

∏
k=1

(
1−

m

∏
j=1

TU(xi)

) 1
Cm

n


1
m

≤

1−
Cm

n

∏
k=1

(
1−

m

∏
j=1

TU(yi)

) 1
Cm

n


1
m

,

1−

1−
Cm

n

∏
k=1

(
1−

m

∏
j=1

(
1− IL(xi)

)) 1
Cm

n


1
m

≥ 1−

1−
Cm

n

∏
k=1

(
1−

m

∏
j=1

(
1− IL(yi)

)) 1
Cm

n


1
m

,

1−

1−
Cm

n

∏
k=1

(
1−

m

∏
j=1

(
1− IU(xi)

)) 1
Cm

n


1
m

≥ 1−

1−
Cm

n

∏
k=1

(
1−

m

∏
j=1

(
1− IU(yi)

)) 1
Cm

n


1
m

,

1−

1−
Cm

n

∏
k=1

(
1−

m

∏
j=1

(
1− FL(xi)

)) 1
Cm

n


1
m

≥ 1−

1−
Cm

n

∏
k=1

(
1−

m

∏
j=1

(
1− FL(yi)

)) 1
Cm

n


1
m

,

1−

1−
Cm

n

∏
k=1

(
1−

m

∏
j=1

(
1− FU(xi)

)) 1
Cm

n


1
m

≥ 1−

1−
Cm

n

∏
k=1

(
1−

m

∏
j=1

(
1− FU(yi)) )

1
Cm

n
)

1
m

.

Therefore, we can get the following conclusion.

INLMSM(m)(x1, x2, ..., xn) ≤ INLMSM(m)(y1, y2, ..., yn)

4 According to the idempotency, let min{ x1, x2, ...xn} = xa = INLMSM(m)(xa, xa, ..., xa)

and max{ x1, x2, ...xn} = xb = INLMSM(m)(xb, xb, ..., xb). According to the monotonicity,
if xa ≤ xi and xb ≥ xi for all i, then we have xa = INLMSM(m)(xa, xa, ..., xa) ≤
INLMSM(m)(x1, x2, ..., xn) and

INLMSM(m)(x1, x2, ..., xn) ≤ xb = INLMSM(m)(xb, xb, ..., xb).

Therefore, we can get the conclusion below.

min{ x1, x2, ...xn} ≤ INLMSM(m){ x1, x2, ...xn} ≤ max{ x1, x2, ...xn} .

Furthermore, the INLMSM(m) operator would degrade to some particular forms when m takes
some special values.

(1) When m = 1, we have the formula below.

INLMSM(1)(x1, x2, ...xn) =
(⊕n

i=1xi
C1

n

)
=〈

s
l·(1−∏n

k=1 (1−
k
l )

1
n )

,
([

1−∏n
k=1 (1− TL

k)
1
n , 1−∏n

k=1 (1− TU
k)

1
n

]
,[

∏n
k=1 (IL

k)
1
n , ∏n

k=1 (IU
k)

1
n

]
,
[

∏n
k=1 (FL

k)
1
n , ∏n

k=1 (FU
k)

1
n

])〉 (31)
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(2) When m = 2, we have the formula below.

INLMSM(2)(x1, x2, ...xn) =〈
s

l·(1−∏
C2

n
k=1 (1−(

θi1 (k)
l )·( θi2 (k)

l ))

1
C2

n )

1
2

,

(1−∏C2
n

k=1

(
1− TL

i1(k) · T
L

i2(k)

) 1
C2

n

) 1
2

,

(
1−∏C2

n
k=1

(
1− TU

i1(k) · T
U

i2(k)

) 1
C2

n

) 1
2
 ,

[
1−

(
1−∏

C2
n

k=1

(
1−

(
1− IL i1 (k)

)
·
(
1− IL i2 (k)

)) 1
C2

n

) 1
2

, 1−
(

1−∏
C2

n
k=1

(
1−

(
1− IU i1 (k)

)
·
(
1− IU i2 (k)

)) 1
C2

n

) 1
2
]

,[
1−

(
1−∏C2

n
k=1

(
1−

(
1− FL i1 (k)

)
·
(
1− FL i2 (k)

)) 1
C2

n

) 1
2

, 1−
(

1−∏C2
n

k=1

(
1−

(
1− FU i1 (k)

)
·
(
1− FU i2 (k)

)) 1
C2

n

) 1
2
]〉

(32)

(3) When m = n, the INLMSM(m) operator would reduce to the following form.

INLMSM(n)(x1, . . . , xn) =〈
s

l·(∏n
j=1 (

θj
l ))

1
n

,
([(

∏n
j=1 TL

j

) 1
n ,
(

∏n
j=1 TU

j

) 1
n
]

,

1−
(

n
∏
j=1

(
1− IL

j
)) 1

n

, 1−
(

n
∏
j=1

(
1− IU

j
)) 1

n
,1−

(
n
∏
j=1

(
1− FL

j
)) 1

n

, 1−
(

n
∏
j=1

(
1− FU

j
)) 1

n
〉

(33)

�

Definition 14. Let ai = 〈s θi
, ([TL(ai), TU(ai)], [IL(ai), IU(ai)], [FL(ai), FU(ai) ])〉 (i = 1, 2, ..., n) be a set

of INLNs. Then the INLGMSM operator: Ωn → Ω is shown below.

INLGMSM(m,p1,p2,...,pm)(a1, . . . , an) =


⊕
1≤i1<...<im≤n

(
m
⊗

j=1
a

pj
ij

)
Cm

n


1

p1+p2+...+pm

, (34)

Ω is a set of INLNs and m = 1, 2, ..., n.
According to the operational laws of INLNs in Definition 10, we can get the expression of the INLMSM

operator shown below.

Theorem 2. Let ai = 〈s θi
, ([TL(ai), TU(ai)], [IL(ai), IU(ai)], [FL(ai), FU(ai) ])〉 (i = 1, 2, ..., n) be a set of

INLNs and m = 1, 2, ..., n. Then the value aggregated from Definition 14 is still an INLN.

INLGMSM(m,p1,p2,...,pm )(a1, . . . , an) =

〈
s

l·(1−∏
Cm

n
k=1 (1−∏m

j=1 (
θij (k)

l )

pj
)

1
Cm

n )

1
p1+p2+...+pm

,



1−∏

Cm
n

k=1

(
1−

m
∏
j=1

(
TL

ij (k)

)pj
) 1

Cm
n


1

p1+p2+...+pm

,

1−∏
Cm

n
k=1

(
1−

m
∏
j=1

(
TU

ij (k)

)pj
) 1

Cm
n


1

p1+p2+...+pm
,

1−

1−∏
Cm

n
k=1

(
1−

m
∏
j=1

(
1− IL

ij (k)

)pj
) 1

Cm
n


1

p1+p2+...+pm

,

1−

1−∏
Cm

n
k=1

(
1−

m
∏
j=1

(
1− IU

ij (k)

)pj
) 1

Cm
n


1

p1+p2+...+pm
,

1−

1−∏
Cm

n
k=1

(
1−

m
∏
j=1

(
1− FL

ij (k)

)pj
) 1

Cm
n


1

p1+p2+...+pm

, 1−

1−∏
Cm

n
k=1

(
1−

m
∏
j=1

(
1− FU

ij (k)

)pj
) 1

Cm
n


1

p1+p2+...+pm


〉

(35)
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where k = 1, 2, ...Cm
n , aij(k) is the ijth element of k jth permutation. Therefore, Theorem 2 is kept. The process of

proof is similar to Theorem 1 and is now omitted.

Property 2. Let xi = 〈s αi
, ([TL(xi), TU(xi)], [IL(xi), IU(xi)], [FL(xi), FU(xi) ])〉 (i = 1, 2, ..., n) and

yi = 〈s βi
, ([TL(yi), TU(yi)], [IL(yi), IU(yi)], [FL(yi), FU(yi) ])〉 (i = 1, 2, ..., n) be two sets of INLNs.

There are four properties of INLGMSM(m,p1,p2,...,pm) operator shown as follows.

1 Idempotency. If the INLNs xi = x = 〈s θx
, ([TL

x, TU
x], [IL

x, IU
x], [FL

x, FU
x ])〉 for each

i(i = 1, 2, ..., n) and then INLGMSM(m,p1,p2,...,pm) = x = 〈sθx , (Tx, Ix, Fx)〉.
2 Commutativity. If xi is a permutation of yi for all I (i = 1, 2, ..., n), and then

INLGMSM(m,p1,p2,...,pm)(x1, x2, ..., xn) = INLGMSM(m,p1,p2,...,pm)(y1, y2, ..., yn).
3 Monotonicity. If αi ≤ βi, TL(xi) ≤ TL(yi), TU(xi) ≤ TU(yi), IL(xi) ≥ IL(yi), IU(xi) ≥

IU(yi), FL(xi) ≥ FL(yi) and FU(xi) ≥ FU(yi) for all i (i = 1, 2, ..., n), then xi ≤ yi and
INLGMSM(m,p1,p2,...,pm)(x1, x2, ..., xn) ≤ INLGMSM(m,p1,p2,...,pm)(y1, y2, ..., yn).

4 Boundedness. min{ x1, x2, ...xn} ≤ INLGMSM(m,p1,p2,...,pm){ x1, x2, ...xn} ≤ max{ x1, x2, ...xn} .

The proofs are similar to Property 1, which are now omitted.
Furthermore, the INLGMSM(m,p1,p2,...,pm) operator would degrade to some particular forms when

m takes some special values.
(1) When m = 1, we have the following formula.

INLGMSM(1)(x1, x2, ..., xn) =

(
⊕n

i=1xiP1

C1
n

)
1

P1 =〈
s

l·(1−∏n
k=1 (1−(

k
l )

p1 )
1
n )

1
P1

,

(1−∏n
k=1

(
1−

(
TL

k
)p1
) 1

n
) 1

P1
,
(

1−∏n
k=1

(
1−

(
TU

k
)p1
) 1

n
) 1

P1

 ,1−
(

1−∏n
k=1

(
1−

(
1− ILi1 (k)

)p1
) 1

n
) 1

p1
, 1−

(
1−∏n

k=1

(
1−

(
1− IU i1 (k)

)p1
) 1

n
) 1

p1

,1−
(

1−∏n
k=1

(
1−

(
1− FLi1 (k)

)p1
) 1

n
) 1

p1
, 1−

(
1−∏n

k=1

(
1−

(
1− FU i1 (k)

)p1
) 1

n
) 1

p1

〉
(36)

(2) When m = 2, we have the following formula.

INLMSM(2)(x1, x2, ..., xn) =〈
s

l·(1−∏
C2

n
k=1 (1−(

θi1 (k)
l )

p1 ·( θi2 (k)
l )

p2 )

1
C2

n )

1
p1+p2

,
(1−∏C2

n
k=1

(
1−

(
TL

i1(k)

)P1 ·
(

TL
i2(k)

)P2
) 1

C2
n

) 1
p1+p2

,

(
1−∏C2

n
k=1

(
1−

(
TU

i1(k)

)P1 ·
(

TU
i2(k)

)P2
) 1

C2
n

) 1
p1+p2

1−
(

1−∏C2
n

k=1

(
1−

(
1− ILi1 (k)

)P1 ·
(
1− ILi2 (k)

)P2
) 1

C2
n

) 1
p1+p2

,

1−
(

1−∏C2
n

k=1

(
1−

(
1− IU i1 (k)

)P1 ·
(
1− IU i2 (k)

)P2
) 1

C2
n

) 1
p1+p2

,1−
(

1−∏C2
n

k=1

(
1−

(
1− FLi1 (k)

)P1 ·
(
1− FLi2 (k)

)P2
) 1

C2
n

) 1
p1+p2

,

1−
(

1−∏C2
n

k=1

(
1−

(
1− FU i1 (k)

)P1 ·
(
1− FU i2 (k)

)P2
) 1

C2
n

) 1
p1+p2

〉

(37)

When m = 2, the INLGMSM(m,p1,p2,...,pm) operator would reduce to the BM for INLNs
(INLGBM) operator.
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(3) When m = n, the INLMSM(m) operator would reduce to the form below.

INLGMSM(n,p1 ,p2 ,...,pm)(a1, . . . , an) =〈
s

l·(∏n
j=1 (

θj (k)

l )
pj
)

1
p1+p2+...+pn

,

( n
∏
j=1

(
TL

ij(k)

)pj

) 1
p1+p2+...+pn

,

(
n
∏
j=1

(
TU

ij(k)

)pj

) 1
p1+p2+...+pn

,1−
(

m
∏
j=1

(
1− IL

ij(k)

)pj

) 1
p1+p2+...+pn

, 1−
(

m
∏
j=1

(
1− IU

ij(k)

)pj

) 1
p1+p2+...+pm

,1−
(

m
∏
j=1

(
1− FL

ij(k)

)pj

) 1
p1+p2+...+pn

, 1−
(

m
∏
j=1

(
1− FU

ij(k)

)pj

) 1
p1+p2+...+pn

〉

(38)

4.2. Some Weighted INLMSM Operators

We will introduce two operators, which are the weighted forms of the INLMSM operator and
INLGMSM operator.

Definition 15. Let ai = 〈s θi
, ([TL(ai), TU(ai)], [IL(ai), IU(ai)], [FL(ai), FU(ai) ])〉 i (i = 1, 2, ..., n) be

a set of INLNs. Let ω = (ω1, ω2, ..., ωn) T is the weight vector and satisfies ∑n
i=1 ωi = 1 with ωi >

0 (i = 1, 2, ..., n). Each ωi represents the importance of ai. Then the WINLMSM operator: Ωn → Ω is
defined below.

WINLMSM(m)(a1, . . . , an) =


⊕
1≤i1<...<im≤n

(
m
⊗

j=1

(
nωij

)
aij

)
Cm

n


1
m

, (39)

Ω is a set of INLNs and m = 1, 2, ..., n.
According to the operational laws of INLNs in Definition 10, we can get the expression of the WINLMSM

operator, which is shown below.

Theorem 3. Let ai = 〈s θi
, ([TL(ai), TU(ai)], [IL(ai), IU(ai)], [FL(ai), FU(ai) ])〉 i (i = 1, 2, ..., n) be a set of

INLNs and m = 1, 2, ..., n, then the value aggregated from Definition 15 is still a WINLMSM operator.

WINLMSM(m)(a1, . . . , an) =

〈
s

l·(1−∏
Cm

n
k=1 (1−∏m

j=1 (1−(1−
θij (k)

l )

n·ωij
))

1
Cm

n )

1
m

,



1−∏

Cm
n

k=1

(
1−

m
∏
j=1

(
1−

(
1− TL

ij (k)

)n·ωij
)) 1

Cm
n


1
m

,

1−∏
Cm

n
k=1

(
1−

m
∏
j=1

(
1−

(
1− TU

ij (k)

)n·ωij
)) 1

Cm
n


1
m
,

1−

1−∏
Cm

n
k=1

(
1−

m
∏
j=1

(
1−

(
IL

ij (k)

)n·ωij
)) 1

Cm
n


1
m

,

1−

1−∏
Cm

n
k=1

(
1−

m
∏
j=1

(
1−

(
IU

ij (k)

)n·ωij
)) 1

Cm
n


1
m
,

1−

1−∏
Cm

n
k=1

(
1−

m
∏
j=1

(
1−

(
FL

ij (k)

)n·ωij
)) 1

Cm
n


1
m

, 1−

1−∏
Cm

n
k=1

(
1−

m
∏
j=1

(
1−

(
FU

ij (k)

)n·ωij
)) 1

Cm
n


1
m


〉

(40)

where k = 1, 2, ..., Cm
n , aij(k) is the ijth element of kth permutation. The process of proof is similar to Theorem 1.

Now it is omitted.



Symmetry 2018, 10, 127 14 of 23

Property 3. Let xi = 〈s αi
, ([TL(xi), TU(xi)], [IL(xi), IU(xi)], [FL(xi), FU(xi) ])〉 (i = 1, 2, ..., n) and yi =

〈s βi
, ([TL(yi), TU(yi)], [IL(yi), IU(yi)], [FL(yi), FU(yi) ])〉 (i = 1, 2, ..., n) be sets of INLNs. There are some

properties of the WINLMSM(m) operator as shown below.

1 Reducibility. When ω = ( 1
n , 1

n , ..., 1
n ) , then WINLMSM(m)(a1, a2, ..., an) =

INLMSM(m)(a1, a2, ..., an).
2 Monotonicity. If αi ≤ βi, TL(xi) ≤ TL(yi), TU(xi) ≤ TU(yi), IL(xi) ≥ IL(yi), IU(xi) ≥

IU(yi), FL(xi) ≥ FL(yi) and FU(xi) ≥ FU(yi) for all i (i = 1, 2, ..., n), then xi ≤ yi and
WINLMSM(m)(x1, x2, ..., xn) ≤WINLMSM(m)(y1, y2, ..., yn).

3 Boundedness. min{ x1, x2, ...xn} ≤WINLMSM(m){ x1, x2, ...xn} ≤ max{ x1, x2, ...xn} .

Proof.

1 If ω = ( 1
n , 1

n , ..., 1
n ) , then WINLMSM(m)(a1, a2, ..., an) =

〈
s

l·(1−∏
Cm

n
k=1 (1−∏m

j=1 (1−(1−
θij (k)

l )
n· 1

n
))

1
Cm

n
)

1
m

,



1−∏Cm

n
k=1

(
1−

m
∏
j=1

(
1−

(
1− TL

ij(k)

))) 1
Cm

n


1
m

,

1−∏Cm
n

k=1

(
1−

m
∏
j=1

(
1−

(
1− TU

ij(k)

))) 1
Cm

n


1
m

,

1−

1−∏Cm
n

k=1

(
1−

m
∏
j=1

(
1−

(
IL

ij(k)

))) 1
Cm

n


1
m

, 1−

1−∏Cm
n

k=1

(
1−

m
∏
j=1

(
1−

(
IU

ij(k)

))) 1
Cm

n


1
m

1−

1−∏Cm
n

k=1

(
1−

m
∏
j=1

(
1−

(
FL

ij(k)

))) 1
Cm

n


1
m

, 1−

1−∏Cm
n

k=1

(
1−

m
∏
j=1

(
1−

(
FU

ij(k)

))) 1
Cm

n


1
m



〉
= INLMSM(m) (a1, a2, ..., an).

2 The proofs of Monotonicity and Boundedness are similar to Property 1, which are now omitted.

Furthermore, the WINLMSM(m) operator would degrade a particular form when m takes some
special values.

(1) When m = 1, we have the formula below.

WINLMSM(1)(a1 , . . . , an) =〈
s
l·(1−∏n

i=1 (1− θi
l )

ωi
)

,
([(

1−∏n
i=1

(
1− TL

i

)ωi
)

,
(

1−∏n
i=1

(
1− TU

i

)ωi
)]

,[
∏n

i=1

(
IL
i

)ωi , ∏n
i=1

(
IU
i

)ωi
]
,
[
∏n

i=1

(
FL

i

)ωi , ∏n
i=1

(
FU

i

)ωi
])〉 (41)

(2) When m = 2, we have the formula below.

WINLMSM(2) (a1, . . . , an ) =

〈
s

l·(1−∏
C2

n
k=1 (1−(1−(1− θi1(k)

l )
n·ωi1 )·(1−(1− θi2(k)

l )
n·ωi2 ))

1
C2

n )

1
2

,



1−∏

C2
n

k=1

(
1−

(
1−

(
1− TL

i1(k)

)n·ωi1
)
·
(

1−
(

1− TL
i2(k)

)n·ωi2
)) 1

C2
n


1
2

,

1−∏
C2

n
k=1

(
1−

(
1−

(
1− TU

i1(k)

)n·ωi1
)
·
(

1−
(

1− TU
i2(k)

)n·ωi2
)) 1

C2
n


1
2
,

1−

1−∏
C2

n
k=1

(
1−

(
1−

(
IL
i1(k)

)n·ωi1
)
·
(

1−
(

IL
i2(k)

)n·ωi2
)) 1

C2
n


1
2

,

1−

1−∏
C2

n
k=1

(
1−

(
1−

(
IU
i1(k)

)n·ωi1
)
·
(

1−
(

IU
i2(k)

)n·ωi2
)) 1

C2
n


1
2
,

1−

1−∏
C2

n
k=1

(
1−

(
1−

(
FL
i1(k)

)n·ωi1
)
·
(

1−
(

FL
i2(k)

)n·ωi2
)) 1

C2
n


1
2

,

1−

1−∏
C2

n
k=1

(
1−

(
1−

(
FU
i1(k)

)n·ωi1
)
·
(

1−
(

FU
i2(k)

)n·ωi2
)) 1

C2
n


1
2


〉

(42)
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(3) When m = n, we have the formula below.

WINLMSM(n)(a1, . . . , an) =

〈
s

l·(∏n
j=1 (1−(1−

θj
l )

n·ωj
))

1
n

,


( n

∏
j=1

(
1−

(
1− TL

j

)n·ωj
)) 1

n

,

(
n
∏
j=1

(
1−

(
1− TU

j

)n·ωj
)) 1

n
,

1−
(

n
∏
j=1

(
1−

(
IL
j

)n·ωj
)) 1

n

, 1−
(

n
∏
j=1

(
1−

(
IU
j

)n·ωj
)) 1

n
,

1−
(

n
∏
j=1

(
1−

(
FL

j

)n·ωj
)) 1

n

, 1−
(

n
∏
j=1

(
1−

(
FU

j

)n·ωj
)) 1

n

〉.

(43)

�

Definition 16. Let ai = 〈s θi
, ([TL(ai), TU(ai)], [IL(ai), IU(ai)], [FL(ai), FU(ai) ])〉 i (i = 1, 2, ..., n) be

a set of INLNs. Let ω = (ω1, ω2, ..., ωn) T is the weight vector and it satisfies ∑n
i=1 ωi = 1 with

ωi > 0 (i = 1, 2, ..., n). Each ωi represents the importance of ai. Then the WINLGMSM operator:
Ωn → Ω is defined below.

WINLGMSM(m,p1,p2,...pm)(a1, . . . , an) =


⊕
1≤i1<...<im≤n

(
m
⊗

j=1

(
nωij · aij

)pj
)

Cm
n


1

p1+p2+...+pm

(44)

Ω is a set of INLNs and m = 1, 2, ..., n.
According to the operational laws of INLNs in Definition 10, we can get the expression of WINLMSM

operator shown below.

Theorem 4. Let ai = 〈s θi
, ([TL(ai), TU(ai)], [IL(ai), IU(ai)], [FL(ai), FU(ai) ])〉 i (i = 1, 2, ..., n) be a set of

INLNs and m = 1, 2, ..., n. Then the value aggregated from Definition 16 is still an WINLGMSM.

WINLGMSM(m,p1,p2,...,pm )(a1, . . . , an) =

〈
s

l·(1−∏
Cm

n
k=1 (1−∏m

j=1 (1−(1−
θij

(k)

l )

n·ωij
)

pj
)

1
Cm

n
)

1
p1+p2+...+pm

,



1−∏

Cm
n

k=1

(
1−

m
∏
j=1

(
1−

(
1− TL ij (k)

)n·ωij
)pj
) 1

Cm
n


1

p1+p2+...+pm

,

1−∏
Cm

n
k=1

(
1−

m
∏
j=1

(
1−

(
1− TU ij (k)

)n·ωij
)pj
) 1

Cm
n


1

p1+p2+...+pm
,

1−

1−∏
Cm

n
k=1

(
1−

m
∏
j=1

(
1−

(
IL ij (k)

)n·ωij
)pj
) 1

Cm
n


1

p1+p2+...+pm

,

1−

1−∏
Cm

n
k=1

(
1−

m
∏
j=1

(
1−

(
IU ij (k)

)n·ωij
)pj
) 1

Cm
n


1

p1+p2+...+pm
,

1−

1−∏
Cm

n
k=1

(
1−

m
∏
j=1

(
1−

(
FL ij (k)

)n·ωij
)pj
) 1

Cm
n


1

p1+p2+...+pm

,

1−

1−∏
Cm

n
k=1

(
1−

m
∏
j=1

(
1−

(
FU ij (k)

)n·ωij
)pj
) 1

Cm
n


1

p1+p2+...+pm


〉

(45)

where k = 1, 2, ..., Cm
n , aij(k) is the ijth element of kth permutation. The process of proof is similar to Theorem 1.

It is now omitted.
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Property 4. Let xi = 〈s αi
, ([TL(xi), TU(xi)], [IL(xi), IU(xi)], [FL(xi), FU(xi) ])〉 (i = 1, 2, ..., n) and

yi = 〈s βi
, ([TL(yi), TU(yi)], [IL(yi), IU(yi)], [FL(yi), FU(yi) ])〉 (i = 1, 2, ..., n) be two sets of INLNs.

There are some properties of the WINLGMSM(m,p1,p2,...,pm) operator shown below.

1 Reducibility. When ω = ( 1
n , 1

n , ..., 1
n ) . Additionally, WINLGMSM(m,p1,p2,...,pm)(a1, a2, ..., an) =

INLGMSM(m,p1,p2,...,pm)(a1, a2, ..., an).
2 Monotonicity. If αi ≤ βi, TL(xi) ≤ TL(yi), TU(xi) ≤ TU(yi), IL(xi) ≥ IL(yi), IU(xi) ≥

IU(yi), FL(xi) ≥ FL(yi) and FU(xi) ≥ FU(yi) for all i (i = 1, 2, ..., n), then xi ≤ yi and
WINLGMSM(m,p1,p2,...,pm)(x1, x2, ..., xn) ≤WINLGMSM(m,p1,p2,...,pm)(y1, y2, ..., yn).

3 Boundedness. min{ x1, x2, ...xn} ≤ WINLGMSMSM(m,p1,p2,...,pm){ x1, x2, ...xn} ≤
max{ x1, x2, ...xn} .

The process of proof is similar to Property 3 and is now omitted.
Furthermore, the WINLGMSM(m,p1,p2,...,pm) operator would degrade some particular forms when

m takes some special values.
(1) When m = 1, we have the following formula.

WINLGMSM(1,p1)(a1, . . . , an) =

〈
s

l·(1−∏n
k=1 (1−(1−(1−

θ1(k)
l )

n·ω1 )
p1

)

1
n
)

1
p1

,


(1−∏n

k=1

(
1−

(
1−

(
1− TL

ij(k)

)n·ω1
)p1
) 1

n
) 1

p1

,

1−∏n
k=1

(
1−

(
1−

(
1− TU

ij(k)

)n·ω1
)p1

) 1
n


1
p1

,

1−
(

1−∏n
k=1

(
1−

(
1−

(
IL
ij(k)

)n·ω1
)p1
) 1

n
) 1

p1

, 1−

1−∏n
k=1

(
1−

(
1−

(
IU
ij(k)

)n·ω1
)p1

) 1
n


1
p1

,

1−
(

1−∏n
k=1

(
1−

(
1−

(
FL

ij(k)

)n·ω1
)p1
) 1

n
) 1

p1

, 1−

1−∏n
k=1

(
1−

(
1−

(
FU

ij(k)

)n·ω1
)p1

) 1
n


1
p1



〉

(46)

(2) When m = 2, we have the formula below.

WINLGMSM(2,p1 ,p2)(a1, . . . , an) =

〈
s

l·(1−∏
C2

n
k=1 (1−(1−(1−

θi1(k)
l )

n·ωi1 )
p1
·(1−(1− θi2(k)

l )
n·ωi2 )

p2
)

1
C2

n )

1
p1+p2

,


(1−∏C2

n
k=1

(
1−

(
1−

(
1− TL

i1(k)

)n·ωi1
)p1
·
(

1−
(

1− TL
i2(k)

)n·ωi2
)p2
) 1

C2
n

) 1
p1+p2

,

(
1−∏C2

n
k=1

(
1−

(
1−

(
1− TU

i1(k)

)n·ωi1
)p1
·
(

1−
(

1− TU
i2(k)

)n·ωi2
)p2
) 1

C2
n

) 1
p1+p2

,

1−
(

1−∏C2
n

k=1

(
1−

(
1−

(
IL
i1(k)

)n·ωi1
)p1
·
(

1−
(

IL
i2(k)

)n·ωi2
)p2
) 1

C2
n

) 1
p1+p2

,

1−
(

1−∏C2
n

k=1

(
1−

(
1−

(
IU
i1(k)

)n·ωi1
)p1
·
(

1−
(

IU
i2(k)

)n·ωi2
)p2
) 1

C2
n

) 1
p1+p2

,

1−
(

1−∏C2
n

k=1

(
1−

(
1−

(
FL

i1(k)

)n·ωi1
)p1
·
(

1−
(

FL
i2(k)

)n·ωi2
)p2
) 1

C2
n

) 1
p1+p2

,

1−
(

1−∏C2
n

k=1

(
1−

(
1−

(
FU

i1(k)

)n·ωi1
)p1
·
(

1−
(

FU
i2(k)

)n·ωi2
)p2
) 1

C2
n

) 1
p1+p2


〉

(47)
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(3) When m = n, we have the formula below.

WINLGMSM(n,p1,p2,...,pn)(a1, . . . , an) =

〈
s

l·(∏n
j=1 (1−(1−

θj
l )

n·ωj
)

pj
)

1
p1+p2+...+pn

,( n
∏
j=1

(
1−

(
1− TL

j

)n·ωj
)pj

) 1
p1+p2+...+pn

,

(
n
∏
j=1

(
1−

(
1− TU

j

)n·ωj
)pj

) 1
p1+p2+...+pn

,1−
(

n
∏
j=1

(
1−

(
IL
j

)n·ωj
)pj

) 1
p1+p2+...+pn

, 1−
(

n
∏
j=1

(
1−

(
IU
j

)n·ωj
)pj

) 1
p1+p2+...+pn

,1−
(

n
∏
j=1

(
1−

(
FL

j

)n·ωj
)pj

) 1
p1+p2+...+pn

, 1−
(

n
∏
j=1

(
1−

(
FU

j

)n·ωj
)pj

) 1
p1+p2+...+pn

〉
(48)

5. MADM Method Based on INLMSM Operator

In this section, we introduce the MADM method based on the WINLMSM and WINLGMSM
operators. Let d = {d1, d2, ..., dm} be a collection of alternatives and c = {c1, c2, ..., cn}
is a collection of n criteria. The weight vector is ω = (ω1, ω2, ..., ωn)

T with satisfying
∑n

i=1 ωi = 1(ωi ≥ 0, i = 1, 2, ..., n), and each ωi represents the importance of cj. The performance
of alternative dj in criteria cj is surveyed by INLNs and the decision matrix is A = (aij)m×n,
where aij = 〈s θij

, ([TL(rij), TU(rij)], [IL(rij), IU(rij)], [FL(rij), FU(rij) ])〉. The objective is to rank
the alternatives.

The detailed steps are shown below.

Step 1 Normalize the decision matrix.

We should normalize the decision-making information in the matrix. The benefit (the bigger
the better) and the cost (the smaller the better) are the two possible types. In order to keep the
consistency of the types, it is necessary to convert the decision matrix A into a standardized
matrix R = (rij)m× n.

If cj is cost type, then rij = 〈s θij
, ([FL(rij), FU(rij)], [1− IU(rij), 1− IL(rij)][TL(rij), TU(rij)])

〉
else rij = 〈s θij

, ([TL(rij), TU(rij)], [IL(rij), IU(rij)], [FL(rij), FU(rij) ])〉.

Step 2 Aggregate the criterion values of each alternative. We would use Definition 15 and
Definition 16 to aggregate rij(j = 1, 2, ..., n) of the ith alternative and get the overall value ri.

Step 3 Calculate the score values of ri(i = 1, 2, ..., m) according to Definition 11. If two score values
are equal, then calculate the accuracy values and certainty values.

Step 4 According to Step 3 and Definition 12, rank the alternatives.

6. Illustrative Example

There are many decision-making problems to be solved in the current society, which requires
some decision-making methods.

In this section, we investigate an example (adapted from Ref [43]) about the MADM.
In a MADM problem, there are four possible alternatives for an investment company including
a car company (A1), a food company (A2), a computer company (A3), and an arms company (A4).
The following three attributes can be used to evaluate alternatives by the investment company:
the risk (C1), the growth (C2), and the environmental impact (C3) where C1 and C2 are benefit
types and C3 is cost type. Then the evaluation values of alternatives are shown in Table 1 where
the LTS is S = {s0 = extremely poor(EP), s1 = very poor(VP), s2 = poor(P), s3 = medium(M),
s4 = good(G), s5 = very good(VG), s6 = extremely good(EG)}, and the weight vector of criteria
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is ω = (0.35, 0.25, 0.4)T . Now we will use the method proposed in this paper, according to the above
LTs and three criteria. Then we evaluate and sort the four options in Table 1.

Table 1. Evaluation values of alternatives.

C1 C2 C3

A1 〈s5, ([0.4, 0.5], [0.2, 0.3], [0.3, 0.4])〉 〈s6, ([0.4, 0.6], [0.1, 0.2], [0.2, 0.4])〉 〈s5, ([0.2, 0.3], [0.1, 0.2], [0.5, 0.6])〉
A2 〈s6, ([0.5, 0.7], [0.1, 0.2], [0.2, 0.3])〉 〈s5, ([0.6, 0.7], [0.1, 0.2], [0.2, 0.3])〉 〈s5, ([0.5, 0.7], [0.2, 0.2], [0.1, 0.2])〉
A3 〈s6, ([0.3, 0.5], [0.1, 0.2], [0.3, 0.4])〉 〈s5, ([0.5, 0.6], [0.1, 0.3], [0.3, 0.4])〉 〈s4([0.5, 0.6], [0.1, 0.3], [0.1, 0.3])〉
A4 〈s4, ([0.7, 0.8], [0.0, 0.1], [0.1, 0.2])〉 〈s4, ([0.5, 0.7], [0.1, 0.2], [0.2, 0.3])〉 〈s6([0.3, 0.4], [0.1, 0.2], [0.1, 0.2])〉

6.1. The Method Based on the WINLMSM Operator

Generally, we can give m = n
2 , so m = 1 and m = 2. Then, according to Section 5, we have the

statements below.

(1) When m = 1, the steps are shown below.

Step 1 Normalize the decision matrix.

From the example, the risk (C1) and the growth (C2) are benefit types while the environmental
impact (C3) is cost type. We set up the decision matrix as shown below.

R =


〈s5, ([0.4, 0.5], [0.2, 0.3], [0.3, 0.4])〉 〈s6, ([0.4, 0.6], [0.1, 0.2], [0.2, 0.4])〉
〈s6, ([0.5, 0.7], [0.1, 0.2], [0.2, 0.3])〉 〈s5, ([0.6, 0.7], [0.1, 0.2], [0.2, 0.3])〉
〈s6, ([0.3, 0.5], [0.1, 0.2], [0.3, 0.4])〉 〈s5, ([0.5, 0.6], [0.1, 0.3], [0.3, 0.4])〉
〈s4, ([0.7, 0.8], [0.0, 0.1], [0.1, 0.2])〉 〈s4, ([0.5, 0.7], [0.1, 0.2], [0.2, 0.3])〉

〈s5, ([0.2, 0.3], [0.1, 0.2], [0.5, 0.6])〉
〈s5, ([0.5, 0.7], [0.2, 0.2], [0.1, 0.2])〉
〈s4([0.5, 0.6], [0.1, 0.3], [0.1, 0.3])〉
〈s6([0.3, 0.4], [0.1, 0.2], [0.1, 0.2])〉


Step 2 Aggregate all attribute values of each alternative and get the overall value of each alternative
ai denoted as ri(i = 1, 2, 3, 4).

r1 = 〈s6, ([0.3268, 0.4590], [0.1275, 0.2305], [0.3325, 0.4704])〉,
r2 = 〈s6, ([0.5271, 0.7000], [0.1320, 0.2000], [0.1516, 0.2551])〉,
r3 = 〈s6, ([0.4375, 0.5675], [0.1000, 0.2603], [0.1933, 0.3565])〉,
r4 = 〈s6, ([0.5216, 0.6565], [0.0000, 0.1569], [0.1189, 0.2213])〉

Step 3 According to Definition 11, we assume α = 0.7 and calculate the score values of
ri(i = 1, 2, 3, 4) below.

S(r1)
= s0.6228, S(r2)

= s0.8306, S(r3)
= s0.7462, S(r4)

= s0.7778

Step 4 According to Step 3 and Definition 12, we would get the ranking of the alternatives, which are
A2 � A4 � A3 � A1.

(2) When m = 2, the steps are shown below.

Step 1 Normalize the decision matrix.

From the example, the risk (C1) and the growth (C2) are benefit types while the environmental
impact (C3) is cost type. We set up the decision matrix as shown below.

R =


〈s5, ([0.4, 0.5], [0.2, 0.3], [0.3, 0.4])〉 〈s6, ([0.4, 0.6], [0.1, 0.2], [0.2, 0.4])〉
〈s6, ([0.5, 0.7], [0.1, 0.2], [0.2, 0.3])〉 〈s5, ([0.6, 0.7], [0.1, 0.2], [0.2, 0.3])〉
〈s6, ([0.3, 0.5], [0.1, 0.2], [0.3, 0.4])〉 〈s5, ([0.5, 0.6], [0.1, 0.3], [0.3, 0.4])〉
〈s4, ([0.7, 0.8], [0.0, 0.1], [0.1, 0.2])〉 〈s4, ([0.5, 0.7], [0.1, 0.2], [0.2, 0.3])〉

〈s5, ([0.2, 0.3], [0.1, 0.2], [0.5, 0.6])〉
〈s5, ([0.5, 0.7], [0.2, 0.2], [0.1, 0.2])〉
〈s4([0.5, 0.6], [0.1, 0.3], [0.1, 0.3])〉
〈s6([0.3, 0.4], [0.1, 0.2], [0.1, 0.2])〉
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Step 2 Aggregate all attribute values of each alternative and get the overall value of each alternative
ai denoted as ri(i = 1, 2, 3, 4).

r1 = 〈s5.4841, ([0.3190, 0.4520], [0.1406, 0.2420], [0.3391, 0.4771])〉,
r2 = 〈s5.3016, ([0.5260, 0.6922], [0.1366, 0.2083], [0.1791, 0.2772])〉,
r3 = 〈s4.9567, ([0.4224, 0.5587], [0.1077, 0.2741], [0.2494, 0.3754])〉,
r4 = 〈s4.4896, ([0.4794, 0.6190], [0.0711, 0.1739], [0.1415, 0.2416])〉

Step 3 According to Definition 11, we assume α = 0.7 and calculate the score values of ri(i = 1, 2, 3, 4).
We get the values below.

S(r1)
= s0.5695, S(r2)

= s0.7170, S(r3)
= s0.6004, S(r4)

= s0.5765.

Step 4 According to Step 3 and Definition 12, we get the ranking of the alternatives below.

A2 � A3 � A4 � A1

6.2. The Method Based on the WINLGMSM Operator

When m = 1, p = 1, the WINLGMSM(1) operator is the same as the WINLMSM(1) operator.
The steps are omitted here. When m = 2, the steps are below.

Step 1 Normalize the decision matrix.

From the example, the risk (C1), the growth (C2) are benefit types and the environmental
impact (C3) is cost type, so we set up the matrix as step 1 of Section 6.1.

Step 2 Aggregate all attribute values of each alternative by the WINLMSM(2) operator and get the
overall value of each alternative ai denoted as ri(i = 1, 2, 3, 4)

r1 = 〈s5.4988, ([0.3221, 0.4549], [0.1387, 0.2401], [0.3374, 0.4752])〉,
r2 = 〈s5.3735, ([0.5264, 0.6938], [0.1358, 0.2070], [0.1772, 0.2745])〉,
r3 = 〈s5.0083, ([0.4296, 0.5610], [0.1069, 0.2702], [0.2449, 0.3721])〉,
r4 = 〈s4.5371, ([0.4892, 0.6244], [0.0634, 0.1698], [0.1390, 0.2381])〉

Step 3 According to Definition 11, we assume α = 0.7, calculate the score values of ri(i = 1, 2, 3, 4),
and get the values shown below.

S(r1)
= s0.5722, S(r2)

= s0.7276, S(r3)
= s0.6087, S(r4)

= s0.5839

Step 4 According to Step 3 and Definition 12, we get the rankings of the alternatives, which are
shown below.

A2 � A3 � A4 � A1

6.3. Comparative Analysis and Discussion

(1) Based on the results in Sections 6.1 and 6.2, we can show them by using Table 2. From Table 2,
we know that there are the same ranking results in two methods when m = 1 or m = 2. However,
the result when m = 1 is different from the one when m = 2. It can be explained that, when m = 1,
the interrelationship between the attributes doesn’t need to be considered when m = 2. We can
consider the interrelationship between two attributes.

(2) Furthermore, we get the comparisons for different values of P1 and P2 when m = 2, which are
shown in Table 3. From Table 3, we know when m = 2 and P1 and P2 are not equal to zero, we can
get the same ranking results, i.e., A2 � A4 � A3 � A1. However, when P1 = 0 or P2 = 0,
the ranking results are different from the ones when P1 and P2 are not equal to zero. When P1 = 0
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or P2 = 0, the interrelationship between the attributes doesn’t need to be considered, so it can get
the same ranking results as the ones when m = 1.

Table 2. Comparison of different operator.

Operator m P1 P2 Ranking

WINLMSM(m)
1 - - A2 � A4 � A3 � A1
2 - - A2 � A3 � A4 � A1

WINLGMSM(m,p1,p2)
1 1 - A2 � A4 � A3 � A1
2 1 2 A2 � A3 � A4 � A1

Table 3. Comparisons of different values of P1 and P2 when m = 2.

Operator P1 P2 S(ri)(i = 1, 2, 3, 4) Ranking

WINLGMSM(m,p1,p2)

0 1

S(r1) = s0.6228
S(r2) = s0.8306
S(r3) = s0.7462
S(r4) = s0.7778

A2 � A4 � A3 � A1

1 0

S(r1) = s0.6228
S(r2) = s0.8306
S(r3) = s0.7462
S(r4) = s0.7778

A2 � A4 � A3 � A1

1 1

S(r1) = s0.5695
S(r2) = s0.7170
S(r3) = s0.6004
S(r4) = s0.5765

A2 � A3 � A4 � A1

1 2

S(r1) = s0.5722
S(r2) = s0.7276
S(r3) = s0.6087
S(r4) = s0.5839

A2 � A3 � A4 � A1

1 3

S(r1) = s0.5769
S(r2) = s0.7387
S(r3) = s0.6227
S(r4) = s0.6027

A2 � A3 � A4 � A1

2 1

S(r1) = s0.5745
S(r2) = s0.7199
S(r3) = s0.6116
S(r4) = s0.6004

A2 � A3 � A4 � A1

2 2

S(r1) = s0.5717
S(r2) = s0.7196
S(r3) = s0.6037
S(r4) = s0.5837

A2 � A3 � A4 � A1

2 3

S(r1) = s0.5733
S(r2) = s0.7256
S(r3) = s0.6079
S(r4) = s0.5859

A2 � A3 � A4 � A1

3 1

S(r1) = s0.5806
S(r2) = s0.7276
S(r3) = s0.6269
S(r4) = s0.6280

A2 � A4 � A3 � A1

3 2

S(r1) = s0.5751
S(r2) = s0.7206
S(r3) = s0.6101
S(r4) = s0.5997

A2 � A3 � A4 � A1

3 3

S(r1) = s0.5741
S(r2) = s0.7223
S(r3) = s0.6071
S(r4) = s0.5909

A2 � A3 � A4 � A1
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Furthermore, in order to verify the validity of the methods proposed in this paper, we can compare
them with methods from Ye [16] and the ranking results are shown in Table 4.

From Table 4, we know that the best choice is A2 for all methods, which is the same as the results
produced above. However, the ranking results are different. Compared with the approach proposed
by Ye [16], when m = 1, our ranking results have the same values as that of Ye [16], but when m = 2,
our ranking results are different from the Ye method [16]. When m = 1, all methods don’t consider
the interrelationship. They produce the same results, however, when m = 2. Our methods in this
paper can take into account the interrelationship while the method by Ye [16] doesn’t consider the
interrelationship. Therefore, there are different ranking results. Therefore, our methods are more
suitable for the different applications.

Table 4. Comparison of different methods.

Methods Operator Ranking

Methods in this paper

WINLMSM(m)m = 1 A2 � A4 � A3 � A1

WINLMSM(m)m = 2 A2 � A3 � A4 � A1

WINLGMSM(m,p1,p2) m = 1 A2 � A4 � A3 � A1

WINLGMSM(m,p1,p2) m = 2 A2 � A3 � A4 � A1

Method in [16]
INLWAA A2 � A4 � A3 � A1
INLWGA A2 � A4 � A3 � A1

From the above comparison results, we can obtain that the methods proposed by this paper are
feasible and adaptable for the MADM problems. Additionally, they have better reliability and wider
application space than other existing methods.

7. Conclusions

In this study, we propose the concept of INLMSM, which can not only adapt to the cognitive
situation of decision maker, but also provide convenience for decision making. We introduce the basic
concept of INLMSM and its generalized form, give some operators based on INLMSM, and introduce
the theory of weight to investigate WINLMSM and WINLGMSM. Afterwards, we put forward the
INLMSM operator, the INLGMSM operator, the WINLMSM operator, and the WINLGMSM operator.
In addition, we proved these operators. In addition, we introduce the MADM methods with INLMSM
in detail and illustrate their usefulness and effectiveness by showing examples. Finally, we compare
other methods to demonstrate our approach. From this paper, we can see that WINLGMSM is more
practical and flexible in application and INLMSM can express fuzzy information more conveniently.
In further study, we can use the INLMSM operator to solve practical problems and pattern recognition.
We should develop other aggregation operators for future research.
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