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The neutrosophic set and linguistic term set are widely applied in recent years. Motivated by the advantages of them, we combine
the multivalued neutrosophic set and linguistic set and define the concept of the multivalued neutrosophic linguistic set (MVNLS).
Furthermore, Hamacher operation is an extension of the algebraic and Einstein operation. Additionally, the normalized weighted
Bonferroni mean (NWBM) operator can consider the weight of each argument and capture the interrelationship of different
arguments. Therefore, the combination of NWBM operator and Hamacher operation is more valuable and agile. Firstly, MVNLS
and multivalued neutrosophic linguistic number (MVNLN) are defined, then some new operational rules of MVNLNSs on account
of Hamacher operations are developed, and the comparison functions for MVNLNS are given. Secondly, multivalued neutrosophic
linguistic normalized weighted Bonferroni mean Hamacher operator (MVNLNWBMH) is proposed, and a number of expected
characteristics of new operator are investigated. Meanwhile, some special cases of different parameters p, g, and ¢ are analyzed.
Thirdly, the approach utilizing the MVNLNWBMH operator is introduced to manage multiple criteria decision making (MCDM)
issue in multivalued neutrosophic linguistic environment. Ultimately, a practical example is presented and a comparative analysis

is carried out, which validate the effectiveness and generalization of the novel approach.

1. Introduction

In real world, due to the complexity of decision information,
the fuzzy theory has attracted widespread attention and has
been developed in various fields. Zadeh [1] firstly proposed
the notion of fuzzy sets (FSs). Then, Atanassov [2] introduced
the intuitionistic fuzzy sets (IFSs), which overcome the
weakness of nonmembership degrees. Subsequently, in order
to address the hesitation degree of decision makers, Torra [3]
defined hesitant fuzzy sets (HFSs). Fuzzy set theory has been
well promoted, but it still cannot manage the inconsistent
and indeterminate information. Under this circumstance,
Smarandache [4] proposed neutrosophic sets (NSs), whose
indeterminacy degree is independent of both true and false
membership. NS is an extension of IFS and makes deci-
sion makers express their preference more accurately, so
some achievements on NSs and its extensions have been
undertaken. Some various concepts of different NSs are

defined. For example, Smarandache [5] and Wang et al.
[6] introduced single-valued neutrosophic sets (SVNs) to
facilitate its application. Ye [7] pointed out the concept of
simplified neutrosophic sets (SNSs). Wang et al. [8] developed
the concept of interval neutrosophic sets (INSs). However,
under certain conditions, the decision makers likely give
different evaluation numbers for expressing their hesitancy.
Subsequently, the definition of single-valued neutrosophic
hesitant fuzzy sets (SVNHESs) was firstly proposed by Ye [9]
in 2014, and then Wang and Li [10] also proposed multivalued
neutrosophic sets (MVNSs) in 2015. Actually, the notions of
SVNHESs and MVNSs are equal. For simplicity, we adapt the
term of MVNSs in this paper.

On the other hand, the aggregation operators, com-
parison method for neutrosophic numbers, have also been
studied. For SVNSs, Liu and Wang [11] employed NWBM
operator to solve multiple criteria problem in single-valued
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neutrosophic environment. Ye [12] gave the definitions of
cross-entropy and correlation coefficient. For INSs, Zhang
et al. [13] developed some aggregation operators. Liu and
Shi [14] not only provided the definition of interval neu-
trosophic hesitant fuzzy sets (INHFSs), but also discussed
the generalized hybrid weighted average operator. Broumi
and Smarandache [15-17] studied the correlation coefficients,
cosine similarity measure, and some new operations. Ye [18]
proposed similarity measures between interval neutrosophic
sets. For MVNSs, Ye [9] developed SVNHFWA and SVN-
HFWG operators for MCDM problem. Peng et al. [19, 20]
extended power aggregation operators and defined some
outranking relations under MVNS environment. Ji et al. [21]
analyzed a novel TODIM method for MVNSs.

In real life, owing to the ambiguity of decision makers’
thinking, people prefer to utilize linguistic variables for
describing their assessment value rather than the quan-
tization value. Therefore, linguistic variable has attracted
widespread attention in the field of MCDM. The linguistic
variable was firstly proposed by Zadeh [22] and applied for
the fuzzy reasoning. After that, a series of works on it have
been made. Wang et al. [23-25] presented a new approach in
view of hesitant fuzzy linguistic information. Meng et al. [26]
developed linguistic hesitant fuzzy sets and studied hybrid
weighted operator. Tian et al. [27] defined gray linguistic
weighted Bonferroni mean operator for MCDM.

In order to indicate the true, indeterminate and false
extents concerning a linguistic term, the NSs and linguistic
set (LS) are combined. Several neutrosophic linguistic sets
and their corresponding operators are defined, for example,
single-valued or simplified neutrosophic linguistic sets and
trapezoid linguistic sets [28-31], interval neutrosophic cer-
tain or uncertain linguistic sets [32-34]. However, due to the
hesitancy of people’s thinking, the trueness of a linguistic
term may be given several values, and the case is similar to
the false and indeterminate extents. The existing literature
does not consider this perspective. Therefore, the multival-
ued neutrosophic linguistic set (MVNLS) and multivalued
neutrosophic linguistic number (MVNLN) in this article are
proposed in order to better express the information.

Aggregation operator which can fuse multiple arguments
into a single comprehensive value is an important tool for
MCDM problem. Many researchers have developed some
efficient operators [35-42], for instance, the weighted geo-
metric average (WGA) or averaging (WA) operator, pri-
oritized aggregation (PA) operator, Maclaurin symmetric
mean operator, and Bonferroni mean (BM) operator. BM
operator was originally defined by Bonferroni [43] and has
attracted widespread attention because of its characteristics of
capturing interrelationship among arguments. Some achieve-
ments have been made on it [11, 44-49]. In order to aggre-
gate neutrosophic linguistic information, some researches
on aggregation operators under neutrosophic linguistic and
neutrosophic uncertain linguistic environments have also
been applied [28-34, 50]. Until now, BM and NWBM fail
to accommodate aggregation information for multivalued
neutrosophic linguistic environment. Motivated by this limi-
tation, we will extend the NWBM operator to MVNLS in this
article.

T-norms and t-conorms are two functions that satisfy
certain conditions, respectively. The Archimedean t-conorms
and t-norms are well known, which include algebraic,
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Einstein, and Hamacher. Hamacher operation is an extension
of algebraic and Einstein. Generally, the algebraic operators
are common; there are also a few aggregation operations
based on Einstein operations. Because Hamacher operator
is more general, Liu et al. [51, 52] discussed the Hamacher
operational rules. So far, there is no research for MVNLS
based on Hamacher operations. Since it is better for MVNLS
to depict the actual situation, NWBM operator can cap-
ture the interrelationship among arguments, and Hamacher
operations are more general, it is of great meaning to
study the NWBM Hamacher operators under multivalued
neutrosophic linguistic environment for MCDM problems.
The main purposes of the paper are presented as follows:

(1) To better express people’s hesitancy, combining the
MVNS and LS, we give the notions of MVNLS and
MVNLN; besides, the score, accuracy, and certainty
functions are also investigated to compare MVNLNS.

(2) Due to the generalization of Hamacher operational
rules, we define new operations of MVNLNs based
on Hamacher operational rules and discuss their
operational relations.

(3) The NWBM considering the interrelationship of dif-
ferent arguments has gained widespread concerns; we
extend NWBM operator to MVNLN environment,
the MVNLNWBMH operator is defined, and some
desirable characteristics are also studied.

(4) In order to verify the effectiveness, an example for
MCDM problem utilizing MVNLNWBMH operator
is illustrated and a comparative analysis is conducted.
We also analyze the influences of different parameter
values for the final outcomes, and the results demon-
strate that the operator proposed is more general and
flexible.

The article is arranged in this way. In Section 2, we
review a number of notions and operations for MVNS,
LS, NWBM operator and Hamacher. In Section 3, we pro-
pose the definitions of MVNLS and MVNLN and develop
the operations of MVNLNs on the basis of Hamacher t-
conorms and t-norms. Meanwhile, the algebraic as well as
Einstein operations for MVNLNS are also presented, which
are special cases of Hamacher operation. Moreover, the
comparison method of MVNLNs is also defined. In Section 4,
we propose the MVNLNWBMH operator and investigate
its properties. Furthermore, when corresponding parameters
are assigned different values, the special examples are also
discussed. In Section 5, we establish the MCDM procedure on
account of the proposed aggregation operators with MVNLS
information. Section 6 presents a concrete example, and a
comparison analysis is provided to show the practicability of
utilizing our method. Finally, in Section 7, some results are
presented.

2. Preliminaries

Some notions and operation are introduced in this section,
which will be useful in the latter analysis.

2.1. Linguistic Term Sets. Suppose that S = {s},s,,...,s} is
an ordered and finite linguistic set, in which s; denotes a
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linguistic variable value and : is an odd value. When ¢ is equal
to seven, the corresponding linguistic sets are provided as
follows:
S = {51, 55, 53, 54> S5, Sg> 7} = {extremely poor, very poor, poor, medium, good, very good, extremely good} . 1)
In order to avoid the linguistic information loss, the set above NWBM”™ (ay,a,,...,a,)
is expanded, that is, a contiguous set, S = {s, | « € R}. Y(p+a)
Definition 1 (see [53]). Let s; and s; be any two linguistic _ N WWio,  g )
variables, the corresponding operations are presented: B 691 1-w, (ai © aj) >
i,j=1,
.
(1) As; =8y A 205 i
where w = (w;,w,,...,w,) represents the corresponding

(2) s;®s; =15,

2)

(3) S; ®S] = Sin;
A
@) (s:)" = sp.

2.2. Multivalued Neutrosophic Sets

Definition 2 (see [9, 10]). Suppose that X is a collection of
objects; MVNSs A on X is defined by

A={(xTs(0). 1,0, Fy)) IxeX}, Q)

where Ty(x) = {y | y € T4}, I4(x) = {8 | § € I,(x)},
Fu(x) = nlne F,(x)}, and TA(x), T,(x), and F 4(x) are
three collections of crisp numbers belonging to [0,1],
representing the probable true-membership degree, inde-
terminacy-membership degree, and falsity-membership
degree, where x in X belongs to A, respectively, satisfying
these conditions 0 < ¥,8,7 < 1,and 0 < supT,(x) +
sup T ,(x) + sup F 4(x) < 3. If there is only one element in X,
A is indicated by the three-tuple A = (TA(x),TA(x), FA(x)),
that is, known as a multivalued neutrosophic number
(MVNN). Generally, MVNSs are considered as the gener-
alizations of the other sets, such as FSs, IFSs, HFSs, DHFs,
and SVNSs.

2.3. Normalized Weighted Bonferroni Mean

Definition 3 (see [43]). Let p,q > 0 as well as g; (i =

1,2,...,n) be a set of nonnegative values; then the BM is
defined as
BM? (a,,a,,...,a,)
1/(p+q)
1 " ( » g (4)
= ——— Z a; a.) .
nn-1) el v

i#j

Definition 4 (see [46]). Let p,q>0andg; (i =1,2,...,n) be
a set of nonnegative values, and the corresponding NWBM
can be expressed as follows:

weighted vector of a; (i = 1,2,...,n), satistying w; > 0
and Y, w; = 1. The weight vector can be given by decision
makers in real problem.

Obviously, the NWBM operator possesses a few char-
acteristics such as commutativity, reducibility, monotonicity,
boundedness, and idempotency.

2.4. Hamacher Operations. We know aggregation operator is
given in accordance with different t-norms and t-conorms;
there are some exceptional circumstances listed as follows:

(1) algebraic t-norm and t-conorm

a®b = ab,
(6)
a®b=a+b-ab;
(2) Einstein t-norm and t-conorm
a®b= ab ,
1+(1-a)x(1-b)
) (7)
a+
b= ——;
ae 1+ab
(3) Hamacher t-norm and t-conorm
ab
b= ,
@® e+(l-¢)(a+b-ab)
a@b=a+b—ab—(1—e)ab (8)

1-(1-¢)ab
e> 0.

In particular, when € = 1, & = 2, the algebraic and Einstein
operations are the simplifications of Hamacher t-norm and t-
conorm.

3. Multivalued Neutrosophic Linguistic Set

3.1. MVNLS and Its Hamacher Operations

Definition 5. Let X be a set of points; an MVNLS A in X is
defined as follows:

A= {<x, [Se(x)>(TA (%), T4 (x),F4 (x))]> | x € X} , (9)



where sq(,) € S, TA(x) ={ylye TA(x)},jA(x) ={6]|0d €
Ly(0)) Falx) = {n | n € Fu(x)} and T4(x), 14(x), and
F ,(x) are three sets of crisp values in [0, 1], denoting three
degrees of x in X belonging to sy, which are trueness,
indeterminacy, and falsity, satisfying these conditions 0 <

1,8, < 1,and 0 < sup T, (x) + sup T 4(x) + sup F . (x) < 1.

Definition 6. Let A = {{x, [sp(x)> (T 4(x), L4(x), F4(x))]) |
x € X} be an MVNLS; supposing there is only one element
in X, then tuple (s(,), (TA(x), T,4(x), F 4(x))) is depicted as a
multivalued neutrosophic linguistic number (MVNLN). For
simplicity, the MVNLN can also be represented as

A ={(s9000 (Ta (), T, (), F4 (%)) | x e X}, (10)

Definition 7. Let a; = (se(al),(T(al),f(al),ﬁ(al))) and a, =

<59(a2), (T(az)j(az), F(a,))) be two MVNLNs, and A > 0;
then the operations of MVNLNSs can be defined on the basis
of Hamacher operations.

Wa,@a, = <59(a1)+9(a2)>

tn-—ny-1-any
(U | ]

- _ 1—-(1-
1 €T(a,).,€T(ay) ( 8) ")z

5,8,
U - {s+(1—e)(61+62—8182)}’

8,€l(a,),0,€l(a,)
M) } ) >

U { M

_ - + (1 - +
neFameRay L& A=) (m+ 1
2)a;®a, = <$0(a1)><0(a2)’

( U { Y2 }
y€T(@)yyeTia) L& A= +n-nn)

U {61+82—6182—(1—e)6182}
1-(1-¢)6,6,

>

8,€l(ay),8,€1(ay)

M +’72_’11’72—(1—3)’71’72} .
U { L-(1-&)mn, >>

m €F(ay)n,€F(ay)

(3) Aal = <S)L9(a1)’

( U 1(0+@—nf>—

(I_Vl) }
sy LA+ E-Dy) + -1 (1 -p)

&8t }
516Lf(Jal) { (1+Ee-1)(1- 81))’\ +(e-1)8," ’
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U | o ).
ey L+ €= (1 =m) + (- Dyt
(4) al)L = <591(a1),

U | o L
sty LA+ E-D (1) + (- Dy

{ (1+-1D38) - (1-8) }
oy L1+ =18 +e-Da-8)"]

(1+E-1)n) -(1-n)

A A
m¥£j0+&—nmf+@—nu—mf}>>'
()

If ¢ = 1, then the operations based on Hamacher
operational rules in Definition 7 will be simplified to the
Algebraic operational rules as follows:

(5)a,@a, = <59(a1)+9(a2)’

< U n+r
" ET(ul),yZET(uZ)

U {0:6,}, U {’71772}>>§
8,€T(u1),62 ET(aZ) qleF(al),r]ZEF(az)

(6)a; ®a, = <59(a1)><9(a2)’ < U v}
" ET(ul )sYs ET(aZ)

U {0, +8, - 818,},

8,€l(a,),0,€l(a,)

U {771+f12—'11772}>>;
r]leﬁ(al),qzeﬁ(az)

(7)/\611=<5M)a1 < U {1_(1_)’1 }’

€T(a

_Y1Y2}>

(12)

U 6 U W}>>;

8,€l(a;) r]lEf’(al)

A
(8) a, = <$9/\(a1), (
y€T(a,)

U '
U f-6arh U o))

8,€l(ay) meF(a,)
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Supposing T(a,), 1(a,), F(a,), T(a,), I(a,), and F(a,)
contain only one value, then the operations defined above can
be reduced to the operations of SVNLNs based on algebraic
operations proposed by Ye [28].

If ¢ = 2, then the operations based on Hamacher
operational rules in Definition 7 will be simplified to the
Einstein operations of MVNLNs presented below:

9 a ®a, = <59(a1)+9(a2)’

U {Yl*’)’z}
L+ 919,

"N €T(a, )52 eT(ay)

§ { 9,9, }
2-0,-0,+0,0,)"

8,€l(a,),0,€1(ay)

U { M } .
2-m -yt mn,

m ef':'(al ),qzeF(az)

(10)a; ®a, = <59(a1)><9(u2)’

< U {___Juz___}

y1€T(a,),y,€T(a,) 2- V1= Y2 T Nh)2
U { o, +96, }
1+8,8,])°

8,€1(a,),0,€1(a,)
U {ﬂli@} ,
mek(ay)mek(ay) L+mmn,
(11)/\(11 = <S)L9(a1)’
A A
< U {(1+V1) -(1-p) }
A A’ bl
YIGT(HI) (1+V1) +(1—'yl)
U {__jﬁl__}
A >
sty L(2-08,)" +8,*

U fent)
A b
meF(ay) (2_111) 4”71)L
2 A
(IZ)QIAZ <59)L(u1),< U {Y—I/\A})
y,1€T(ay) (2_)/1) +N

U {(1+61)A_(1_51)A})

) X
5,elay L(1+0)" +(1-9,)

U+mV—U—mV}>>.
r]leLﬁJ(al) { (1 + ’71)A + (1 - ’71))L

Supposing T(a,), I(a,), F(a,), T(a,), I(a,), and F(a,)
contain only one value, then the operations defined above can
be reduced to the operations of SVNLNs based on Einstein
operations.

(13)

Theorem 8. Let a, = (se(ul),(T(al),f(al),ﬁ(al)») a, =
(So(ay (T(@y), I(@,), F(@,))), and a5 = (sg(ay, (T(as), I(as),

F(a3))) be any three MVNLNs, and A, A, A, > O; then the
properties below are correct:

(1) ay@a, =a,day;
(2) a,®a, =a,®ay;
(3) A(a, ®a,) = Aa, & Aay;
(4) Aya, ®Aya; = (A +4y)ag;
(14)

(5) al’\1 ®a1A2 = alAIMZ;

6) a,*®a," = (a ®a2)/\;
(7) (a,0a,)®a;=a,®(a,®as);
®) (g, ®a,)®a;=a,®(a,®a,).
Then, (4) will be proved as follows.
Proof of (4). Since A;,A, > 0,

Aa, @ Aya,

= < s/\le(%)‘*/\ze(“[)’

U ( (1+(“3—1)Y1))h—(1_)’1))'l
ety [N+ E-Dp)" + -1 (1-p)"

(1+ (e~ 1))/1)/12 -(1- Yl)AZ
(1+e-Dp) -1 (1-p)"

R I A C
1+E-Dp) +Ee-D(1-p)"

L (xEe-np)t-(-p)t
(1+(e— l)yl))L2 +(-1(1 —yl)/\2

(1+(e-Dp)" - (1-p)"
(+E-Dp)" + -1 a-p)"

(xe-np)-a-p)t >
(1+(e-Dp) "+ -1 (1-p)"

-(1-9




(L+E-Dyp)" - (1 -p)"
. 1—(1—8) 2 A
Q+E-Dy) " +E-DQ-y)"

' (1+(s—1)y1)/\2+(s—1)(l—y1

(1+(e-Dy) - (1-p)" y}
)]

ed M
51€L7(Ja1) <‘((1 -1 1-8)" +(e-1)8M

) 881A2 )
(1+@E-1)(1-8))"+E-1)8"

( < 851)\1
le+(1-¢) 3
(1+€-1)(1-8))"+E-1oM

881/\2

" (1+@E-1)(1-8,))" +(e-1)8,"

ed M

B (1+E-1)(1-8))" +E-1)5N

. 85112 ))1
(1+(e-1)(1-8,))" +(e-1)8," ’

U {( en
meF(a) (1*'(5_1)(1_’71))/\1 +(5_1)’71A‘

) '5’71)‘2 >
(I+E-1D(1- 171))A2 + (-1t

( < 5”/1}“
le+(1-¢) 3
(T+Ee=-DA =) +(E-1)ph
N ‘9’71}tz
(1+ -1 1 -m))" + - Dyt

M

_ M
(1+E-D-n))" + (- D™

2 -1
ey’ >> >>
(1+ =11 -m))" + (- D' }
= <S(A,+A2>e(al>’

U { (1 +(-1) Vl)MMz - (1 - )’1)A1+/\2 }
sy L1+ = Dp)" ™ 4 (e - 1) (1-p)

U { 861)L1+A42 }

sty L+ (=D (1-8))""™ 4 (e~ 18, M
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U { snl)tlJr)tz }
ety L1+ (=1 (1=m)"™ 4 (e = 1) hivhs

=, +1,)a.

(15)
Therefore, (4) A,a,®A,a, = (A, +1,)a, can be obtained. [J
Similarly, the other equations in Theorem 8 are easily

certified in the light of Definition 7.

3.2. Comparison Method. The score, accuracy, and certainty
functions are important indexes to rank MVNLNS, and their
corresponding definition is given below.

Definition 9. Leta = (se(a), (T(a), 1(a), F(a))) bean MVNLN,
and the score, accuracy, and certainty functions are achieved
as below.

1
(DWE@=| ———
T (a) ' E(a)

y+1-6+1-9
> 3 ) | %@

yeT(a),0€l(a),neF(a)

= s((l/‘ﬂa>‘i<a) (@) ZyeT(ayocTamer@ (Y+1-0+1-1)/3))0(a)>
(16)

1
@) H(a)=| —- Y -1 |sew
T(a)"F(a) yeT(a),neF(a)

= S /170 5@) Ty Y10

1
3)Ca) = — Z Y | S0@) = S((1/170) e 1I6(@)

IT(“) yeT(a)
where iz, i, and 15, are the numbers of the values in
TA(x), T4(x), and F 4(x), respectively.

The linguistic variable sy, is important for an MVNLN.
Therefore, the comparison functions defined above in
Definition 9 are denoted as the linguistic variable. The bigger
the truth degree T(a) concerning the variable S(a) 18, the
smaller the indeterminacy degree 1(a) and the false degree
F(a) concerning the linguistic variable Sp(a) are, and the
higher the MVNLN is. Regarding the function of score, the
greater the y — & — 7 corresponding to sg,) is, the higher the
affirmative statement is. Regarding the function of accuracy,
the greater the y minus # is, the more certain the statement
is. Regarding the function of certainty, the bigger the y is, the
more certain the statement is.

Based on Definition 9, the comparison method between
MVNLNS is obtained.

Definition 10. Supposing a, and a, are two MVNLNS, the
compared approach is achieved as follows:

(1) Supposing that E(a,) > E(a,), then g, is greater than
a,, represented as a, > a,.
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(2) Supposing that E(a,) = E(a,), and H(a,) > H(a,),
then a, is greater than a,, represented as a, > a,.

(3) Supposing that E(a,) = E(a,), H(a,) = H(a,), and
C(a,) > C(a,), then a, is greater than a,, represented
asa, > a,.

(4) Supposing that E(a,) = E(a,), H(a,) = H(a,), and
C(a,) = C(a,), then a, equals a,, represented as a; ~
a,.

4. The Multivalued Neutrosophic Linguistic
Normalized Weighted Bonferroni Mean
Hamacher Operator

The NWBM operator not only can take into account the
advantages of BM and WBM, but also has the property of
reducibility and idempotency. However, the NWBM operator

MVNLNWBMH (a,,a,,....a,) = <S(Z'§,j1 (/1) 07 @) 69 a ) Vo>
i#j

Xy

has not been applied to the cases where the input arguments
are MVNLNs.

Definition 11. Leta; (i = 1,2,...,n) be a space of MVNLNS,
a; = (59(ai)a(T(ai):I(ai)) F(a))), p,g = 0,and w = (w;, w,,
..., w,) be the weighted vector for a;, w; € [0,1]and Y| w; =
1. Then the operator of MVNLNWBMH is achieved as below,
the aggregation result is still an MVNLN.

MVNLNWBMH (a,,a,,....a,)
1/(p+q)
" 0w, a7)
_ i (P @ad
- @ — (af a7
i,j=1 1
i+j

According to the operational laws in Definition 7, the
results are derived below:

-y

U(p+a) x—y (p+a) Uipra)\ ™"
Y,ET(aiHET(a}){'g(H(el)y) <<1+(8_1)<1_x+(€*1)y>) +(£_1)<x+(8*1)y> ) }

8,€1(),0,€l(a;)

h 1/(p+q) h 1/(p+q) h 1/(p+q) h Y(pr\ 7!
U {((1+(s_1)g+(s—1)h) _(1_g+(s—1)h> )(<1+(£_1)g+(£—1)h> +(8_1)<1_g+(s—1)h> ) }

(18)
u 1/(p+q) u 1/(p+q) u 1/(p+q) u 1(p+g)y\ ~L
'leﬁ(ayslj‘(u){<<l+(£_l)m) _<l_m> )<<1+(8_1)m> +(£_1)<1_m> ) }>>
e(x=)"70
i <S(Z?;j¢jl (s (10} B () (a0 (V,sf(a,)LxYJJeT(a,) { (x + (52 - 1) }’)l/(mm +(e-1) (X - )’)l/(PHi) } ’
(g + (82 _ 1) h)l/(pm) “(g- h)l/(p+q> (v+ (82 _ l)u)l/(pw) —(w- u)l/(wq)
8i€l(@)d;el(a) { (g+@ -1 PP 4 = 1) (g - )PP } ’n,veﬁak‘;l,eﬁ(a,) { (vr+ (= 1)u)" P 4 (e = 1) (v — )/ } >> ’
where n , ;
" h=T](Q+E-18)" (1+(E-1)9))
it
x=[] (e=-Dyp) (e~ - Dy,) Er
ij=1
#j q\w;w;/(1-w;)
. -8 (-8,
w;w;/(1-w;
+ (82 - 1) Yip)/jq) j ) ) P q
n v=T1(+E-Dn) (1+E-Dn)
q iz
y= 1 (=) (== vy) 2
i,j=
" q w;w;/(1-w;)
+(E-1)(-n)(1-9))""
p.q w,-wj/(l—w,-)
— V'Y ) ) . q
n u=H((1+(s—1)11,-)P(1+(s—1);1j)
q iz
g= l—ll((1+(£—1)6i)p(1+(s—1)8j) 2
i,j=
i q\w;w;/(1-w;)
w;w;/(1-w;) B (1 B ;71.)1’ (1 B }1]) ) '
LAy (g "
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Proof. According to the operational rules for MVNLNS, the
results below can be gained

e-yF (1+(-1)8,) - (1-6,)°
az SGPa)’ U : P >
et (1+(s—1)(1—y,)) +He-DrP) s Ja y LI+ (E-1D6) +(E-1)(1-9 )f
U { (1+(8—1)’1i)p‘(1"7i)p }
ey L+ E=Dm) + -1 (1-)"] )/~
. s-yjq U (1+(£—1)8j)q—(1—6j)q
oy ET“) (1+E-D(=-9))" + =Dy | 5w [(1+E-D8) +e-D(1-8)" |
1+(e-1)7 1-1,)"
U ( ) - (1-n) )N, o0
R, (1+(s—1)17]) +(s—1)(1—11j)

Py
&Y
aip ®a-q = Sgp(a_)eq(a.)a U : ’
j < ] T, <T(a) (e-(e-1)y)"- (e— e—l)yJ) +(e-1)yPy1
U { (1+E-D8)" (1+E-18) - (1-8)" (1-9)) }

selannseia) | (1+E=1D8) - (1+E-1) §) +E-1(1-8) (1-9))

(1+E-Dg) - (1+E-Dn) -1 -n) (1-1,)
U q _ﬂj)q :

r],eF(a)n €F(a (1+ 1)77i)p'(1+(£_1)’1j) +(£_1)(1_’1i)p(1

IC

Firstly, we need to testify the mathematical formula ;

below. : H ((8 -(e-1Dy) (8 —(e-1) Yj)q
) ij=1
D L (a? o))
g Lot 2 wiw;/ (=)
i#j + (-1 *e-D
L q
T (- E-Dp) (e- - Dy)
= SZV;,]‘:I (wiwj/(1—(0,-))~9P(a,v)-9‘7(uj)’ l’i];jl
i#j
-1
w;w;/(1-w;)
—Vip)’jq) ' >

U ﬁ(e—e—wy’

YieT(ai)>ijT(uj)

n

(e=te-np) e (2= )py) U eIl (@re-08) (1+e-15)
) 8:€l(a;),6;€1(a;) 111 ]1
- [T (e-e-nw)"
--a) (g
-(8 (- 1))/j)q B yip’yjq)wiwj/(l’wi) . 1.1]:[1 ((1 +(e-1) 5i)p (1 +(e- 1)5j)q

i#j
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b (2-1)(1-8) (1-8,))" )
] - (1-7)" (1 - ﬂj)q)w‘wf/“-w,-)
+(e-1) H ((1 +(e— 1)5i)p(1 F (e 1)6j)q

i,j=1

i#j (21)
-1 The mathematical induction on 7 is adopted to prove (21).
(15 (1 s )Q)wiwj/(l_wi) (1) Supposing n = 2, the equation below is obtained.
- (1=, - ,
2 ww; W,
] P q\ _ 172 p q
a’®at)=—(a,'®
9:911_“)1‘(1 ]) l_wl(l 02)
n q #j
U e[ ((1+E-Dn) (1+E-Dn) o 2 (30 g
:€F(a;).n;€F(a;) i,;:} 1-w,
i#]
(=) (1= ) = <S(“’lwz/(l‘“’1))‘91’(“1)‘9q(“2>+(w2w1/(1‘w2))‘9p(“2)‘9q(“1)’
i j
(22)
< U { X1X — V1) }
n ~ » ~ q yeT(@)y;eT(a;) X%+ (€= 1)y,
[T(O+E-nn) (1+E-1mn)
L
li]#j U { o } ’
z12, + (e = 1) mym,

8,€l(a;),0;€1(a;)

+ (82 - 1) (1-#)" (1 - ,]j)q)“’f“’j/(lfwi)
vy v,
U {“1”2+(5_1)V1v2}>>’

+(e-1) ﬁ ((1 +(-1) r],-)p (1 +(e-1) I’Ij)q n;€F(a;),n;€F(a;)
1)’; where
X, = (1 +(e—1)- ey, )wle/(l_wl)
1 (= (-Dp) (e- (- Dy + (e~ 1y Py
SYZPY1q )wzwl/(lwz)
=|l1+(-1)- >
. ( T ey (e—e- D)+ (e- D Py
) (1 B eylpyzq )"-’1“’2/(1—‘01))
1 (e=(-Dy)’ (= (=D p,) + (€~ DyPps
- (1 B syzpqu )“’2‘“1/(1—“’2) ,
(5 - (e- l)Yz)P : (5 - (e- I)Yl)q +(e= 1),y
. =( (1+(-1)8) - (1+(-1)8,)1 - (1-8,)" (1-8,)1 )"’1“’2/“_“")
PN+ E-18) 1+ E-1)8) +E-1)(1-8,)° (1-5,)? ’
N :( (1+(-18) - (1+(-18)" - (1-8,)" (1-8,)" )“’2‘”1’““’2)’
N1+ e-18) (14 (e-1)8,) + (e~ 1) (1-6,)" (1-96,)"
z = (1 +e- 1>(1 (D8 (L - D8) - (1-8,) (1-5,)" ))“I“’z/“‘wl’
! (1+(e-18) - (1+(-18)T+(€-1)(1-8) (1-8,) ’
o= (1+e-p(1- D8 - (1+(-D8) - (1-8) (1-8)" ))‘“2‘“"“‘”2’
’ (1+@E-18) - (1+@E-18) +(-1)(1-8,)" (1-0,) ’
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wyw,/(1-w;)
( (1+e-Dn) (1Lt - D) = (1-m)" (1= ) ) ‘
(14 e-Dn)" (1+e-Dn) + (-1 A-n) (1-m,)"
w,w; /(1~w,)
( (Le e = Dn)" (L = D) (1= )" (1= )" ) 1
1"'(8_1’72 (1+€‘1711)q+(€_1)(1_’72) (1_’71)q
w,w,/(1-w;)
(1 3_1)( (1+E-Dn)" -+ -Dm) - (1 -n)" (1-n) ))
(L4 E=Dn)" - (1+-Dm) + -1 (1 -1)" (1-n)
w,w; /(1-w,)
T B e L S
(4 e=-Dm)" (1+ =)+ €= DA -n) (1-m)"
(23)
and then, ,
2 ) U ) H (1+E-18) (1+(-18;)
w0, (a,-f’®ajq) 8,€T(a,),0;€T(a;) J;J
i,j=1 1= w; ww;/(1-w;)
it —(1—6i)P(1—6]») ) e
:leﬁ(a ®a2q)ea it (a ®a?) 2
— [T(+E-18) (1+@E-18§;)"
i,j=1
i#j
= 522,;‘]:1((w,wj/(l-w,))-9"(%)'9‘*(“,))’ + (82 _ 1) (1 _ 8;’)P (1 _ 6j)q)wiwi/(l—w,)
it
2
te- [ (0+E-08)Y (1+E-1s)
2 bj=1
U 1_[ ((e —(e-1)p)’ (s —(e— l)yj)q I
vl ela) | \ 771 o
w;w;/(1-w;)
~(1-8)f (1-8,)")""
+ (82 - 1) Vip)’jq)wiwj/(liwi) ]
2
o e ) 2
1]:[(8 (e-1y,) (s (e l)y]) U 51_[((1+(5—1)’h)P(1+(5—1)17j)q
it ﬂiei(ai)’rljef:(aj) "1-’:]1
p q w,w)/(l—w,)
_Yipyjq)w,-wj/(lfw,-) - (1 - ?]1) (1 _nj) )
2
H ((1+(£—1)r], (1+(£—1)r]j)q
1 { y K
(e=(e-Dy) (e-(-Dy; 0.0,/ (1-)
i,ij;jl + (sz - 1) (1- 11,»)‘9 (l - rlj)q) !
2
o (2 = 1) Py )0 +e-D [T (1 +E-1Dn) (1+E-1n,)
vFy; 11
i %
+(e-1) l_[ ((s—(s—l)y,»)P (s—(e—l)yj)q -1
i’.j:,l P q wiwj/(l_wi)
#i - (1-1n) (1 _77j) )
-1
_yipyjq)ww i/ (1-w;) ’ (24)

We can make (21) right when n = k.
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(2) Supposing n = k, the equation below is right; then

k
w;w;
D = (@’ =49)
i,j=1 1 -
i#j

S i1 @y /(1-0))67 (@) 64(a)’
i#j

y,-ET(ai),yjeT(aj)

k
U [T(e-E-ny)
i,j=1
i#j

(e (e-ny)"+(£-1) yPy]q)“’f“’i/(l‘“’f)

k
H(s— s—l)y, ( (s—l)yj)q

J

w;w;/(1-w;)
_ Yipyjq) j

H ((s—(s— 1y)? (e—(s— l)yJ)

i,j=1
itj

+ (e =1)pPy q)wfwj/ﬂ—wi)

k
+e-D [] (- E-0p) (e- -y’
z,i];jl
-1

w;w;/(1-w;)
ip)/jq) '

k

U e[ ((1+(e-1)8)"

8;€l(a;),0;€I(a;) i,j=1
i+j

. (1 +(e— 1)5j)q
- (1-8)"(1- aj)‘I)wfwf/U—w,-)

k
[T(+E-D8)" (1+E-1)8;)
i,j=1

i+j

+(2-1)(1-8)" (1-9,)"

w;w;/(1-w;)

11
: q
+(e-1) 1__[1 ((1+(s— 1)8i)P(1+(8— 1)5j)
-1
S(1-8)7 (1-8,)1) " |
k
U e[ ] ((A+e-nn)
ni€F(a;).n;€F(a)) i)ij:jl
(1+e-1n) - -n)f (1- ,7],)“1)%/0—@)
k q
H (14 E-1m) (1+(e- 1),1],)
I’{;:jl
# (=) ) (1))
k
+(e-1) 11 ((1 + (e~ l)ﬂi)P(l +(e— 1);1],)‘1
-1
() (1))
(25)

When #n = k + 1, we need to calculate the equation below.

k+1
w;W;
D=, (e’ ea)
hyae] 1-w;
itj

W | (26)

w;w, k+1(

p q
—w G ® ar,,7)

l

wk+1wj

(ae” ®a).

j=1 1- Wit 1

The mathematical induction on k is used to testify the
equations below.

k
P e o (@ @)

i=1

<Szk (0,1 /(1)) 07 () 0%(a.,,))°
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< U {(ﬁ((s— (e-Dy)’

V€T (@) Yes1 €T () i=1

;w1 /(1-w;)

“(e-(e-1) Vk+1)q + (82 - 1) Yip)’kﬂq)
k

-[T(e=e-Dp) (6= (= Dyer)”

i=1

W;we,1 /(1-w;)
= 9 Ve ) )

(H ((‘€ - 8 - 1) yl (e - (8 - 1) Yk+1)q

i=1

W4y /(1=w;)

+ (52 - 1) Yip)’kﬂq)

k
+e-D[ (e~ - D) (- = Dyin)’

i=1

-1
w;wy, [ (1-w;)
=9 V) ) }

U {sﬁ(1+(£—1)8

8;€1(@).0 1 €l(ay,y) L =1

W;wy/(1-w;)
1+ (-1 -(1-6)P (1- 5k+1)q) '

k
(H((l+(s—l)8 Y (1+(e-1)8,,,)"

i=1

# (2= 1) (1-8) (18,7

k
+E-D]](A+E-18)F (1+(E-1)8,,)

i=1

-1
w;wiyy /(1-w;)
_(1—5i)p(1—5k+1)q) ‘ ) },

U {el‘[((l +(e-1)n)’

Ni EF(“i)>’7k+l EF(“kH) i=1

W;Wyy 1 /(1-w;)
(14 - D) - (1 -n)" (1- ’7k+1)q) ’

k
(]_[((H(s—l)m (1+ (= 1) 1py)’?
i=1

(- 1) (1= 1) (1))

k
+Ee-D[[((+E-1n) (1+ €= 1))
i=1

-(1- ’Ii)P (1- ’7k+1)q)wiwk”/(lwi)> } >> ,
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wk+1w

k
EB ~ o (e’ ®a,)
k+1

<Sz§1«wmwj/(l—wm))-9P(akﬂ>-eﬂ<aj>>’

< U {(fﬂ@—@—nnﬂf

Vi1 ET(“kH))YjET(aj) j=1

Wy @;/ (1=wpyy)

(== 0y)"+ (& - ) )

k
~TT(e- - Dya)’ (e - Dy;)"

-1

Wy @/ (1=wpyy)
— YTy 1) )

j=1

-(H((a— (- D)’ (6= = 1y,)

" (82 _ 1) yk+1pyjq)wk+1wj/(1_wk+l)

e DT (e - D) (e e~ 1)’

j=1

-1
wk+1w'/(1_wk+l)
-y Py ) >}

U {eﬁ((1+(e—1)8k+l)‘p

6k+167(ak+1)’5j€7(ﬂj) j=1
(14 (-1
- (1-8,,) (1- 5j)q)

k
: (H((l +e=Ddy)" (1+(-19))

i1

Wiy ;[ (1=wpyy)

+ (52 - 1) (1 — 6k+1)P (1 _ 8j)?)“’k+1wj/(l—wk+l)

k
+ (e - 1)1_[ ((1 +(e- 1)8k+1)P (1 +(e- 1)8j)q

j1

-1

U {SH ((1+(5—1)’7k+1)p

i1 €F (a1 )n;€F(ay) =1

-(1 + (e — 1)r]j)q
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W1 @j/(1=wpyy)

= (=)’ (1-15)7)

(

+ (82 _ 1) (1 _ 7]k+1)p (1 _ nj)q)wk+le/(1_wk+l)

(1 + = D) (14 (- l)rij)q

:x-

1

k
+e-D[((+E- D) (1+E-Dn,)

j=1

- (1= 77k+1)P (1 - nj)q)“”‘ﬂ‘“j/(l—wm)) } ) > .

Therefore,

SEE ) @/ (1-0))67(a) 0(a,)’
itj

N

k+1
U [T(E--npy
yi€T(a).y;€T(a;) i,j=1
l#]
(e=(e-1) Vj)q +(&-1) yiPyjq)“’f“’f/“*wi)
k+1 )
- 1—[ ((e=(e-Dp) (e-(-Dy;)
1}]:}::j1
_ yiPij)“’i“’j/(lfwi)
k+1 )
H ((8 - (e- 1))/,')P (8 —(e- I)Yj)
ij=1

i*j

(27)

+(e2-1) yipyjq)wfwj/u—w,a

k+1

+e-DJ] (- E-Dp)f(e--Dy)

i,j=1
i#j

w;w;/(1-w;)
- Vip}’jq) '

k+1

U SH ((1+(s—1)8i)p
§ief(ﬂi),5jET(aj) i)'J:'l
#]

-(1 + (e - 1)8j)q

1) (1 g
k+1
[T 0+ 0oy (-3
i,j=1
i#j

(1) -0y (1)

k+1
+e-D ] (A+E-D8)" (1+(E-13))
z,i]:jl
-1

w;w;/(1-w;)

- -6y (1-5))

k+1

U sl_[ ((1+(s—l)qi)p

’YiEF(“i))Uj EF(“]') i’,j:,l
i#j

w;w;/(1-w;)

(1 e-Dm)" - (=) (1-n;)")

k+1

H ((1 +(e-1)n)" (1 +(e— 1)11j)q

ij=1
i#j

(2 -1) (L=n)? (1-ny)) "
k+1

+e=D [T (A +E-Dn) (1+E-1n)

i,j=1
i#j

-1

ww;/(1-w;)

- (1 —Tli)p (1 —le)q)

13

(28)
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That is, If n = k + 1, (21) is right. Therefore, for all n, (21)
is right.
Then, (18) is right. ]

In the following, the properties of MVNLNWBMH
operator will be proved.

(1) Reducibility. Let w =
MVNLNWBMH(a,,a,,...,a,) =
a,).

(1/n,1/n,...,1/n). Then
MVNLBMH(a,, a,, ...,

Proof. Since w = (1/n,1/n,...,1/n), then according to the
operations in Definition 11, the result below can be obtained.

MVNLNWBMH (a;,a,,...,a,)

1/(p+q)
" W
_ J r q
| D2 (@ 0a)
i,j=1 1
i#j
1/(p+q)
n 1 1’l2
| D (a7 eay)
i 1= 1/n
i#j
(29)
1/(p+q)
n
-| D g (@ °a)
= (n-1)
i#j
1/(p+q)
n
= 1 D (a” ®4;7)
nn-1) Pyt
i#j
= MVNLBMH (a,,a,,....,4,) .
O
(2) Idempotency. Let a; = a(i = 1,2,...,n). Then
MVNLNWBMH(a,,a,,...,a,) = a.
Proof. For each i, owing to g; = a, the formula below is

obtained on the basis of (5) in Theorem 8.

MVNLNWBMH (a,,a,,...,a,)

1/(p+q)

n w:W :
=| B, (@ eq?)

= Rl

i#j

1/(p+q)

| DL wea

=1 1w,

i#j

Mathematical Problems in Engineering

1/(p+q)
n .
- D
ij=1 1w,
i#j
1/(p+q)
noow,w
ol D]
i1 1 - w;
i#]
(30)
]

(3) Commutativity. Let (a,,a,, ..
(a;,a,,...,a,). Then

MVNLNWBMH (@,,a,, .. .,a,)

.»a,) be any permutation of

(31
= MVNLNWBMH (a,,a,,...,a,) .

Proof. As (a,,a,,...,a,) is permutation of (a;,a,,...,a,),
then the equation below can be obtained.

MVNLNWBMH (a,,a,,...,a,)

1/(p+q)
n w:W :
=| D= (a"=a)
= (32)
i#j
1/(p+q)

Il
—_
| -
S ~
—
T
®
N
~.
[S~)
SN—

O
(4) Monotonicity. Suppose a; = (se(ai),(T(ai),f(ai),l:“(ai)))
(i = 1,2...,m) and b, = (g0, (T(B), T(B), FB))) (i = 1,2,
..., 1) are two sets of MVNLNs; when sg,) > s54,)» T(a;) >

T(bi), T(ai) < T(bi), and F(a,-) < F(bi) for each i, then
MVNLNWBMH(a,, 4y, ...,a,) > MVNLNWBMH(b,,b,,
..oby).

Proof.

(I) Linguistic Term Part. As p,q > 0,and sy, ) > sy, for each
i, the result below is gained.

0% (a;) 2 0 (b)),

0 (a) > & (8)

U

6" (a;) 0% (a;) = 07 (1) 67 (by)
U

w;w; w;w

6% (a) 6" (@) 2 ——26" (5) 67 (b)

- w; -w

i
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n n

Y e (e (a) Y ok

ij=1 w; ij=1 w;
itj

i#]
U

1/(p+q)
< | 9P (@) 6" (a)

: ’Gp(b)f?q( 1)

1]1
it

1/(p+q)
n

w;w;
2 "2—1 1w :)i 0" (6,) 6" ()
%

(33)

(II) True-, Indeterminacy-, and Falsity-Membership Parts. As
T(ai) > T(bi)j(ai) < T(bi), and ?(ai) < I:“(bi) foreachi, p,q >
0, then the following results can be proved easily.

1/(p+q)
€ (xaz - ya,-)
(%, + (& - l)yai)l/( +(e=1)(x, - J’u,.)l/(p+q)
e (xy - yb,.)l/(m)
) ;
(Xbi + (e - l)ybi)l/(mq) +(e-1) (xbi _ ybi)l/(PJrq)

(g“i + (82 - 1) hai)l/(P+q) - (g“i - h”i)l/(P+q)

(g0, + (&2 - 1)) 4 e = 1) (g, )"

(g0 + (2= 1) )" = (g =m)" "™
_(gb,-’f(sz—l)hbi)l/(m) +(e-1)(g __hb)1/<p+q)’

(V“i + (82 B 1) z)l/(p+q) B (V“i B uai)l/(p+q)

(v + (&2 -1)u, )1/ P +(e-1) (v, - )1/(p+q)

(v + (= 1)) "™ = (v = )"

@D 1) oy

(34)

where the corresponding x, y, g, h,u, and v are defined in
Definition 11.

(1) Comparing MVNLNWBMH(a,,a,,...,a,) with
MVNLNWBMH (b,,b,,...,b,). Suppose a = (se(a),(T(a),
1(a), ?(a))) = MVNLNWBMH(a,,a,,...,a,) and b =
(o> (T(b), 1(b), F(b))) = MVNLNWBMH(b,, b,, ..., b,).

Because sp(,) = sgp)» T(a) > T(b), 1(a) < 1(b), and F(a) <
F(b), thena > b.

Then MVNLNWBMH(a,,a,,...,a,) > MVNLNWB-
MH(b,, by, ..., b,). O

15

In the following, a few special examples of MVNL-
NWBMH operator regarding different values €, p, and g will
be explored.

(1) If g = 0, then the MVNLNWBMH operator
defined by (18) will be reduced to the generalized multi-
valued neutrosophic linguistic Hamacher weighted average
(GMVNLHWA) operator shown as below.

GMVNLHWA (a,,ay,...,a,)

1/(p+q) 1/p
n n
W, Ww;
=| D (@’ =q7) =| Di—a’
i,j=1 w; i,j=1 w;
itj it

i=1

1/p 1/p
)" (@)
= a; = w;a;
<@ l_wz 619
i <5(2‘-"1<w«eﬂ(a.->»'/?» (35)

1/p
! e (x’ B y/)
%€T(@).y;eT(a)) (' + (e = 1))’,)1/1; +(e-1) (¥ - )’,)I/P

)" (g )" P

)W) Pk e-1) (g -h)

(gl + ( 82
sielta)s,ela) | (9" + (&

D) (7 )"

2 _ nye Vi
l)u’)l/P+(s—1)(v’—u')llp}>>’

=TT+ - -p) + (2 -1)p")",

i=1

(v' + (s

q,e}?(ai),meﬁ(u}) { (V, + (82 -

where

BN

y’: ((8_ 8—1))/1)‘0—)/1) >

—

B

h’: (1+(-10,)

-(1-8))",

—_

(36)

B

g’: ((1+(£—1)5) (82—1)(1—51')P)wi’

—_

B

u =TT((+ E=Dm)" -1 -m)")",

—

BN

v = ((1+(£—l)ni)P+(82—1)(1—17i)p)wi

i=1

(2) When p = 1, g = 0, then the operator
of MVNLNWBMH defined by (18) will be reduced to
the multivalued neutrosophic linguistic Hamacher weighted
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arithmetic average (MVNLHWAA) operator shown as
below.

MVNLHWAA (a;, ay, ... 4, @w <sz¢1 w6a)
U { 1 1 1+(8—1))/l) H;l:l(l_yt) }
yeT(a [Te, (1+ (e~ Dy)" +(e- 1)H?=1(1*Yi)wi

(37)
{ 5H?=1‘Siwi
s, eI(u - DT 6 + T, (e (e - 1) 8)

Yl 1)

If ¢ = 1, the MVNLHWAA operator will be reduced to
MVNLWAA operator shown as below.

e[ T m,
-1 H?:Miw" + H?:l (e-(e-Dn)

MVNLWAA (a,,a,,...,a,) = <52?1 0 f@)>

<Vi€T(‘1i)
n
w;
ni€F(a) L=l

If ¢ = 2, the MVNLHWAA operator will be reduced to
the multivalued neutrosophic linguistic Einstein weighted
arithmetic average (MVNLEWAA) operator shown as
follows:

{1 ﬁ(l—yl } U {Ha } (38)

i=1 "j

MVNLEWAA (a;,a,,...,a,) = < ST wb(a)>

U {H?:l (1+y)" - [T, (1 - )" } ’
yieT(a;) T (4 )™ + T (=)™

e -]
5i€T(ﬂi) H?:l (2 N ai)wi + H:Ll(siwi

M 2 =) + T | > > |

@ Ifp — 0 g = 0, then the MVNLNWBMH
operator defined by (18) will be reduced to the multivalued

(39)

U

ni€F(a;)

{ 2H?:1’7iwi

MVNLNWBM (a,,a,, ...

) =

i+

(2] jo1 (@
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neutrosophic linguistic Hamacher weighted geometric aver-
age (MVNLHWGA) operator shown as below.

n
MVNLHWGA (a;,a5,....a,) = Q) 4 = <5H719w,(@_),
e[Tmy”

<%6Lfgui) { (e - DITL v + T, (e - (e -

U { [T, (1+(e-1)8)" - I, (1-6)" }
8;€l(a;) H?:l (1 + (5 - 1)61')“)i + (8 - 1) H?:l (1 - é\i)mx

U { [Ty (U4 e = D7) =TT, (1= 1) } )
neF(a) [T (1+ (=1 7)" + (e = DITL, (1-7)"
If ¢ = 1, the MVNLHWGA operator will be reduced to
MVNLWGA operator shown as below.

Dy)" } ’
(40)

=

MVNLWGA (611, ys .. ,an) = <$H?19‘”f(“i)’
( U ‘{Hn‘”’}, U {1- (1—6i)“’f}) (41)
yeT(a) L=l d;€l(a) i=1

- ‘ll_ﬁ(l_ﬂi)wi]’>>-
ni<F(a;) i=1

If ¢ = 2, the MVNLHWGA operator will be reduced
to the multivalued neutrosophic linguistic Einstein weighted
geometric average (MVNLEWGA) operator shown as below.

MVNLEWGA (a;,a,,...,a,) = <sn¢19mi (@)

(u
T, (L+68) =TT, (1= 8,)
LIJ {H,1(1+5) I, (1 -5,-)“”}’

1)

(4) If ¢ = 1, then the MVNLNWBMH operator defined
by (18) will be reduced to the MVNLNWBM operator shown
as below.

ZHzn IYlwi }

{Hz 1 2 Y1) +H1 1Y1
(42)

U

ni€F(a;)

{H11(1+’11) Hll(l_rlz)
[To (1+ 7]1‘) + [T, (1= i)

@;/(1-w,)) 0P (a,)-0% (a;) /#*)>
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n

U 1= [T (1-wfy

T(a,),y;€T(a;) i,j=1
Yi i y] j l#]

n

U -

8;€l(a;),0;€I(a;) i,j=1
i#j

n

UERIE

.€F(a,).n;€F(a;) ij=1
i i ’7} j l#]

(5) If ¢ = 2, then the MVNLNWBMH operator defined
by (18) will be reduced to the MVNLNWBME, that is the
simplification of multivalued neutrosophic linguistic NWBM
Einstein.

MVNLNWBME (a,, a, ... ,a,)

= <5<Z';-)j_1 (@i0;/(1-w,)) 07 (a;)-09(a)))/P*)>
itj

U { 2 (x _ )1/(P+q) }
yieT(a,-),ijT(uj) (X + 3y)1/(p+q) + (x - y)l/(P+q) (44)
U { (g n 3h)1/(p+q) _ (g _ h)l/(PﬂI) }

(9+30)" T + (- )T

8:€l(a;),0;€1(a;)

(v + 3u)/P*D) _ () — )P+
U { (v + 3u) D 4 (v — 1)t/ PFD } '

nieﬁ(ai),qjeﬁ(uj)

where
X = H ((2 - Yi)P (2 - Yj)q + 3Yip)’jq
ij=1
i#j

V= H ((2 - Yi)p (2 - yj)q - yiPyjq)“’i“’j/(l—wi) ,
ij=1

i#j

)wiwj/(l—w,)

>

h= H (1+8)" (1+8;)"
ij=1
i#j

S(1-g) (1=,

n

g= H ((1 +6i)p(1 +8j)q

i,j=1
i#j

w;w;/(1-w;)

+3(1-8)" (1-96,)") ,

=TT (1= (=P (1= )
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1/(p+q)
q)‘”iwj/(l—wi) )
1/(p+q)
-1 (1-(-6)" (1 —@)‘Q“"‘“’f’“""” ’
1/(p+q)
(43)
- q
“= H ((1 + ;)" (1 +11j)
- (1-n)" (1 - ’/Ij)q)wiwj/(l_wi) ,
n
v= [T (@ +m)" (1en)
l,i]#:j]
+3(1-4)"(1- qj)q)“’fwf/(l—wi)
(45)

From the above analysis, we can obtain that the MVNL-
NWBMH operator is more generalized.

5. The Multiple Criteria Decision
Making Approach Based on the
MVNLNWBMH Operator

The proposed MVNLNWBMH operator is presented to
cope with MCDM problem under multivalued neutrosophic
linguistic environment in this subsection.

Suppose that A = {A}, A,,..., A,,} represent m alter-
natives and C = {C,,C,,...,C,} represent n criteria. Let
w = {w,,w,,...,w,} be the corresponding weights of criteria,
where w; > 0(j = 1,2,...,n) and Z?=1 w;, = L
The evaluation value of the criteria C i (G = 1L2,...,n)
regarding the alternative A; (i = 1,2,...,m) is provided by
experts. Each value is represented by MVNLNNSs. Suppose
that R = [a;;],,,x, is the multivalued neutrosophic linguistic

decision matrix, where g;; = (59(%_), (T(aij)j(aij), F(aij))) is
the evaluation information which represents the assessment
value of alternative A; (i = 1,2,...,m) on criteria C § (G =
1,2,...,n) with respect to the linguistic value S(a,)> where
T(aij) indicates the satisfaction degree, T(a,-j) indicates the
indeterminacy degree, and F (a;;) indicates the dissatisfaction
degree.
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Then, the main method for ranking and selecting the best
alternative is presented below.

Step 1 (the decision matrix is normalized). Generally, cri-
teria in MCDM problems consist of two types: maximum

a..
1]°
b‘. =

ij
<51—6<a,,)’ (

~

Thus, the normalized matrix B = [b;;

1 ] 18 gained.

Step 2 (the comprehensive value of each alternative is cal-
culated). The comprehensive value represented by a; (i =
1,2,...,m) can be obtained by utilizing the MVNLNWBMH
operator in Definition 11, which can aggregate the overall
value for each alternative with respect to all criteria.

Step 3 (the compared values of three functions are calculated).
According to the equations given in Definition 9, the score
value denoted by E(g;), the accuracy value denoted by H(a;),
and the certainty value denoted by C(g;) can be obtained.

Step 4 (the alternatives are selected). Based on Definition 10,
all alternatives A; (i = 1,2,...,m) can be ranked on the basis
of E(a;), H(g;), and C(g;), and the best alternative(s) can be
selected.

6. A Numerical Example

In order to validate the effectiveness and practicality of the
novel approach, an investment project is adapted from Ye.

R= [aij]4x3

a;: ,T a. ,l~3 a. , for maximizing criteria.
( l]) ( 11) ( 11))> g
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type and minimum type; the minimum type should be
transformed into the maximum type for eliminating the
influence of distinguished types. Suppose that R = [a;;],,,,
is the original decision matrix, which can be normalized as
follows:

for maximizing criteria
(46)

An investment company wants to expand its busi-
ness. Four alternatives will be chosen: A, represents auto-
corporation, A, represents food corporation, A, represents
computer company corporation, A, represents weapon cor-
poration. Each alternative is evaluated under three criteria: C,
denotes risk, C, denotes growth, and C; denotes the impact
of environment, where C; is the minimizing criteria. The
corresponding weighted vector is w = {0.35,0.25,0.4}. In
real situation, the decision maker may hesitate and give sev-
eral possible values for the satisfaction, indeterminacy, and
dissatisfaction regarding the alternative A; corresponding to
the criteria C; under the linguistic term set S. Therefore, the
assessment value is given in the form of MVNLNS, and the
linguistic term set is employed as S = {s;, s,, 53, 54> S5, 56, 57} =
{extremely poor, very poor, poor, medium, good, very good,
extremely good}.

The multivalued neutrosophic linguistic decision matrix
R = [a;j]4x3 is shown as follows:

(s5,({0.3,0.4,0.5},{0.1},{0.3,0.4})) (ss, ({0.5,0.6},{0.2,0.3},{0.3,0.4})) (ss,({0.2,0.3},{0.1,0.2},{0.5,0.6}))

(s6, ({0.6,0.7},{0.1,0.2},{0.2,0.3}))
(se, ({0.5,0.6},{0.4},{0.2,0.3}))
(s, ({0.7,0.8},{0.1},{0.1,0.2}))

6.1. The Procedure Using the Proposed Aggregation Operator

Step 1 (the decision matrix is normalized). Because C; is
the minimizing criteria, which should be converted to the

B= [b"f]4x3

(s5,({0.6,0.7},{0.1},{0.3}))
(s5, ({0.6},{0.3},{0.4}))
(54, ({0.6,0.7},{0.1},{0.2}))

(5, ({0.6,0.7},{0.1,02},{0.1,02})) | (47)
(s4,({0.5,0.6},{0.1},{0.3})) '
(s ({0.3,0.5},{0.2},{0.1,0.2,0.3}))

maximizing criteria, then the normalized decision matrix B =

(0], can be obtained as follows:

(s5,({0.3,0.4,0.5},{0.1},{0.3,0.4})) (s, ({0.5,0.6},{0.2,0.3},{0.3,0.4})) (s, ({0.2,0.3},{0.1,0.2},{0.5,0.6}))

(56> ({0.6,0.7},{0.1,0.2},{0.2,0.3}))
(¢, ({0.5,0.6},{0.4},{0.2,0.3}))
(s4,({0.7,0.8},{0.1},{0.1,0.2}))

(ss5,({0.6,0.7},{0.1},{0.3}))
(ss5, ({0.6},{0.3},{0.4}))
(54> ({0.6,0.7},{0.1},{0.2}))

(s,,({0.6,0.7},{0.1,0.2} ,{0.1,02})) |  (48)

(s5,({0.5,0.6},{0.1},{0.3}))
(s1,({0.3,0.5},{0.2},{0.1,0.2,0.3}))



Mathematical Problems in Engineering 19

Step 2 (the comprehensive value of each alternative is calcu- ~ MVNLNWBMH operator presented in Definition 11. Here let
lated). Derive the comprehensive value g; (i = 1,2,...,m) p =g =1,&=1. The MVNLNWBMH operator is shown as

of each alternative A; (i = 1,2,...,m) by using the  below:
MVNLNWBMH (al, Ay ... ,an) = S(Zrlf,jZI ((“’iwj/(l_wi))'g(ai)'o(aj)))l/z’
i#]
1/2
- ww;/(1-w,)
U =TT (=)™ :
T(a )y €T(a; i,j=1
vi€T(a;),y;€T(a;) o
(49)
12
= ww;/(1-w;)
U 1-1 1-JJ(1-(1-8)(1-9))) ,
8;€l(a;),0;€1(a;) ij=1
i#j
1/2
n w;w;/(1-w;)
U  qr-{ - T10-0=-m)(-n))™
cF(a)m:cEa; i,j=1
n,EF(u,),nJEF(u]) Ii]#j
And we have E(a;) = 5,605
a, = <$3_9529, ({0.3088,0.3515, 0.3309, H(al) = S_020360
0.3752,0.3429, 0.3869, 0.3671, _
C(a) = 514705
0.4118,0.3746,0.4199, 0.4009, 0.4463},
E(ay) = 83,0440
{0.1255,0.1645,0.1482,0.19},
H(a,) = 51 0125
{0.3768,0.4171, 0.4049, 0.446, 0.4109,
Clay) =s ;
0.4511,0.4382,0.4783})) ; (a2) = 52930 (51)
E(a;) =s R
a, = (55 9904> ({0.6,0.6368, 0.6275, 0.6648, (@) = S2976
0.6345,0.6727,0.6622,0.7} , H (a3) = s1.13805
(50) e o
{0.1,0.1363,0.1335,0.1714} , (a3) = $2.50675
{0.1882,0.2268,0.2261, 0.2629})) ; E(ay) = ;00005
ay = (8448500 (10.5272,0.5644,0.5618, 0.6} , H (ay) = 5106015
{0.263},{0.2918,0.3273})) ; C(ay) = S sae1-
a3 = (Sp6487> ({0.5107,0.5951,0.5406, Step 4 (the alternatives are selected). By using the compared
0.6232,0.5415,0.6275, 0.5743, 0.6569} , approacfh in Definition 10, E(.a/z) > E(ay) > .E(al.) > E(a,) can
be obtained, so the final raking of alternatives is A, > A; >
{0.1363}, {0.1255,0.1645, A, > A,. Apparently, A, is the best one, and A ,is the worst

one. We do not need to compare the other functions because

0.2021,0.1623,0.2,0.2373})) . the values of score function differ.

Step 3 (the compared values of three functions are calculated).
By using the equations in Definition 9, we can obtain E(g;), 6.2. Comparison Analysis. We take different value into con-
H(a;), and C(a;)(i = 1,2, 3,4) as follows: sideration in Step 2 to select the alternative for discussing the
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TaBLE 1: Ranking of alternatives utilizing different p, g, and € = 1.

e=1,p.q Score function E(g;), (i = 1,2,3,4) Ranking

p—0,9g=0 E(a)) = 831010 E(@) = 535131, E(@3) = 835730 E(ay) = 517004 Ay > Ay > A > Ay
p=00L,g=0 E(a)) = 31007 E(@) = 5384600 E(@3) = $30575 E(ay) = 517629 Ay > Ay > A > Ay
p=01,49=0 E(a)) = 30165 E(@y) = 5387000 E(@3) = $30713 E(a4) = 515005 Ay > Ay > A > Ay
p=1q9=0 E(ay) = $5.4607 E(@y) = 531970, £(a3) = 831080 E(@,) = 551573 Ay > A > A > Ay
p=249=0 E(ay) = sy7150 E(@y) = S350 £(a3) = 83,5507 E(@y) = $3451 Ay > Ay > A > Ay
p=5q=0 E(ay) = s317680 E(ay) = S39655 £(a3) = 8357400 E(@4) = S5 845 Ay > Ay > A > Ay
p=10,9=0 E(a)) = s35003 E(@y) = S426100 £(a3) = $38673 E(@y) = 830415 Ay >As > A > Ay
p=04g=1 E(a)) = s3653 E(ay) = 533080 E(a3) = 831563, E(a) = 532004 Ay > Ay > A > Ay
p=00Lg=1 E(a)) = s36151 E(@3) = 320800 E(a3) = 831400 E(a4) = 53577 Ay>As > A > Ay
p=01g=1 E(a)) = 835377 E(@) = 53550, E(a3) = 300640 E(@y) = 5 130 Ay > Ay = A > Ay
p=lg=1 E(ay) = 853605 E(@) = 5304400 E(03) = 89763, E(@4) = 55,0002 Ay > Ay > A > Ay
p=2q=1 E(a)) = 83450 E(a) = 851018 E(@3) = 5304600 E(a) = 81664 Ay > A > AL > Ay
p=5q=1 E(a)) = 539008 E(ay) = 83,6600 E(@3) = 533535, E(ay) = $55870 Ay > Ay > A > Ay
p=10,9=1 E(a)) = 8330390 E() = 540427 E(03) = 369460 E(@4) = 5 5680 Ay > Ay > AL > Ay
p=0g=2 E(ay) = sy8507 E(@y) = 35710 E(a3) = 835571 E(@,) = $3.5589 Ay > Ay > A > Ay
p=00Lg=2 E(a)) = 55100 E(a) = 835630 E(@3) = 32800, E(ay) = 55404 Ay > Ay > AL > Ay
p=01qg=2 E(ay) = 878800 E(@y) = 5349500 E(@3) = 835400, E(a4) = 54731 Ay > Ay > AL > Ay
p=1g=2 E(a) = 835008 E(a3) = 35087 E(a3) = 8305400 E(a4) = 531500 Ay>As > A > Ay
pP=249=2 E(a)) = 835363 E(ay) = 32305 E(@3) = 8300400 E(ay) = 32430 Ay >As > A > Ay
pP=59=2 E(a)) = 838535 E(ay) = 35768 E(a3) = 83,558 E(ay) = 535581 Ay > Ay > A > Ay
p=10,9=2 E(a)) = 835300 E() = 30375 E(3) = $35836 E(@y) = 55515 Ay > A > A > Ay

impact of different values p, g, and e. The comparisons are
presented in Tables 1 and 2.

In Table 1, we take the parameter value ¢ = 1, which
is based on algebraic operation, and the MVNLNWBM
operator is applied. In Table 2, we take the parameter value
€ = 2, which is based on Einstein operation, and the MVNL-
NWBME operator is applied. As we can see from Tables 1 and
2, the ordering of alternatives taking different parameters p,
g, and € may be different, because the different parameters
will cause different score function value. However, A, or
A is always the best selection, and A, is always the worst
selection. Whether ¢ = 1 or ¢ = 2, the same ranking result
is obtained with regard to the same parameter value p and
the same parameter value g except for one situation in which
p =0, = 1,and e = 1. Specially, if p — 0,q = 0,
MVNLNWBMH will reduce to MVNLHWGA operator. If
p — 0,q = 0,and ¢ = 1, MVNLHWGA will reduce to
MVNLWGA operator. When p = 1, g = 0, MVNLNWBMH
will reduce to MVNLHWAA operator. If p = 1, g = 0, and
e = 1, MVNLHWAA will reduce to MVNLWAA operator.
If ¢ = 1 in Table 1, the ranking results on the basis of the
MVNLWGA and MVNLWAA operators differ, which is due
to the two operators emphasis on different major points, and
the same situation happens in Table 2. When the parameters
q =0and p — 0, p = 001, p = 0.1, respectively, the
rankings are identical in two Tables, the ranking order is
always A; > A, > A, > A,. When p and q are assigned the
other values in two Tables, the ranking order is changed, and
theresultis A, > A; > A, > A,. That is, the best selection is
from A; to A, except for one situation where p =0, = 1in
Table 1.

For illustrating the effectiveness and flexibility of the
novel approach, the method in literature is adopted in mul-
tivalued neutrosophic linguistic environment in this paper,
and the same ranking orders are obtained in [9] where
the SVNHFWA and SVNHFWG operators are adopted to
fuse single-valued neutrosophic hesitant fuzzy information.
Whene = 1,p - 0,g = 0Oande = 1,p = 0,9 =
0, the two operators are special cases of MVNLNWBMH
operator. Therefore, novel operator in this paper has better
flexibility and generalization. In actual cases, the decision
makers can assign different parameter values ¢, p, and gq.
Generally, for convenience, we can set ¢ = p = 1, which
can not only simplify the calculation, but also consider the
interrelationship of multiple values.

7. Conclusions

In this paper, the MVNLSs are proposed by combining the
MVNS and LS, which not only describe linguistic terms, but
also give the quantitative value of three membership degrees
concerning the linguistic variables, which has better flexibil-
ity in expressing the decision information. Moreover, NWBM
is a useful operator which has the trait of taking into account
the interrelationship of different arguments and over-
comes drawbacks of nonreducibility and nonidempotency.
Hamacher operations are the extension of algebraic and Ein-
stein operations, which is more general. Considering these
advantages, we have developed Hamacher operational laws
for MVNLNs and extended the NWBM to fuse MVNL infor-
mation. Thus, the MVNLNWBMH operator is proposed,
which is appropriate to deal with MVNL information. Some
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TaBLE 2: Ranking of alternatives utilizing different p, g, and € = 2.

£=2,p.9q Score function E(g;), (i = 1,2,3,4) Ranking

p—0,9g=0 E(a)) = 831300 E(@) = 535137 E(@3) = 835563 E(ay) = 517157 Ay > Ay > A > Ay
p=00L,g=0 E(a)) = 83100 E(@) = 538478 E(a3) = 859631 E(a) = 517661 Ay > Ay > A > Ay
p=01,49=0 E(a)) = 855171 E(@y) = 538503 E(@3) = 85,9750 E(ay) = 51501 Ay > Ay > A > Ay
p=1q9=0 E(ay) = sy.4553 E(ay) = 531038 £(a3) = 8300500 E(@,) = 55,1483 Ay > A > A > Ay
p=249=0 E(a)) = $37140 E(@y) = S3405 E(a3) = 835361 E(@y) = 54453 Ay > Ay > A > Ay
p=5q=0 E(a)) = $35010 E(@y) = S39607 £(a3) = 8350080 E(@4) = 53,5608 Ay > Ay > A > Ay
p=10,9=0 E(ay) = $3.57700 E(@y) = 43003 E(a3) = 830017 E(@y) = 830737 Ay >As > A > Ay
p=04g=1 E(a)) = s3610 E(@y) = $33048 E(a3) = 831457 E(ay) = 5515 Ay >As > A > A
p=00Lg=1 E(a)) = s36011> E(@3) = 35045 E(a3) = 831304 E(a4) = 535700 Ay>As > A > Ay
p=01g=1 E(a)) = 835312 E(@) = 535188 E(a3) = 30005, E(@y) = 5 1500 Ay > Ay = A > Ay
p=lg=1 E(ay) = 85370 E(@y) = 53,0460 E(03) = $59849» E(@4) = 5 0055 Ay > Ay > A > Ay
p=249=1 E(a)) = 854990 E(@) = 5310400 E(33) = 830556 E(a4) = 551751 Ay > Ay > A > Ay
p=5q=1 E(a)) = 519637 E(ay) = 83,6730 E(5) = 533833, E(a4) = 836001 Ay > Ay > A > Ay
p=10,9=1 E(a)) = 833787 E(@) = 540718 E(a3) = 8375160 E(@4) = 559010 Ay > Ay > AL > Ay
p=0g=2 E(ay) = sy8577 E(@y) = S35650 £(a3) = 8337200 E(@4) = $3555 Ay > Ay > A > Ay
p=00Lg=2 E(a,) = 5500 E(ay) = 8355720 E(@3) = 83675, E(ay) = 85435 Ay > Ay > AL > Ay
p=01qg=2 E(ay) = 857919 E(@y) = 534017 E(a3) = 8333040 E(@4) = 55,4707 Ay > Ay > AL > Ay
p=1g=2 E(a,) = 535308 E(a3) = 533108 E(a3) = 530635 E(4) = 531976 Ay>As > A > Ay
pP=249=2 E(a)) = 835586 E(ay) = 303430 E(@3) = 830551 E(ay) = S3550 Ay >As > A > Ay
pP=59=2 E(a)) = 8380500 E(@y) = 35871, E(@3) = 83,5878 E(ay) = 35504 Ay > Ay > A > Ay
p=10,9=2 E(a)) = 835803 E() = 396500 E(d3) = 36305 E(@4) = 55854 Ay > A > A > Ay

desirable properties of the novel operator are discussed in
detail, and some special cases are analyzed. Furthermore, the
comparison method for MVNLNS is also studied, and the
rankings of alternatives affected by different parameters p, g,
and ¢ are also compared. For verifying the novel approach, we
successfully applied the approach to an example. The results
show the novel approach has the following advantages: the
MVNLNWBMH operator is more flexible and more general
and can capture the interrelationship among arguments and
express decision information more practically; the decision
makers can assign appropriate values according to the real
situation. In future, we will explore applying the operator to
the different domains, for instance, fault diagnosis, machine
learning, and medical diagnosis.

As a future possible research, we will extend our research
by using the refined neutrosophic set [54]; that is, the
truth value T is refined into types of subtruths such as
T1, T2; similarly indeterminacy I is refined into types of
subindeterminacies I1, 12, and so forth; and the subfalsehood
F is split into F1, F2, and so forth.
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