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Ship-based lidar evaluation of Southern Ocean clouds in the storm-resolving 
general circulation model ICON and the ERA5 and MERRA-2 reanalyses
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Voyages and stations ICON
⦁ We analysed 31 voyages of RV Polarstern, RSV Aurora Australis, RV Tangaroa, RV 
Nathaniel B. Palmer, HMNZS Wellington, and a station in the Southern Ocean south 
of 40°S between 2010 and 2021.
⦁ A total of about 2400 days of observations were included.
⦁ Ceilometer Vaisala CL51 and CT25K operating at 910 nm and Lu� CHM 15k 
operating at 1064 nm were used on the voyages.
⦁ Radiosondes were launched and surface meteorological quantities measured 
continuously on multiple voyages.
⦁ We subsetted the data by latitude into high- (55+°S) and low-latitude SO (40–
55°S), cyclnic activity based on cyclone tracking, and stability using lower 
tropospheric stability.

Lidar simulator

⦁ Profiles with precipitation cannot be easily distinguished from clouds in observations.
⦁ They cannot be compared with the models, which do not provide precipitation mixing ratios.
⦁ Instruments such as a rain gauge are not reliable on ships.
⦁ We train a convolutional U-Net artificial neural network (ANN) to recognise precipitation in 
lidar backscatter.
⦁ Human-performed observations are used as a training reference.
⦁ The ANN achieves 65% sensitivity and 87% specificity when the true positive rate (26%) is 
made to match observations.
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Convolution 2D (256, 3 × 3) Maximum pooling 2D (1 × 2) Dropout (20%) Dense (64) Dense (4)Flatten Output (4)

(a) ANN diagram

(b) Random example near-surface lidar backscatter samples of 5 min (horizontal axis) by 0‒250 m (vertical axis)

(c) Receiver operating characteristic (d) Measured and predicted precipitation time series
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Predicted positive rate: 26%
True positive rate: 26%
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Filtering precipitation using machine learning

⦁ An instrument simulator is needed for an unbiased
comparison with a model.
⦁ We used the Automatic Lidar and Ceilometer Framework (ALCF).
⦁  ALCF is based on the instrument simulator COSP.
⦁  It calculates simulated lidar backscatter from the model fields of cloud liquid and 
mixing ratio, cloud fraction, temperature, and pressure.
⦁ Cloud mask is determined based on a threshold.
⦁ Cloud occurrence by height is determined from the cloud mask.
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(b) 40–55°S
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(c) 55+°S
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(e) Non-cyclonic
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(d) Cyclonic
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(g) Unstable
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(f) Stable
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(f) Stable
RFO = 60%
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⦁ Global storm-resolving models (GSRMs) are the next avenue of climate modelling.
⦁ Due to the high resolution, parameterizations of convection and clouds are 
avoided.
⦁ Standard-resolution models have substantial cloud biases over the Southern 
Ocean (SO), affecting radiation and sea surface temperature. 
⦁ We evaluated SO clouds in a GSRM version of  ICON and the ERA5 and MERRA-2 
reanalyses.

⦁ The SO is dominated by low clouds, which cannot be observed accurately from space 
due to overlapping clouds, attenuation, and ground clutter.
⦁ We analysed about 2400 days of lidar observations from 31 voyages and a station using a 
ground-based lidar simulator.
⦁ ICON and the reanalyses underestimate the total cloud fraction by about 10 and 20%, 
respectively. ICON and ERA5 overestimate the cloud occurrence peak at about 500 m, 
potentially explained by their li�ing condensation levels being too high.
⦁ The reanalyses strongly underestimate near-surface clouds or fog.

⦁ We used Cycle 3 storm-resolving version of the Icosahedral Nonhydrostatic
Weather and Climate Model (ICON) in development by the NextGEMS project.
⦁ The horizontal resolution is about 5 km.
⦁ 4 years of coupled simulations in 2021–2024.
⦁ Unlike current GCMs, it does not parametrise mass flux but resolves convection explicitly.
⦁ Turbulence is parametrised.
⦁ Grid box cloud fraction is always either 0 or 100%.
⦁ The model is free-running. Therefore, when comparing to observations, we take the same 
geographical location and time relative to the start of the year.

Summary ⦁ MERRA-2 tends to underestimate cloud occurrence at all heights.
⦁ In daily cloud cover, ICON and the reanalyses tend to be about 1 and 2 oktas clearer, respectively.
⦁ Compared to radiosondes, potential temperature is accurate in all, but ICON is too unstable over 
the low-latitude SO and too humid in the boundary layer.
⦁ SO cloud biases are a substantial issue in the GSRM but are an improvement over the lower-
resolution reanalyses.
⦁ Explicitly resolved convection and cloud processes were not enough to address the model cloud 
biases.
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Thermodynamic profiles
⦁ We analysed about 2300 radiosonde profiles south of 40°S from the 24 RV Polarstern 
voyages, MARCUS, NBP1704, TAN1702, and TAN1802 campaigns.
⦁ Spatially and temporally colocated profiles were taken from ICON and the 
reanalyses.
⦁ Virtual potential temperature well-represented, except for ICON at 40–55°S, which is 
too cold at 5 km height. Consequently, it is too unstable.
⦁ Variance of virtual potential temperature is too small in ICON.
⦁ ICON is too humid in the first 1 km.
⦁ MERRA-2 is too humid by up to 20%.

⦁ Calculated from the lidar cloud mask as the daily total cloud fraction, irrespective of height.
⦁ Observations have the greatest representation of high cloud cover (5–8 oktas), peaking at 7 
oktas.
⦁ ICON tends to be 1 okta clearer than the observations, peaking at 6 oktas, and highly 
underestimating days with 8 oktas.
⦁ The reanalyses underestimate cloud cover by about 2 oktas and strongly underestimate days 
with 7 and 8 oktas.
⦁ The cyclonic subset has the highest cloud cover, with 8 oktas occurring half the days.
⦁ This is not represented by ICON or the reanalyses at all.
⦁ High-latitude SO tends to have greater cloud cover, peaking at 8 oktas.
⦁ The largest biases are present in ERA5 in the unstable subset, in which ERA5 peaks at 3 oktas, 
whereas the observations peak at 7 oktas and show negligible cloud cover below 5 oktas.

⦁ We aggregated data from all voyages and stations, each weighted equally.
⦁ The total cloud fraction is underestimated in ICON and the reanalyses by about 
10% and 20%, respectively.
⦁ ICON overestimates cloud occurrence below 1 km and underestimates it above.
⦁ MERRA-2 underestimates cloud occurrence at all heights.
⦁ ERA5 simulates cloud occurrence relatively well above 1 km but strongly 
underestimates it near the surface.
⦁ Fog or near-surface clouds are strongly lacking in the reanalyses.
⦁ The models have a higher-altitude peak (at about 500 m) than observations.
⦁ The reanalyses exhibit the too few, too bright bias previously identified in climate 
models.
⦁ Outgoing top of atmosphere (TOA) shortwave (SW) radiation in the reanalyses is 
similar to or higher than in the satellite observations, while total cloud fraction is 
underestimated.
⦁ ICON underestimates both cloud fraction and outgoing TOA SW radiation.
⦁ Unstable sitations are especially problematic for ICON, with a strongly 
overestimated peak at 500 m.
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