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Abstract.

In this paper, we discuss spacial types of bipolar neutrosophic graphs, including edge

irregular bipolar neutrosophic graphs and totally edge irregular bipolar neutrosophic

graphs. We illustrate these types by several examples and investigate some of their

interesting properties.
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1. Introduction

Fuzzy set theory plays a vital role in complex phenomena which is not easily
characterized by classical set theory. The concept of bipolar fuzzy sets [20] is a
new mathematical theory for dealing with uncertainty. Bipolar fuzzy sets are the
extension of fuzzy sets whose membership degree lies in the interval [−1, 1]. The
membership degree (0, 1] shows that the element satisfies a certain property. The
membership degree [−1, 0) shows that the object satisfies the implicit counter
property. Positive information indicates what is considered to be possible and
negative information represent what is granted to be impossible. In fact, a num-
ber of decision making problems are depend on two-sided bipolar judgements on
a positive side and a negative side. Smarandache [16, 17] proposed the idea of
neutrosophic sets by combining the non-standard analysis. In neutrosophic set,
the membership value is associated with three components: truth-membership,
indeterminacy-membership and falsity-membership, in which each membership
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value is a real standard or non-standard subset of the non-standard unit interval
]0−, 1+[ and there is no restriction on their sum. Neutrosophic set is a mathe-
matical tool for dealing real life problems having imprecise, indeterminate and
inconsistent data. Neutrosophic set theory is considered as a generalization of
classical set theory, fuzzy set theory and intuitionistic fuzzy set theory. Wang et
al. [18] presented the notion of single-valued neutrosophic sets to apply neutro-
sophic sets in real life problems more conveniently. In single-valued neutrosophic
sets, three components are independent and their values are taken from the stan-
dard unit interval [0, 1]. Recently, as a generalized form of bipolar fuzzy sets and
single-valued neutrosophic sets, bipolar neutrosophic sets are defined by Deli et
al. [9].
Graph theory has become a powerful conceptual framework for modeling and
solution of combinatorial problems that arise in various fields, including mathe-
matics, engineering and computer science. However, in some cases, some aspects
of graph theoretic concepts may be uncertain. In such cases, it is important to
deal with uncertainties using the methods of fuzzy sets and logics. Kaufmann [11]
gave the definition of a fuzzy graph on the basis of Zadeh’s fuzzy relations [19].
Fuzzy graphs were narrated by Rosenfeld [14]. After that, some remarks on fuzzy
graphs were represented by Bhattacharya [8]. He showed that all the concepts
on crisp graph theory do not have similarities in fuzzy graphs. Santhimaheswari
and Sekar [15] studied strongly edge irregular fuzzy graphs and strongly edge
totally irregular fuzzy graphs. In [1-6], Akram with his different co-authors has
discussed several concepts, including bipolar neutrosophic graphs, bipolar neu-
trosophic planar graphs, vague graphs, bipolar neutrosophic graph structures
and m-polar fuzzy graphs. In this paper, we discuss spacial types of bipolar
neutrosophic graphs, including edge irregular bipolar neutrosophic graphs and
totally edge irregular bipolar neutrosophic graphs. We illustrate these types by
several examples and investigate some of their interesting properties.

2. Bipolar Neutrosophic Graphs

Definition 2.1.[18] A bipolar fuzzy set S on a non-empty set M is an object
having the form

S = {(m,µ+(m), µ−(m)) : m ∈ M},

where the mappings µ+ : M → [0, 1] and µ− : M → [−1, 0] denote the positive
membership function and the negative membership function, respectively. The
positive membership value µ+(m) and the negative membership value µ−(m) of
an element m indicate the strength of satisfaction of element m to a certain
property and the strength of satisfaction of element m to some counter property
of bipolar fuzzy set S.

• If µ+(m) 6= 0 and µ−(m) = 0, then it will show that element m has only
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truth satisfaction value for the property of S.

• If µ+(m) = 0 and µ−(m) 6= 0, then it will show that element m is not
satisfying the property of S but satisfying the counter property of S.

• If µ+(m) 6= 0 and µ−(m) 6= 0, then it will show that element m is satisfying
the property of S as well as the counter property of S.

Definition 2.2.[9] A bipolar neutrosophic set S on a non-empty set M is an object
having the form

S = {(m, t+(m), i+(m), f+(m), t−(m), i−(m), f−(m)) : m ∈ M},

where the mappings t+, i+, f+ : M → [0, 1] and t−, i−, f− : M → [−1, 0] denote
the positive membership functions and the negative membership functions, respec-
tively. The positive membership values t+(m), i+(m), f+(m) and the negative
membership values t−(m), i−(m), f−(m) of an element m indicate the strength
of truth, indeterminacy, falsity of element m to a certain property of bipolar
neutrosophic set S and the strength of truth, indeterminacy, falsity of element
m to some counter property of bipolar neutrosophic set S.

Definition 2.3.[9] Let M be a non-empty set. A bipolar neutrosophic relation T on
M is a mapping T : M ×M → [0, 1] ×[−1, 0] having the form T = {mn, t+T (mn),
i+T (mn), f+

T (mn), t−T (mn), i−T (mn), f−
T (mn) : mn ∈ M ×M}, where t+T , i

+
T , f

+
T

: M → [0, 1] and t−T , i
−
T , f

−
T : M → [−1, 0] are the membership functions.

Definition 2.4.[9] A bipolar neutrosophic graph G = (S, T ) on M is a pair, where
S = (µ+

S , µ
−
S ) is a bipolar neutrosophic set on M and T = (µ+

T , µ
−
T ) is a bipolar

neutrosophic relation on M such that

• t+T (mn) ≤ t+S (m)∧t+S (n), i+T (mn) ≤ i+S (m)∧i+S (n), f+
T (mn) ≤ f+

S (m)∨
f+
S (n),

• t−T (mn) ≥ t−S (m)∨t−S (n), i−T (mn) ≥ i−S (m)∨i−S (n), f−
T (mn) ≥ f−

S (m)∧
f−
S (n),

for all m,n ∈ M , where T (mn) = (0, 0, 0, 0, 0, 0) for all mn ∈ M× M − L.
Note that S and T are called the bipolar neutrosophic vertex set and the bipolar
neutrosophic edge set of G, respectively.

Example 2.5. Consider a crisp graph G∗ = (M,L) such that M = {m1, m2, m3,

m4, m5} and L = {m1m4, m2m4, m2m5, m3m5}. Let M and L be a bipolar
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Table 2: Bipolar neutrosophic edge set
T m1m4 m2m4 m2m5 m3m5

t+T 0.1 0.2 0.1 0.2

i+T 0.3 0.3 0.2 0.4

f+
T 0.3 0.4 0.5 0.5

t−T −0.1 −0.4 −0.3 −0.3

i−T −0.3 −0.3 −0.2 −0.2

f−
T −0.3 −0.5 −0.5 −0.5

neutrosophic subset of M and a bipolar neutrosophic subset of L ⊆ M ×M ,
respectively, defined by

Table 1: Bipolar neutrosophic vertex set
S m1 m2 m3 m4 m5

t+S 0.1 0.4 0.2 0.2 0.2

i+S 0.4 0.3 0.4 0.5 0.4

f+
S 0.3 0.4 0.3 0.3 0.5

t−S −0.3 −0.5 −0.7 −0.5 −0.4

i−S −0.5 −0.3 −0.2 −0.4 −0.3

f−
S −0.2 −0.6 −0.4 −0.3 −0.6

bc

bc

bc

m1(0.1, 0.4, 0.3,−0.3,−0.5,−0.2)

m2(0.4, 0.3, 0.4,−0.5,−0.3,−0.6)

m4(0.2, 0.5, 0.3,−0.5,−0.4,−0.3)

m4(0.2, 0.4, 0.5,−0.4,−0.3,−0.6)

m3(0.2, 0.4, 0.3,−0.7,−0.2,−0.4)

(0
.1
, 0
.2
, 0
.5
,−

0.
3,
−
0.
2,
−
0.
5)

(0
.2
, 0
.3
, 0
.4
,−

0
.4
,−

0
.3
,−

0
.5)

(0.2
, 0.4

, 0.5
,−0

.3,−
0.2,

−0.
5)

(0.1, 0.3, 0.3,−0.1,−0
.3,−

0.
3)

bc

bc

Figure 1: Bipolar neutrosophic graph G

Definition 2.6. The degree and the total degree of a vertex m of a bipolar neutro-
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sophic graph G are denoted by DG(m) = (Dt+(m), Di+(m), Df+(m), Dt−(m),
Di−(m), Df−(m)) and T DG(m) = (T Dt+(m), T Di+(m),
T Df+(m), T Dt−(m), T Di−(m), T Df−(m)), respectively, and are defined as

DG(m) = (
∑

m 6=n

t+T (mn),
∑

m 6=n

i+T (mn),
∑

m 6=n

f+
T (mn),

∑

m 6=n

t−T (mn),
∑

m 6=n

i−T (mn),

∑

m 6=n

f−
T (mn)),

T DG(m) = (
∑

m 6=n

t+T (mn) + t+S (m),
∑

m 6=n

i+T (mn) + i+S (m),
∑

m 6=n

f+
T (mn) + f+

S (m),

∑

m 6=n

t−T (mn) + t−S (m),
∑

m 6=n

i−T (mn) + i−S (m),
∑

m 6=n

f−
T (mn) + f−

S (m)),

for mn ∈ L, where m ∈ M .

Definition 2.7. A bipolar neutrosophic graph G = (S, T ) is called an irregular
bipolar neutrosophic graph if there exists a vertex which is adjacent to vertices
with distinct degrees. A bipolar neutrosophic graph G = (S, T ) is called a totally
irregular bipolar neutrosophic graph if there exists a vertex which is adjacent to
vertices with distinct total degrees.

Example 2.8.

m1(0.8, 0.5, 0.6,−0.5,−0.6,−0.7) m2(0.7, 0.4, 0.5,−0.4,−0.5,−0.6)

m4(1.0, 0.6, 0.4,−0.3,−0.7,−0.9)

(0.4, 0.4, 0.3,−0.2,−0.5,−0.3) (0
.6
, 0
.3
, 0
.7
,−

0
.6
,−

0
.4
,−

0
.5
)(0

.4
,0
.4
,0
.3
,−

0
.2
,−

0
.5
,−

0.
3
)

(0.4, 0.4, 0.3,−0.2,−0.5,−0.3)

m3(0.9, 0.5, 0.8,−0.7,−0.6,−0.8)

bc bc

bcbc

Figure 2: Irregular bipolar neutrosophic graph G

Consider a crisp graph G∗ = (M,L) such that M = {m1, m2, m3, m4} and
L = {m1m2, m1m3, m2

m4, m3m4}. The corresponding bipolar neutrosophic graph G = (S, T ) is shown
in Fig. 2. By direct calculations, we have DG(m1) = DG(m3) = (0.8, 0.8, 0.6,
−0.4,−1.0,
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− 0.6), DG(m2) = DG(m4) = (1.0, 0.7, 1.0, −0.8,−0.9,−0.8), T DG(m1) = (1.6,
1.3, 1.2,−0.9,−1.6,−1.3), T DG(m2) = (1.7, 1.1, 1.5,−1.2,−1.4,−1.4), T DG(m3)
= (1.7, 1.3, 1.4,−1.1,−1.6,−1.4) and T DG(m4) = (2.0, 1.3, 1.4,−1.1,−1.6,−1.7).
It is easy to see that m1 is adjacent to vertices of distinct degrees and distinct
total degrees. Therefore, G is an irregular bipolar neutrosophic graph as well as
totally irregular bipolar neutrosophic graph.

Definition 2.9. A bipolar neutrosophic graph G = (S, T ) is called a strongly
irregular bipolar neutrosophic graph if each vertex has distinct degree. A bipo-
lar neutrosophic graph G = (S, T ) is called a strongly totally irregular bipolar
neutrosophic graph if each vertex has distinct total degree.

Example 2.10. Consider a crisp graph G∗ = (M,L) such that M = {m1, m2,

m3} and L = {m1m2, m2m3, m3m1}. The corresponding bipolar neutrosophic
graph G = (S, T ) is shown in Fig. 3.

m1(0.4, 0.3, 0.3,−0.4,−0.2,−0.5)

(0
.1
, 0
.2
, 0
.5
,−
0.
5,
−
0.
2,
−
0.
1)

(0.2, 0.2, 0.2,−
0.3,−

0.1,−
0.3)

(0.1, 0.3, 0.4,−0.3,−0.1,−0.3)

bc

bc bc
m2(0.5, 0.4, 0.4,−0.5,−0.3,−0.6)m3(0.2, 0.5, 0.6,−0.5,−0.3,−0.6)

Figure 3: Strongly irregular bipolar neutrosophic graph G

By direct calculations, we have DG(m1) = (0.3, 0.4, 0.7, −0.8,−0.3,−0.4),
DG(m2) = (0.3, 0.5, 0.6, −0.6,−0.2,−0.6), DG(m3) = (0.2, 0.5, 0.9, −0.8,−0.3,
−0.4), T D(m1) = (0.7, 0.7, 1.0,−1.2,−0.5,−0.9), T D(m2) = (0.8, 0.9, 1.0,−1.1,
− 0.5,−1.2) and T D(m3) = (0.4, 1.0, 1.5, −1.3,−0.6,−1.0). From Fig. 3, it is
clear that each vertex has distinct degree and distinct total degree. Therefore,
G is strongly irregular bipolar neutrosophic graph as well as strongly totally
irregular bipolar neutrosophic graph.

Definition 2.11. A bipolar neutrosophic graph G = (S, T ) is called a highly
irregular bipolar neutrosophic graph if each vertex in G is adjacent to vertices
having distinct degrees. A bipolar neutrosophic graph G = (S, T ) is called a
highly totally irregular bipolar neutrosophic graph if each vertex in G is adjacent
to vertices having distinct total degrees.
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Example 2.12. Consider the bipolar neutrosophic graph G = (S, T ) as shown in
Fig. 2. It is easy to see that each vertex is adjacent to vertices of distinct degree
therefore G is highly irregular bipolar neutrosophic graph and highly totally
irregular bipolar neutrosophic graph.

Definition 2.13. The degree and the total degree of an edge mn of a bipolar neu-
trosophic graph G are denoted by DG(mn) = (Dt+(mn), Di+(mn), Df+(mn),
Dt−(mn), Di−(mn), Df−(mn)) and T DG(mn) = (T Dt+(mn), T Di+(mn),
T Df+(mn), T Dt−(mn), T Di−(mn), T Df−(mn)), respectively, and are defined
as

DG(mn) = DG(m) + DG(n)− 2(t+T (mn), i+T (mn), f+
T (mn), t−T (mn), i−T (mn),

f−
T (mn)),

T DG(mn) = DG(mn) + (t+T (mn), i+T (mn), f+
T (mn), t−T (mn), i−T (mn), f−

T (mn)).

Definition 2.14. A connected bipolar neutrosophic graph G = (S, T ) is called a
neighbourly edge irregular bipolar neutrosophic graph if every two adjacent edges
in G have distinct degrees. A connected bipolar neutrosophic graph G = (S, T )
is called a neighbourly edge totally irregular bipolar neutrosophic graph if every
two adjacent edges in G have distinct total degrees.

Example 2.15. Consider a crisp graphG∗ = (M,L) such thatM = {m1,m2,m3}
and L = {m1m2,m2m3,m3m1}. The corresponding bipolar neutrosophic graph
G = (S, T ) is shown in Fig. 4.

bc

bcbc

m2(0.6, 0.2, 0.5,−0.4,−0.2,−0.5) m3(0.7, 0.3, 0.6,−0.5,−0.3,−0.6)

m1(0.4, 0.4, 0.8,−0.7,−0.4,−0.3)

(0.4, 0.1, 0.4,−0.3,−0.1,−0.3)

(0.3, 0.1, 0.7,−
0.6,−

0.1,−
0.2)

(0
.2
, 0
.2
, 0
.6

,−
0.
5,
−
0.
2,
−
0.
1)

Figure 4: Strongly irregular bipolar neutrosophic graph G

By direct calculations, we have DG(m1) = (0.5, 0.3, 1.3, −1.1,−0.3,−0.3),
DG(m2) = (0.7, 0.2, 1.1, −0.9,−0.2,−0.5) and DG(m3) = (0.6, 0.3, 1.0, −0.8,−0.
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3,−0.4). The degree of each edge isDG(m1m2) = (0.6, 0.3, 1.0,−0.8,−0.3,−0.4),
DG(m1m3) = (0.7, 0.2, 1.1, −0.9,−0.2,−0.5) and DG(m2m3) = (0.5, 0.3, 1.3,
−1.1,−0.3,−0.3). From Fig. 4, it is clear that every two adjacent edges in G

have distinct degrees therefore G is neighbourly edge irregular bipolar neutro-
sophic graph. It is also clear that every two adjacent edges in G have distinct
total degrees therefore G is neighbourly edge totally irregular bipolar neutro-
sophic graph.

Definition 2.16. Let G∗ be a crisp graph. A bipolar neutrosophic graph G =
(S, T ) of G∗ is called a strongly edge irregular bipolar neutrosophic graph if each
edge in G has distinct degree, that is, no two edges in G have the same degree.

Example 2.17. Consider a crisp graphG∗ = (M,L) such thatM = {m1,m2,m3}
and L = {m1m2,m1m3,m2m3}. The corresponding bipolar neutrosophic graph
G = (S, T ) is shown in Fig. 5.

bc

bc bc
m1(0.3, 0.3, 0.6,−0.5,−0.2,−0.4)

m2(0.7, 0.7, 0.2,−0.1,−0.6,−0.8)

m3(0.5, 1.0, 0.4,−0.3,−0.9,−0.6)

(0.2, 0.3, 0.4,−0.3,−0.2,−0.3)

(0.2, 0.2, 0.2,−0.1,−0.1,−0.3)

(0
.4
, 0
.7
, 0
.2
,−

0
.1
,−

0
.6
,−

0
.5
)

Figure 5: Strongly edge irregular bipolar neutrosophic graph G

By direct calculations, we have DG(m1) = (0.4, 0.5, 0.6, −0.4,−0.3,−0.6),
DG(m2) = (0.6, 0.9, 0.4,−0.2,−0.7,−0.8), andDG(m3) = (0.6, 1.0, 0.6,−0.4,−0.
8,−0.8). The degree of each edge isDG(m1m2) = (0.6, 1.0, 0.6,−0.4,−0.8,−0.8),
DG(m1m3) = (0.6, 0.9, 0.4, −0.2,−0.7,−0.8) and DG(m2m3) = (0.8, 0.5, 0.6,
−0.4,−0.3,−0.4). Since no two edges in G have the same degree therefore G is
a strongly edge irregular bipolar neutrosophic graph.

Definition 2.18. Let G∗ be a crisp graph. A bipolar neutrosophic graph G =
(S, T ) of G∗ is called a strongly edge totally irregular bipolar neutrosophic graph
if each edge in G has distinct total degree, that is, no two edges in G have the
same total degree.

Example 2.19. Consider a crisp graph G∗ = (M,L) such that M = {m1, m2,
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m3, m4} and L = {m1m2, m1m4, m2m3, m3m4}. The corresponding bipolar
neutrosophic graph G = (S, T ) is shown in Fig. 6.

bc

bc

bc

bc

m2(0.4, 0.8, 0.3,−0.4,−0.2,−0.3)

m4(0.4, 0.8, 0.4,−0.6,−0.3,−0.5)

m3(0.2, 0.3, 0.5,−0.3,−0.7,−0.5)

m1(0.4, 0.4, 0.7,−0.2,−0.7,−0.5)

(0
.4

,0
.2

,0
.2

,-0
.1

,-0
.1

,-0
.3

)

(0.1,0.2,0.4,-0.3,-0.2,-0.5)

(0.2,0.2,0.2,-0.3,-0.1,-0.2)

(0.4,0.3,0.4,-0.1,-0.1,-0.5)

Figure 6: Strongly edge totally irregular bipolar neutrosophic graph G

By direct calculations, we have DG(m1) = (0.8, 0.5, 0.6,−0.2,−0.2,−0.8),
DG(m2) = (0.6, 0.4, 0.4,−0.4,−0.2,−0.5), DG(m3) = (0.3, 0.4, 0.6,−0.6,−0.3,
− 0.7) and DG(m4) = (0.5, 0.5, 0.8,−0.4,−0.3,−1.0). The total degree of each
edge is T DG(m1m2)(1.0, 0.7, 0.8,−0.5,−0.3,−1.0), T DG(m1m4)(0.9, 0.7, 1.0,−0.
5,−0.4,−1.3), T DG(m2m3)(0.7, 0.6, 0.8,−0.7,−0.4,−1.0) and T DG(m3m4)(0.6,
0.5, 0.6,−0.4,−0.2,−0.7). Since no two edges in G have the same total degree
therefore G is a strongly edge totally irregular bipolar neutrosophic graph.

Remark 2.20. A strongly edge irregular bipolar neutrosophic graph G may not
be strongly edge totally irregular bipolar neutrosophic graph.

Example 2.21. Consider a crisp graphG∗ = (M,L) such thatM = {m1,m2,m3}
and L = {m1m2,m1m3,m2m3}. The corresponding bipolar neutrosophic graph
G = (S, T ) is shown in Fig. 7.
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m2(0.3, 1.0, 0.4,−0.5,−0.9,−0.4)

bc

bc

bcm1(0.6, 0.3, 0.3,−0.4,−0.2,−0.7)

m3(0.8, 0.4, 0.5,−0.6,−0.3,−0.9)

(0.2
, 0.2

, 0.3
,0.4,

0.1,
0.3)

(0
.3
, 0
.4
, 0
.4

,0
.5
, 0
.3
, 0
.4
)

(0.6, 0.3, 0.1,0.2, 0.2, 0.7)

Figure 7: Strongly edge irregular bipolar neutrosophic graph G

By direct calculations, we have DG(m1) = (0.8, 0.5, 0.4, −0.6,−0.3,−1.0),
DG(m2) = (0.5, 0.6, 0.7,−0.9,−0.4,−0.7) andDG(m3) = (0.9, 0.7, 0.5,−0.7,−0.
5,−1.1). The degree of each edge isDG(m1m2) = (0.9, 0.7, 0.5,−0.7,−0.5,−1.1),
DG(m2m3) = (0.8, 0.5, 0.4, −0.6,−0.3,−1.0) and DG(m1m3) = (0.5, 0.6, 0.7,
−0.9,−0.4,−0.7). Since all the edges have distinct degrees therefore G is a
strongly edge irregular bipolar neutrosophic graph. The total degree of each edge
is T DG(m1m2) = (1.1, 0.9, 0.8,−1.1,−0.6,−1.4) = T DG(m1m3) = T DG(m2m3).
Since each edge of G has the same total degree therefore G is not a strongly edge
totally irregular bipolar neutrosophic graph.

Remark 2.22. A strongly edge totally irregular bipolar neutrosophic graph G

may not be strongly edge irregular bipolar neutrosophic graph.

Example 2.23. Consider a crisp graphG∗ = (M,L) such thatM = {m1,m2,m3,

m4} and L = {m1m2,m1m4,m2m3, m3m4}. The corresponding bipolar neutro-
sophic graph G = (S, T ) is shown in Fig. 8.
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bc bc

bcbc

Figure 8: Strongly edge totally irregular bipolar neutrosophic graph G

By direct calculations, we have DG(m1) = (0.5, 1.0, 0.9,−1.1,−0.8,−0.3),
DG(m2) = (0.7, 0.9, 0.7,−0.9,−0.7,−0.5) DG(m3) = (0.1, 0.6, 0.4,−0.6,−0.4,−
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0.8) and DG(m4) = (0.8, 0.7, 0.6,−0.8,−0.5,−0.6).
The degree of each edge is DG(m1m2) = (0.6, 0.7, 0.6,−0.8,−0.5,−0.4), DG(m1

m4) = (1.1, 1.3, 1.1,−1.4,−1.0,−0.8),DG(m2m3) = (0.9, 0.9, 0.7,−0.9,−0.7,−0.
7) and DG(m3m4) = (0.6, 0.7, 0.6,−0.8,−0.5,−0.4). It is easy to see that
DG(m1m2) = DG(m3m4) and DG(m2m3) = DG(m1m4). Therefore, G is not a
strongly edge irregular bipolar neutrosophic graph.
The total degree of each edge is T DG(m1m2) = (0.9, 1.3, 1.1,−1.4,−1.0,−0.6),
T DG(m1m4) = (1.1, 1.3, 1.1,−1.4,−1.0,−0.6), T DG(m2m3) = (1.3, 1.2, 0.9,−1.
2,−0.9,−1.0) and T DG(m3m4) = (1.2, 1.0, 0.8,−1.1,−0.7,−0.9). Since all the
edges have distinct total degrees therefore G is a strongly edge totally irregular
bipolar neutrosophic graph.

Theorem 2.1 If G = (S, T ) is a strongly edge irregular connected bipolar neu-
trosophic graph, where T is a constant function. Then G is a strongly edge
totally irregular bipolar neutrosophic graph.
Proof. Let G = (S, T ) be a strongly edge irregular connected bipolar neutro-
sophic graph. Suppose that T is a constant function. Then t+T (mn) = s1,
i+T (mn) = s2, f+

T (mn) = s3, t−T (mn) = s4, t−T (mn) = s5 and t−T (mn) = s6
for all mn ∈ L, where sj, j = 1, 2, . . . , 6 are constants. Consider a pair of edges
mn and uv in L. Since G is a strongly edge irregular bipolar neutrosophic graph
therefore DG(mn) 6= DG(uv), where mn and uv are a pair of edges in L. This
shows that DG(mn)+(s1, s2, s3, s4, s5, s6) 6= DG(uv)+(s1, s2, s3, s4, s5, s6). This
implies that DG(mn) + (t+T (mn), i+T (mn), f+

T (mn), t−T (mn), i−T (mn), f−
T (mn)) 6=

DG(uv) + (t+T (uv), i
+
T (uv), f

+
T (uv), t−T (uv), i

−
T (uv), f

−
T (uv)). Thus T DG(mn) 6=

T DG(uv), where mn and uv are a pair of edges in L. Since the pair of edges
mn and uv were taken to be arbitrary this shows that every pair of edges in G

have distinct total degrees. Hence G is a strongly edge totally irregular bipolar
neutrosophic graph.

Theorem 2.2 If G = (S, T ) is a strongly edge totally irregular connected bipolar
neutrosophic graph, where T is a constant function. Then G is a strongly edge
irregular bipolar neutrosophic graph.
Proof. Let G = (S, T ) be a strongly edge totally irregular connected bipolar neu-
trosophic graph. Suppose that T is a constant function. Then t+T (mn) = s1,
i+T (mn) = s2, f

+
T (mn) = s3, t

−
T (mn) = s4, t

−
T (mn) = s5 and t−T (mn) = s6 for

all mn ∈ L, where sj, j = 1, 2, . . . , 6 are constants. Consider a pair of edges mn

and uv in L. Since G is a strongly edge totally irregular bipolar neutrosophic
graph therefore T DG(mn) 6= T DG(uv), where mn and uv are a pair of edges in
L. This shows that DG(mn)+(t+T (mn), i+T (mn), f+

T (mn), t−T (mn), i−T (mn), f−
T (m

n)) 6= DG(uv) + (t+T (uv), i
+
T (uv), f

+
T (uv), t−T (uv), i

−
T (uv), f

−
T (uv)). This implies

that DG(mn) + (s1, s2, s3, s4, s5, s6) 6= DG(uv) + (s1, s2, s3, s4, s5, s6). Thus
DG(mn) 6= DG(uv), where mn and uv are a pair of edges in L. Since the
pair of edges mn and uv were taken to be arbitrary this shows that every pair
of edges in G have distinct degrees. Hence G is a strongly edge irregular bipolar
neutrosophic graph.
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Remark 2.24. If G = (S, T ) is both strongly edge irregular bipolar neutrosophic
graph and strongly edge totally irregular bipolar neutrosophic graph, then it is
not necessary that T is a constant function.

Example 2.25. Consider a crisp graph G∗ = (M,L) such that T = {m1,m2,m3,

m4,m5} and L = {m1m2,m1m5, m2m3, m3m4,m4m5}. The corresponding
bipolar neutrosophic graph G = (S, T ) is shown in Fig. 9.
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bc

bc

bc
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Figure 9: Bipolar neutrosophic graph G

By direct calculations, we have DG(m1) = (0.8, 0.6, 0.5, −0.7, −0.4, −0.6),
DG(m2) = (0.8, 0.6, 0.2, −0.4, −0.4, −0.6), DG(m3) = (0.5, 0.9, 0.4, −0.6, −0.7,
−0.3), DG(m4) = (0.5, 0.8, 0.4, −0.6, −0.8, −0.3) and DG(m5) = (0.6, 0.7,
0.5, −0.7,−0.7,−0.4). The degree of each edge is DG(m1m2) = (0.6, 0.8, 0.5,
−0.7,−0.6,−0.4), DG(m2m3) = (0.7, 0.7, 0.4, −0.6,−0.5,−0.5), DG(m3m4) =
(0.6, 0.7, 0.2,−0.4,−0.7,−0.4),DG(m4m5) = (0.5, 0.9, 0.7,−0.9,−0.7,−0.3) and
DG(m5m1) = (0.8, 0.5, 0.2, −0.4,−0.5,−0.6). It is easy to see that all the edges
have distinct degrees. Therefore, G is a strongly edge irregular bipolar neutro-
sophic graph.
The total degree of each edge is T DG(m1m2) = (1.1, 1.0, 0.6, −0.9,−0.7,−0.8),
T DG(m2m3) = (1.0, 1.1, 0.5, −0.8,−0.8,−0.7), T DG(m3m4) = (0.8, 1.2, 0.5,
−0.8,−1.1,−0.5), T DG(m4m5) = (0.8, 1.2, 0.8, −1.1,−1.1,−0.5) and T DG(m5

m1) = (1.1, 0.9, 0.6, −0.9,−0.8,−0.8). Since all the edges have distinct total de-
grees therefore G is a strongly edge totally irregular bipolar neutrosophic graph.
This shows that G is both strongly edge irregular bipolar neutrosophic graph
and strongly edge totally irregular bipolar neutrosophic graph but Y is not a
constant function.

Theorem 2.3 Let G = (S, T ) be a strongly edge irregular bipolar neutrosophic
graph. Then G is a neighbourly edge irregular bipolar neutrosophic graph.
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Proof. Suppose that G is a strongly edge irregular bipolar neutrosophic graph.
Then each edge in G has distinct degree. This shows that every pair of edges
in G have distinct degrees. Therefore, G is a neighbourly edge irregular bipolar
neutrosophic graph.

Theorem 2.4 Let G = (S, T ) be a strongly edge totally irregular bipolar neutro-
sophic graph. Then G is a neighbourly edge totally irregular bipolar neutrosophic
graph.
Proof. Suppose that G is a strongly edge totally irregular bipolar neutrosophic
graph. Then each edge in G has distinct total degree. This shows that every
pair of edges in G have distinct total degrees. Therefore, G is a neighbourly edge
totally irregular bipolar neutrosophic graph.

Remark 2.26. If G is a neighbourly edge irregular bipolar neutrosophic graph
then it is not necessary that G is a strongly edge irregular bipolar neutrosophic
graph.

Example 2.27. Consider a crisp graphG∗ = (M,L) such thatM = {m1,m2,m3,

m4} and L = {m1m2,m2m3, m3m4}. The corresponding bipolar neutrosophic
graphG = (S, T ) is shown in Fig. 10.
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Figure 10: Bipolar neutrosophic graph G

By direct calculations, we have DG(m1) = (0.7, 0.4, 0.2,−0.1,−0.5,−0.6),
DG(m2) = (1.4, 0.8, 0.4,−0.2,−1.0,−1.2), DG(m3) = (1.4, 0.8, 0.4,−0.2,−1.0,
− 1.2) and DG(m4) = (0.7, 0.4, 0.2,−0.1,−0.5,−0.6). The degree of each edge is
DG(m1m2) = (0.7, 0.4, 0.2,−0.1,−0.5,−0.6),DG(m2m3) = (1.4, 0.8, 0.4,−0.2,−
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1.0,−1.2) and DG(m3m4) = (0.7, 0.4, 0.2,−0.1,−0.5,−0.6). G is neighbourly
edge irregular bipolar neutrosophic graph since every two adjacent edges in G

have distinct total degrees, that is, DG(m1m2) 6= DG(m2m3) and DG(m2m3) 6=
DG(m3m4). It is easy to see that DG(m1m2) = DG(m3m4). Therefore, G is not
a strongly edge irregular bipolar neutrosophic graph.

Remark 2.28. If G is a neighbourly edge totally irregular bipolar neutrosophic
graph then it is not necessary that G is a strongly edge totally irregular bipolar
neutrosophic graph.

Example 2.29. Consider the bipolar neutrosophic graph G = (S, T ) as shown in
Fig. 10. The total degree of each edge is T DG(m1m2) = (1.4, 0.8, 0.4,−0.2,−1.0,
−1.2), T DG(m2m3) = (2.1, 1.2, 0.6,−0.3,−1.5,−1.8) and T DG(m1m2) = (1.4, 0.
8, 0.4,−0.2,−1.0,−1.2). It is easy to see that every two adjacent edges in G have
distinct total degrees, that is, T DG(m1m2) 6= T DG(m2m3) and T DG(m2m3) 6=
T DG(m3m4). Therefore, G is neighbourly edge totally irregular bipolar neutro-
sophic graph. It is easy to see that T DG(m1m2) = T DG(m3m4). Hence G is
not a strongly edge totally irregular bipolar neutrosophic graph.

Theorem 2.5 Let G = (S, T ) be a strongly edge irregular connected bipolar
neutrosophic graph, with T as constant function. Then G is an irregular bipolar
neutrosophic graph.
Proof. Let G = (S, T ) be a strongly edge irregular connected bipolar neutro-
sophic graph, with T as constant function. Then t+T (mn) = s1, i

+
T (mn) = s2,

f+
T (mn) = s3, t

−
T (mn) = s4, t

−
T (mn) = s5 and t−T (mn) = s6, for each edge mn ∈

L, where sj, j = 1, 2, . . . , 6 are constants. Also, every edge in G has distinct de-
grees, since G is strongly edge irregular bipolar neutrosophic graph. Let mn and
nu be any two adjacent edges in G such that DG(mn) 6= DG(nu). This implies
that DG(m)+DG(n)−2(t+T (mn), i+T (mn), f+

T (mn), t−T (mn), i−T (mn), f−
T (mn)) 6=

DG(n) + DG(u) − 2(t+T (nu), i
+
T (nu), f

+
T (nu), t−T (nu), i

−
T (nu), f

−
T (nu)). This im-

plies that DG(m) + DG(n) − 2(s1, s2, s3, s4, s5, s6) 6= DG(n) + DG(u) −
2(s1, s2, s3, s4, s5, s6). This shows that DG(m) 6= DG(u). Thus there exists a
vertex n in G which is adjacent to the vertices with distinct degrees. This shows
that G is an irregular bipolar neutrosophic graph.

Theorem 2.6 Let G = (S, T ) be a strongly edge totally irregular connected
bipolar neutrosophic graph, with T as constant function. Then G is an irregular
bipolar neutrosophic graph.
Proof. Let G = (S, T ) be a strongly edge totally irregular connected bipo-
lar neutrosophic graph, with T as constant function. Then t+T (mn) = s1,
i+T (mn) = s2, f+

T (mn) = s3, t−T (mn) = s4, t−T (mn) = s5 and t−T (mn) =
s6 for each edge xy ∈ L, where sj, j = 1, 2, . . . , 6 are constants. Also,
every edge in G has distinct total degrees, since G is strongly edge to-
tally irregular bipolar neutrosophic graph. Let mn and nu be any two ad-
jacent edges in G such that T DG(mn) 6= T DG(nu). This implies that
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DG(mn) + (t+T (mn), i+T (mn), f+
T (mn), t−T (mn), i−T (mn), f−

T (mn)) 6= DG(nu) +
(t+T (nu), i

+
T (nu), f

+
T (nu), t−T (nu), i

−
T (nu), f

−
T (nu)). This implies that DG(m) +

DG(n) − (t+T (mn), i+T (mn), f+
T (mn), t−T (mn), i−T (mn), f−

T (mn)) 6= DG(n) +
DG(u) − (t+T (nu), i

+
T (nu), f

+
T (nu), t−T (nu), i

−
T (nu), f

−
T (nu)). This implies that

DG(m)+DG(n)−2(s1, s2, s3, s4, s5, s6) 6= DG(n)+DG(u)−2(s1, s2, s3, s4, s5, s6).
This shows that DG(m) 6= DG(u). Thus there exists a vertex n in G which is
adjacent to the vertices with distinct degrees. This shows that G is an irregular
bipolar neutrosophic graph.

Remark 2.30. If G = (S, T ) is an irregular bipolar neutrosophic graph, with T as
a constant function. Then it is not necessary that G is a strongly edge irregular
bipolar neutrosophic graph.

Example 2.31. Consider a crisp graphG∗ = (M,L) such thatM = {m1,m2,m3,

m4} and L = {m1m2,m1m4,m2m3, m2m4,m3m4}. The corresponding bipolar
neutrosophic graph G = (S, T ) is shown in Fig. 11.
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Figure 11: Irregular bipolar neutrosophic graph G

By direct calculations, we have DG(m1) = (0.9, 0.6, 0.6,−0.9,−0.3,−1.2),
DG(m2) = (0.9, 0.6, 0.6,−0.9,−0.3,−1.2), DG(m3) = (0.9, 0.6, 0.6,−0.9,−0.3,
− 1.2), and DG(m4) = (0.9, 0.6, 0.6,−0.9,−0.3,−1.2). The degree of each edge
is DG(m1m2) = (0.9, 0.6, 0.6,−0.9,−0.3,−1.2) = DG(m1m4) = DG(m2m3) =
DG(m3m4) and DG(m1m3) = (1.2, 0.8, 0.8,−1.2,−0.4,−1.6). It is easy to see
that all the edges have the same degree except the edge m1m3. Therefore, G is
not a strongly edge irregular bipolar neutrosophic graph.
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Remark 2.32. If G = (S, T ) is an irregular bipolar neutrosophic graph, with T

as a constant function. Then it is not necessary that G is a strongly edge totally
irregular bipolar neutrosophic graph.

Example 2.33. Consider the bipolar neutrosophic graph G = (S, T ) as shown in
Fig. 11. The total degree of each edge is T DG(m1m2) = (1.2, 0.8, 0.8,−1.2,−0.4,
−1.6) = DG(m1m4) = DG(m2m3) = DG(m3m4) and T DG(m1m3) = (1.5, 1.0, 1.
0,−1.5,−0.5,−2.0). It is easy to see that all the edges have the same total de-
gree except the edge m1m3. Therefore, G is not a strongly edge totally irregular
bipolar neutrosophic graph.

Theorem 2.7 Let G = (S, T ) be a strongly edge irregular connected bipolar
neutrosophic graph, with T as a constant function. Then G is highly irregular
bipolar neutrosophic graph.
Proof. Let G = (S, T ) be a strongly edge irregular connected bipolar neutro-
sophic graph, with T as a constant function. Then t+T (mn) = s1, i

+
T (mn) = s2,

f+
T (mn) = s3, t−T (mn) = s4, t−T (mn) = s5 and t−T (mn) = s6 for each edge
mn ∈ L, where sj, j = 1, 2, . . . , 6 are constants. Also every pair of adja-
cent edges in G have distinct degrees. Let n be any vertex in G which is
adjacent to vertices n and u. Since G is strongly edge irregular bipolar neu-
trosophic graph therefore, DG(mn) 6= DG(nu). This implies that DG(m) +
DG(n) − 2(t+T (mn), i+T (mn), f+

T (mn), t−T (mn), i−T (mn), f−
T (mn)) 6= DG(n) +

DG(u) − 2(t+T (nu), i
+
T (nu), f

+
T (nu), t−T (nu), i

−
T (nu), f

−
T (nu)). This implies that

DG(m) +DG(n)− 2(s1, s2, s3, s4, s5, s6) 6= DG(n) +DG(u)− 2(s1, s2, s3, s4, s5,
s6). This shows that DG(m) 6= DG(u). Thus there exists a vertex n in G which
is adjacent to the vertices with distinct degrees. Since n was taken to be an arbi-
trary vertex in G, therefore all the vertices in G are adjacent to vertices having
distinct degrees. Hence G is a highly irregular bipolar neutrosophic graph.

Theorem 2.8 Let G = (S, T ) be a strongly edge totally irregular connected
bipolar neutrosophic graph, with T as a constant function. Then G is highly
irregular bipolar neutrosophic graph.
Proof. Let G = (S, T ) be a strongly edge totally irregular connected bipo-
lar neutrosophic graph, with T as a constant function. Then t+T (mn) = s1,
i+T (mn) = s2, f+

T (mn) = s3, t−T (mn) = s4, t−T (mn) = s5 and t−T (mn) = s6
for each edge mn ∈ L, where sj, j = 1, 2, . . . , 6 are constants. Also every
pair of adjacent edges in G have distinct total degrees. Let n be any vertex
in G which is adjacent to vertices m and u. Since G is strongly edge to-
tally irregular bipolar neutrosophic graph therefore, T DG(mn) 6= T DG(nu).
This implies that DG(mn) 6= DG(nu). This implies that DG(m) + DG(n) −
2(t+T (mn), i+T (mn), f+

T (mn), t−T (mn), i−T (mn), f−
T (mn)) 6= DG(n) + DG(u) −

2(t+T (nu), i
+
T (nu), f

+
T (nu), t−T (nu), i

−
T (nu), f

−
T (nu)). This implies that DG(m) +

DG(n) − 2(s1, s2, s3, s4, s5, s6) 6= DG(n) + DG(u) − 2(s1, s2, s3, s4, s5, s6). This
shows that DG(m) 6= DG(u). Thus there exists a vertex n in G which is adjacent
to the vertices with distinct degrees. Since n was taken to be an arbitrary ver-
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tex in G, therefore all the vertices in G are adjacent to vertices having distinct
degrees. Hence G is a highly irregular bipolar neutrosophic graph.

Remark 2.34. If G = (S, T ) is a highly irregular bipolar neutrosophic graph,
with T as a constant function. Then it is not necessary that G is strongly edge
irregular bipolar neutrosophic graph.

Example 2.35. Consider a crisp graphG∗ = (M,L) such thatM = {m1,m2,m3,

m4} and L = {m1m3,m1m4,m2m3}. The corresponding bipolar neutrosophic
graph G = (S, T ) is shown in Fig. 12.
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Figure 12: Highly irregular bipolar neutrosophic graph G

By direct calculations, we have DG(m1) = (0.3, 0.2, 0.2,−0.1,−0.1,−0.4),
DG(m2) = (0.6, 0.4, 0.4,−0.2,−0.2,−0.8), DG(m3) = (0.6, 0.4, 0.4,−0.2,−0.2,−
0.8), and DG(m4) = (0.3, 0.2, 0.2,−0.1,−0.1,−0.4). The degree of each edge is
DG(m1m2) = (0.3, 0.2, 0.2,−0.1,−0.1,−0.4), DG(m2m3) = (0.6, 0.4, 0.4,−0.2,
−0.2,−0.8) andDG(m3m4) = (0.3, 0.2, 0.2,−0.1,−0.1,−0.4). Since every vertex
is adjacent to vertices with distinct degrees, G is a highly irregular bipolar
neutrosophic graph. Since the edges m1m2 and m3m4 in G have the same
degree i.e., DG(m1m2) = DG(m3m4). Therefore, G is not strongly edge irregular
bipolar neutrosophic graph.

Remark 2.36. If G = (S, T ) is a highly irregular bipolar neutrosophic graph,
with T as a constant function. Then it is not necessary that G is strongly edge
totally irregular bipolar neutrosophic graph.

Example 2.37. Consider the bipolar neutrosophic graph G = (S, T ) as shown in
Fig. 12. The total degree of each edge is T DG(m1m2) = (0.6, 0.4, 0.4,−0.2,−0.2,
−0.8), T DG(m2m3) = (0.9, 0.6, 0.6,−0.3,−0.3,−1.2) and T DG(m3m4) = (0.6, 0.
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4, 0.4,−0.2,−0.2,−0.8). Since the edges m1m2 and m3m4 in G have the same
total degree. Therefore, G is not a strongly edge totally irregular bipolar neu-
trosophic graph.

Definition 2.38. A bipolar single-valued neutrosophic path P is a sequence of
distinct vertices and edges such that for all k, t+T (mkmk+1) > 0, i+T (mkmk+1) >
0, f+

T (mkmk+1) > 0, t−T (mkmk+1) < 0, i−T (mkmk+1) < 0 and f−
T (mkmk+1) < 0.

A bipolar single-valued neutrosophic path is said to be a bipolar single-valued
neutrosophic cycle if m = n.

Example 2.39. Consider a crisp graphG∗ = (M,L) such thatM = {m1,m2,m3,

m4,m5} and L = {m1m2, m2m3,m3m4,m2m5,m3m5}. The corresponding
bipolar neutrosophic graph G = (S, T ) is shown in Fig. 13.

m1(0.7, 0.6, 0.5,−0.5,−0.6,−0.7) bc bc

bc bc

bc

m4(0.5, 0.3, 0.2,−0.4,−0.7,−0.6)

m2(0.8, 0.6, 0.4,−0.2,−0.4,−0.6)

m5(0.5, 0.4, 0.7,−0.9,−0.8,−0.2)

m3(0.7, 0.5, 0.3,−0.1,−0.2,−0.3)

(0.3, 0.2, 0.1,−0.3,−0.1,−0.7)

(0
.4
, 0
.2
, 0
.6
,−

0.
3,
−
0.
6,
−
0.
5)

(0.4, 0.3, 0.6,−
0.1,−

0.1,−
0.3)

(0.4, 0.2, 0.3,−0.1,−0.1,−0.5)

(0
.6
,
0.4

,
0.3

, −
0.1

,−
0.2

,−
0.5

)

Figure 13: Bipolar neutrosophic graph G

The path P from m1 to m3 is shown with dashed lines and the cycle C from
m3 to m3 is shown with bold lines in Fig. 13.

Theorem 2.9 Let G∗ = (M,L) be a path on 2k(k > 1) vertices and G =
(S, T ) be a bipolar neutrosophic graph of G∗. Let L1, L2, L3, . . . , L2k−1 be the
edges in G having b1, b2, b3, . . . , b2k−1 as their membership values, respectively.
Suppose that b1 < b2 < b3 < . . . < b2k−1, where bj = (t+j , i

+
j , f

+
j , t−j , i

−
j , f

−
j ),

j = 1, 2, 3, . . . , 2k − 1. Then G is both strongly edge irregular and strongly edge
totally irregular bipolar neutrosophic graph.
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Figure 14: Bipolar neutrosophic path P

Proof. Let G = (S, T ) be a bipolar neutrosophic graph of a crisp graph G∗ =
(M,L). Suppose that G is a bipolar single-valued neutrosophic path on 2k(k > 1)
vertices. Suppose that bj = (t+j , i

+
j , f

+
j , t−j , i

−
j , f

−
j ) be the membership values of

the edges Lj in G, where j = 1, 2, 3, . . . , 2k− 1. We suppose that b1 < b2 < b3 <

. . . < b2k−1.
The degree of each vertex in G is calculated as:

DG(m1) = b1 = (t+1 , i
+
1 , f

+
1 , t−1 , i

−
1 , f

−
1 ), for j = 1.

DG(mj) = bj−1 + bk = (t+j−1, i
+
j−1, f

+
j−1, t

−
j−1, i

−
j−1, f

−
j−1)

+(t+j , i
+
j , f

+
j , t−j , i

−
j , f

−
j ),

= (t+j−1 + t+j , i
+
j−1 + i+j , f

+
j−1 + f+

j , t−j−1 + t−j , i
−
j−1 + i−j , f

−
j−1 + f−

j ),

for k = 2, 3, . . . , 2k − 1.

DG(m2j) = b2j−1 = (t+2k−1, i
+
2k−1, f

+
2k−1, t

−
2k−1, i

−
2k−1, f

−
2k−1), for j = 2k.

The degree of each edge in G is calculated as:

DG(L1) = b2 = (t+2 , i
+
2 , f

+
2 , t−2 , i

−
2 , f

−
2 ), for j = 1.

DG(Lj) = bj−1 + bj+1

= (t+j−1, i
+
j−1, f

+
j−1, t

−
j−1, i

−
j−1, f

−
j−1) + (t+j+1, i

+
j+1, f

+
j+1, t

−
j+1, i

−
j+1, f

−
j+1),

= (t+j−1 + t+j+1, i
+
j−1 + i+j+1, f

+
j−1 + f+

j+1, t
−
j−1 +

t−j+1, i
−
j−1 + i−j+1, f

−
j−1 + f−

j+1), for j = 2, 3, . . . , 2k − 2.

DG(L2k−1) = b2k−2 = (t+2k−2, i
+
2k−2, f

+
2k−2, t

−
2k−2, i

−
2k−2, f

−
2k−2), for j = 2k − 1.

Since each edge in G has distinct degree therefore G is strongly edge irregular
bipolar neutrosophic graph. We now calculate the total degree of each edge in G
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as:

T DG(L1) = b1 + b2 = (t+1 + t+2 , i
+
1 + i+2 , f

+
1 + f+

2 , t−1 + t−2 , i
−
1 + i−2 , f

−
1 + f−

2 ),

for j = 1.

T DG(Lj) = bj−1 + bj + bj+1 = (t+j−1, i
+
j−1, f

+
j−1, t

−
j−1, i

−
j−1, f

−
j−1) + (t+j , i

+
j , f

+
j ,

t−j , i
−
j , f

−
j ) + (t+j+1, i

+
j+1, f

+
j+1, t

−
j+1, i

−
j+1, f

−
j+1),

= (t+j−1 + t+j + t+j+1, i
+
j−1 + i+j + i+j+1, f

+
j−1 + f+

j + f+
j+1, t

−
j−1 + t−j +

t−j+1, i
−
j−1 + i−j + i−j+1, f

−
j−1 + f−

j + f−
j+1),

for j = 2, 3, . . . , 2k − 2.

T DG(L2k−1) = b2k−2 + b2k−1 = (t+2j−2, i
+
2j−2, f

+
2j−2, t

−
2j−2, i

−
2j−2, f

−
2j−2) + (t+2j−1,

i+2j−1, f
+
2j−1, t

−
2j−1, i

−
2j−1, f

−
2j−1),

= (t+2j−2 + t+2j−1, i
+
2j−2 + i+2j−1, f

+
2j−2 + f+

2j−1, t
−
2j−2 + t−2j−1, i

−
2j−2 +

i−2j−1, f
−
2j−2 + f−

2j−1), for j = 2k − 1.

Since each edge in G has distinct total degree therefore G is strongly edge totally
irregular bipolar neutrosophic graph. Hence G is both strongly edge irregular and
strongly edge totally irregular bipolar neutrosophic graph.

Definition 2.40. A complete bipartite graph is a graph whose vertex set can be
partitioned into two subsets N1 and N2 such that no edge has both endpoints in
the same subset, and every possible edge that could connect vertices in different
subsets is the part of the graph. A complete bipartite graph with partition of size
|N1| = k and |N2| = l, is denoted by K(k,l). A complete bipartite graph K(1,l) or
K(k,1) that is a tree with one internal vertex and l or k leaves is called a star Sl

or Sk.

Theorem 2.10 Let G∗ = (M,L) be a star K(k,1) and G = (S, T ) be a bipolar
neutrosophic graph of G∗. If each edge in G has distinct membership values
then G is strongly edge irregular bipolar neutrosophic graph but not strongly edge
totally irregular bipolar neutrosophic graph.
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Figure 15: Bipolar neutrosophic graph

Proof. Let G = (S, T ) be a bipolar neutrosophic graph of a crisp graph G∗ =
(M,L). We assume that G is a star K(k,1). Let m,m1,m2, . . . ,mk be the
vertices of the star K(k,1), where m is the center vertex and m1,m2, . . . ,mk

are the vertices adjacent to vertex m as shown in Fig. 15. Suppose that
bj = (t+j , i

+
j , f

+
j , t−j , i

−
j , f

−
j ) be the membership values of the edges Lj in G,

where j = 1, 2, . . . , k. We suppose that b1 6= b2 6= b3 6= . . . 6= bk. The degree of
each edge in G is calculated as:

DG(Lj) = DG(m) +DG(mj)− 2(t+T (mmj), i
+
T (mmj), f

+
T (mmj , t

−
T (mmj), i

−
T (m

mj), f
−
T (mmj)),

= (b1, b2, . . . , bk) + (t+j , i
+
j , f

+
j , t−j , i

−
j , f

−
j )− 2(t+j , i

+
j , f

+
j , t−j , i

−
j , f

−
j ),

= (t+1 , i
+
1 , f

+
1 , t−1 , i

−
1 , f

−
1 ), (t+2 , i

+
2 , f

+
2 , t−2 , i

−
2 , f

−
2 ), . . . , (t+k , i

+
k , f

+
k , t−k ,

i−k , f
−
k ) + (t+j , i

+
j , f

+
j , t−j , i

−
j , f

−
j )− 2(t+j , i

+
j , f

+
j , t−j , i

−
j , f

−
j ),

= (t+1 + t+2 + . . .+ t+k , i
+
1 + i+2 + . . .+ i+k , f

+
1 + f+

2 + . . .+ f+
k ,

t−1 + t−2 + . . .+ t−k , i
−
1 + i−2 + . . .+ i−k , f

−
1 + f−

2 + . . .+ f−
k )−

(t+j , i
+
j , f

+
j , t−j , i

−
j , f

−
j ).

It is easy to see that each edge in G has distinct degree therefore G is strongly
edge irregular bipolar neutrosophic graph. We now calculate the total degree of
each edge in G as:

T DG(Lj) = T DG(m) + T DG(mj)− (t+T (mmj), i
+
T (mmj), f

+
T (mmj , t

−
T (mmj),

i−T (mmj), f
−
T (mmj)),

= (b1, b2, . . . , bk) + (t+j , i
+
j , f

+
j , t−j , i

−
j , f

−
j )(t+j , i

+
j , f

+
j , t−j , i

−
j , f

−
j ),

= (t+1 , i
+
1 , f

+
1 , t−1 , i

−
1 , f

−
1 ), (t+2 , i

+
2 , f

+
2 , t−2 , i

−
2 , f

−
2 ), . . . , (t+j , i

+
j , f

+
j ,

t−j , i
−
j , f

−
j ),

= (t+1 + t+2 + . . .+ t+k , i
+
1 + i+2 + . . .+ i+k , f

+
1 + f+

2 + . . .+ f+
k ,

t−1 + t−2 + . . .+ t−k , i
−
1 + i−2 + . . .+ i−k , f

−
1 + f−

2 + . . .+ f−
k ).
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since all the edges in G have the same total degree therefore G is not a strongly
edge totally irregular bipolar neutrosophic graph

Definition 2.41. The m-barbell graph Bm,m is the simple graph obtained by con-
necting two copies of a complete graph Km by a bridge.

Theorem 2.11 Let G = (S, T ) be a bipolar neutrosophic graph of G∗ = (M,L),
the m-barbell graph Bm,m. If each edge in G has distinct membership values then
G is a strongly edge irregular bipolar neutrosophic graph but not a strongly edge
totally irregular bipolar neutrosophic graph.
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Figure 16: Bipolar neutrosophic graph

Proof. Let G = (S, T ) be a bipolar neutrosophic graph of a crisp graph G∗ =
(M,L). Suppose that G∗ is a m-barbell graph then there exists a bridge,
say ab, connecting k new vertices to each of its end vertex a and b. Let
c = (t+, i+, f+, t−, i−, f−) be the membership values of the bridge ab. Sup-
pose that a1, a2, . . . , ak and b1, b2, . . . , bk are the vertices adjacent to vertices a

and b, respectively. Let cj = (t+j , i
+
j , f

+
j , t−j , i

−
j , f

−
j ) be the membership values

of the edges Lj with vertex a, where j = 1, 2, . . . , k and c1 < c2 < . . . < ck.

Let dj = (t̃+j , ĩ
+
j , f̃

+
j , t̃−j , ĩ

−
j , f̃

−
j ) be the membership values of the edges Ej

with vertex b, where j = 1, 2, . . . , k and d1 < d2 < . . . < dk. Assume that
c1 < c2 < . . . < ck < d1 < d2 < . . . < dk < c. The degree of each edge in G is
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calculated as:

DG(ab) = DG(a) +DG(b)− 2c,

= c1 + c2 + . . .+ ck + c+ d1 + d2 + . . .+ dk + c− 2c,

= (t+1 , i
+
1 , f

+
1 , t−1 , i

−
1 , f

−
1 ) + (t+2 , i

+
2 , f

+
2 , t−2 , i

−
2 , f

−
2 ) + . . .+ (t+k , i

+
k , f

+
k ,

t−k , i
−
k , f

−
k ) + (t̃+1 , ĩ

+
1 , f̃

+
1 , t̃−1 , ĩ

−
1 , f̃

−
1 ) + (t̃+2 , ĩ

+
2 , f̃

+
2 , t̃−2 , ĩ

−
2 , f̃

−
2 ) + . . .

+(t̃+k , ĩ
+
k , f̃

+
k , t̃−k , ĩ

−
k , f̃

−
k ),

= (t+1 + t+2 + . . .+ t+k , i
+
1 + i+2 + . . .+ i+k , f

+
1 + f+

2 + . . .+ f+
k ,

t−1 + t−2 + . . .+ t−k , i
−
1 + i−2 + . . .+ i−k , f

−
1 + f−

2 + . . .+ f−
k )

+ (t̃+1 + t̃+2 + . . .+ t̃+m, ĩ+1 + ĩ+2 + . . .+ ĩ+k , f̃
+
1 + f̃+

2 + . . .+ f̃+
k ,

t̃−1 + t̃−2 + . . .+ t̃−m, ĩ−1 + ĩ−2 + . . .+ ĩ−k , f̃
−
1 + f̃−

2 + . . .+ f̃−
k ).

DG(Lj) = DG(a) +DG(aj)− 2cj, where j = 1, 2, . . . , k.

= c1 + c2 + . . .+ ck + c+ cj − 2cj,

= (t+1 , i
+
1 , f

+
1 , t−1 , i

−
1 , f

−
1 ) + (t+2 , i

+
2 , f

+
2 , t−2 , i

−
2 , f

−
2 ) + . . .

+(t+k , i
+
k , f

+
k , t−k , i

−
k , f

−
k ) + (t+, i+, f+, t−, i−, f−)− cj ,

= (t+1 + t+2 + . . .+ t+k + t+, i+1 + i+2 + . . .+ i+k + i+, f+
1 + f+

2 + . . .

+f+
k + f+, t−1 + t−2 + . . .+ t−k + t−, i−1 + i−2 + . . .+ i−k + i−,

f−
1 + f−

2 + . . .+ f−
k + f−)− (t+j , i

+
j , f

+
j , t−j , i

−
j , f

−
j ).

DG(Ej) = DG(b) +DG(bj)− 2dj , where j = 1, 2, . . . , k.

= d1 + d2 + . . .+ dk + c+ dj − 2dj ,

= (t̃+1 , ĩ
+
1 , f̃

+
1 , t̃−1 , ĩ

−
1 , f̃

−
1 ) + (t̃+2 , ĩ

+
2 , f̃

+
2 , t̃−2 , ĩ

−
2 , f̃

−
2 ) + . . .

+(t̃+k , ĩ
+
k , f̃

+
k , t̃−k , ĩ

−
k , f̃

−
k ) + (t+, i+, f+, t−, i−, f−)− dj ,

= (t̃+1 + t̃+2 + . . .+ t̃+k + t+, ĩ+1 + ĩ+2 + . . .+ ĩ+k + i+,

f̃+
1 + f̃+

2 + . . .+ f̃+
k + f+, t̃−1 + t̃−2 + . . .+ t̃−k + t−,

ĩ−1 + ĩ−2 + . . .+ ĩ−k + i−, f̃−
1 + f̃−

2 + . . .+ f̃−
k + f−)−

(t̃+j , ĩ
+
j , f̃

+
j , t̃−j , ĩ

−
j , f̃

−
j ).

It is easy to see that all the edges in G have distinct degrees therefore G is
strongly edge irregular bipolar neutrosophic graph. The total degree of each edge



Certain Properties of Bipolar Neutrosophic Graphs 29

in G is calculated as:

T DG(ab) = DG(ab) + c,

= c1 + c2 + . . .+ ck + d1 + d2 + . . .+ dk + c,

= (t+1 , i
+
1 , f

+
1 , t−1 , i

−
1 , f

−
1 ) + (t+2 , i

+
2 , f

+
2 , t−2 , i

−
2 , f

−
2 ) + . . .

+(t+k , i
+
k , f

+
k , t−k , i

−
k , f

−
k ) + (t̃+1 , ĩ

+
1 , f̃

+
1 , t̃−1 , ĩ

−
1 , f̃

−
1 )

+(t̃+2 , ĩ
+
2 , f̃

+
2 , t̃−2 , ĩ

−
2 , f̃

−
2 ) + . . .+ (t̃+k , ĩ

+
k , f̃

+
k , t̃−k , ĩ

−
k , f̃

−
k )

+(t+, i+, f+, t−, i−, f−),

= (t+1 + t+2 + . . .+ t+k , i
+
1 + i+2 + . . .+ i+k , f

+
1 + f+

2 + . . .+ f+
k ,

t−1 + t−2 + . . .+ t−k , i
−
1 + i−2 + . . .+ i−k , f

−
1 + f−

2 + . . .+ f−
k )

+(t̃+1 + t̃+2 + . . .+ t̃+m, ĩ+1 + ĩ+2 + . . .+ ĩ+k , f̃
+
1 + f̃+

2 + . . .+ f̃+
k ,

t̃−1 + t̃−2 + . . .+ t̃−m, ĩ−1 + ĩ−2 + . . .+ ĩ−k , f̃
−
1 + f̃−

2 + . . .+ f̃−
k )

+(t+, i+, f+, t−, i−, f−).

T DG(Lj) = DG(Lj) + cj , where j = 1, 2, . . . , k.

= c1 + c2 + . . .+ ck + c+ cj − 2cj + cj ,

= (t+1 , i
+
1 , f

+
1 , t−1 , i

−
1 , f

−
1 ) + (t+2 , i

+
2 , f

+
2 , t−2 , i

−
2 , f

−
2 ) + . . .

+(t+k , i
+
k , f

+
k , t−k , i

−
k , f

−
k ) + (t+, i+, f+, t−, i−, f−),

= (t+1 + t+2 + . . .+ t+k + t+, i+1 + i+2 + . . .+ i+k + i+,

f+
1 + f+

2 + . . .+ f+
k + f+, t−1 + t−2 + . . .+ t−k + t−,

i−1 + i−2 + . . .+ i−k + i−, f−
1 + f−

2 + . . .+ f−
k + f−).

T DG(Ej) = DG(Ej) + dj , where j = 1, 2, . . . , k.

= d1 + d2 + . . .+ dk + c+ dj − 2dj + dj ,

= (t̃+1 , ĩ
+
1 , f̃

+
1 , t̃−1 , ĩ

−
1 , f̃

−
1 ) + (t̃+2 , ĩ

+
2 , f̃

+
2 , t̃−2 , ĩ

−
2 , f̃

−
2 ) + . . .

+(t̃+k , ĩ
+
k , f̃

+
k , t̃−k , ĩ

−
k , f̃

−
k ) + (t+, i+, f+, t−, i−, f−),

= (t̃+1 + t̃+2 + . . .+ t̃+k + t+, ĩ+1 + ĩ+2 + . . .+ ĩ+k + i+,

f̃+
1 + f̃+

2 + . . .+ f̃+
k + f+, t̃−1 + t̃−2 + . . .+ t̃−k + t−,

ĩ−1 + ĩ−2 + . . .+ ĩ−k + i−, f̃−
1 + f̃−

2 + . . .+ f̃−
k + f−).

Since each edge Lj and Ej in G has the same total degree, where j = 1, 2, . . . , k.
Therefore, G is not a strongly edge totally irregular bipolar neutrosophic graph.

3. Conclusion

Neutrosophic sets are the generalization of the concept of fuzzy sets and intu-
itionistic fuzzy sets. Neutrosophic models give more flexibility, precisions and
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compatibility to the system as compared to the classical, fuzzy and intuitionistic
fuzzy models. Bipolar fuzzy graph theory has many applications in technol-
ogy and science, especially in the fields of operations research, neural networks,
decision making and artificial intelligence. Bipolar neutrosophic graph is the ex-
tension of bipolar fuzzy graph. In this research paper, we have discussed certain
types of edge irregular bipolar neutrosophic graphs. Here, we have established
some theorems on bipolar neutrosophic graphs.
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